Infinite Sequences and Series

87
Infinite Sequences and Series In this chapter we shall study the theory of infinite sequences and series, and investigate their convergence.

description

Infinite Sequences and Series In this chapter we shall study the theory of infinite sequences and series, and investigate their convergence. Examples :. 若 A={-1,-2,-3,-4,…}, 則 A 是有上界的集合,且 -1,0,1, 皆是 A 的一個上界 , 其實大於或等於 -1 的實數都是 A 的上界 。 - PowerPoint PPT Presentation

Transcript of Infinite Sequences and Series

Page 1: Infinite Sequences and Series

Infinite Sequences and Series

In this chapter we shall study the theory of infinite sequences and series, and investigate their convergence.

Page 2: Infinite Sequences and Series

sequence infinite}{a 1.

:Notation

,8,6,4,2 2.

Cos4, Cos3, Cos2, Cos1, Cos0, 1.

Examples

sequence infinite,a,a,a,a,a,a

Sequences Infinite 5.1

1nn

543210

Page 3: Infinite Sequences and Series

oscillate. tosaid is }{a then ,-or nor to

limit, finite a toconvergenot does alim If 4.

divergent. be tosaid is }{a ,alim If

Calim if Cnumber finite a toconverges }{a 3.

n allfor aa if decreasing monotone is and

n, allfor aa if increasing monotone is}{a 2.

n. allfor k |a|such that

0kconstant a exists thereif bounded is}{a 1.

:Remark

1nn

nn

1nnnn

nn

1nn

1nn

1nn1nn

n

1nn

Page 4: Infinite Sequences and Series

nn

n

n

1nnn

nn

n

22

nn

nn

nn2

2

n

alim ,n

2a 4.

oscillate }{a ,(-1)a , (-1)lim 3.

0n2n

)n(-)2n(limalim , n-2na 2.

3

2alim ,

43n

n2na 1.

:Example

不存在

Page 5: Infinite Sequences and Series

是有界集合。則,及有一個下界有一個上界且若

的一個下界。是有下界且則集合,使得存在且對於若

的一個上界。是有上界且則集合,使得存在且對於若

是所有實數的集合。令

A

pqARA 3.

ApA

pxp A,xRA 2.

AqA

qxq A,x RA 1.

:Definition

R

Page 6: Infinite Sequences and Series

Examples :

1. 若 A={-1,-2,-3,-4,…}, 則 A 是有上界的集合,且 -1,0,1,皆是 A 的一個上界,其實大於或等於 -1 的實數都是 A的上界。

2. 若 A={1,2,3,4,5,…}, 則 A 是有下界的集合,且 0,-1,-2, 皆是 A 的一個下界,其實小於或等於 1 的實數都是 A 的下界。

3. 若 A={-3,-2,1,0,1,2,3,4}, 則 A 有一個上界 4 及有一個下界 -3

故 A 是一個有界集合。

Page 7: Infinite Sequences and Series

Definition:

1. 令 A 是有上界的集合,若 是 A 的一個上界且 小於或等於A 的其他上界,則 稱為 A 的最小上界,記為 lub(A) 或 sup(A) 即 lub(A)=sup(A)=

2. 令 A 是有下界的集合,若 g 是 A 的一個下界且 g 大於或等於 A 的其他下界,則 g 稱為 A 的最大下界,記為 glb(A) 或 inf(A) 即 glb(A)=inf(A)=g.

注意 1. 若 A 是有上界的集合,則 sup(A) 存在。

2. 若 A 是有下界的集合,則 inf(A) 存在。

3. 若 A 是有界集合,則 sup(A) 及 inf(A) 存在。Example:

1. 若 A={x | x<0}, 則 lab(A)=sup(A)=0, 但 sup(A) A 。

2. 若 A={1/n | n=1,2,3,…}, 則 lub(A)=1, glb(A)=0, 但是 。

Aglb(A) A,lub(A)

Page 8: Infinite Sequences and Series

但不收斂。是有界

如數列此定理的逆敘述不成立

注意有界。故數列則對於所有

故對於

或即使得

對於則存在一整數收斂到若

,

(-1),

:

a k,|a| n,

,|1-c|,1c1,|a|,1,|a|1,|a|maxk

|1-c||,1c|max|a|N,n

c1a1-c1c-a1-1,c-a

N,nN,c,a :Proof

bounded. is sequence convergentEvery

5.1.1 Theorem

1nn

1nnn

N21

n

nnn

1nn

Page 9: Infinite Sequences and Series

其證明與上面的相似。

收斂。則列是有界且單調遞減的數注意

故得或對於得或對於得即對於

則是遞增數列因為使得存在故對任意

因此對於所有令存在故其上界

必定有因此的數列是一個有界且單調遞增令

a,a :

calim

|c-a|N,n

ca-c N,n

ca-cN,n

caa-c

,ac,a-cN,0,

c,an,),asup(c,)asup(,

a,a :Proof

converges. sequence decresing)or ncreasingmonotone(i boumdedEvery

5.1.2 Theorem

1nn1nn

nn

n

N

N

1NN

1nnN

n1nn1nn

1nn1nn

Page 10: Infinite Sequences and Series

此數列有界。利用數學歸納法可證明

對於考慮數列

這裡

則是有下限且遞減的數列若

這裡

則是有上限且遞增的數列若

推論

n1n11nn

n1n

1nnnn

1nn

n1n

1nnnn

1nn

a2a1,n,2a,}{a

:Example

.ainf)}inf({ad d,alim

,}{a 2.

.asup)}sup({ac c,alim

,}{a 1.

:

Page 11: Infinite Sequences and Series

1.831c c2)-c (

c2c

c2c solve To

alim2

a2limalim

thatnote wec, find To

. converges calim 5.1.2 Theoremby

,increasing monotone and bounded is a Sequence

. 22222a2a then 2,a if 2,2a

22

2

nn

nn

1nn

nn

1nn

n1nn1

Page 12: Infinite Sequences and Series

. }{a of esubsequenc a also is ,4000

1,

400

1,

40

1,

4

1

. }{a of esubsequenc a is ,2

1,

2

1,

2

1,

2

1}{b

,5

1,-

4

1,

3

1,-

2

1,

1

1-

n

(-1)}{a 2.

.61,2,3,4,5, of esubsequenc a is ,,2,22,2 1.

:Examples

kkkfor ab if

, }{a of esubsequenc a called is }{b 1.

:Definition

1nn

1nn4321nn

1n

n

1nn

432

321kn

1nn1nn

n

Page 13: Infinite Sequences and Series

.n allfor k,|a| ,,a,a,a :pf

esubsequenc convergent a has sequence boundedEvery

5.1.4 Theorem

. c toconverges }{a of esubsequencevery

ifonly and if c toconverges }{a sequenceA

5.1.3 Theorem

n321

1nn

1nn

k a a a ak - 4213

R

Page 14: Infinite Sequences and Series

nn

1nn

nn

1nn

1nn

a inf limby denoted is and }{a oflimit lower the

called is E of boundlower greatest The .a sup limby

denoted is and }{a oflimit upper thecalled is E of

boundupper least The limit. ialsubsequent its all ofset

thebe Elet and sequence bounded a be }{aLet

:Definition

,

密密麻麻的點。一定會有某些地方是有限空間插入無窮多點

Page 15: Infinite Sequences and Series

-1ainf lim 1a sup lim

[-1,1]E cosn,a ,}{a 4.

{-1,0,1}E -1,ainf lim 1a sup lim

}1,0,-1,1,0,-{1,0,-1,1,}{a 3.

1ainf lim 3a sup lim

{1,3}E odd isn if

n

13

even isn if n

11

a ,}{a 2.

1ainf lim 1a sup lim

1E ,n

11a ,}{a 1.

Example

nn

nn

n1nn

nn

nn

1nn

nn

nn

n1nn

nn

nn

n1nn

Page 16: Infinite Sequences and Series

。夠大只要很近很近就應該要靠的與當然既會密密麻麻靠近夠大時當

靠近會密密麻麻的往意指

)mn,(

aac,)n(

c a,a,a c toconverges }{a

:Proof

. Nnm, allfor |a-a|such that Ninteger an is there0

eachfor ifonly and if converges }{a sequence The

criterion)Cauchy (The 5.1.6 Theorem

CriterionCauchy The 5.1.1

cainf limasup lim

ifonly and if c toconverges }{a sequence The

5.1.5 Theorem

mn

3211nn

mn

1nn

nn

nn

1nn

Page 17: Infinite Sequences and Series

sequenceCauchy n

1sin 3.

sequenceCauchy n

(-1)1 2.

sequenceCauchy n

1 1.

:Example

. Nmn, allfor |a-a|

such that Ninteger an exist there0each

for if sequenceCauchy a called is }{a sequenceA 1.

:Definition

1n

1n

n

1n

nm

1nn

Page 18: Infinite Sequences and Series

. casay then wecSlim If 4.

.divergent be tosaid is

a series then thelimit, finite a toconvergenot does S If 3.

. converges S sequence theif convergent be tosaid is series The 2.

. a series theof sum partialnth thecalled is aS 1.

:Definition

n!

e 3.

n

1cos(-1) 2.

3

1

2

1

1

1 1.

:Example

series infinite-aaaa

Series Infinite 2.5

1iin

n

1ii1nn

1nn

1ii

n

1iin

1n

n

1n

n

1nn321

Page 19: Infinite Sequences and Series

. Nmn, allfor S-Sa

converges Sconverges a

sum partialnth aSa

:Pf

. Nnm, allfor asuch that Ninteger an is there

0given afor ifonly and if converges a

5.2.1 Theorem

mn

n

1mii

1nn1i

i

n

1iin

1ii

n

1mii

1ii

Page 20: Infinite Sequences and Series

. 0Slim -Slim )S-(Slim alimlimit Take

. S-Sa and

c,Slim c,Slim have We

. a of sum partialnth thebe Slet

c,a that suppose :pf

. 0alim then converges a If

Properties

1-nn

nn

1-nnn

nn

1-nnn

1-nn

nn

1iin

1ii

nn

1ii

Page 21: Infinite Sequences and Series

diverges. n

1 Hence Slim have We

2

k

2

1

12

1SS

2

3

8

4S

8

1

5

1SS

2

2

2

1

2

1

4

2S

4

1

3

1SS

2

1

2

1

1

1S since

0.n

1lim and ,

n

1 2.

diverges. 1n

n hence

0,11n

nlim Since ,

1n

n 1.

:Example

1n2k

k1-k22

448

224

2

n1n

1n

n1n

k

1-kk

Page 22: Infinite Sequences and Series

.convergent absolutelynot are n

cos ,n

(-1) 2.

.convergent absolutely are ,n!

(-1) ,

n!

1- ,

2

1- 1.

:Example

.convergent is |a| if convergent absolutely is a series The

:Definition

n

2-

n

4 ,

n

1

n

2 ,

n

3 1.

:Example

ba)b (a 2. acca 1.

:convergent also are series following then the

constant, a is c if and series, convergent twoare b and a If

5.2.2 Theorem

1n1n

n

1n

n

1n

n

1n

1nn

1nn

1n42

1n1n

1nn

1nnn

1nn

1nn

1nn

1nn

1nn

Page 23: Infinite Sequences and Series

.convergent are 3

1- ,

n!

(-1) ,

n

(-1) 1.

:Example

converges. a Hence

mn, as 0|a|converge |a|

criterion.Cauchy theapplyingby

,|a| and a seriesConsider

:Pf

.convergent is series convergent absolutelyEvery

5.2.3 Theorem

n

1n1n

n

1n2

n

1ii

n

1mii

1ii

n

1mii

1ii

Page 24: Infinite Sequences and Series

holds are (ii) (i) Hence

. ba and criterion Cauchy Apply the :Pf

too.divergent is b then divergent, is a If (ii)

. a does so then converges, b If (i)

integer. fixed a is N where,Nnfor

basuch that termspositive of series twobe b and aLet

Test) Comparison .4(TheTheorem5.2

terms.positive of series theis 1,2,n 0,a ,a

Terms Positive of Seriesfor eConvergenc of Tests 5.2.1

n

1mii

n

1mii

1nn

1nn

1nn

1nn

00

nnnn

n1n

n

Page 25: Infinite Sequences and Series

divergent. is n

1 hence ,

2

mlimSlim Since

2

m

2

1

12

1

4

1

3

1

2

1

1

1S

2

3

8

1

5

1

4

1

3

1

2

1

1

1S

2

2

4

2

2

1

4

1

3

1

2

1

1

1S

2

1

2

1

1

1S

i

1S,

n

1 1. :Examples

1.kfor convergent is n

1 2. series. harmonic thecalled is

n

1 1.

:Remark

1nn2n

m1-m2

2

4

2

n

1in

1n

1nk

1n

m

m

3

Page 26: Infinite Sequences and Series

.convergent is , 1k , n

1 proves This

.convergent is }{S hence ,increasing and bounded is }{S

1-2

2

21-1

1

)2

1()

2

1()

2

1()

2

1(1)

2

1(

8

1

4

1

2

11

))2

1()

2

1()

2

1(()

8

1

8

1()

4

1

4

1()

2

1

2

1(1

)1)-(2

1

)(2

1()

15

1

8

1()

7

1

4

1()

3

1

2

1(1

i

1

i

1S

have we2nsuch that minteger exist theren,each For

1,2,...n ,i

1S 1,k ,

n

1 2.

1nk

nn

1-k

1-k

1-k

1-m1-k

31-k

21-k

11-k

1-k1-m1-k1-k1-k

k1-m

k1-m

k1-mkkkkkk

kmk1-mkkkkkk

1-2

1ik

n

1ikn

m

n

1ikn

1nk

m

Page 27: Infinite Sequences and Series

.convergent is n

1~

12nn

1 3.

divergent. is n

1~

nn

43n 2.

.convergent is n

1~

nn

2 1.

:Examples

b ba ba that means b

alim

:Pf

divergent.both or convergentboth either are series twothen the

,constant somefor b

alim If terms.positive of series twobe b and aLet

5.2.5 Theorem

1n233

2

22

1nn

1n

1nnnn

n

n

n

n

n

n1n

n1n

n

llll

ll

n

Page 28: Infinite Sequences and Series

.a

asup lim1

a

ainf lim if ,conclusion No 3.

1.a

ainf lim if diverges, a 2.

1.a

asup lim if converges, a 1.

:hold following theThen terms,positive of series a be aLet

Test) o5.2.6(Rati Theorem

.convergent is n

1~

1n

1~

1n

1sin 2.

1).x

sinxlim (Sincedivergent is

n

1~

n

1sin 1.

:Examples

. somefor b

alim that means b~a

:Remark

n

1n

nn

1n

n

n

1n

n1n

n

n

1n

n1nn

1nn

1n2

1n2

1n2

0x1n1n

n

n

nnn

ll

Page 29: Infinite Sequences and Series

. n as 12n

2

21

12n1

a

a

. n as 02

1-2n

1-2n1

21

a

a

12n

1a ,

2

1a i.e

2

1

5

1

2

1

3

1

2

1

1

1aLet 2.

converges. a1ra

alim

)rrr(1aararraaaThen

. n asr a

a Suppose aaaaa

. 1r ,r-1

1rrr1r 1.

:Examples

n

n2n

12n

n

n

1-2n

2n

12nn2n4321n

n

nn

1n

n

3211

31

211

1nn

n

1n4321

1nn

32

0n

n

Page 30: Infinite Sequences and Series

0cinf limcsup limclim

2

1c

4.Consider

-1cinf lim 1csup lim exist t doesn' clim

,9

1,-1

8sin,

7cos,

6

1,-1

5sin,

4cos,

3

1,-1

2sin,

1cosc

Consider 3.

a

asup lim 0

a

ainf limBut

exist.t doesn' a

alim

2n m if12n

2

1-2nm if2

1-2n

2n m ifa

a

1-2nm ifa

a

a

a Since

nn

nn

nn

nn

nn

nn

nn

n

m

1m

mm

1m

m

m

1m

m

n

n

2n

12n

1-2n

2n

m

1m

Page 31: Infinite Sequences and Series

432432n

n

1n

nn

1n

n

n

1n

nn

1n

n

m as

2m1-2m

2m

1-2m

2m

m as

2m2m

12m

2m

12m

n

1n

54321n

n

n

n

n

1nn

nn

1n

nn

1n

n

1nn

1nn

1nn

n

1n

n

1n1nn

2

1

2

1

2

1

2

1

2

1

3

1

2

1

3

1aBut

.conclusion no a

asup lim1

a

ainf lim 5.2.6 TheoremBy

. 0a

ainf lim ,

a

asup lim have We

)2

3(

3

1

31

21

a

a

0)3

2(

3

1

21

31

a

a

a

a Since

3

1

2

1

3

1

2

1

3

1aConsider

odd isn if3

1

even isn if2

1

aLet 3.

divergent. is a hence 1,e

1)(nlim

en!

e1)!(nlim

a

alim Since

e

n!a 2.

.convergent is 1)!(n

1 hence 1,0

1)!(n1

2)!(n1lim

a

alim Since

1)!(n

1aConsider 1.

:Example

Page 32: Infinite Sequences and Series

n

2n

nn

kn

n

n

1n

nn

kn

n

1nn

n

kn

n

1nn

n

kn

n

1nn

a

alim

a

alim

2kFor 2.

test.ratio theis 5.2.7 Theorem ,a

alim

a

alim

1kFor 1.

:Remark

diverges. a then 1,a

alim If 2.

converges. a then 1,a

alim If 1.

integer. positive fixed a bek and termspositive of series a be aLet

5.2.7 Theorem

Page 33: Infinite Sequences and Series

.convergent is a 5.2.7, Theoremby , 5

1

a

alim But

.divergence a

alim get We

,5

1,

5

1,

5

1

a

a ),

5

1(

3

2,

2

3),

5

1(

3

2,

2

3),

5

1(

3

2,

2

3

a

a Since

5

13

5

12

5

13

5

12

5

13

5

1232aConsider 2.

exist.not does a

alim

odd. isn if 31

31

even. isn if 21

21

a

a Since ,aConsider

odd. isn if 3

1

even. isn if 2

1

aLet 1.

:Example

1nn

n

2n

n

n

1n

n

n

2n

n

1n

3322

1nn

n

2n

n

n

2n

n

2n

n

2n

1nn

n

n

n

Page 34: Infinite Sequences and Series

converges. a2 ifonly and if converges a then

n, offunction decreasing monotone a is a where terms,positive of series a be aLet

Test)on Condensati schy'5.2.10(Cau Theorem

alimainf limasup lim then exist, alim If 1.

Properties

converges. a hence 1,2

1alimsup Since .aConsider

odd. isn if 3

1

even. isn if 2

1

a 1.

Example

1. if ,conclusion No (3)

1. if dinverges, a (2)

1. if converges, a (1)

Then asup limLet terms.positive of series a be aLet

t)Cauchy tesor test 5.2.8(Root Theorem

1n2

n

1nn

n1n

n

nn

nn

nn

nn

1nn

n

1

nn1n

n

n

n

n

1nn

1nn

n

1

nn1n

n

n

Page 35: Infinite Sequences and Series

converges. tlima2 ifonly and if converges Slima hence

,tSt2

1 Since

t2

1)a2a22a(a

2

1

a28a4a2aaa2

1

)a(a)aaa(a)a(aaa2

1

aaaaS

hand,other In the

ta28a4a2aa

)aa(a)a(a)a(aa

a)aaa(a)a(aaS

get we2n2such that 0,minteger exist theren,each For

.1,2,mn, ,a2 t,aSLet

:Pf

mm

0n2

nn

n1n

n

mn1-m

1-m2

1-m4

221

2

2-m168421

21287654321

2321n

m2

m8421

1-212274321

27654321n

m1-m

m

1i2

im

n

1iin

n

1-m

1-m

1-m2-m

1-m

m

1mmm

m

i

Page 36: Infinite Sequences and Series

1.k if converges, n

1 Hence

)2

1(

2

1

)(2

12a2

. n

1aConsider 2.

divergent. is n

1 Hence

12

12a2

. n

1aConsider 1.

:Example

1nk

n

0n1-k

0n1)-n(k

0nkn

n

0n2

n

1nk

1nn

1n

0n0nn

n

0n2

n

1n1nn

n

n

Page 37: Infinite Sequences and Series

divergent. is a hence divergent, is b Since

1b

b

a

a ,

b

b

a

a

0b

1-

a

a

b

1 0

b

1-

a

a

b

1

case 0For

:pf

0 if diverges and 0 if converges aThen

. )b

1-

a

a

b

1(limLet

divergent. is b that Suppose

terms.positive of series twobe b and aLet

Test) s(Kummer' 5.2.11 Theorem

1nn

1nn

n

1n

n

1n

1n

n

1n

n

1n1n

n

n1n1n

n

n

1nn

1n1n

n

nn

1nn

1nn

1nn

Page 38: Infinite Sequences and Series

divergent is 2

n as -1)(n-2

2n

b

1 -

a

a

b

1

n

1b ,2a 2.

.convergent is 2

1 test,sKummer'By

n as 1n-2n1)(n-2

2n

b

1 -

a

a

b

1

n

1bLet a

2

1 1.

:Examples

1n

n

1n

n

1n1n

n

n

1n 1nn

1n

n

1nn

n

n

1n

1n1n

n

n

1n 1nn

1n 1nnn

Page 39: Infinite Sequences and Series

converges.

n

1 test sRaabe'by 1,2 Since

n

1o

n

21

n

1

n

21

n

1)(n

1n1

n1

a

a

n

1aConsider :Example

0.1- if diverges a and 01- if converges a test sKummer'by diverges, n

1 Since

n as 1-1n1

1-

a

a

n1

1

n as 0-n-a

an

n as 0n1

n-1-

aa

n

1o

n1

a

a

:proof

1 if diverges and 1 if converges aThen

n

1o

n1

a

a that and termspositive of series a is a that Suppose

Test) s(Raabe' 5.2.12 Theorem

1n2

22

2

2

2

1n

n

1n2

1nn

1nn

1nn

1n

1n

n

1n

n

1n

n

1n

n

1nn

1n

n

1nn

Page 40: Infinite Sequences and Series

diverges. n

1 test sGauss'by ,

n

10

n

11

n

11

a

a Since

n

1a

:Example

diverges. a test sKummer'by , diverges nlogn

1 Since

-11

)x-(11-lim

x

x)-log(1lim

1)(n1

1))(n1-log(1lim 0

n

1(nlogn)Olim and n as -1

1n

n1)log(n

because trueis This

0-1n

1(nlogn)O

1n

n1)log(nlim)

b

1-

a

a

b

1(lim

calculate and nlogn

1bput , 1consider thereforeusLet

1 if diverges and 1 if converges a test sRaabe'By

n

1o

n

1O Since

:proof

1 if diverges and 1 if converges aThen

0 ,n

1O

n1

a

a that suppose , termspositive of series a be aLet

Test) s(Gauss' 5.2.13 Theorem

1n211

1n

n

1n1nn

1nn

1n

0x0xn1n

1n1n1n

n

nn

n

1nn

1

1nn

11n

n

1nn

Page 41: Infinite Sequences and Series

series. galternatin are n!

(-1) ,

13n

(-1)

:Example

).series( galternatinan called is 1nfor 0a where,a(-1) 2.

.absolutelynot but converges a if series, convergentlly conditiona a called is a 1.

:Definition

13n

(-1) ,cosna 1.

:Example

. 1nfor negativeor positive bemay a where,a

Terms Negative and Positive of Series 2.2.5

1n

1-n

1n

n

n1n

n1-n

1nn

1nn

1n

n

1n1nn

n1n

n

交錯級數

Page 42: Infinite Sequences and Series

converges.a(-1) criterion, sCauchy'By

mn, as 0a

odd is m-n if )a-(a--)a-(a-a

even is m-n if a-)a-(a--)a-(a-a

a(-1)a-aS-S Hence

n 0,a and decreasing monotone is a Since

a(-1)a-a(-1)S-S

have wen,mFor

. a(-1) of sum partialnth thebe SLet

:Pf

.convergent is series then the, 0alim and decreasing

monotone is a sequence thesuch that series galternatinan be a(-1)Let

5.2.14 Theorem

1nn

1-n

1m

n1-n3m2m1m

n1-n2-n3m2m1m

n1-m-n

2m1mmn

n1nn

n1-m-n

2m1mm

mn

n

1ii

1-in

nn

1nn1n

n1-n

Page 43: Infinite Sequences and Series

.convergentlly conditiona is lnnn

(-1) hence

divergent, is lnnn

1but

,convergent is lnnn

(-1) since ,

lnnn

(-1) 4.

. duu

1dx

xlnx

1 since ,convergentlly conditiona is

nlnn

(-1) 3.

.convergentlly conditiona is n

(-1) 2.

.convergent are n

(-1) ,

n!

(-1) ,

n!

(-1) ,

n

(-1) 1.

:Example

2n

n

2n

2n

n

2n

n

ln2

lnxu

22n

n

1n

n

1n

n

2n

n

1n

n

1n

n

Page 44: Infinite Sequences and Series

. f(x)dx ifonly and if a Hence

a-adxf(x)a-a

a-adxf(x)a

1a1adxf(x)dxf(x)dxf(x)1a1a1a Since

:pf

converges, f(x)dx ifonly and if converges athen ,1,2,3,n ,af(n) If

0. todecreasing monotone and continuous be Rx 0f(x)Let

:Properties

11i

i

n

n

1ii

n

11

n

1ii

n

n

1ii

n

1

n

2ii

1-n1

n

1-n

2

1

n

1n32

11n

nn

1a

y

x3 2 1

)(xfy

Page 45: Infinite Sequences and Series

497253

54321i

i

2

1

2

1

2

1

2

1

2

1

2

1

1

1 :Rearrange

2

1

2

1

2

1

2

1

1

1a

Series ofent Rearrangem 3.2.5

. 1,2,3,n ,absuch that

JJ:ffunction onto and one-to-one a exists thereif

,a ofent rearrangem a called is b series The series.given a be aLet 2.

integers. positive ofset thedenotesJ 1.

:Definition

f(n)n

1nn

1nn

1nn

Page 46: Infinite Sequences and Series

converges. |b| hence converges, |a| Since . |a| |b|such that Mexist e ther

b of sum partialnth each For .a ofent rearrangem a be bLet

:pf

sum. same thehas and convergent

absolutely remainsit ofent rearrangemany then ,convergent absolutely is a If

5.2.15 Theorem

. a ofent Rearrangem

-5

1

12

1-

10

1-

3

1

8

1-

6

1-

1

1

4

1-

2

1-b ,

6

1-

5

1

4

1-

3

1

2

1-

1

1a 2.

. a of seriesent rearrangem a is b

4

1

11

1

9

1

7

1

2

1

5

1

3

1

1

1b ,

4

1

3

1

2

1

1

1

n

1a 1.

:Example

1ii

1ii

M

1ii

N

1ii

1n 1ii

1nnn

1nn

1nn

1nn

1nn

1nn

1nn

1nn

1n1nn

Page 47: Infinite Sequences and Series

converges. n

(-1)but diverges, b hence

, Slim have we1-4n

nlim Since

1-4n

nS

1-4n

1

12n

1S

)1-4n

1

12n

1()

2n

1

1-2n

1()

4

1

3

1()

2

11(

)2n

1

1-4n

1

3-4n

1()

4

1

7

1

5

1()

2

1

3

11(SThen

. n

(-1) of sum partialnth thedenote S and b of sum partial3nth thedenote SLet

6

1

11

1

9

1

4

1

7

1

5

1

2

1

3

11b

seriesent rearrangem theand n

(-1)Consider

:Example

1n

1-n

1nn

3nnn

2n2n

3n

1n

1-n

n1n

n3n

1nn

1n

1-n

Page 48: Infinite Sequences and Series

. babababa

0,1,2,n ,baC

where,C series theis b and a series ofproduct sCauchy' The 1.

:Definition

Series oftion Multiplica 5.2.4

book text See :proof

-or todiverge or tonumber given any to

converge toas so rearranged be alwayscan series convergentlly conditionaA

5.2.16 Theorem

,, 2.

, 1.

:Remark

0n2-n21-n1n0

k-n

n

0kkn

0nn

0nn

0nn

此新級數不一定收斂。若重新排列出新級數條件收斂的級數斂值。級數一定會有相同的收不管如何重新排列的新絕對收斂的級數

Page 49: Infinite Sequences and Series

1)2

13

2

13(11)

2

13(11)3333)(1

2

1

2

1

2

1

2

1(1 .2

3

13

2

510CCCCC

43213

1

2

1

1

1n

1n

1C

0n

14)-(n

5

13)-(n

4

12)-(n

3

11)-(n

2

1n

1

1C

3

13

3

1130

4

11

3

12

2

13

1

1babababaC

2

50

3

11

2

12

1

1bababaC

102

11

1

1babaC

0010

1baC

C seriesproduct sCauchy' The nb ,1n

1a 1.

:Examples

22432

432

43210

0n0n0nn

n

031221303

0211202

01101

000

0nn

0n0nn

0n0nn

Page 50: Infinite Sequences and Series

. 3

4

41

-1

1

2

1 Cget We

odd. isn if 0

even. isn if 2

1(-1)

2

1

2

(-1)

2

(-1)

2

1baC

Cproduct sCauchy' The

3

2

2

(-1)b 2,

2

1a 1.

:Example

st. toabsolutely convergesC then ,convergent absolutely are b and a If (ii)

st.C and converges C then ,absolutely converges b and a of oneleast at If (i)

then,b t,as that Suppose , b and a ofproduct sCauchy' be CLet

5.2.17 Theorem

0n2n

0nn

n

n

0i

i-n

n

0in

i-n

i-n

i-nn

0ii

n

0ii-nin

0nn

0nn

n

0nn

0nn

0nn

0nn

0nn

0nn

0nn

0nn

0nn

0nn

0nn

0nn

0nn

0nn

0nn

Page 51: Infinite Sequences and Series

D.x ,(x)f(x)S where

Don f(x) touniformly converge tosaid is (x)f then D,on xt independen is N If

Nn ,S-(x)Ssuch that Ninteger an exists there0,given aFor 3.

series. theof sum thebe tosaid is s(x) then s(x), toDin every x for converges (x)f If 2.

D.on f(x) toconverge tosaid is (x)f sequence then thef(x),(x)flim

Din every x for such that Don defined f(x)function a exists thereIf 1.

R.Dset aon defned functions of sequence a be (x)fLet

:Definition

Function of Series and Sequences 3.5

n

1iin

1nn

nn

1nn

1nnnn

1nn

Page 52: Infinite Sequences and Series

. 0lim thusN,n ,f(x)-(x)fsup that followsIt

. D xallfor f(x)-(x)f , Nnfor such that

on only depends that Nexist thereD,on uniformly f(x)(x)f since 0,given aFor

. n as 0 that show To, Don uniformly f(x)(x)f that Suppose )(

. Don xuniformly f(x)(x)f i.e

Dx Nn |0-|f(x)-(x)f Hence . Nn |0-|such that

on xt independen Nexist there0lim and Dx ,f(x)-(x)f Since

. Don uniformly f(x)(x)f that show To 0,lim that Suppose )(

:proof

n as 0 ifonly and if

Don f(x) touniformly converges sequence Then the ,f(x)-(x)fsup as Define

. f(x) toconverges and RDon defined functions of sequence a be (x)fLet

5.3.1 Theorem

nn

nDx

n

n

n

nn

n

nnnn

nn

nn

nnn

n

nDx

nn

1nn

Page 53: Infinite Sequences and Series

. [0,1]on uniformly 2x (x)f ,1n

12nx(x)f 5.

. Don uniformly 1(x)f Hence

. n as 0 n

2

n

x2 sup1-

n

x2cos sup1-(x)f sup Since

. [0,1]D ,n

x2cos(x)fLet 4.

. [0,1]on uniformly 0(x)f Hence

. n as 0 n

0-)n

xsin( sup And

nn

x0-)

n

xsin( Since

. [0,1] x),n

xsin((x)fLet 3.

)[0,xx cosx-1 2.

)[0,x 0x-sinx 1.

:Examples

n1n

1nn

n

DxDxn

Dxn

1n1nn

n

[0,1]xn

n

Page 54: Infinite Sequences and Series

. Don uniformly converges (x)f Hence

. mn, as 0|M||(x)f|(x)f

criterion sCauchy' By the

:proof

. Don uniformly converges (x)f then converges, M if

then D, xallfor

1,2,n ,M|(x)f|such that constants of M

sequence a exists thereIf R.Don defined functions of series a be (x)fLet

Test)-M sss'(Weierstra 5.3.2 Theorem

1ii

m

1nii

m

1nii

m

1nii

1nn

1nn

nn1nn

1nn

Page 55: Infinite Sequences and Series

. Ron f(x) touniformly converges (x)f

2x1

2x02xf(x)

2xn

2-1

2x0n

12x

(x)f 2.

. [0,1]on uniformly converges nxn

x(x)f Hence

converges. n

1 and [0,1], x,

n

1

0n

x

nxn

x Since

[0,1] x,nxn

x(x)f 1.

:Exampes

. Don S(x) touniformly converge tosaid is (x)fThen

. Don S(x) touniformly converges (x)S If Dx ,(x)f(x)SLet

:Definition

n

n

1n23

2

1nn

1n333

2

23

2

23

2

n

n

1ii

1nn

n

1iin

Page 56: Infinite Sequences and Series

. Nmn, as ,4

|-|get we(1)in x xaslimit theBy taking

(3)|x-x| 4

|-(x)f| n,each for have we,(x)flim From

(2)Dx N,n as ,4

|f(x)-(x)f|or

(1)Nmn, as ,4

|(x)f-(x)f| have Wef. toconvergentuniformly (x)f From

:proof

. (x)flim limf(x)lim(x)flim limi.e f(x),limlimThen D. ofpoint limit a

is x where,(x)flim If D.set aon f(x) toconvergentuniformly be (x)fLet

5.3.3 Theorem

Series and Sequences Convergent Uniformlyof Properties 1.3.5

mn0

0nnnnxx

n

mn1nn

nnxxxx

nxxnxx

nn

0nnxx1nn

0

0000

0

Page 57: Infinite Sequences and Series

(x)flimlimlimf(x)lim Hence

x-x as 24

|-f(x)|

get we(2)by

x-x and Nn as2

|(x)f-f(x)|

|-||-(x)f||(x)f-f(x)|

|--(x)f(x)f-f(x)||-f(x)| Since

Nn as 4

|-|Then ,limLet

sequence convergent a is criterion Cauchy By

nxxn

nn

0xx

00

0

n

0nnnn

0nnnn0

0n0nn

1nn

00

Page 58: Infinite Sequences and Series

1ii

xx

n

1ii

xxn

n

1ii

xxn

nxxn

nnxx

n

1ii

nxx1n

nxx

n

1iin

1nn

xx1n

nxx

nxx

1nn

00nn

nxxn

nnx x

00nn

0nnxx

0

nn

1nn

(x)flim(x)flimlim(x)flimlim

(x)Slimlim(x)Slimlim(x)flimlim(x)f lim

1,2,3,n ,(x)f(x)SLet

:proof

. (x)flim (x)f lim

thenexist, (x)flim n,each for If D.on uniformly convergent be (x)fLet

5.3.2Corollary

)f(x)(xflim(x)flimlim(x)flimlim

5.3.3 TheoremBy

)f(x)(xflim and )(xf(x)flim Since D,each xFor

:proof

Dx f(x)(x)flimLet D.on continuous is f(x)Then D.set aon

f(x) touniformly converges that functions continuous of sequence a be (x)fLet

5.3.1Corollary

000

0000

00

0

00

0

Page 59: Infinite Sequences and Series

(x)flimlim100lim(x)flimlimget We

0nx1

nxlim(x)flimBut

11lim(x)flimlim have We

1x

n1

xlim

nx1

nxlim (x)flim

(0,1) x,nx1

nx(x)f 1.

:Examples

5.3.2Corollary toSimilarly

:proof

. Don continuous is s(x)Then D.set aon

s(x) touniformly converges that functions continuous of series a be (x)fLet

5.3.3Corollary

nn0xn

n0xn

0xn

0x

0xn

n0x

nnn

n

1n1nn

1nn

Page 60: Infinite Sequences and Series

5!

1

4!

1

3!

1

2!

1

1!

1

1

1e

n!

1

n!

xlim

n!

xlimelime

5.3.2Corollary By , 0,1on e touniformly converges n!

1 And

. [0,1]x n!

1

n!

x Since .

n!

xe theorem,sTaylor'By

n!

x(x)fConsider 3.

22

1

x)(1

xlim

x)(1

xlim

5.3.2Corollary By

,22

1on uniformly converges

x)(1

xget weconverges.

)21

(1

2 And .,2

2

1x

)21

(1

2

x)(1

x Since .

x)(1

xlim Find .

x)(1

x(x)fLet 2.

0n0n

n

1x0n

n

1x

x

1x

1

x

0n

n

0n

nx

0n

n

0nn

1n1-n

1n1-n1x

1n1-n1x

1n1-n

1n 1-n

1-n1-n

1n1-n1x

1n1-n

1nn

Page 61: Infinite Sequences and Series

. b][a,on s(x)function some

touniformly converges )(f)x-(x)(xf(x)fget We

. b][a,on uniformly converges )(f and converges )(xf Since

. )(f)x-(x)(xf-(x)f

such that x),(x exists there theorem,mean value by the ,xFor x (1)

:proof

. (x)f(x)s (2)

. b][a,on s(x)function some touniformly converges (x)f (1)

thenb],[a,on uniformly

converges (x)f that and b][a,point x oneat least at converges (x)f that Suppose

. 1nfor b][a,on abledifferenti is (x)f wherefunctions, of series a be (x)fLet

5.3.4 Theorem

1nnn0

1n0n

1nn

1n 1nnn0n

nn00nn

0n0

1nn

1nn

1nn0

1nn

n1n

n

Page 62: Infinite Sequences and Series

.

2

10,x x),--ln(1

n

x Hence

. 0c 0,n

0s(0) From . cx)--ln(1s(x)get We

. n

xs(x) ,

x-1

1(x)s have We.

2

10,x,

x-1

1x handother In the

. x(x)f(x)s And

. 2

10,on s(x) touniformly converges

n

x 5.3.4 TheoremBy .

2

10,on uniformly converges

x(x)f And converges. n2

1)

2

1(f have We.

n

x(x)fConsider

:Example

(x)f

5.3.2)Corollary (By h

f(x)-h)(xflim

h

f(x)-h)(xflim

e)convergencuniformly ( h

f(x)-h)(xflim

h

(x)f-h)(xflim

h

s(x)-h)s(xlim(x)s

b)(a,each xFor (x)fs(x) (2)

1n

n

1n

n

1n

n

1n

1-n

1n 1n

1-nn

1n

n

1n 1n

1-nn

1n 1nnn

1n 1n

n

n

1nn

1n

n

0h1n

n

0h

1nn

0h

1nn

1nn

0h0h

1nn

Page 63: Infinite Sequences and Series

. convergent )isc)-(xa(or xa|Rxeconvergenc ofregion The 4.

).( econvergenc of interval thecalled is ))c,-(c(or

),(- interval theand series, theof )( econvergenc of radius thebe

tosaid is then ),c-x(or x ifdivergent is and )c-x(or x if

convergent is )c)-(xa(or xasuch that 0number aexist thereIf 3.

c).-(xin seriespower a called is c)-(xa form The 2.

constant. some are a wherein x, seriespower a called is xa form The 1.

:Definition

function. seriespower and c)-(xa ,xa

SeriesPower 5.4

0n

nn

0n

nn

0n

nn

0n

nn

0n

nn

n0n

nn

0n

nn

0n

nn

收斂區間收斂半徑

Page 64: Infinite Sequences and Series

.absolutely converges xa implies This converges. From

. 1 ,kx

xk

x

xxa xa Now .1,2,3,n ,k xa

such that 0kconstant a have Weconverges. xa and |x||x|such that

),(-exist x thereSince converges. xa that show To ),(-each xFor

:pf

),(- xallfor absolutely converges

xaThen 0. that Suppose .xa of econvergenc of radius thebe Let

5.4.1 Theorem

e.convergenc of interval theis (-1,1) ,x of

econvergenc of radius theis 1 1,|x| ifdivergent is and 1|x| if convergent is x

:Example

0n

nn

0n

n

n

0

n

0

n0n

nn

n0n

0n

n0n0

00n

nn

0n

nn

0n

nn

0n

n

0n

n

Page 65: Infinite Sequences and Series

. p

1|x| if diverges xa and converges xa implies

p

1|x| Hence

. |x|pxa

xalim Now .convergent absolutely is xa1

xa

xalim

xa test toratio Apply the

:proof

0p,

p0,

p0,p

1

is xa of econvergenc of radius theThen,

. pa

alim that Suppose series.power a be xaLet

5.4.2 Theorem

0n

nn

0n

nn

nn

1n1n

n0n

nnn

n

1n1n

n

0n

nn

0n

nn

n

1n

n0n

nn

Page 66: Infinite Sequences and Series

. 2

1|x|on absolutely converges

n

x2 2.

. 1 is x of econvergenc of radius The 1.|x|on convergent absolutely is x Hence

1|x|1x

x Since x 1.

:Example

.2.Theorem5.4 toSimilarly xa to5.2.8 Theoremin root test Apply the

:proof

0q,

q0,

q0,q

1

then

q|a|limsup that Suppose series.power a be xaLet

5.4.3 Theorem

1n

nn

0n

n

0n

n

n

1n

0n

n

0n

nn

n

1

nn0n

nn

Page 67: Infinite Sequences and Series

. r][-r, x,1,2,3,k ,x

k)!-(n

n!a

dx

S(x)d

and r r],[-r,on orders all of derivative has S(x) then ,xaS(x) If 2.

r wherer],[-r,on uniformly converges xa 1.

following thehave Then we 0).( econvergenc of radius a with seriespower a be xaLet

5.4.4 Theorem

. (-1,1) is econvergenc ofregion The 1.|x|on absolutely converges nx

|x|nx

1)x(nlim nx 5.

. 0 converges of radius The 0.at xonly converges xn!

. |x|1)(nlimxn!

x1)!(nlim Since xn! 4.

. R,on x absolutely converges series The

. 01n

|x|lim

n!x

1)!(nxlim Since

n!

x 3.

kn

k-nnk

k

0n

nn

0n

nn

0n

nn

0n

n

n

1n

n0n

n

0n

n

nn

1n

n0n

n

nn

1n

n0n

n

Page 68: Infinite Sequences and Series

. r][-r, x,xk)!-(n

n!a(x)S Similarly,

. nxaxaxa(x)S

r][-r,for x 5.3.4 TheoremBy

. r][-r,on convergentuniformly is xnat assert thacan then We1.nlim Since

asup limansup limnasup lim

. xna and xa Compare (2)

. r][-r,on uniformly converges xa

5.3.2), (Theoremtest -M s WeiertrasBy the .convergent is ra Since

. 0nfor ,ra|xa| then r,|x| If (1)

:Pf

kn

k-nn

(k)

1n

1-nn

1n

nn

0n

nn

1n

1-nn

n

n

1

nn

n

1

nn

n

1

nn

1n

1-nn

0n

nn

0n

nn

0n

nn

nn

nn

n

1

n

1

Page 69: Infinite Sequences and Series

x

0n

n(k)

2n

2-n

0k

k

1n

1-n

1n

1-n

0n

n

0n

n

0n

n

3432

32n

2-n2

1n

1-n

0n

n

n

1

nn

n

1

nn

1n

nn

n

n

443322

0n

nn

en!

xS(x) Hence 1,2,k S(x),(x)Sget We

S(x)n!

1)x-n(n(x)S And

S(x)k!

x

1)!-(n

x

n!

nx(x)S have WeR x,

n!

xS(x)Consider

R xallfor converges n!

x Since

n!

x 3.

1 x,-1x-1

25x64x53x42x32

1 x,-1x-1

2 1)x-n(n 1 x,-1

x-1

1 nx 1x ,

x-1

1x 2.

3asup lim

even isn ifx3

odd isn ifx2|x|axa

0n if1

even isn if3

odd isn if2

a

x3x2x32x1xa 1.

:Examples

Page 70: Infinite Sequences and Series

. [-1,1]on convergentuniformly is 1)(n

x , 5.4.5 TheoremBy

.convergent absolutely is 1)(n

1 Since 1.xon converges

1)(n

x 1.

:Examples

],[-on convergentuniformly is xa

Test,-M rassBy Weierst . ],[-x ,axa

:proof

. ],[-on convergentuniformly is xa then

,convergent absolutely is a If 0 ,xon converge xaLet

5.4.5 Theorem

0n2

n

0n2

n

0n2

n

nn

nn

nn

0n

nn

nn

0n

nn

Page 71: Infinite Sequences and Series

. 3

11,-on convergentuniformly is

x-1

x

n2n

2 Hence

converges.

31

1

31

n2n

2 and

11

1-

n2n

2 Since . ,1

3

1-on convergent is series The

above. thetosimilarly x-1

x

n2n

2 3.

. ,13

1- is econvergenc ofregion theand ,1

3

1-on convergentuniformly

. x1

x

n2n

2 Hence converges.

r1

1

n2n

2 ,

31

1

31

n2n

2 Since

1x31-2x13

22

3x1

12

12

1x1

1-12

1-

21

x1

x2

1-2

1x1

x2

1Z1Z2Zn2n

2lim

. Zn2n

2 asrewritten

x1

x

n2n

2 2.

1n

n

2

n

1n

n

2

n

1n

n

2

n

1n

n

2

n

1n

n

2

n

1n

n

2

n

1n

n

2

n

n

1

n2

n

n

1n

n2

n

1n

n

2

n

Page 72: Infinite Sequences and Series

norm. a is ||||check 3,21(-2),3,1,maxA ,

213

2-1A

m,1,j n,,1,2,i ,amaxA 2.

457)2(13(-2)1A

213

2-1A , aA normEuclidean The 1.

:Examples

matrix.k m a is D where,DAAD (4)

matrix. mn a is B where,BABA (3)

scalar. a is c where,AccA (2)

. 0A ifonly and if 0A and 0,A (1)

:properties following A with the offunction

valued-real a is ,Aby denoted A, of norm The m.norder ofmatrix a beA Let

5.5.1 Definition

1,2,3,k 4k

k

1

2k!

1

A

Matrices of Series and Sequence 5.5

ij

2222

2

2

1n

1i

m

1j

2ij2

k-

k

Page 73: Infinite Sequences and Series

.n 1,j m,1,ifor aalim if aAmatrix n m the toconverge to

said is A sequence The 1.kfor n m orders of matrices be aALet

5.5.2 Definition

norm. a is ||||check ,458

11

03

12

A Hence

. 45845-,8458maxA)A(e have We

4582

1801601916-

0-23

3-140

10

01-

23

314det solve toisA A of eigenvalue The

23

314

11

03

12

101

132AA

101

132A ,

11

03

12

A

A.A of eigenvaluelargest theis A)A(e where,A)A(eA:norm spectral The 3.

ijijkk

ij

1kkijkk

s

21

S

S

max

2

max21

maxs

Page 74: Infinite Sequences and Series

divergent. is a series theof oneleast at ifdivergent is A series The 2.

n.1,j m,1,i,Sa and ,n 1,2,j m,1,2,i allfor converges a if

only and if SSmatrix n m the toconverge tosaid is A matrices. of series

infinitean called is AThen n.m orders of matrices of sequence a be ALet 1.

:Definition

. k as 0A-A ifonly and ifA toconverges A 1.

:Remark

k as 12k since matrix,any toconvergenot does

k

1sin

k!

1

12kk

1

A 2.

.A 21

10A ,

2k

1cos

1k

k

2

1

A 1.

:Example

1kijk

1kk

ij1k

ijk1k

ijk

nmij1k

k

1kk1kk

k1kk

k

k

1k

k

1kk

Page 75: Infinite Sequences and Series

32A

A

1kk

1k1k24

1kk

1kk

1-1k1k

1k-

1k1k1-k

1k 1k-

1-k

1kk

A3!

1A

2!

1AIe

e Define matrix.n n beA Let

:Definition

diverges A Hence . diverges k

1 Since

k

1

2k

1

coskk

1

A 2.

o1-e

ee2

toconverges A

o1-e

ee2

0e-1

1

e21-1

1

0e

1)!-(k

1

2

1

0e1)!-(k

1

2

1A 1.

:Example

Page 76: Infinite Sequences and Series

converges. k!

3 ,

k!

30

0ee 3.

e0

0ee 2.

e0

2ee

e01)!-(k

12e

k!

10

k!

2k

k!

1

2!

1

1!

110

4!

8

3!

6

2!

420

2!

1

1!

11

10

61

3!

1

10

41

2!

1

10

21

10

01

10

21

10

21

2!

1

10

21

10

01e 1.

:Examples

0k

k

0k

k30

01

10

01

1k

0k

0k0k

10

21

Page 77: Infinite Sequences and Series

1-

0k

k A)-(I toconverges AThen

1Ah matrix wit symmetricn n a beA Let

5.5.1Corollary

A

A Hence

AA handother In the A have We

vector somefor A Since

:pf

. AThen A. of eigenvalueany be andmatrix n n symmetric a beA Let

5.5.3 Theorem

Page 78: Infinite Sequences and Series

005

1

2

1

2

1A ,

005

1

2

1A 2.

2

30

02

3

10

02

1

A 00

00

3

10

02

1

limAlim

13

1

2

1A ,

3

10

02

1

A 1.

:Example

0Alim Hence

0AlimAlim have we1,A And

1,2,k ,AA Since

:proof

norm.matrix any is |||| where1,A if 0,AlimThen matrix.n nan beA Let

5.5.1 Theorem

0k

k

0k

k

0k

k

0k

k0k

k

0k

kk

k

k

k

k

22

2

k

k

k

k

k

k

kk

k

k

Page 79: Infinite Sequences and Series

. 1,2,n ,aC where,Clim Find (v)

. lnalim Find (iv)

. blim Find (iii)

.convergent is b that Show (ii)

. alim Find (i)

. 1,2,i ,an

1b and

n

1cosaLet 2.

. blim Find a,a,amaxb Define

a)n

1

2sin( SequenceConsider 1.

5 Exercise

n

1n

1iinn

n

nn

nn

1nn

nn

n

1iin

1n1nn

nn

n21n

1nn1n

Page 80: Infinite Sequences and Series

3

n-

3

n (f)

n1

n1- (e)

2

ncos

2

nsin (d)

3

nnsin (c) cosn

n

11 (b) cosn (a)

bygiven is a if ainf lim and asup lim Find 4.

. an

1C here w

, cClim that Show 0,Calim that Suppose (b)

. blim find and convergent is b that Show

. 1,2,n ,a,amaxb Define (a)

terms.positive of sequence bounded a is a that Suppose 3.

n

n

nnn

nn

n

1n

1iin

nn

nn

nn1nn

n1n

1nn

Page 81: Infinite Sequences and Series

. n as ca

that show (a)

. 1,2,i 0, wherelim and calim that Suppose 7.

bounded. also islimit ialsubsequent its

all of Eset then thesequence, bounded a is a if that Show 6.

odd isn if3

even isn if2a (d)

1][2na (c) n)(1

n(-1)a (b)

n!

na (a)

by given is a if a

ainf lim and

a

asup lim Find 5.

n

1ii

n

1iii

i

n

1ii

nn

n

1nn

n

n

n

nn

n

n

n

n

nn

1n

nn

1n

n

Page 82: Infinite Sequences and Series

. alim Find ,a3

)a3(1a and 3aLet 10.

limit. its find and converges a that Show

. 1,2,n ,)a(2a and 1aLet 9.

limit. its find and converges a that Show . 1,2n 0,b

b3a

)a(3baa and 1a wherea sequence thehave that weSuppose 8.

. n as converges n

ayet converge,not

does that a sequencce a of mplecounterexa a givingby hold

alwaysnot does (a)in case special theof converse that theShow (b)

nn

n

n1n1

1nn

21n1n1

1nn

2n

2nn

1n11nn

n

1ii

1nn

Page 83: Infinite Sequences and Series

divergent. is a1

a that show ,

n

1aLet 13.

sequence. bounded anot is a ifeven trueis (a) that Show (b)

diverges. a1

a that show then sequence, bounded a is a If (a)

terms.positive of seriesdivergent a be aLet 12.

series. theof sum partialth -n theis S wheresequence, bounded a is

S ifonly and if converges a then ,1,2,i 0,a if that Show 11.

1n n

n

1n1nn

1nn

1n n

n1nn

1nn

n

1nn1n

nn

Page 84: Infinite Sequences and Series

constant. fixed a isk where, n

1lim Find (b)

. 1n

1lim 1,

n

1lim that Show (a)

. n

1 ,

n

1 seriesConsider 15.

converges. S

a that deduce then

series, theof sum partialnth theis S where, 2,3,n ,S

1-

S

1

S

a

thatShow terms.positive of seriesdivergent a be aLet 14.

n1

kn

n1

2n

n1

n

1n2

1n

1n2n

n

nn1-n

2n

n

1nn

Page 85: Infinite Sequences and Series

1n2

n

1n

2

n

1n

n2n

1nn

nn

n2

n

qpnn-3

n

nn

n

nn

nn

nn

nn1n

1nn

1)n(n

cosnx (d) x1)(n (c)

xn

10 (b) x

3

2n (a)

uniformly. converges series following theofeach for which x of values theDetermine 17.

1-na (j) n-n1a (i)

0qp ,n-n

1a (h) ena (g)

n

1nsina (f) n-n2na (e)

n

4(-1)a (d)

12n

1

2n642

1)-(2n531a (c)

)elog(1

n)log(1a (b) 1-na (a)

where,a series theof econvergencfor Test 16.

2

Page 86: Infinite Sequences and Series

n as zero togonot doesproduct thisof nth term that theShow :Hint

divergent. isproduct that thisShow 0,1,n ,1n

(-1)a e wher

itself, with a ofproduct sCauchy' heConsider t 19.

. 12

11 exceeds b series that the whereas,

12

10 than less is a series the

of sum that theShow negative. oneby followed are termspositive two Where

. 6

1-

11

1

9

1

4

1-

7

1

5

1

2

1-

3

11by given

a ofent rearrangemcertain a be bLet , n

(-1)aConsider 18.

n

n

1nn

1nn

1nn

1nn

1nn

1n

1-n

1nn

Page 87: Infinite Sequences and Series

. [0,1]on uniform convergentnot does h that show (b)

. [0,1]on uniform convergent are g and f that show (a)

. (x)(x)gf(x)h and

b; ,b

asay xration is x if

n

1b

irration 0, xifn

1

(x)g ),n

1x(1(x)fLet 22.

. (x)for expansion series a give , so If

)?,[1on abledifferenti (x) is (b)

. 0 where),[1on uniformly converges n

1 that show (a)

. (x)n

1 series heConsider t 21.

. )[0,on uniform is econvergenc not theor whether Determine (b)

. (x)flim Find (a)

. 0 x,nx1

nx(x)f where, (x)ffunction theof sequence heConsider t 20.

n

nn

nnn

nn

1nx

1nx

nn

2n1nn