Generalized Cubic EOS

download Generalized Cubic EOS

of 34

Transcript of Generalized Cubic EOS

  • 7/27/2019 Generalized Cubic EOS

    1/34

    Generalized Cubic Equations of State

    Ivar Aavatsmark, Sarah Gasda

    Uni CIPRUniversity of Bergen

    Research Summit, Foundation CMG

    Calgary, 7-8 October 2013

    http://find/http://-/?-http://-/?-
  • 7/27/2019 Generalized Cubic EOS

    2/34

    Outline

    Motivation

    Equations Test cases

    Conclusions

    http://find/http://-/?-http://-/?-
  • 7/27/2019 Generalized Cubic EOS

    3/34

    Simulation of CO2 storage with different EOS

    Furthest up-dip point of CO2 plume

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    4/34

    Isobars of CO2

    0 200 400 600 800 1000 1200 1400220

    240

    260

    280

    300

    320

    340

    360

    380

    Density (kg/m3)

    Temperature(K)

    (spacing 2 MPa)

    http://find/http://find/
  • 7/27/2019 Generalized Cubic EOS

    5/34

    Isobars of CO2 near critical point (468 kg/m3, 304.1 K)

    300 350 400 450 500 550 600 650300

    301

    302

    303

    304

    305

    306

    307

    308

    309

    310

    Density (kg/m3)

    Temperature(K)

    (spacing 0.1 MPa)

    http://-/?-http://find/http://find/http://-/?-http://-/?-
  • 7/27/2019 Generalized Cubic EOS

    6/34

    Motivation

    Most oil recovery processes are dominated by

    pressure-driven flow (viscous flow).

    Most CO2 storage processes are dominated by

    buoyancy-driven flow.

    Moreover, CO2 storage sites typically lie in the

    pressure-temperature domain just above the critical point

    of CO2 (Tc = 304.1 K, pc = 7.38 MPa).

    Hence, density accuracy is more important in CO2 storage

    than in oil recovery simulations.

    http://find/http://-/?-http://-/?-
  • 7/27/2019 Generalized Cubic EOS

    7/34

    Generalized cubic equation of state

    p=RT

    v b

    a(T)

    (v 1b)(v 2b)

    where

    1 < 2 < 1

    Examples:

    Soave-Redlich-Kwong: 1 =

    1 and 2 = 0

    Peng Robinson: 1 = (

    2 + 1) and 2 =

    2 1

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    8/34

    Fugacity coefficients, pure substance

    =exp(Z 1)

    ZB

    Z 2BZ

    1B

    A(21)B

    where

    A =p a(T)

    R2T2, B=

    pb

    RT

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    9/34

    Fugacity coefficients, mixtures

    i =exp

    Bi(Z 1)

    Z B

    Z 2BZ 1B

    A(Ai

    B

    i

    )

    (21)B

    where

    a(T) =

    ni=1

    nj=1

    wiwjai(T)aj(T)(1 dij), b=

    ni=1

    wibi

    A =p a(T)

    R2T2, B=

    pb

    RT

    Ai =2

    a(T)

    nj=1

    wj

    ai(T)aj(T)(1 dij), Bi =

    bib

    http://find/http://goback/
  • 7/27/2019 Generalized Cubic EOS

    10/34

    Determination of parameters in cubic EOS

    Expressions for a(T) and b:

    a(T) = aR2T2cpc

    1 +

    1

    T/Tc

    2

    , b= bRTc

    pc

    Compressibility factor

    Z = pvRT

    Cubic polynomial (expressed in critical point)

    P(Z) = Z3 [1 + b(1 + 1 + 2)]Z2+ [a+ (b+

    2b)(1 + 2) +

    2b12]Z

    [ab+ (2b+ 3b)12]

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    11/34

    Determination of parameters in cubic EOS

    In the critical point

    p

    v

    T

    = 0,

    2p

    v2

    T

    = 0

    Hence,

    P(Zc) = PZ(Zc) = PZZ(Zc) = 0

    Three equations with three unknowns (a, b and Zc):

    3Zc = 1 + b(1 + 1 + 2)3Z2c = a+ (b+

    2b)(1 + 2) +

    2b12

    Z3c = ab+ (2b+

    3b)12

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    12/34

    12 diagram

    8 6 4 2 03

    2

    1

    0

    1

    1

    2

    PR

    SRKvdWZc

    =0.2

    6

    Z c=0

    .2

    7

    Zc(C

    O2)

    Zc=

    0.28

    Zc=

    0.29

    Zc=

    0.3074

    Zc=1/3

    Zc = 0.375

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    13/34

    Test case 1: Johansen formation

    Supercritical fluid

    Temperature range: 345375 K

    Pressure range: 2030 MPa. Critical point of CO2:

    Tc = 304.1 K,pc = 7.38 MPa

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    14/34

    Johansen case

    8 6 4 2 03

    2

    1

    0

    1

    1

    2

    PR

    SRKvdWZc

    =0.2

    6

    Z c=0

    .2

    7

    Zc(C

    O2)

    Zc=

    0.28

    Zc=

    0.29

    Zc=

    0.3074

    Zc=1/3

    Zc = 0.375

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    15/34

    Johansen case: Isochores of CO2

    345 350 355 360 365 370 37520

    22

    24

    26

    28

    30

    Temperature (K)

    Pressure(MP

    a)

    Span-Wagner

    345 350 355 360 365 370 37520

    22

    24

    26

    28

    30

    200

    300

    400

    500

    600

    700

    800

    Temperature (K)

    Peng-Robinson

    (spacing 50 kg/m3)

    J h D i i f S W CO

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    16/34

    Johansen case: Deviation from Span-Wagner CO2

    345 350 355 360 365 370 37520

    22

    24

    26

    28

    30

    Temperature (K)

    Pressure(MPa)

    Peng-Robinson

    RMS: 22.8 kg/m3

    345 350 355 360 365 370 37520

    22

    24

    26

    28

    30

    Temperature (K)

    Volume-translated

    Peng-Robinson

    RMS: 8.8 kg/m3

    345 350 355 360 365 370 37520

    22

    24

    26

    28

    30

    40

    30

    20

    10

    0

    10

    20

    Temperature (K)

    Optimized cubic

    EOS

    RMS: 3.2 kg/m

    3

    (spacing 10 kg/m3)

    J h I h f CO

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    17/34

    Johansen case: Isochores of CO2

    345 350 355 360 365 370 37520

    22

    24

    26

    28

    30

    Temperature (K)

    Pressure(MP

    a)

    Span-Wagner

    345 350 355 360 365 370 37520

    22

    24

    26

    28

    30

    200

    300

    400

    500

    600

    700

    800

    Temperature (K)

    Optimized cubic EOS

    (spacing 50 kg/m3)

    T t 2 Sl i i j ti i th Ut i f ti

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    18/34

    Test case 2: Sleiper injection in the Utsira formation

    Liquid and supercritical fluid

    Temperature range: 300320 K

    Pressure range: 810 MPa. Critical point of CO2:

    Tc = 304.1 K,pc = 7.38 MPa

    Sl i

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    19/34

    Sleipner case

    8 6 4 2 03

    2

    1

    0

    1

    1

    2

    PR

    SRKvdWZc

    =0.2

    6

    Z c=0

    .2

    7

    Zc(C

    O2)

    Zc=

    0.28

    Zc=

    0.29

    Zc=

    0.3074

    Zc=1/3

    Zc = 0.375

    Sleipner case Isochores of CO

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    20/34

    Sleipner case: Isochores of CO2

    300 305 310 315 3208

    8.5

    9

    9.5

    10

    Temperature (K)

    Pressure(MP

    a)

    Span-Wagner

    300 305 310 315 3208

    8.5

    9

    9.5

    10

    200

    300

    400

    500

    600

    700

    800

    Temperature (K)

    Peng-Robinson

    (spacing 50 kg/m3)

    Sleipner case: Deviation from Span Wagner CO

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    21/34

    Sleipner case: Deviation from Span-Wagner CO2

    300 305 310 315 3208

    8.5

    9

    9.5

    10

    Temperature (K)

    Pressure(MPa)

    Peng-Robinson

    RMS: 51.6 kg/m3

    300 305 310 315 3208

    8.5

    9

    9.5

    10

    Temperature (K)

    Volume-translated

    Peng-Robinson

    RMS: 18.4 kg/m3

    300 305 310 315 3208

    8.5

    9

    9.5

    10

    80

    60

    40

    20

    0

    20

    40

    Temperature (K)

    Optimized cubic

    EOS

    RMS: 17.6 kg/m3

    (spacing 10 kg/m3)

    Sleipner case: Isochores of CO

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    22/34

    Sleipner case: Isochores of CO2

    300 305 310 315 3208

    8.5

    9

    9.5

    10

    Temperature (K)

    Pressure(MP

    a)

    Span-Wagner

    300 305 310 315 3208

    8.5

    9

    9.5

    10

    200

    300

    400

    500

    600

    700

    800

    Temperature (K)

    Optimized cubic EOS

    (spacing 50 kg/m3)

    Test case 3: Modified Sleiper to include critical point

    http://find/http://goback/
  • 7/27/2019 Generalized Cubic EOS

    23/34

    Test case 3: Modified Sleiper to include critical point

    Liquid and supercritical fluid

    Temperature range: 300310 K

    Pressure range: 78 MPa.

    Critical point of CO2:

    Tc = 304.1 K,pc = 7.38 MPa,c = 468 kg/m

    3

    Sleipner with critical point

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    24/34

    Sleipner with critical point

    8 6 4 2 03

    2

    1

    0

    1

    1

    2

    PR

    SRKvdWZc

    =0.2

    6

    Z c=0

    .

    2

    7

    Zc(C

    O2)

    Zc=

    0.28

    Zc=

    0.29

    Zc=

    0.3074

    Zc=1/3

    Zc = 0.375

    Sleipner with CP: Isochores of CO2

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    25/34

    Sleipner with CP: Isochores of CO2

    300 302 304 306 308 3107

    7.2

    7.4

    7.6

    7.8

    8

    Temperature (K)

    Pressure(MP

    a)

    Span-Wagner

    300 302 304 306 308 3107

    7.2

    7.4

    7.6

    7.8

    8

    200

    300

    400

    500

    600

    700

    800

    Temperature (K)

    Peng-Robinson

    (spacing 50 kg/m3)

    Sleipner with CP: Deviation from Span-Wagner CO2

    http://find/http://find/
  • 7/27/2019 Generalized Cubic EOS

    26/34

    Sleipner with CP: Deviation from Span-Wagner CO2

    300 302 304 306 308 3107

    7.2

    7.4

    7.6

    7.8

    8

    Temperature (K)

    Pressure(M

    Pa)

    Peng-Robinson

    RMS: 56.7 kg/m3

    300 302 304 306 308 3107

    7.2

    7.4

    7.6

    7.8

    8

    Temperature (K)

    Volume-translated

    Peng-Robinson

    RMS: 34.5 kg/m3

    300 302 304 306 308 310

    7

    7.2

    7.4

    7.6

    7.8

    8

    100

    80

    60

    40

    20

    0

    20

    40

    60

    80

    Temperature (K)

    Optimized cubic

    EOS

    RMS: 27.4 kg/m3

    (spacing 10 kg/m3)

    Sleipner with CP: Isochores of CO2

    http://find/http://find/
  • 7/27/2019 Generalized Cubic EOS

    27/34

    Sleipner with CP: Isochores of CO2

    300 302 304 306 308 3107

    7.2

    7.4

    7.6

    7.8

    8

    Temperature (K)

    Pressure(MP

    a)

    Span-Wagner

    300 302 304 306 308 3107

    7.2

    7.4

    7.6

    7.8

    8

    200

    300

    400

    500

    600

    700

    800

    Temperature (K)

    Optimized cubic EOS

    (spacing 50 kg/m3)

    Summary of optimal cubic EOS parameters 1 and 2

    http://find/http://find/
  • 7/27/2019 Generalized Cubic EOS

    28/34

    Summary of optimal cubic EOS parameters, 1 and 2

    8 6 4 2 03

    2

    1

    0

    1

    1

    2

    PR

    SRKvdWZc

    =0.2

    6

    Z c=0

    .27

    Zc(C

    O2)

    Zc=

    0.28

    Zc=

    0.29

    Zc=

    0.3074

    Zc=1/3

    Zc = 0.375

    Conclusions

    http://goforward/http://find/http://goback/http://-/?-http://-/?-
  • 7/27/2019 Generalized Cubic EOS

    29/34

    Conclusions

    The generalized cubic EOS is precisely as simple andcomputationally effective as PR or SRK.

    Through appropriate choices of the parameters 1, 2 and, increased density accuracy may be obtained in

    predefined pressure-temperature domains. Increased density accuracy is important in CO2 storage

    and could be decisive for optimizing the composition of the

    injection fluid.

    An implementation of the generalized cubic EOS in GEM

    would be appreciated.

    Isotherms of CO2

    http://find/http://-/?-http://-/?-
  • 7/27/2019 Generalized Cubic EOS

    30/34

    Isotherms of CO2

    0 200 400 600 800 1000 12000

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    Density (kg/m3)

    Pressure(MPa)

    (spacing 5 K)

    Johansen case: Isochores of CO2

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    31/34

    Johansen case: Isochores of CO2

    345 350 355 360 365 370 375

    20

    22

    24

    26

    28

    30

    Temperature (K)

    Pressure(M

    Pa)

    Peng-Robinson

    RMS: 22.8 kg/m3

    345 350 355 360 365 370 375

    20

    22

    24

    26

    28

    30

    Temperature (K)

    Volume-translated

    Peng-Robinson

    RMS: 8.8 kg/m3

    345 350 355 360 365 370 375

    20

    22

    24

    26

    28

    30

    200

    300

    400

    500

    600

    700

    800

    Temperature (K)

    Optimized cubic

    EOS

    RMS: 3.2 kg/m3

    (spacing 50 kg/m3)

    Sleipner case: Isochores of CO2

    http://goback/http://find/http://goback/
  • 7/27/2019 Generalized Cubic EOS

    32/34

    p 2

    300 305 310 315 320

    8

    8.5

    9

    9.5

    10

    Temperature (K)

    Pressure(M

    Pa)

    Peng-Robinson

    RMS: 51.6 kg/m3

    300 305 310 315 320

    8

    8.5

    9

    9.5

    10

    Temperature (K)

    Volume-translated

    Peng-Robinson

    RMS: 18.4 kg/m3

    300 305 310 315 320

    8

    8.5

    9

    9.5

    10

    200

    300

    400

    500

    600

    700

    800

    Temperature (K)

    Optimized cubic

    EOS

    RMS: 17.6 kg/m3

    (spacing 50 kg/m3)

    Sleipner with CP: Isochores of CO2

    http://find/
  • 7/27/2019 Generalized Cubic EOS

    33/34

    p 2

    300 302 304 306 308 310

    7

    7.2

    7.4

    7.6

    7.8

    8

    Temperature (K)

    Pressure(M

    Pa)

    Peng-Robinson

    RMS: 56.7 kg/m3

    300 302 304 306 308 310

    7

    7.2

    7.4

    7.6

    7.8

    8

    Temperature (K)

    Volume-translated

    Peng-Robinson

    RMS: 34.5 kg/m3

    300 302 304 306 308 310

    7

    7.2

    7.4

    7.6

    7.8

    8

    200

    300

    400

    500

    600

    700

    800

    Temperature (K)

    Optimized cubic

    EOS

    RMS: 27.4 kg/m3

    (spacing 50 kg/m3)

    Sleipner with critical point

    http://find/http://find/
  • 7/27/2019 Generalized Cubic EOS

    34/34

    p p

    8 6 4 2 03

    2

    1

    0

    1

    1

    2

    PR

    SRKvdWZc

    =0.2

    6

    Z c=0

    .

    27

    Zc(C

    O2)

    Zc=

    0.28

    Zc=

    0.29

    Zc=

    0.3074

    Zc=1/3

    Zc = 0.375

    http://find/http://goback/