看过的最好的FLUENT中文教程

986
FLUENT  程  赵玉 I、目录 第一章、开始 第二章、操作界面 第三章、文件的读写 第四章、单位系统 第五章、读入和操作网格 第六章、边界条件 第七章、物理特性 第八章、基本物理模型 第九章、湍流模型 第十章、辐射模型 第十一章、化学输运与反应流 第十二章、污染形成模型 第十三章、相变模拟 第十四章、多相流模型 第十五章、动坐标系下的流动 第十六章、解算器的使用 第十七章、网格适应 第十八章、数据显示与报告界面的产生 第十九章、图形与可视化 第二十章、Alphanumeric Reporting 第二十一章、流场函数定义 第二十二章、并行处理 第二十三章、自定义函数 第二十四章、参考向导 第二十五章、索引(Bibliography 第二十六章、命令索引 II、如何使用该教程 概述 本教程主要介绍了 FLUENT 的使用,其中附带了相关的算例,从而能够使每一位使用 者在学习的同时积累相关的经验。本教程大致分以下四个部分:第一部分包括介绍信息、用 户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。第二和第三部分包 含物理模型,解以及网格适应的信息。第四部分包括界面的生成、后处理、图形报告、并行 处理、自定义函数以及 FLUENT 所使用的流场函数与变量的定义。 下面是各章的简略概括 第一部分:  开始使用:本章描述了 FLUENT 的计算能力以及它与其它程序的接口。介绍了如何对 具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。在本章中,我们给出

description

看过的最好的FLUENT中文教程

Transcript of 看过的最好的FLUENT中文教程

  • FLUENT

    I Alphanumeric Reporting Bibliography II

    FLUENT

    FLUENT z FLUENT

  • z

    z FLUENT z FLUENT z

    scalepartitionnonconformal.

    z FLUENT and how to define boundary profiles and volumetric sources.

    z FLUENT

    z FLUENT

    swirling

    z FLUENT z FLUENT z

    prePDF z NOx z FLUENT z FLUENT z FLUENT z Flows in Moving Zones FLUENT

    z Solver FLUENT solver z explains the solution-adaptive mesh refinement feature in FLUENT

    and how to use it z explains how to create surfaces in the domain on

    which you can examine FLUENT solution data z FLUENT z Alphanumeric Reporting z FLUENT

    z FLUENT z

    FLUENT

    z CFD FLUENT

  • z FLUENT FLUENT

    z z z

    z z z Using the Solver z -Alphanumeric Reporting

    z FLUENT z FLUENT z FLUENT z

    z "/", Define/Materials..

    Define Materials... z Support Engineer Support Engineer CFD FLUENT

    Support Engineer z z z z FLUENT

  • FLUENT FLUENT

    FLUENT

    ///

    FLUENT C FLUENT client/server

    FLUENT Scheme LISP dialect

    FLUENT FLUENT prePDF, PDF GAMBIT,

    TGrid, filters (translators) CAD/CAE ANSYSIDEASNASTRANPATRAN Fluent "grid" "mesh"

  • GAMBIT

    GAMBIT GAMBIT CAD/CAE Tgrid Tgrid FLUENT ANSYS(Swanson Analysis Systems, Inc.) I-DEAS (SDRC)MSC/ARIES,MSC/PATRAN MSC/NASTRAN ( MacNeal-Schwendler ) CAD/CAE CAD/CAE

    FLUENT

    PreBFC GeoMesh FLUENT GAMBIT preBFC GeoMesh

    FLUENT

    z 2D 3D //

    z z z z z z z z z rotor/stator interaction modeling z z z z z / z z

    FLUENT z Process and process equipment applications z / z z z z /HVAC/ z z

  • /FLUENT FLUENT NEKTON,FIDAPPOLYFLOWIcePak MixSim

    FLUENT FLUENT

    FLUENT (FLUENT 4 CFD )FLUENT 2D 3D

    GAMBIT Tgrid CAD

    CFD FLUENT

    CFD CFD CFD FLUENT .

    1. 22D3D2DDP3DDP 3 4 5 6 7 8. 8 9 10 11 12 13 14

    GAMBIT CAD Tgrid CAD Tgrid FLUENT ()

  • FLUENT

    FLUENT Define Menu Solve Menu Display Menu&Plot

    MenuReport Menu

    FLUENT UNIX Windows NT FLUENT

    FLUENT FLUENT

    UNIX FLUENT z z

    case case

    fluent 2d fluent 3dfluent 2ddpfluent 3ddp

  • Figure 1:

    2d3d2ddp 3ddp GUI File/Run...

    ( FLUENT

    Figure 2: FLUENT

    1. 3D 3D 2D 2.

  • 3. Run Run Case fluent

    File/Read/Case.. File/Read/Case & Data.. case data case data read-case read-case-data File/Read/Case & Data... read-case-data case data .cas.dat.

    Windows NT FLUENT Windows NT 4.0 FLUENT: Fluent.Inc FLUENT 6

    MS-DOS fluent 2dfluent 3dfluent 2ddp fluent 3ddp MS-DOS fluent"Set Environment" Fluent.Inc

    MS-DOS FLUENT n fluent-version-tntn 2d, 3d, 2ddp, 3ddp )n fluent 3d -t3 3 3D )

    Windows NT 3.51 FLUENT FLUENT 5 MS-DOS fluent help

    fluent [version] [-help] [options] options -cl following argument passed to fluent, -cxarg following argument passed to cortex, -cx host:p1:p2 connect to the specified cortex process, -driver [ gl | opengl | null | pex | sbx | x11 | xgl ],

    sets the graphics driver (available drivers vary by platform), -env show environment variables, -g run without gui or graphics, -gu run without gui, -gr run without graphics, -help this listing, -i journal read the specified journal file, -nocheck disable checks for valid license file and server, -post run a post-processing-only executable, -project x write project x start and end times to license log, -r list all releases, -rx specify release x, -v list all versions, -vx specify version x,

  • -n no execute, -hcl following argument passed to fluent host, -loadx start compute nodes from host x, -manspa manually spawn compute nodes, -ncl following argument passed to fluent compute node, -px specify parallel communicator x, -pathx specify root path x to Fluent.Inc, -tx specify number of processors x,

    Windows NT -driver, -env, -gu(), -help, -i journal, -r, -rx, -v, -vx,-tx

    FLUENTCortexCortexFLUENT-cx host:p1:p2

    fluent driverfluent -driver xgl fluent env FLUENT fluent g Cortex X-Windows fluent guCortex fluent gr Cortex ( Windows NT fluent gu FLUENT-i journal

    fluent -i journaljournal -nocheck fluent post

    -project x CPU -project xx CPU log CPU license.log USER CPU SYSTEM CPU

    fluent version r version fluent rx FLUENT x fluent v fluent n -n

    -hcl FLUENT -ncl FLUENT -loadx -manspa -px x x UNIX -pathx Fluent.Inc -tx x FLUENT

    FLUENT

  • )

    FLUENT 4 FLUENT/UNS RAMPANT()

    FLUENT () 1.5 2

    /PDF//Pollutant formation models//Rosseland //

    Define/Models/Solver..

    Figure 1:

    FLUENT CD a cavity in the shape of a

  • 60^?rhombus, 0.1 0.1m/s 500

    Figure 1:

    .

    CD /fluent_inc/fluent5/tut/sample/cavity.msh File/Read/Case...

    case FLUENT case File/Import

  • Figure 1:

    cavity.msh FLUENT

    Grid/Check Domain Extents: x-coordinate: min (m) = 0.000000e+00, max (m) = 1.500000e-01 y-coordinate: min (m) = 0.000000e+00, max (m) = 8.660000e-02 Volume statistics: minimum volume (m3): 7.156040e-05 maximum volume (m3): 7.157349e-05 total volume (m3): 8.660000e-03 Face area statistics: minimum face area (m2): 9.089851e-03 maximum face area (m2): 9.091221e-03 Checking number of nodes per cell. Checking number of faces per cell. Checking thread pointers. Checking number of cells per face. Checking face cells. Checking face handedness. Checking element type consistency.

  • Checking boundary types: Checking face pairs. Checking periodic boundaries. Checking node count. Checking nosolve cell count. Checking nosolve face count. Checking face children. Checking cell children. Done. Adapt Iso-Value... Display/Grid...

    Display

    Figure 1:

  • Figure 2:

    FLUENT Define/Models Solver

    FLUENT

    Define/Models Define/Materials...

  • Figure 1:

    1.0 kg/m^3 2*10^-5 kg/m-s Change/Create

    Define/Boundary Conditions...

  • Figure 1:

    Set...( Set...)

    x 0.1 m/s 2 FLUENT wall-2 Set...

    Figure 2: Moving Wall X 0.1(

  • Figure 3: OK

    (wall-5)

    Solve/Controls

    Residual Plotting Solve/Monitors/Residual...Plot OK

  • Figure 1: Case

    case data File/Write/Case... case

  • Figure 1: Case FLUENT OK cavity.cas

    Solve/Initialize/Initialize... Figure 1. 0 Init

    Figure 1:

    Solve/Iterate...

    Figure 1:

  • 10 10

    Figure 2: 10

    Display/Velocity Vectors..

    Figure 3:

  • Display

    Figure 410

    10 90 50

    Figure 5:

  • case fluent case data FLUENT case data

    case data File/Write/Case & Data...

    Figure 1: case data

    Case/Data FLUENT .cas .dat

    cavity FLUENT case cavity.casdata cavity.dat OK cavity.cas FLUENT OK

    Figure 2 FLUENT case data Display /Contours...

  • Figure 1: Contours Of Velocity... Stream FunctionLevels 10 Display

    Figure 2:

    FLUENT ExitFLUENT FLUENT FLUENT

  • Fluent

    Fluent

    FLUENT

    (GUI) fluent

    UNIX GUI ()

    Figure 1: GUI

    Console FLUENT

    (TUI)(GUI)

  • Figure 1:

    MS-DOS TUI Control-C X Window Windows NT UNIX 1 2

    Windows NT 1 2Ctrl+Insert

    Figure 1:Help

    FLUENT Windows Alt

  • ESC

    OK

  • XY

  • 1. Filter

    / Filter ...

    2. *.dat* dat *

    3. XY-plot data XY File(s) Remove

    4. Write Binary Files casedata radiation

    5. OK XY OK

    XY OK Windows NT Windows NT

  • z OK Cancel

    z

    Apply Display AdaptClose

    Help Push Button

    Check Button

  • Radio Buttons

    Text Entry

    Integer Number Entry

    1 Key Factor of Increase Shift 10 Ctrl 100 Real Number Entry

    10, -10.538, 50000.45 5.e-4)

  • Windows

  • Figure 1:

    Ctrl+C

    Windows NT UNIX Windows NT

    Windows NT

    Windows NT FLUENTmovesize closeFLUENT 1. Windows

    2. 3.

    Windows NT system Page Setup..

  • Color Color Gray Scale Monochrome Color Quality True Color RGB 65536

    Mapped Color 256 Dithered Color 20 Clipboard Formats

    Windows

    Bitmap DIB Bitmap Metafile Windows Enhanced Metafile Windows Picture Format Vector 3D

    Raster 3D

    Printer Scale % Options Landscape Orientation (Printer)

  • landscapeportrait Reverse Foreground/Background (TUI)

    (TUI) Scheme Lisp Scheme Scheme LISP 71 Scheme Scheme MIT

    Scheme UNIX FLUENT> > adapt/ grid/ surface/ display/ plot/ view/ define/ report/ exit file/ solve/ / > display /display> set /display/set> q quit /display/set> q /display> /display> /file /display//file> /display /file /file

  • /display. /display//file> q /display> /display> /file start-journal jrnl Input journal opened on file "jrnl". /display> set-ambient-colorset-ambient-color, s-a-c, sac, sa lint lighting-interpolation li lights-on nt interpolation liin l-int Scheme Evaluation () Scheme > (define a 1) a > (+ a 2 3 4) 10

    UNIX csh Cortex error pwd chdir ls alias Error Scheme Scheme Pwd Chdir Ls Alias

    yes/no

  • filled grids? [no] shrink-factor [0.1] line-weight [1] title [""]

    "1,2" 3 12a Control-C

    16,

    -2.4, .9e5, +1e-5 31 31, #b11111, #o37, #x1fIn Scheme, 2 2.0 1.9 1

    yes no Yes y no n yes/no #t #f.

    "red"

    > (define fn "valve.ps") fn > hc fn fn, valve.psfn "valve.ps" FLUENT Scheme

  • ().()'() element(1) [()] 1 element(2) [()] 10 element(3) [()] 100 element(4) [()] 1, 10, 100 element(1) [1] element(2) [10] element(3) [100] element(4) [()] 1000 element(5) [()] element(1) [1] element(2) [10] element(3) [100] () 1 10 element(1) [1] ,,'(11 12 13) 1, 10, 11, 12, 13 element(1) [1] () Scheme Scheme 1/3 () /foo> set-xy x-component [1.0] (/ 1 3) y-component [0.0] (sqrt (/ 8 9)) > (define (unit-y x) (sqrt (- 1.0 (* x x)))) unit-y /foo> set-xy x-component [1.0] (/ 1 3) y-component [0.0] (unit-y (/ 1 3)) Scheme "_" () Scheme shrink-factor [0.8] (/ _ 3)

  • UNIXFLUENT! (bang)UNIX!( FLUENTCortex > !rm junk.* > !vi script.rp

    ls pwd UNIX ls pwd chdir

    !ls !pwd UNIX FLUENT (!chdir!cd FLUENT Cortex ) chdir

    FLUENT Cortex FLUENT > !pwd > !ls valve.* (FLUENT Cortex ) /home/cfd/run/valve valve1.cas valve1.msh valve2.cas valve2.msh

    FLUENT Scheme ti-menu-load-string 1 (ti-menu-load-string "di ow 1") Scheme 0 1 0 1 (for-each (lambda (window view) (ti-menu-load-string (format #f "di ow ~a gr view rv ~a" window view)))

  • '(0 1) '(front back)) menu-load-string Scheme (for-each (lambda (window view) (cx-open-window window) (display-grid) (cx-restore-view view)) '(0 1) '(front back))

    FLUENT (alias 'dg (lambda () (ti-menu-load-string "/di gr")))

    dg ! ti-menu-load-string ti-menu-loadstring (ti-menu-load-string "open-window 1 gr") ; incorrect usage display/ display/ (ti-menu-load-string "display open-window 1 grid")

    FLUENT Help Viewer GUI

    Windows NT UNIX FLUENT Windows NT Windows NT Windows NT How to Use Help

    Help Viewer

  • Context-Sensitive

    Context-Sensitive Help Help/Context-Sensitive Help Help Viewer

    User's Guide...Help/User's Guide...

    Help Viewer Help Viewer Overview

    Using Help...Help/Using Help...Help Viewer Using On-Line Help s GUI Help Viewer Help Viewer Help Viewer Help Viewer (Figure 1)

  • Figure 1:Help Viewer

    Windows

    Help Viewer Help Viewer Help Viewe Contents

  • Figure 1:

    View

    Help/Version ?

    > ?dis display/: Enter the display menu. ? q quit > ? [help-mode]> di display/: Enter the display menu. [help-mode]> pwd

  • pwd: #[alias] (LAMBDA () (cx-send '(system "pwd"))) [help-mode]> q ? display/annotate Annotation text [""] ? Enter the text to annotate the plot with. Annotation text [""] ( UNIX )

    FLUENT ( 3d)File/Run... FLUENT Cortex ( FLUENT ) Cortex FLUENT Cortex FLUENT 1. (Hostname)(Username) 2. FLUENT 3. Run "listen" Cortex FLUENT Listen Run Cortex FLUENT -cx host:p1:p2 host host Cortex p1:p2 fluent version -cx host:p1:p2 version host FLUENT Case case Apply Case

  • FLUENT FLUENT FLUENT UNIX UNIX UNIX C-shell FLUENT fluent -g < inputfile >&outputfile& Bourne/Korn-shell fluent -g < inputfile > outputfile 2>&1& z fluent FLUENT z -g z inputfile FLUENT z outputfile FLUENT

    () z & UNIX

    inputfile FLUENT rc example.cas solve/init/init it 50 wd example50.dat it 50 wd example100.dat exit case example.cas 100 case data case data rc file/read-case wd file/write-data FLUENT

  • (solve/init/init). fluent -g -i inputfile >&outputfile&

    Exit

    Windows

  • FLUENT grid, case,

    data, profile, Scheme, journal case, data, profile, journal, transcript FLUENT FLUENT

    FLUENT ( FLUENT ) FLUENT Grid GAMBIT, TGrid GeoMesh,

    preBFC FLUENT

    Third-Party Grid ANSYS, PATRAN, I-DEAS, NASTRAN, etc.

    FLUENT

    Case FLUENT FLUENT Data FLUENT FLUENT FLUENT/UNS Case FLUENT/UNS 3 or 4 FLUENT FLUENT/UNS Data FLUENT/UNS 4 FLUENT RAMPANT Case RAMPANT 2, 3, or 4 FLUENT RAMPANT Data RAMPANT 4 FLUENT FLUENT 4 Case FLUENT 4 FLUENT FIDAP 7 Neutral FIDAP 7 FLUENT Ray FLUENT FLUENT PDF prePDF FLUENT Journal FLUENT FLUENT Transcript FLUENT user Hardcopy FLUENT assorted Plot FLUENT FLUENT Profile user, FLUENT FLUENT Data Export FLUENT Other codes Scheme user FLUENT

    FLUENT

    Tilde expansion

    FLUENT ( FLUENT )

  • case myfile FLUENT myfile.cas PDF ray

    case, data, ray FLUENT

    FLUENT TGrid case TGrid FLUENT

    case, data, grid, PDF, ray

    .ZFLUENT zcat .gz gunzip flow.msh.gzReading "| gunzip -c flow.msh.gz"...

    file-name z Name z name.gz z name.Z z name.suffix z name.suffix.gz z name.suffix.Z

    suffix .cas msh Windows NT gzip (.gz) compress Windows NT FLUENT ray FLUENT

    Z gz flow.gz

  • case Writing "| gzip -cfv > flow.cas.gz"... case gzip cas Windows NT FLUENT gzip .Z rayFLUENT Tilde Expansion ( UNIX )

    UNIX ~/~~username/~username "username"~/file case FLUENT file.cas ~/cases/file.casFLUENT file.cas

    z %t

    contours-%t.ps contours-0001.ps

    z %i contours-%i.ps contours-0010.ps

    z %

    FLUENT myfile-%t.ps myfile-0001.ps myfile-0001.ps

    FLUENT file/confirm-overwrite/text no

    GAMBIT, TGrid, GeoMesh, preBFC CAD Fluent case

  • ( wall-1, pressure-inlet-5, symmetry-2)

    FLUENT File/Read/Case...GAMBIT, TGrid, GeoMesh, preBFCGAMBITGeoMesh TGrid preBFC TGrid GAMBIT GeoMesh preBFC preBFC ANSYS I-DEAS Universal NASTRAN PATRAN Neutral an Unpartitioned Grid File Through the Partition Filter TGrid

    TGrid FLUENT FLUENT File/Read/Case...TGrid TGrid GAMBIT and GeoMesh Mesh

    GAMBITGeoMeshFLUENT 5, FLUENT/UNS,RAMPANT FLUENT File/Read/Case... File/Read/Case... Case... preBFC

    preBFC FLUENT File/Read/Case... MESH-RAMPANT/TGRI preBFC File/Import/preBFC Structured Mesh. ANSYS File/Import/ANSYS... I-DEAS Universal File/Import/IDEAS Universal... NASTRAN File/Import/NASTRAN... PATRAN Neutral File/Import/PATRAN...

    METIS FluentFile/Import/Partition/Metis... FLUENT

  • case

    file/reread-grid

    Case Data FLUENT case data

    FLUENT

    FLUENT

    case data data case case data FLUENT Case

    Case Case case case File/Read/Case... case

    case .cas FLUENT data

    Data File/Read/Data.. File/Write/Data..

    data .dat FLUENT Case Data Case data Case

    Data File/Read/Case & Data...dat .cas File/Write/Case & Data...

    Case Data

    FLUENT

  • File/wite/utosave...

    Figure 1: Case/Data

    10 10FLUENT .casdatgz .Z case

    FLUENT/UNS RAMPANT Case Data FLUENT/UNS 3 4 RAMPANT 2, 3, 4 case case

    FLUENT/UNS case FLUENT RAMPANT case FLUENT

    FLUENT/UNS 4 RAMPANT4 Data FLUENT

    FLUENT 4 Case File/Import/FLUENT 4 Case...

    FLUENT FLUENT 4 case

    FIDAP 7 Neutral File/Import/FIDAP7...

    FLUENT FIDAP7...

    FLUENT

    GUI Scheme FLUENT

  • transcript

    case data

    transcript

    File/Write/Start Journal... Start Journal... Stop Journalmenu Stop Journal File/Write/Stop Journal

    File/Read/Journal.. Transcript

    Transcript FLUENT transcript GUI Scheme FLUENT transcript

    Transcript

    transcript transcript transcript

    transcripting File/Write/Start Transcript...transcript Start Transcript... Stop Transcriptmenu Stop Transcript transcript

  • File/Read/Profile...

    Write Profile (Figure 1)File/Write/Profile...

    Figure 1:Write Profile

    1. Define New Profiles 2. 3. 4. Write... FLUENT

  • field

    case Write Currently Defined Profiles Write...

    TGrid File/Write/Boundary Grid...

    TIFF, PICT, PostScript

    dump

    (Figure 1).

    File/Hardcopy...

    Figure 1:

  • 1. 2. () 3. 4. () 5. 6. dump 7. () 8.

    Apply

    EPS (Encapsulated PostScript) PostScript Adobe (v2) EPS PostScript EPS EPS

    HPGL pen plotters HPGL

    IRIS Image SGI IRIS

    PICT Macintosh PICT "draw""paint"

    PPM PostScript PostScript TIFF TIFF Window Dump ( UNIX )

    PostScript, EPS, PICT PostScript, Encapsulated PostScript (EPS), HPGL, PICT IRIS , PICT, PostScript, Encapsulated PostScript, TIFF

    Color Gray ScaleMonochrome PostScript

  • Gray Scale

    display/set/rendering-options/device-info PostScript, EPS, PICT

    Landscape Orientation landscape portrait Reverse Foreground/Background

    FLUENT PostScript display/set/hardcopy/driver/post-format fast-raster raster rle-raster run-length vector

    Window Dumps UNIX )

    xwd xwd -id %w >

    FLUENT %w ID (myfile.xwd)

    %nmyfile%n.xwd

    %n ImageMagick MIFF ImageMagick import -window %w.miff MIFF

    () 8

  • TIFF 24

    FLUENT AVSData ExplorerEnSight (MPGS)FASTFIELDVIEWI-DEASNASTRANPATRAN Tecplot EnSight FIELDVIEW FLUENT

    Export (Figure 1). File/Export...

    Figure 1:

    1. 2. IDEAS UniversalNASTRAN PATRAN

    3. FAST Solution NASTRAN Functions to Write

  • 4. () IDEAS UniversalNASTRAN PATRAN (

    /)()

    5. Write... AVS AVS version 4 UCD Data Explorer EnSight( MPGS) FAST Plot3D FAST Solution FieldView Case+DataFLUENT case FIELDVIEW FieldView Data FIELDVIEW case FieldView Case+Data case FieldView Data case IDEAS Universal NASTRAN PATRAN Tecplot Scheme

    Scheme scheme

    Scheme File/Read/Scheme.. Scheme > (load "file.scm") File/Read/Journal.. file/read-journal source > . file.scm > source file.scm Fluent

  • FLUENT fluent

    Scheme Scheme

    cxlayout cxlayout cxlayout Cortex TGrid, FLUENT, FLUENT/UNS, RAMPANT, NEKTON, MixSim Case Data

    FLUENT Case Data z z

    z

    Grid Data ()Case

    case case

    ID Scheme (xfile.scm) C (xfile.h) Fluent Inc Index: 0 Scheme symbol: xf-comment C macro: XF_COMMENT Codes: FLUENT, TGrid Status: optional

  • (0 "comment text") (0 "Variables:") (37 ( (relax-mass-flow 1) (default-coefficient ()) (default-method 0) )) Header Index: 1 Scheme symbol: xf-header C macro: XF_HEADER Codes: FLUENT, TGrid Status: optional (1 "TGrid 2.1.1") Index: 2 Scheme symbol: xf-dimension C macro: XF_DIMENSION Codes: FLUENT, TGrid Status: optional The dimensionality of the grid (2 ND) ND 2 3 Index: 10 Scheme symbol: xf-node C macro: XF_NODE Codes: FLUENT, TGrid Status: required (10 (zone-id first-index last-index type ND)( x1 y1 z1 x2 y2 z2

  • . . . )) ID index indextype ND (10 (0 1 2d5 0 2)) ID index index index index

    Type TGrid FLUENT

    ND x y

    (10 (1 1 2d5 1 2)( 1.500000e-01 2.500000e-02 1.625000e-01 1.250000e-02 . . . 1.750000e-01 0.000000e+00 2.000000e-01 2.500000e-02 1.875000e-01 1.250000e-02 ))

    () index index ID Shadow Index: 18 Scheme symbol: xf-periodic-face C macro: XF_PERIODIC_FACE Codes: FLUENT, TGrid Status: required only for grids with periodic boundaries

    (18 (first-index last-index periodic-zone shadow-zone)( f00 f01

  • f10 f21 f20 f21 . . . )) first-index indexlast-indexperiodic-zone IDshadow-zone shadow ID

    body (f*) index indexfirst-index last-index indexindex (18 (1 2b a c) ( 12 1f 13 21 ad 1c2 . . . )) Index: 12 Scheme symbol: xf-cell C macro: XF_CELL Codes: FLUENT, TGrid Status: required (12 (zone-id first-index last-index type element-type)) ID last-index element-type (12 (0 1 3e3 0)) 3e3 (hexadecimal) = 995 regular cell element-type element-type description nodes/cell faces/cell 0 mixed 1 triangular 3 3 2 tetrahedral 4 4 3 quadrilateral 4 4 4 hexahedral 8 6 5 pyramid 5 5

  • 6 wedge 6 5 first-index last-index

    type (type=1)(type=0x11, 17)parent(type = 0x20, or 32 decimal)element-type

    FLUENT (element-type=0) (12 (9 1 3d 0 0)( 1 1 1 3 3 1 1 3 1 . . . ))

    9 3d () = 61

    TGrid Faces Index: 13 Scheme symbol: xf-face C macro: XF_FACE Codes: FLUENT, TGrid Status: required index 13 (13 (zone-id first-index last-index type element-type)) ID element-type n0 n1 n2 cr cl n*c* element index cr cl ,Handedness cr cl indexcr cl n2 (element-type = 0) type v0 v1 v2 c0 c1 type element-type face type nodes/face 0 mixed 2 linear 2 3 triangular 3 4 quadrilateral 4

  • bc name bc id interior 2 wall 3 pressure-inlet, inlet-vent, intake-fan 4 pressure-outlet, exhaust-fan, outlet-vent 5 symmetry7 periodic-shadow 8 pressure-far-field 9 velocity-inlet 10 periodic 12 fan, porous-jump, radiator 14 mass-flow-inlet 20 interface 24 parent (hanging node) 31 outflow 36 axis 37 10001003 Face Tree Index: 59 Scheme symbol: xf-face-tree C macro: XF_FACE_TREE Codes: FLUENT Status: only for grids with hanging-node adaption (59 (face-id0 face-id1 parent-zone-id child-zone-id) ( number-of-kids kid-id-0 kid-id-1 ... kid-id-n . . . )) face-id0 indexface-id1 indexparent-zone-id IDchild-zone-id IDnumber-of-kids kid-id-n ID TGrid Cell Tree

  • Index: 58 Scheme symbol: xf-cell-tree C macro: XF_CELL_TREE Codes: FLUENT Status: only for grids with hanging-node adaption (58 (cell-id0 cell-id1 parent-zone-id child-zone-id) ( number-of-kids kid-id-0 kid-id-1 ... kid-id-n .)) cell-id0 indexcell-id1 indexparent-zone-id IDchild-zone-id IDnumber-of-kids kid-id-n ID TGrid Interface Face Parents Index: 61 Scheme symbol: xf-face-parents C macro: XF_FACE_PARENTS Codes: FLUENT Status: only for grids with nonconformal interfaces (61 (face-id0 face-id1) ( parent-id-0 parent-id-1 )) face-id0 indexface-id1 indexparent-id-0 indexparent-id-1 index TGridTGrid

  • Figure 1

    (0 "Grid:") (0 "Dimensions:") (2 2) (12 (0 1 3 0)) (13 (0 1 a 0)) (10 (0 1 8 0 2)) (12 (7 1 3 1 3)) (13 (2 1 2 2 2)( 1 2 1 2 3 4 2 3)) (13 (3 3 5 3 2)( 5 1 1 0 1 3 2 0 3 6 3 0)) (13 (4 6 8 3 2)( 7 4 3 0 4 2 2 0 2 8 1 0)) (13 (5 9 9 a 2)( 8 5 1 0)) (13 (6 a a 24 2)( 6 7 3 0)) (10 (1 1 8 1 2) (

  • 1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 2.00000000e+00 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 3.00000000e+00 0.00000000e+00 3.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00)) Figure 2 bf9 bf10

    Figure 2: (0 "Dimensions:") (2 2) (0 "Grid:") (12 (0 1 3 0)) (13 (0 1 a 0)) (10 (0 1 8 0 2)) (12 (7 1 3 1 3)) (13 (2 1 2 2 2)( 1 2 1 2 3 4 2 3)) (13 (3 3 5 3 2)( 5 1 1 0 1 3 2 0 3 6 3 0)) (13 (4 6 8 3 2)( 7 4 3 0 4 2 2 0

  • 2 8 1 0)) (13 (5 9 9 c 2)( 8 5 1 0)) (13 (1 a a 8 2)( 6 7 3 0)) (18 (1 1 5 1)( 9 a)) (10 (1 1 8 1 2)( 1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 2.00000000e+00 0.00000000e+00 2.00000000e+00 1.00000000e+00 0.00000000e+00 0.00000000e+00 3.00000000e+00 0.00000000e+00 3.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00))

    Figure 3

    Figure 3:

    (0 "Grid:") (0 "Dimensions:") (2 2) (12 (0 1 7 0)) (13 (0 1 16 0)) (10 (0 1 d 0 2)) (12 (7 1 6 1 3)) (12 (1 7 7 20 3))

  • (58 (7 7 1 7)( 4 6 5 4 3)) (13 (2 1 7 2 2)( 1 2 6 3 1 3 3 4 1 4 4 5 1 5 5 6 6 7 1 2 5 8 2 6 9 5 2 5)) (13 (3 8 b 3 2)( a 6 1 0 6 9 2 0 4 b 4 0 9 4 5 0)) (13 (4 c f 3 2)( 2 8 6 0 c 2 3 0 8 7 2 0 7 d 1 0)) (13 (5 10 10 a 2)( d a 1 0)) (13 (6 11 12 24 2)( 3 c 3 0 b 3 4 0)) (13 (b 13 13 1f 2)( c 8 7 0)) (13 (a 14 14 1f 2)( b c 7 0)) (13 (9 15 15 1f 2)( 9 b 7 0)) (13 (8 16 16 1f 2)( 9 8 2 7)) (59 (13 13 b 4)(

  • 2 d c)) (59 (14 14 a 6)( 2 12 11)) (59 (15 15 9 3)( 2 b a)) (59 (16 16 8 2)( 2 7 6)) (10 (1 1 d 1 2) ( 2.50000000e+00 5.00000000e-01 2.50000000e+00 1.00000000e+00 3.00000000e+00 5.00000000e-01 2.50000000e+00 0.00000000e+00 2.00000000e+00 5.00000000e-01 1.00000000e+00 0.00000000e+00 1.00000000e+00 1.00000000e+00 2.00000000e+00 1.00000000e+00 2.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 3.00000000e+00 0.00000000e+00 3.00000000e+00 1.00000000e+00 0.00000000e+00 1.00000000e+00)) Case

    Index: 39 Scheme symbol: xf-rp-tv C macro: XF_RP_TV Codes: FLUENT Status: optional (39 (zone-id zone-type zone-name)( (condition1 . value1) (condition2 . value2)

  • (condition3 . value3) .)) (39 (zone-id zone-type zone-name)()) zone-id axisexhaust fanfanfluidinlet ventintake faninterfaceinterior mass-flow-inletoutlet ventoutflowperiodicporous-jumppressure-far-fieldpressure-inletpressure-outletradiatorshadowsolidsymmetryvelocity-inletwall interior, fan, porous-jump, radiator Interior FLUENT wallcell (element) fluid solid Scheme (Scheme symbol) z z ! %&* / : < = > ? _ ^ . + - inlet-port/cold!, eggs/easy, e=m*c^2 (39 (1 fluid fuel)()) (39 (8 pressure-inlet pressure-inlet-8)()) (39 (2 wall wing-skin)()) (39 (3 symmetry mid-plane)()) Index: 40 Scheme symbol: xf-partition C macro: XF_PARTITION Codes: FLUENT Status: only for partitioned grids (40 (zone-id first-index last-index partition-count)(

  • p1 p2 p3 . pn )) p1 ID first-index p2 ID first-index+1 pn ID lastt-index ID 0 partition-count-1 partition-count Index: 33 Scheme symbol: xf-grid-size C macro: XF_GRID_SIZE Codes: FLUENT Status: optional (33 (n-elements n-faces n-nodes)) Data Field Index: 300 Scheme symbol: xf-rf-seg-data C macro: XF_RF_SEG_DATA Codes: FLUENT Status: required case (300 (sub-section-id zone-id size n-time-levels n-phases first-id last-id) ( data for cell or face with id = first-id data-for-cell-or-face with id = first-id+1 .. data-for-cell-or-face with id = last-id

  • )) sub-section-id 1 2 Fluent Inc (xfile.h)Zone-id ID case ID Size (1 2 3 )N-time-levels n-phases (300 (2 16 2 0 0 17 100) (8.08462024e-01 8.11823010e-02 8.78750622e-01 3.15509699e-02 1.06139672e+00 -3.74040119e-02 ... 1.33301604e+00 -5.04243895e-02 6.21703446e-01 -2.46118382e-02 4.41687912e-01 -1.27046436e-01 1.03528820e-01 -1.01711005e-01 )) Index: 301 Scheme symbol: xf-residuals C macro: XF_RF_SEG_RESIDUAL Codes: FLUENT Status: optional (301 (n residual-subsection-id size)( r1 r2 . . . rn )) n size (1 2 3 ) Residual-subsection-id xfile.h C Fluent Inc

  • Fluent

    FLUENT FLUENT

    FLUENT FLUENT

    FLUENT FLUENT

    FLUENT z z () z z XY z

    Kelvin Rankine Celsius Kelvin Kelvin Fahrenheit Rankine Rankine

    FLUENT

    FLUENT FLUENT British, SI, CGS, "default."

    Set All To Define/Units...

  • Figure 1:

    british si CGS (centimeter-gram-second) cgs default

    List FLUENT

    FLUENT

    1. 2.

    0.0254 meters/inch 1 273.15

    1. 2. New...

  • Figure 1:

    3. 4. OK

    3600 OK feet/min

    smy

    sftmftx =

    60min3048.0

    min

  • FLUENT

    FLUENT

    FLUENT

    ijk FLUENT FLUENT

    Figure 1:

  • FLUENT 111 FLUENT O C Note that while FLUENT does not require a cyclic branch cut in an O-type grid it will accept a grid that contains one.

    Figure 1:

    Figure 2:

    Figure 3:

  • Figure 4: O

    Figure 5:

    Figure 6: C

  • Figure 7:

    Figure 8: Unstructured Triangular Grid for an Airfoil

    Figure 9:

  • Figure 10:/

    Figure 11: for a Rotor-Stator Geometry

    FLUENT

    z z z

    FLUENT 4 FLUENT FLUENT FLUENT

  • ///

    z z

    z FLUENT z

    z

    //

    .

    z x (Figure 1).

  • Figure 1: x z GAMBIT TGrid

    GeoMesh CAD TGrid GeoMesh CAD 1. 2. GAMBIT TGrid GeoMesh CAD

    FLUENT make-periodic ( TGrid )

    skewness

    1x

    p vuy

    py = u = v = X =

    Blasius [139]

  • 5 CPU CPU /

    FLUENT

    90 60 5:1

    FLUENT GAMBIT TGrid GeoMesh preBFC ICEMCFD I-DEAS NASTRAN PATRAN ARIES ANSYS FLUENT/UNS RAMPANT FLUENT 4 case

    GAMBIT GAMBIT // GAMBIT

    FLUENT 5 FLUENTFile/Read/Case...

    GeoMesh GeoMesh

    GeoMesh TGrid FLUENT File/Read/Case...

    TGrid

  • TGrid / TGrid FLUENT File/Write/Mesh... File/Read/Case...

    preBFC preBFC FLUENT //

    preBFC

    70 35 File/Import/preBFC Structured Mesh... preBFC FLUENT tfilter fl42seg inputflile outputfile File/Read/Case... FLUENT

    preBFC

    MESH-RAMPANT/TGRID RAMPANT FLUENT RAMPANT File/Read/Case... preBFC TGrid TGRID TGrid

    ICEMCFD ICEMCFD FLUENT 4 RAMPANT

    ICEMCFD CAD FLUENT fe2ram CAD I-DEAS

    NASTRAN PATRAN ANSYS I-DEAS Universal FLUENT I-deas

    1. I-DEAS TGrid B TGrid TGrid

    2. I-DEAS File/Import/IDEAS Universal... FLUENT

    3. I-DEAS fe2ram Universal FLUENT File/Read/Case... FLUENT Universal

    15 781 2411 780 2412 752 2417 2429

    z // Universal

    FLUENT I-DEAS Group FLUENT

  • FLUENT

    GROUPE I-DEAS FLUENTFLUENT

    I-DEAS FLUENT I-DEAS

    NASTRAN NASTRAN FLUENT

    1. NASTRAN TGrid B TGrid TGrid

    2. NASTRAN File/Import/NASTRAN.. FLUENT

    3. NASTRAN fe2ram NASTRAN FLUENT File/Read/Case... NASTRAN

    FLUENT NASTRAN GRID GRID* CBAR CTETRA CTRIA3 CHEXA CQUAD4 CPENTA

    z FLUENT NASTRAN

    PATRAN Neutral FLUENT

    1. PATRAN TGrid B TGrid TGrid

    2. PATRAN File/Import/ PATRAN... FLUENT

    3. PATRAN fe2ram PATRAN FLUENT File/Read/Case... PATRAN

    FLUENT PATRAN

    Packet Type 01

  • Packet Type 02 Packet Type 21

    z PATRAN Named Component FLUENT FLUENT ANSYS Prep7

    FLUENT 1. ANSYS ARIES

    PATRAN TGrid B TGrid TGrid

    2. PATRAN File/Import/ANSYS... FLUENT

    3. ANSYS fe2ram ANSYS Prep7 FLUENT File/Read/Case... PATRAN

    FLUENT Prep7

    N EN NSEL ESEL

    STIF63

    fe2ram

    CAD FLUENT tfilter fe2ram [dimension] format [zoning] input-file output-file

    -d2-tANSYS ANSYS -tIDEAS I-DEAS -tNASTRAN NASTRAN -tPATRAN PATRAN CAD tfilter fe2ram -cl helpZoning CAD -zID -zNONE zoning input-file output-file

    I-DEAS sample.unv sample.grd tfilter fe2ram -d2 -tIDEAS sample.unv sample.grd

    FLUENT/UNS RAMPANT Case FLUENT/UNS 3 4 case RAMPANT 2, 3, 4 case

    File/Read/Case... FLUENT

  • FLUENT 4 Case FLUENT 4 Case FLUENT

    File/Import/FLUENT 4 Case... FLUENT 4 case

    FLUENT 4 FLUENT tfilter fl42seg input-filename output-filename File/Read/Case... FLUENT FIDAP 7 Neutral

    FIDAP 7 Neutral FLUENT File/Import/FIDAP7... FLUENT 4 case tfilter fe2ram [dimension] -tFIDAP7 input-file output-file-d2 File/Read/Case... FLUENT

    z z

    FLUENT 1. 2. fl42seg

    FLUENT 3. TGrid tmerge TGrid

    tmerge /

    1. TGrid TGrid 2.

    Tgrid tmerge

    1. tfilter tmerge3d () tfilter tmerge2d (). 2.

    / user@mymachine:>tfilter tmerge2d Starting /Fluent.Inc/tfilter2.5/ultra/tmerge2d/tfilter.2.0.16 Append 2D grid files. tmerge2D Fluent Inc, Version 2.0.16 Enter name of grid file (ENTER to continue):my1.msh x,y scaling factor, eg. 1 1 : 1 1

  • x,y translation, eg. 0 1 : 0 0 rotation angle (deg), eg. 45 : 0 Enter name of grid file (ENTER to continue):my2.msh x,y scaling factor, eg. 1 1 : 1 1 x,y translation, eg. 0 1 : 0 0 rotation angle (deg), eg. 45 : 0 Enter name of grid file (ENTER to continue): Enter name of output file :final.msh Reading... node zone: id 1, ib 1, ie 1677, typ 1 node zone: id 2, ib 1678, ie 2169, typ 2 done. Writing... 492 nodes, id 1, ib 1678, ie 2169, type 2. 1677 nodes, id 2, ib 1, ie 1677, type 1. done. Appending done.

    tfilter tmerge2d -cl -p my1.msh my2.msh final.msh 3.

    ` Fuse Face Zones

    FLUENT

    FLUENT

    FLUENT

    ( Figure 1)( Figure 2)FLUENT

  • Figure 1:

    Figure 2:

    Figure 3 A-BB-CD-E E-F a-dd-bb-e e-c(d-b, b-e, e-c)(a-d) IV D-E d-b b-e I III IV

    Figure 3:

    z

    90

    z

  • ()

    z

    z z

    FLUENT/UNS RAMPANT FLUENT/UNS RAMPANT

    FLUENT

    FLUENT FLUENT 1. FLUENT 2.

    Define/Boundary Conditions... 3. (Figure 1) Define/Grid Interfaces...

    Figure 1:

    1. 2.

    3. 4. 5.

    ()

  • FLUENT/UNS RAMPANT Case

    FLUENT/UNS RAMPANT FLUENT FLUENT define/grid-interfaces/recreatetext FLUENT FLUENT/UNS RAMPANT data

    FLUENT X Grid/Check

    Grid Check Domain Extents: x-coordinate: min (m) = 0.000000e+00, max (m) = 6.400001e+01 y-coordinate: min (m) = -4.538534e+00, max (m) = 6.400000e+01 Volume statistics: minimum volume (m3): 2.782193e-01 maximum volume (m3): 3.926232e+00 total volume (m3): 1.682930e+03 Face area statistics: minimum face area (m2): 8.015718e-01 maximum face area (m2): 4.118252e+00 Checking number of nodes per cell. Checking number of faces per cell. Checking thread pointers. Checking number of cells per face. Checking face cells. Checking face handedness. Checking element type consistency. Checking boundary types: Checking face pairs. Checking periodic boundaries. Checking node count. Checking nosolve cell count. Checking nosolve face count.

  • Done.

    XY Z Iso-Value Adaption

    FLUENT

    x x x

    FLUENT FLUENT FLUENT

    FLUENT

    Grid/Info/Size

    Grid Information Level Cells Faces Nodes Partitions 0 48 82 35 1 Grid/Info/Zones FAS Grid Information Level Cells Faces Nodes Partitions 0 48 82 35 1 1 18 52 0 1 2 7 37 0 1

  • 3 3 27 0 1 4 1 20 0 1

    FLUENT

    Grid/Info/Memory Usage UNIX Windows NT UNIX z z heap z Windows NT z RAM heap z Windows NT heap z z z FLUENT heap

    z heap Windows NT FLUENT

    fl542s.execx332.exe ()fl542.exe () fl_smpi542.exe ()

    Grid/Info/Zones Zone sizes: 21280 hexahedral cells, zone 4. 532 quadrilateral velocity-inlet faces, zone 1. 532 quadrilateral pressure-outlet faces, zone 2. 1040 quadrilateral symmetry faces, zone 3. 1040 quadrilateral symmetry faces, zone 7. 61708 quadrilateral interior faces, zone 5. 1120 quadrilateral wall faces, zone 6. 23493 nodes.

    Partition

  • Grid/Info/Partitions menu item.

    case data case case

    FLUENT

    Grid /Scale...

    Figure 1:

    1.

    0.0254 / 0.3048 /

  • / 2. Scale

    FLUENT 3.

    UnScale "Unscaling"( m Scale ) 5 8 2 10 16

    x x XY Grid/Translate

    Figure 1:

    1. 2.

  • Grid/Merge...

    Figure 1:

    FLUENT

    imposing

    1.

    2. 3.

    case

    FLUENT

    case

  • 89 90

    ID

    (Figure 1) Grid/Separate/Faces...

    Figure 1:

    1. (Angle, Face, Mark, Region) 2. 3. z

  • z 4. Report Zone not separated. 45 faces in contiguous region 0 30 faces in contiguous region 1 11 faces in contiguous region 2 14 faces in contiguous region 3 Separates zone 4 into 4 zone(s). 5. Separate FLUENT 45 faces in contiguous region 0 30 faces in contiguous region 1 11 faces in contiguous region 2 14 faces in contiguous region 3 Separates zone 4 into 4 zone(s). Updating zone information ... created zone wall-4:001 created zone wall-4:002 created zone wall-4:010 done.

    Figure 1:

    IDGrid/Separate/Cells..

  • Figure 2:

    1. (Mark Region) 2. 3. 4. Report Zone not separated. Separates zone 14 into two zones, with 1275 and 32 cells. 5. Separate FLUENT Separates zone 14 into two zones, with 1275 and 32 cells. No faces marked on thread, 2 No faces marked on thread, 3 No faces marked on thread, 1 No faces marked on thread, 5 No faces marked on thread, 7 No faces marked on thread, 8 No faces marked on thread, 9 No faces marked on thread, 61 Separates zone 62 into two zones, with 1763 and 58 faces. All faces marked on thread, 4 No faces marked on thread, 66 Moved 20 faces from face zone 4 to zone 6 Updating zone information ... Moved 32 cells from cell zone 14 to zone 10 created zone interior-4 created zone interior-6 created zone fluid-14:010 done.

  • case Grid/modify-zones/make-periodic IDshadow /grid/modify-zones> mp Periodic zone [()] 1 Shadow zone [()] 4 Rotational periodic? (if no, translational) [yes] n Create periodic zones? [yes] yes computed translation deltas: -2.000000 -2.000000 all 10 faces matched for zones 1 and 4. zone 4 deleted Created periodic zones. matching-tolerance 0.5Grid/modify-zones/matching-tolerance

    slit

    Grid/modify-zones/slit-periodic ID /grid/modify-zones> sp periodic zone [()] periodic-1 Separated periodic zone.

    Fusing

    (

  • Grid/Fuse...

    Figure 1:

    ID tmerge TGrid ID

    1. 2. Fuse

    () 0.5

    O C FLUENT ()

    fuse-face-zonesGrid/modify-zones/fuse-face-zones IDmatching-tolerance

    z z

  • shadow shadow

    "slitting""separating"

    Grid/modify-zones/slit-face-zone ID /grid/modify-zones> slfz face zone id/name [] wall-4 zone 4 deleted face zone 4 created face zone 10 created case data

    DomainZones

    Grid/Reorder domain zones Domain

    Grid/Reorder/Domain

    Grid/Reorder/Print Bandwidth

    Cuthill-McKee seed cell Gibbs, Poole, Stockmeyer[57]

    ID

  • >> Reordering domain: zones, cells, faces, done. Bandwidth reduction = 809/21 = 38.52 Done. Maximum cell distance = 21

    FLUENT Figure 1 FLUENT case FLUENT "Cartesian Strip"

    Figure 1:

    z

  • z z

    FLUENT Bisection

    ( Figure 1) X-, Y-, Z ( Figure 2.) R RX-, RY-, RZ , R-, Theta-, Z-, ( Figure 3) FLUENT ( Figure 4) X-, Y-, Z-( Figure 4) R- Theta-( Figure 5) Rho-, Theta-, Phi-

  • Figure 1:

    Figure 2: X-

    Figure 3:

  • Figure 4: X-

    Figure 5: Theta-

    pre-testing()

    ( Figure 1)

    ( Figure 2.)

  • Figure 1:

    Figure 2: Pretesting FLUENT

    1. 2.

    3.

    4. / Grid/Partition...

  • Figure 1:

    1. 2. Number 3. 4. Do 5. Pre-Test 6. Zones / Registers / 7.

    Verbosity 1 2 ID Verbosity 0

    Print Partitions ID

    Default FLUENT

  • Default Reset Reset Default Reset Default

    ID 0 3 (10) 1 2 (19) 10 19 >> Partitions: P Cells I-Cells Cell Ratio Faces I-Faces Face Ratio Neighbors 0 134 10 0.075 217 10 0.046 1 1 137 19 0.139 222 19 0.086 2 2 134 19 0.142 218 19 0.087 2 3 137 10 0.073 223 10 0.045 1 ------ Partition count = 4 Cell variation = (134 - 137) Mean cell variation = ( -1.1% - 1.1%) Intercell variation = (10 - 19) Intercell ratio variation = ( 7.3% - 14.2%) Global intercell ratio = 10.7% Face variation = (217 - 223) Interface variation = (10 - 19) Interface ratio variation = ( 4.5% - 8.7%) Global interface ratio = 3.4% Neighbor variation = (1 - 2) Computing connected regions; type ^C to interrupt. Connected region count = 4

    5 Figures 1 Cell Info...()

    FLUENT

    File/Import/Partition/Metis...FLUENT

  • tfilter partition input-filename partition-count output-filenamepartition-count

    METIS METIS Minnesota Army HPC Karypis Kumar METIS [79]

  • FLUENT

    repeating, and pole boundaries:() ()

    (Figure 1)

    Define/Boundary Conditions...

    Figure 1:

    : 1.

  • 2. 3.

    (

    ),

    (.)

    Figure 1:

    FLUENT

    1.2. Set...1.

    2..

    1.2.

    pressure-inlet-7

  • small-inlet large-inlet() 1. 2. Set...3. 4. OK

    (UDF)

    FLUENT

    FLUENT FLUENT z z z

    z

    z

    z

    z

    z

    z

    z

  • FLUENT

    z Spalart-Allmaras

    m_t/m FLUENT

    z k-e K Epsilon Turb. Kinetic EnergyTurb. Dissipation Rate

    z K Epsilon Turb. Kinetic EnergyTurb. Dissipation Rate

    I u_avg u^' 1% 10%

    0.05%.

    ( ) 81Re16.0 HD

    avguuI

  • 50000 4% l l

    L Ll 07.0=

    L 0.07 L

    L

    Ll 07.0= L l z

    L=D_H z

    L z

    d_99 l l=0.4 d_99 m_t/m (Re_t ?k^2/(e n))Re_t

    (100 1000) m_t/m 1 < m_t/m

  • k e E m_t/m k

    12

    =

    tkC

    C 0.09

    k e

    /

    LkU

    k k ( k 10%), U

    L Equation 9

    k U ?k/?x = - e. e 7 m_t/m

    FLUENT e

    K Epsilon 3 I k

    RSM k

    0=jiuu

    kuu32=

    ( a ). K FLUENT

    LES LES .

  • /

    z z z z z z ( P-1 DTRM DO ) z () z ( PDF ) z () z () z () (Figure 1)

  • Figure 1:

    (p_s^')(p_s^' or p_0^') r_0 g x FLUENT

    ss pgxp += 0

    xpg

    xp ss +=

    0 (r - r_0)g

    (p^'_s)

    Gauge Total Pressure field Total Temperature field

    20 vpp s +=

  • ( )1

    20 2

    11

    += Mpp s

    p_0 = p_s = M = c = (c_p/c_v)

    1 v 1 3 1 3

    x, y, z ()

    Figure 1 1. 2.

    3. 3

    (X, Y, Z)

    z z z z

  • Figure 1:

    4. z X, Y, (in 3D)

    Z z

    z

    X, Y, Z

    (termed the Supersonic/Initial Gauge Pressure)

    FLUENT Supersonic/Initial Gauge PressureSupersonic/Initial Gauge Pressure

  • P-1 DTRM DO (Rosseland )

    PDF/

    PDF

    VOFcavitation VOF cavitation Gauge Total Pressure 0 Supersonic/Initial Gauge Pressure 0 Total Temperature 300 X-Component of Flow Direction 1 Y-Component of Flow Direction 0 Z-Component of Flow Direction 0 Turb. Kinetic Energy 1 Turb. Dissipation Rate 1

  • FLUENT

    FLUENT p_0

    20 21 vpp s +=

    ( )1

    2

    0

    00

    211

    +=++ Mpppp

    ps

    p

    sRTv

    cvM ==

    p_op p_0^' p_s^' ( ) sps RTpp 0+=

    R

    202

    11 MTTs

    +=

  • FLUENT

    z z z z Outflow gauge pressure (for calculations with the coupled solvers) z z ( P-1 DTRM DO ) z z PDE z z z ()

    Figure 1:

  • FLUENT 1. 2. 3. 4.

    z X, Y,

    () Z z ,

    z

    X, Y, Z- X, Y, Z- Figure 1

    z X, Y,

    () Z z z

    z

    X, Y, Z- X, Y, Z-

    W W

    W, v_q W r r FLUENT v_q W r

  • ( RAMPANT

    P-1 DTRM DO (Rosseland )

    PDF/

    PDF

    VOFcavitation VOF cavitation

  • Temperature 300 Velocity Magnitude 0 X-Component of Flow Direction 1 Y-Component of Flow Direction 0 Z-Component of Flow Direction 0 X-Velocity 0 Y-Velocity 0 Z-Velocity 0 Turb. Kinetic Energy 1 Turb. Dissipation Rate 1 Outflow Gauge Pressure 0 FLUENT FLUENT

    = dAvm &

    FLUENT

    Outflow Gauge Pressure field

    /

  • /

    z z z z z z ( P-1 DTRM DO ) z z PDE z z

  • Figure 1:

    FLUENT 1. 2. (2p-radian) 1-radian Mass Flux (2p-radian) 1-radian

  • (termed the Supersonic/Initial Gauge Pressure)

    FLUENT Supersonic/Initial Gauge PressureSupersonic/Initial Gauge Pressure

    Figure 1 1. 2.

    3. 3 (X, Y, Z)

    z X, Y, () Z

    z ,

    P-1 DTRM DO (Rosseland )

    PDF/

  • PDF

    Mass Flow-Rate 1 Total Temperature 300 Supersonic/Initial Gauge Pressure 0 X-Component of Flow Direction 1 Y-Component of Flow Direction 0 Z-Component of Flow Direction 0 Turb. Kinetic Energy 1 Turb. Dissipation Rate 1

    m(dot) r v ()FLUENT

    Amv&=

    r v r v

  • RTp = v r v r k v

    z z z z z z ( P-1 DTRM DO ) z z PDE z z z () z

  • Figure 1: FLUENT D p

    2

    21 vkp L =

    r k_L D p

  • z z z z z z ( P-1 DTRM DO ) z z PDE z z z () z

  • Figure 1:

    gauge

  • FLUENT z z z z z z PDE z z () z ( P-1 DTRM DO ) z

    Figure 1:

    Gauge

    FLUENT gauge

  • rv

    rp 2

    r v_q z z

    z

    z PDF

    z

    z

    VOF Cavitation ASM z Gauge

    1 1 3

    P-1 DTRM DO (Rosseland )

  • Default settings (in SI) for pressure outlet boundary conditions are as follows: Gauge Pressure 0 Backflow Total Temperature 300 Backflow Turb. Kinetic Energy 1 Backflow Turb. Dissipation Rate 1

    FLUENT p_s

    FLUENT

    20

    z z z z z z ( P-1 DTRM DO ) z z Figure 1

  • Figure 1:

    Gauge X, Y ()Z

    P-1 DTRM DO (Rosseland )

  • Default settings (in SI) for pressure far-field boundary conditions are as follows: Gauge Pressure 0 Mach Number 0.6 Temperature 300 X-Component of Flow Direction 1 Y-Component of Flow Direction 0 Z-Component of Flow Direction 0 Turb. Kinetic Energy 1 Turb. Dissipation Rate 1

    12=

    cVR n

    12= i

    nicVR

    i

    V_n c c ? i

    ( )+= RRV ini 21

    ( )= RRc i41

    V_n c V_n, c,

    FLUENT FLUENT

  • z z z FLUENT FLUENT z z

    FLUENT

    FLUENT /

    z

    (D)(C)

  • Figure 1: z (B)

    (B)

    z (A)FLUENT FLUENT (FLUENT )

    FLUENT

    Figure 1: The Outflow Panel

    weightingrateflowofsumboundaryonspecifiedweightingrateflow

    boundarythroughflowpercentage =

    1FLUENT 75% 25% 0.75 0.25 0.75 1 Boundary 1 = 0.75/0.75+1.0 = 0.429 42.9%

  • Boundary 2 = 1.0/0.75+1.0 = 0.571 57.1% P-1 DTRM DO 1 300

    z z z z z z PDE z z () z ( P-1 DTRM DO ) z z Figure 1

  • Figure 1:

    D p v

    2

    21 vkp L =

    r k_L D p

    z z z z z z PDE z

  • z () z ( P-1 DTRM DO ) z z Figure 1

    Figure 1: The Exhaust Fan Panel FLUENT

  • ( FLUENT ) z z z z z z z ( P-1 DTRM DO ) z FLUENT z z z z z / Figure 1

  • Figure 1:

    1 3

    FLUENT 1

    FLUENT

    D x/k k D x 2 T_b

  • Figure 2:

    FLUENT z (

    )

    z () 3 T_b1 T_b2 k_w1 k_w2 3

  • Figure 3:

  • Figure 1:

    (X,Y,Z )

  • (0,0,0)(X,Y,Z) z x (0,0) () / FLUENT x, y, z

    Figure 1:

  • (1/k)( B)

    Byu

    Euu p

    w

    p

    =

    **

    ln1

    u^* = C_m^1/4k^1/2 B B () B K_s ^+ = r K_s u^*/m K_s u^* = C_m^1/4k^1/2 B K_s^+ K_s^+ z (K_s^+ < 3 ~ 5) z (3 ~ 5 < K_s^+ < 70 ~ 90) z (K_s^+ > 70 ~ 90)

    FLUENT B Nikuradse's [27] Cebeci Bradshaw

    (K_s^+ < 2.25) 0=B

    (2.25 < K_s^+ < 90)

    ( ){ }811.0ln4258.0sin25.87

    25.2ln1

    += +++

    ssKs KKCKB

    s C_K_s

    (K_s^+ > 90)

    ( )++= sK KCB s1ln1 B (K_s^+) 1

    K_s C_K_s K_s K_s(D_50)K_s

  • (C_K_s)(C_K_s = 0.5) k-e Nikuradse's(C_K_s = 0.5 ~ 1.0) C_K_s K_s FLUENT Dirichlet 1.

    Figure 1:

    2. Dirichle FLUENT

  • P-1 DTRM DO (Rosseland FLUENT 1 DO )

    FLUENT FLUENT

    nv

    w =

  • ( ) radfwf qTThq += h_f = T_w = T_f = q^"= q^"_rad= 1 9

    ( ) radswn qTTnkq +=

    k_s = T_s = D n = FLUENT 1

    ff

    radw Th

    qqT +=

    ( )s

    n

    radw Tk

    nqqT +=

    FLUENT heat sink

    ( ) ( )wextextradswf TThqTThq =+= h_ext = T_ext = q^"_rad =

  • ( ) ( )44 westradswf TTqTThq =+= e_ext= s=Stefan-Boltzmann T_w = T_?=sink q^"_rad= Equation 1

    ( ) ( ) ( )44 wextwextestradfwf TTTThqTThq +=+= Equation 1 Fourier FLUENT

    wall

    f nTkq =

    n FLUENT [93] / 1 FLUENT

  • z z

    Figure 1:

    Figure 2:

  • Figure 3:

    /FLUENT FLUENT4 FLUENT4 FLUENT4

  • Figure 1:

    Figure 1:

  • Figure 2:

    Figure 3:

    () Grid/Check

  • FLUENT FLUENT4

    Figure 1:

    FLUENT

    k-e Spalart-Allmaras DO

  • Figure 1:

    k-e Spalart-Allmaras /

  • z z x (0,0) () X, Y, Z DO

    DO

  • Figure 1:

    z z x (0,0) ()

  • X, Y, Z

    DO

    /

    z

    FLUENT

    z (Darcy)

    = =

    +=3

    1

    3

    1 21

    j jjjijjiji vvCvDS

    S_i i (x, y, or z)D C

  • jjii vvCvS

    21

    2+= a C_2 D C 1/a C_2 FLUENT

    ( )i

    CC

    ji vvCvCS1

    0011 ==

    C_0 C_1 C_0 Darcy C_2 Darcy

    =p

    =

    =3

    1jxj

    xjx nvp

    =

    =3

    1jyj

    yjy nvp

    =

    =3

    1jzj

    zjz nvp

    1/a_ij 1 D v_j D n_x D n_y D n_z

    1/a_ij .

    1 C_2

    =

    = 3

    12 2

    1j

    jjiji

    vvCxp

  • =

    =3

    12 2

    1j

    jjxxjx vvnCp

    =

    =3

    12 2

    1j

    jjxyjy vvnCp

    =

    =3

    12 2

    1j

    jjxzjz vvnCp

    FLUENT

    ( )( ) ( )( ) hshf

    k

    iik

    jjj

    iieff

    ifif

    issff

    SSxu

    DtDpJh

    xxTk

    xhu

    xhh

    t

    ++

    ++

    =

    +

    1

    1

    h_f= h_s= f= k_eff= S^h_f= S^h_s= k_eff

    ( ) sfeff kkk += 1 f= k_f= k_t k_s=

    FLUENT

  • k-e Spalart-Allmaras m_t FLUENT m_t 1. 2. 3. 3 1/a_ij

    3 C_2_ij 4. 5.

    6. 7. / / 5 C_0 C_1

  • Figure 1:

    //

  • / z 1. z 1 2

    (0,0)(0,0,0)(X,Y)(X,Y,Z)

    z 1. "Snap"

    2. 3.

    FLUENT 1

    z 1. 2. (0,0,0)

    (X,Y,Z)FLUENT

    3. () 0.

    Figure 1:

    z

    1.

  • 2. FLUENT

    z 1. "Snap"

    2. 3.

    FLUENT

    2. 1/a C_2 1 2 3q z

    z

    z

    FLUENT 100% 1/a_ij / C_2_ij FLUENT C_2 25% 0.5%25 K_L 0.5

    = 2 %2521

    openL vKp

    C_2 FLUENT 1. 100% 2. K_L' 100%

  • = 2 %10021

    openL vKp v_25% open = 4 v_100% open,

    8145.0

    2

    2%100

    2%25 =

    ==

    open

    openLL v

    vKK

    8 1.0 mm

    132 800010

    8

    === mthickness

    KC L

    Ergun [49]

    ( ) ( )VvDD

    ppp

    33

    2

    2175.11150

    +=

    Blake-Kozeny[49]

    ( ) 3

    2

    21150 =

    pDp

    m D_p e Darcy 1 9 1

    ( )232

    1150 =

    pD

    ( )32

    15.3=

    pDC

    Van Winkle [146][121]

    ( ) ( )( )212 Pf AACAm = & m(dot)= A_f= A_p=)

  • C= D/t D/t= t/D > 1.6 Re > 4000 C 0.98 17

    pAm =& D x = t

    ( )tAA

    Cv

    xp fp 11

    21

    2

    22

    = v 1 C_2

    ( )tAA

    CC fp

    112

    22

    = Blake-Kozeny( 11)[70] f Q 0.262 0.25 0.258 0.26 0.221 0.40 0.218 0.41 0.172 0.80

    Q = 2a a Darcy 1 5 C_0 C_1 C_0 C_1 f 1.0

  • 1.0 /FLUENT FLUENT bulk k-e Spalart-Allmaras a C_2 gauge FLUENT 1/a_ij C_2_i,j 1000 XY z X,Y,Z

  • z

    FLUENT FLUENT

    =

    =N

    n

    nnvfp

    1

    1

    D p Paf_n v v

    =

    =N

    n

    nn NvfU

    1

    61;

  • =

    =N

    n

    nnr NvgU

    161;

    U_q U_r m/sf_n g_n r

    Figure 1:

    1. 2. 3. 4. /

  • FLUENT Define/Boundary Conditions... 1. 2.

    3.

    Figure 1:

    4. / 1. 2. 3. D p

  • 1. 2. D p 1. 2. D p

    22.0m 0.4m 15 m/s

    Figure 2:

    2000rpm Q (m^3/s)D p (Pa) 250.0 20175 15350 10525 5700 0875 Q D p 1.0 0.4 v (m/s)D p (Pa) 62.50.0 50.0175 37.5350 25.0525 12.5700 0875

    vp 14875=

  • 1. 2.

    3. 61 10 4. 1. 2. 1 f_n

    3 g_n f_-1 f_0 (1/r)

    1. 2. 3. U_q U_r 1. 2. U_q U_r 1. 2. 1. ()

    2.

    1.

  • 2. XY

    FLUENT FLUENT

    FLUENT D p v

    2

    21 vkp L =

    r k_L

    =

    =N

    n

    nnL vrk

    1

    1

    r_n v

    ( )exitHX TThq = q T_HX T_exit

    h

    70;0

    ==

    NvhhN

    n

    nn

    h_n v m/s

    qh, T_HXq

  • 1

    h v

    ( )exitHXp TThATcm

    q == &

    q=(W/m^2) m(dot)=(kg/s) c_p=(J/kg-K) h=(W/m^2K) T_exit=(K) T_HX=()(K) A=(m^2) 5

    ( ) ( )exitHXinletexitp TThATTcm

    q == &

    h ( )( )exitHX

    inletexitp

    TTATTcm

    h = &

    ( )

    ( )exitHXinletexitp

    TTTTc

    h =

  • Figure 1:

    1. 2. 3. 4. / FLUENT Define/Boundary Conditions...

    k_L

    1.

    2.

  • Figure 1:

    4. 5. k_L

    Figure 2: r

    7 kg/min 400.0 K(1/2)r v^2 D p k_L 1 ( 2 1.0 kg/m^3) VelocityInlet TempExit TempPressure Drop (m/s)(K)(K)(Pa) 5.0300.0330.075.0 10.0300.0322.5250.0 15.0300.0320.0450.0

  • v (m/s)(1/2)r v^2 (Pa)D p (Pa)k_L 5.012.575.06.0 10.050.0250.05.0 15.0112.5450.04.0

    vkL 2.00.7 = v

    qh, T_HX

    0 T_HX

    1.

    2.

    1. 2. h 1.0 kg/m^31000 J/kg-K) h Velocityh (m/s)(W/m^2K) 5.02142.9 10.02903.2 15.03750.0

    273.111.1261.1469 vh ++= v

  • 1. ()

    2.

    1 xy z 3 1 z z XY

    /robust

  • Darcy

    mvCvp

    += 22 21

    m a C_2 v D m C_2

    Figure 1:

    1. 2. 1 3. D m 4. C_2

    5.

    /Define/Boundary Conditions...

  • FLUENT () ] FLUENT FLUENT

    Figure 1: 4 2

  • FLUENT

    2min2

    1AmUfs

    p =

    ps

    =

    f= r_m= U_A_min=

    ( ) ( )c

    cec AAfKKf ++= 22 11

    s= K_c= K_e= A= A_c= f_c= 3

    bafc minRe= a= b= Re_min= 5

    m

    hA DU

    min

    minRe =

    r_m=

  • m_m= D_h= U_A_min=

    =AALD ch 4

    U_A_min

    UUA =min

    U s

    ( ) ( )cellinairpcell TTcmq = & where e= (m(dot) c_p)_air=( T__in= T_cell=

    =marcoincellsallcellmarco qq

    =cosmarallmarcoltotal qq

    1 T ( ) ( )inoutcoolantpmarco TTcmq = & T__in T__out T__out Macro 0 1 1357 1 7

  • z e

    z (m(dot) c_p) z z z 1. Define/odels/nergy... 2. Define/ser-Defined/eat

    Exchanger...

    Figure 1:

  • 3. 4. 5. 6. 7. 8. 9. 10.

    1 1 1.

    2.

    3.

    1 0 n-1n

  • Figure 1:3 4

  • Figure 2:

    7 (m(dot) c_p z FLUENT 5 q_total. FLUENT 1

    7 T__in z 1. 2. 1 7 T__in z FLUENT z z case FLUENT 1.

  • Figure 1:

    2. 3. 3 Min Flow to Face Area Ratio (s) Entrance Loss Coefficient (K_c) Exit Loss Coefficient (K_e) Air Side Surface Area (A) Min Cross Section Flow Area (A_c) 5 the Core Friction Coefficient Core Friction Exponent a b 4. 1 n

    z z

    1. 2.

    5. /

  • ("modelname" (0.73 0.43 0.053 5.2 0.33 9.1 0.66) ((1 1.0 .6234) (2 2.0 0.5014) (3 3.5 0.3932)

    (4 5.0 0.3244) (5 6.5 0.2762) (6 8.0 0.2405) (7 10.0 0.2050) (8 12.0 0.1785) (9 15.0 0.1495)))

    modelname(s K_c K_e A A_c a b) (point velocity effectiveness) 1. 2. HXC OKFLUENT

    define/models/heat-exchanger/heat-exchanger-report1

    FLUENT z n1 i n

    FLUENT

    z n (x_i,y_i,v_i)1 i n

    z m n 1 i n 1 j m

  • z (r_i,v_i)1 i n z (0,0) z z (0,0) x z

    z

    z

    "fields" fields tab || ((profile1-name point|line|radial n) (field1-name a1 a2 ... an) (field2-name b1 b2 ... bn) . . . (fieldf-name f1 f2 ... fn)) ((profile2-name mesh m n) (field1-name a11 a12 ... a1n a21 a22 ... a2n . . . am1 am2 ... amn) . . . (fieldf-name f11 f12 ... f1n f21 f22 ... f2n .

  • . . fm1 fm2 ... fmn))

    xy z r Scheme

    k e ke ((turb-prof point 8) (x 4.00000E+00 4.00000E+00 4.00000E+00 4.00000E+00 4.00000E+00 4.00000E+00 4.00000E+00 4.00000E+00 ) (y 1.06443E-03 3.19485E-03 5.33020E-03 7.47418E-03 2.90494E-01 3.31222E-01 3.84519E-01 4.57471E-01 ) (u 5.47866E+00 6.59870E+00 7.05731E+00 7.40079E+00 1.01674E+01 1.01656E+01 1.01637E+01 1.01616E+01 ) (tke 4.93228E-01 6.19247E-01 5.32680E-01 4.93642E-01 6.89414E-03 6.89666E-03 6.90015E-03 6.90478E-03 ) (eps 1.27713E+02 6.04399E+01 3.31187E+01 2.21535E+01 9.78365E-03 9.79056E-03 9.80001E-03 9.81265E-03 ) ) 1. 2. 1 File/Read/Profile...

    3.

  • Define/Profiles...

    Figure 1:

    x y y

  • Figure 1:

    z XY Y

    z

    FLUENT FLUENT

    1. 2.

  • Figure 1: The Orient Profile Panel 3. 4.

    5.

    1. 2. Compute From.... xy z

    0

    6. 1. 2. Compute From.... xy z

    7.

    1. 2. 3. Compute From....

    8. Orient To... 9. Orient To... X'Y' Z'X'Y' Z'

  • 000xyz.

    X'Y' Z'

    4.

    5.

    6. FLUENT

    X'Y'Z' 10

    z

    1 (m(dot)/V) = (r_j A_j v_j/V)(m(dot) v/V) = (m(dot) v_j/V) V

    z

    z

    z

    Figure 1: Defining a Source for a Tiny Inlet

  • ()

    SI

    1. 2. z

    z

    z

    z

    kg/m^3-s S_m

    h2o2 kg/m^3-s 1 S_i^'

    XY / Z N/m^3 F_i

    W/m^3

  • 1 S_h

    k e k kg/m-s^3e kg/m-s^4

    k k-e 1

    e k-e 3

  • 1

    /

    1

    FLUENT

    (

    FLUENT "materials"

    (site-wide)

    case case

    1( 1)

    Define/Materials...

  • 1. 2.

    ) 3. 4. /

  • /

    1. 2.

    3. 4. /

    Yes No

    /

    (site-wide)

    [106][134][176] 1.

  • Figure 1:

    2. 3.

    4.

    5.

    6.

    1.

  • 2. 3. 4. / No

    OK OK case

    1. 2. 3. Delete

    airco2o

    ( ) ...2321 +++= TATAAT

    ( ) ( )nnn

    nnn TTTT

    T +=

    ++1

    1

    1 n N N :

    ( )( ) ...:

    ...:2

    3212max,2min,

    23211max,1min,

    +++=

  • Kelvin Rankine Celsius Kelvin Kelvin Fahrenheit Rankine Rankine

    1. 1 density

    Figure 1:

    2. 8 A_1

    3. 1, 2, 3,... 1 A_1,A_2, A_3,...

    ( ) TT 02.01000= 1. 1 Viscosity

  • Figure 1: 2. 3. 1

    30

    Figure 2: m (T)

    1. 1 Viscosity

  • Figure 1:

    2. 1

    ( ) 4103623 10000.410297.110966.1874.1929.429:1000300

    TTTTTcTfor

    p ++=

  • 2.

    (air fluid (chemical-formula . #f) (density (constant . 1.225) (premixed-combustion 1.225 300)) (specific-heat (constant . 1006.43)) (thermal-conductivity (constant . 0.0242)) (viscosity (constant . 1.7894e-05) (sutherland 1.7894e-05 273.11 110.56) (power-law 1.7894e-05 273.11 0.666)) (molecular-weight (constant . 28.966)) ) (aluminum (solid) (chemical-formula . al) (density (constant . 2719)) (specific-heat (constant . 871)) (thermal-conductivity (constant . 202.4)) (formation-entropy (constant . 164448.08)) )

    FLUENT FLUENT propdb.scm

    propdb.scm cortex/lib propdb.scm

    FLUENT /

    1Define/Materials...

    FLUENT z z

    1. 2.

  • 3.

    4. Boussinesq

    z

    z Boussinesq

    1 1.225 kg/m^3 Boussinesq

    Boussinesq 1 Boussinesq Boussinesq

    ( ) ( )nnn

    nnn TTTT

    T +=

    ++

    1

    1

    ( )( ) ...:

    ...:2

    3212max,2min,

    23211max,1min,

    +++=

  • FLUENT

    RTpop=

    R p_op 1. 1

    2. Define/Operating Conditions...101325 Pa

    3. 1

    RTppop +=

    p FLUENT p_op 1. 1

    2. Define/Operating Conditions... 1 101325 Pa

    3. 1

  • 1. z 1

    volume-weighted-mixing-law z 1

    z 1

    2. / 3. volume-weighted-mixing-law

    FLUENT

    =

    ii

    im

    1

    m_i'r_i' i'

    +=i

    i

    i

    op

    MmRT

    pp

    p FLUENT R m_i^' i^'M_i^' i^'p_op FLUENT

    =

    ii

    i

    op

    MmRT

    p

    R m_i^' i^'M_i^' i^'p_op

    FLUENT z z / z z

  • z

    1 Define/Materials...

    FLUENT m kg/m-s lbm/ft-sFLUENT n 1 1.7894 ?10^-5 kg/m-s FLUENT 5 z

    ( ) ( )nnn

    nnn TTTT

    T +=

    ++1

    1

    z ( )( ) ...:

    ...:2

    3212max,2min,

    23211max,1min,

    +++=

  • 2231

    CTTC+=

    kg/m-s KC_1 C_2 C_1 = 1.458 ?10^-6 kg/m-s-K^1/2C_2 = 110.4 K. Sutherland

    STST

    TT

    ++

    = 0

    23

    00

    m kg/m-sT Km_0 kg/m-s, T_0 KS K Sutherland m_0 = 1.716?10^-5 kg/m-sT_0 = 273 KS = 111 K Sutherland sutherland Sutherland 1. 2. C1 C2 m_0

    T_0 S Sutherland

    nBT= m kg/m-sT KB B = 4.093?10^-7n = 2/3

    n

    TT

    =

    00

    m kg/m-sT Km_0 kg/m-sm_0 = 1.716?10^-5 kg/m-sT_0 = 273 Kn = 2/3 1. 2. B n m_0

    T_0 n

  • =

    261067.2 MT

    m kg/m-sT Kelvins W_m = W_m (T^*)

    ( )kTT =

    *

    1 Lennard-Jones s e/k 1 1. mass-weighted-mixing-law

    ideal-gas-mixing-law 2. / 3.

    =

    i i jii

    ii

    XX

    21

    2

    41

    21

    18

    1

    +

    +

    =

    j

    i

    i

    j

    j

    i

    ji

    MM

    MM

    X_i^' i^'

    =i

    iim

  • S& =

    i

    j

    j

    i

    xu

    xuS

    +=&

    m S(dot) S(dot) h ( )[ ]SS && = FLUENT z z pseudo-plastics Carreau [161]

    SSkeSke nTT

    nTT

    &&&

    == 1

    00

    10 = nTT

    Ske & FLUENT

    max1

    min

    0

  • Figure 1:

    N n = 1 n > 1 n < 1 k n T_0 h_min h_max Carreau

    ( )[ ] SSkeSS nTT &&&&

    == 1

    0

    0, 0S & ,S & 0 Carreau (n < 1)

    ( )( ) 212

    0

    0

    1

    ++=

    n

    TT

    Se &

    nlT_0 0 L n T_0 0 0 0

  • Figure 1: Carreau

    Carreau carreau Carreau

    l n T_0 0

    FLUENT z z / z z z / 1 Define/Materials... W/m-K BTU/hr-ft-R 1 0.0242 W/m-K FLUENT z

  • ( ) ( )nnn

    nnn TTTT

    kkkTk +=

    ++1

    1

    z ( )( ) ...:

    ...:2

    3212max,2min,

    23211max,1min,

    +++=

  • 21

    2

    41

    21

    18

    1

    +

    +

    =

    j

    i

    i

    j

    j

    i

    ji

    MM

    MM

    X_i^' i^'.

    =i

    ii kmk

    FLUENT

    jiji x

    Tkq =

    (e(hat)_x,e(hat)_h,e(hat)_z)(k_x,k_h,k_z)

    jijijiij eekeekeekk ++=

  • Figure 1: (e(hat)_x,e(hat)_h, e(hat)_z)

    e(hat)_x 0 XYZ e(hat)_h 1 XYZ 0(k_x)(k_h) 2 (k_z) (k_x,k_h)(e(hat)_x)

    ijij ekk = k e(hat)_ij 2 2

    3 3

  • Figure 1: e(hat)_ij K

    FLUENT z z / z 1 Cp Define/Materials... J/kg-K BTU/lbm-R 1 Cp 1006.43 J/kg-K. z

    ( ) ( )nnn

    npnp

    nppTT

    TTcc

    cTc +=

    ++1

    1

  • z ( )( ) ...:

    ...:2

    3212max,2min,

    23211max,1min,

    +++=

  • DO 3 n_a n_b DO

    DO non-gray 1/length CO_2 H_2O 1

    FLUENT a a FLUENT variable-absorption-coefficient weighted-sum-of-gray-gases(WSGGM) 1 wsggm-cell-basedwsggm-domain-based wsggm-user-specified WSGGM wsggm

    WSGGM Weighted-Sum-of-Gray-Gase 1 s beam

    z wsggm-cell-based characteristic-cell-size

    z wsggm-domain-baseda mean-beam-length

    FLUENT z wsggm-user-specified mean-beam-length

    WSGGM wsggm-user-specified

  • DO DO DO band

    FLUENT P-1 DO

    WSGGM

    0

    1/length

    1

    DO Delta-Eddington

    FLUENT

    P-1 3 C

    Delta-Eddington delta-eddington Delta-Eddington 1 f C

    3 F^* f

  • 1 DO

    Radiation... a s_s Radiation

    Fick

    i

    imii x

    mDJ = ,

    ,i jD i^'

    ,i mD

    FLUENT FLUENT ,i mD

    ,i jD i^' j^' ,i jD

    ,i mD

    =ijj jij

    imi DX

    XD,

    ,1

    ,i jD i^' j^' iX i^'

    ,i mD ,i jD

    Fick 1

    i

    i

    t

    imii x

    mSc

    DJ

    += ,

  • tSc Schmidt

    t

    tt

    DSc =

    tD

    ,i mD Schmidt 3

    m_t

    Fick i^' ,i mD

    1

    z ,N mD

    ,i mD

    z ,i mD ,N mD

    z i^' j^' ,i jD

    ,i mD

    ,i jD ,i jD Fick 3

    i^' ,i mD ,i jD Define/Materials...

    m^2/s ft^2/s 1. constant-dilute-appx

  • 2. ,i mD

    1. dilute-approx 2.

    Figure 1:

    3. ,i mD

    z

    z

    K+++= 2321, TATAAD mi 4. 2 3 Di

    1. 2. ,i jD i'

    j i' j

  • Figure 1:

    3. ,i jD

    z

    z

    K+++= 2321, TATAAD ji 4. 2 3 Di Dj

    1. 2. / 3. Lennard-Jones s_i^'(e/k)_i^'

    Djiop

    jiiji p

    MMT

    D

    +

    =

    2

    ,

    21

    3

    ,

    11

    0188.0

    W_D = W_D (T^*_D)p_op

    ( ) jiD kTT

    =

    *

  • ( ) ( ) ( ) jiji kkk = ( )jiji += 21

    ,i mD ,i jD

    Schmidt Sc_t Schmidt 3 Schmidt Schmidt 0.7

    Schmidt Schmidt Define/Models/Viscous...

    j^'h^0_j^'

    += jT

    T jpjj jrefdTchmH

    ,,

    0

    T_ref,j^' h_j^'^0 J/kgmol BTU/lbmol

    1

    Arrhenius j^'

    +=j

    T

    T

    jpjj

    jrefdT

    Tc

    smS,

    ,0

    T_ref,j^' s_j^'^0 J/kgmol-K

  • BTU/lbmol-R

    1

    1 c k/r c_p c[86] 1D 1

    z z z z

    1 e/k Lennard-Jones FLUENT

    1

    3 s_i (e/k)_i 1. Cp

    2.

    z L-J z L-J z

    Angstroms

  • [65]

    M

  • 101325 Pa

    Figure 1:

    Define/Operating Conditions...

    FLUENT

    (000)XYZDefine/Operating Conditions...

  • FLUENT FLUENT FLUENT ,

    FLUENT

    FLUENT FLUENT FLUENT

    FLUENT

    FLUENT FLUENT

    FLUENT PDF

    ( ) mii

    Suxt

    =+

    S_m

  • ( ) ( ) mSrvv

    xu

    xt=

    ++

    i [8]

    ( ) ( ) iij

    ij

    iji

    ji Fgxx

    puux

    ut

    +++

    =+

    p t_ij r g_i F_i i F_i

    ijl

    l

    i

    j

    j

    iij x

    uxu

    xu

    +

    =32

    ( ) ( ) ( ) ( )

    xFxv

    rur

    rr

    vxur

    xrxpvur

    rruur

    xru

    t

    +

    +

    +

    +

    =+

    +

    21

    322111

    v

    ( ) ( ) ( ) ( )( ) rFr

    wvrr

    v

    vxvr

    rrru

    xvr

    xrrpvvr

    rruvr

    xrv

    t

    +++

    +

    +

    +

    =+

    +

    2

    2 322

    3221111

    v

    v

    rv

    rv

    xuv +

    += v

    w

    FLUENT /

    FLUENT

  • z z

    Figure 1:

    FLUENT

    ( ) ( )( ) ( ) heffijjj

    jji

    effi

    ii

    SuJhxTk

    xpEu

    xE

    t+

    +

    =+

    +

    k_eff k + k_t, k_t J_j^' j^'S_h

    2

    2iuphE +=

    =j

    jj hmh

    phmh

    jjj +=

    5 7 m_j^' j^'

  • = TT jpj ref dTch , T_ref 298.15 K. PDF PDF FLUENT

    ( ) ( ) hi

    iik

    ip

    i

    ii

    i

    Sxu

    xH

    ck

    xHu

    xH

    t+

    +

    =

    +

    Lewis 1 H

    =j

    jj HmH m_j^' j^'

    ( ) += T jT jrefjjpj ref ThdTcH , ,0, ( )0 ,j ref jh T T_ref,j^' j^'

    1 define/models/energy?

    1 PDF 1 FLUENT Brinkman Br

    TkUBr e=

    2

    D T

    Br 1FLUENT

  • 1 PDF 1

    jjj

    i

    Jhx

    1

    PDF PDF 1

    1 S_h

    +=

    jj

    T

    jT jpj

    jreactionh RdTcM

    hS ref

    ref ,,

    0

    ,

    h^o_j^' j^'R_j^' j^' PDF PDF

    5 S_h .

    1 PDF 1 S_h

    S_h FLUENT

    ( ) ( ) qxTk

    xhu

    xh

    t iii

    i

    +

    =

    + &

  • r = h = integral_T_ref^T c_p dT k = T = q(dot)^"' =

    1 u_i 1

    FLUENT

    iij

    i xTk

    x

    k_ij

    FLUENT define/models/energy?

    FLUENT /

    1.

    Define/Models ?Energy...

  • Figure 1: 2. ()

    FLUENT / 1 Define/Models/Viscous...

    3. Define/Boundary Conditions...

    z z z z z

    300 K 4. Define/Materials...

    FLUENT 5000 K 1 K

    5000 KSolve/Controls/Limits...

    Fluent

    FLUENT Solve/Controls/Solution...

    PDF

  • FLUENT 1.0 0.8 1.0 1.0

    PDF FLUENT FLUENT 1.0

    Define/Models/Species...

    FLUENT

    Solve/Controls/Solution...

    FLUENT z z z z z z

  • z z z z z z z z Nusselt z Stanton

    11

    Report/Fluxes...

    Report/Surface Integrals...

    = AdVHQ vv

    hReport/Surface Integrals...

  • Fluent

    Grashof Reynolds

    22Re vghGr

    =

    Rayleigh

    3TLgRa =

    T=

    1

    pck

    = Rayleigh 10^8 10^8 10^10 Boussinesq

    Boussinesq

    ( ) ( )gTTg 000 r_0 T_0 b

    Boussinesq r_0 (1 - b D T) r . Boussinesq Boussinesq

    Boussinesq

  • 1. Define/Models/Energy... 2.

    Define/Operating Conditions

    Figure 1: FLUENT 3. 4. Boussinesq z Boussinesq

    1.

    2. Define/Materials...

    z Boussinesq 1. Boussinesq 1 T_0 2. Boussines

    3. Boussinesq

    Boussinesq

  • 5.

    3 FLUENT p^'Define/Boundary Conditions...

    6. Solve/Controls/Solution... PRESTO!

    Boussinesq r_0

    ( )g0 FLUET

    ss pgxp += 0

    gxps =

    ( )gxps

    0 =

    FLUENT

    p_s^' p_s r_0 p_s p_s^'

    bulk

    Boussinesq

    Rayleigh

  • (Ra > 10^8) 1. 10^7 2.

    3.

    4. [62] 1. 2. [14]

    ( )TLg

    LRaLUL

    ==

    21

    2

    Pr~

    L U D t

    4=t

    D t mp 3. f t = 0.05--0.09 t

    Boussinesq

    FLUENT

  • L

    Figure 1:

    z z

    z z z z z z

    z z

    z z

    2.

  • 3. 4. 5. 6. 7. 8.

    ( ) ( ) ( ) Lvvvvv =+=+= LruLruru 2 ( ) ( ) ( ) Lvvvvv =+=+= LrvLrvrv 2 ( ) ( ) ( ) Lvvvvv =+=+= LrwLrwrw 2

    L 1

    ( ) ( ) ( ) ( ) Lvvvvvvv =++=+= LrpLrpLrprpp 2 D p

    ?p (r) b (L/|L|)

    ( ) ( )rpLLrp vvvv

    v +=

    (p (r))(b |r|) b B SIMPLE, SIMPLEC, PISO b

    (Figure 1)Define/Periodic Conditions...

  • Figure 1:

    1.

    2. / z

    2p z

    3. XY Z

    4. b FLUENT b

    b b bB SIPLE SIMPLEC b b 2

    b

  • 1. (Figure 1)

    Define/Boundary Conditions...

    Figure 1: 2. D p

    per/pr-grad

    p FLUENT 5 p (r)

    FLUENT b

  • Figure 1:

    FLUENT FLUENT

    [119]

    ( )wallinletbulk

    wall

    TTTrT

    =,

    v

    T_bulk,inlet

    =

    A

    Ainletbulk AdVd

    AdVdTT vv

    vv

    ,

    A q L

  • 1. Define/Models/Energy... 2. T_wall

    Define/Boundary Conditions...

    3. Define/Boundary Conditions...

    4. 1 Define/Materials...

    5. Define/Periodic Conditions...

    1. Solve/Controls/Solution... 2.

    3. 4.

    exitbulkwall

    inletbulkwall

    TTTT

    ,

    ,

    =

    per/bulk-temp-ratio

    FLUENT FLUENT 1

  • Figure 1:

    ( ) ( ) ( ) ( ) .2 =++=+L

    LrTLrTL

    LrTrTvvvvvvv

    L s Q

    LTT

    LcmQ inletbulkexitbulkp

    ,, == &

    m(dot)

  • 1. Define/Models/Energy... 2.

    Define/Boundary Conditions... 3.

    Define/Boundary Conditions... 4. 1

    Define/Materials... 5. Define/Periodic Conditions...

    FLUENT

    z z z z z

  • ( ) ( ) ( )

    rvw

    rw

    rr

    rr

    xwr

    xrvwr

    rruwr

    xrw

    t

    +

    =

    ++

    32

    1

    111

    x r u v w

    /

    MRF

    ( r w or r^2 W = constant) w r w r

    Figure 1: Typical Radial Distribution of w in a Free Vortex

    rw

    rp 2=

    FLUENT

  • w / r W Figure 2

    Figure 2: Figure 1

    RNG k-e k-e

    =dAuvR

    dArwvS

    R(bar) S < 0.5RNG k-e k-e k-e

    k-e S > 0.5RSM RSM

  • x y=0

    FLUENT

    Figure 1:

    Figure 2:

  • 1.

    Define/Models ?Solver... 2. r WDefine/Boundary Conditions...

    z PRESTO!

    z z 0.3--0.5

    0.8--1.0 z

    z

    1. /

    2. / 3. /

    4.

  • 5.

    FLUENT 1.

    10% 2. 3. 4. 5. 6.

    z z

    D p /p FLUENT

  • Figure 1:

    Figure 2: 0.675

    cuM = c

    RTc = c c_p/c_v

    M < 0.1FLUENT

    p_0 T_0

    120

    211

    += M

    pps

    20

    211 M

    TTs

    +=

    1 1 p_s/p_0 0.5283

  • Fluent FLUENT 1

    ( ) sop RTpp = p_op p T_s FLUENT 1. Define/Operating Conditions...

    p_op p 2. Define/Models ?Energy... 3.

    Define/Models/Viscous... 4. Define/Materials...

    1. 2.

    5. Define/Boundary Conditions...

    z

    z

  • z 0.2 0.3 z 0.1 SIMPLE

    SIMPLEC PISO z

    FLUENT

    z

    z

    z z z

  • FLUENT

    ( ) mii

    Suxt

    =+

    S_m

    ( ) ( ) mSrvv

    xu

    xt=

    ++

    x r u v i

    ( ) ( ) iii

    jij

    i Fgxpuu

    xu

    t++

    =+

    p r g_i F_i i F_i

    ( ) ( ) ( ) xFxpvur

    rruur

    xru

    t+

    =+

    + 11 :

    ( ) ( ) ( ) rFrpvvr

    rruvr

    xrv

    t+

    =+

    + 11

    rv

    rv

    xuv +

    += v

    ( ) ( )( ) hj

    jji

    ii

    SJhx

    pEux

    Et

    +=+

    +

  • 1. Define/Models/Viscous... 2. Define/Boundary Conditions... Define/Materials... 3.

    Courant Courant

    Courant Solve/Controls/Solution...

    FLUENT z z z z

    Figure 1: Time = 3.66 sec

  • Figure 2: Time = 41.6 sec

    FLUENT D t f

    ( ) Ft=

    F

    ( ) Ft

    nn

    =+1

    ( ) Ft

    nnn

    =+ +

    243 11

    f = n+1 = t + D t n = t n-1 = t - D t

    F(f) F(f)f F(f)

    ( )11 ++ = nnn

    Ft

  • f^n+1 F(f^n+1) f^n+1

    ( )11 ++ += nnn tF f^i f^n f^i f^n+1 =f^i

    ( )ini tF +=

    ( )inni tF += 323134 1

    F(f)

    ( )nnn Ft

    =+1

    f^n+1 f^n

    ( )nnn tF +=+1 RAMPANT

    D t courant 1

    z z

    z FAS

    1.

    Define/Models/Solver...

  • Figure 1:

    2.

    UDF 3. PISO

    Solve/Controls/Solution... PISO PISO PISO

    4. Solve/Monitors/Statistic... FLUENT

    5. /

    6. t=0 Solve/Initialize/Initialize... File/Read/Data... 7. case

    data File/Write/Autosave... case data

    8. z

    Solve/Iterate...

  • Figure 2:

    z FLUENT

    z D t FLUENT D t D t D t FLUENT 1020 FLUENT FLUENT D t 5-10 D t D t

    / 20 20

    FLUENT z

    1. Courant 1Solve/Controls/Solution...

    2. Solve/Iterate... FLUENT

    4 9. case

    File/Write/Data...

  • File/Read/Data... FLUENT

    Figure 1:

    FLUENT UDSMHD MHD

    f_kFLUENT z FLUENT

    NkSxx kik

    ki

    ,...,1, ==

    G_k S_f_k N-

  • z FLUENT

    NkSx

    ux ki

    kkki

    i

    ,...,1, ==

    z FLUENT

    NkSx

    Fx ki

    kkki

    i

    ,...,1, ==

    F_i FLUENT UDS 1. Define/Models/User-Defined

    Scalars...

    Figure 1:

    2. FLUENT UDS FLUENT 1 3 5 UDS UDS

    UDS 3. UDS

    Define/Boundary Conditions... 1.

  • Figure 2: 2.

    4. UDS

    S /ds df Define/Boundary Conditions...

  • Figure 3:

    5. UDS

    6. UDS 1 3 5 G_k z n z n

  • [email protected]@163.com

    fluent

    9.1

    z z translating

    Fluent z MRF z z

  • 9.2 9.2.1

    FLUENT FLUNET FLUENT 9.2.1

    9.2.2

    z z z

  • 9.1FLUENTMRF9.39.49.5 9.2.2 FLUENT v rv

  • r

    v rv v

  • FLUENT

    9.2.3

  • z 2 Z z 2 X z 3 x y z FLUENT 9.2.4 1. Solver Velocity Formulation: 9.2.5

    2

    (a) Fluid Solid (b) FluidSolidMotion TypeMoving Reference

    Frame Rotational Velocity Speed 6.17.1 6.18.1 3.

    wall fluid fluid wall 6.13.1 6.13.1 4.velocity inletspressure inlets 9.2.5 6.3.1 6.4.1 9.2.5

  • ,

    9.2.6 8.4.5 rotation z

    z PRESTO Solution Controls

    z 0.30.5 z 22

    1 10

    2 3 4 5 6 4 5

    9.2.7

    Velocity Magnitude and Mach Number Relative Velicity Magnitude and Relative Mach Number Velocity...

  • 9.3 MRF 9.3.1

    9.1 FLUENT

    z MRF z z MRF

    MRF MRF MRF

    MRF MRF 9.5

    9.3.1

    9.3.2

    MRF z MRF realizable k

  • z 9.3.1

    z MRF FLUENT

    MRF 22.2.8 MRF

    z FLUENT MRF define/models/dpm/ tracking/track-in-absolute-frame Set Injection Properties track-in-absolute-frame z MRF

    9.3-3 z t

    9.3.2MRF

    MRF

    FLUENT

  • 8.2 9.2.2

    FLUENT v 9.4

    = 0xxr 9.31

    x

    0x

    9.3.3

    ++= tr vrvv )( 9.3-2

    v

    rv

    tv .

    ;

    )( += rvv r 9.3-3

  • 9.3.3MRF

    9.3.1 z

    z 5.4.3

    9.3.4MRF MRF

    MRF 9.2.3 MRF 1. Solver Velocity FormulationAbsolute Relative 9.2.5

    2. a

    Fluid Solid RotationAxis Origin RotationAxis Direction

    b Fluid Solid Motion Type Moving Reference Frame Rotation Velocity Speed Translational Velocity XYZ

    6.17.1 6.18.1 3.

    wall fluid fluid wall 6.13.1 4.velocity inletspressure inlets 9.2.5 6.3.1 6.4.1

  • 9.3.6

    Velocity Magnitude and Mach Number Relative Velicity Magnitude and Relative Mach Number Velocity...

  • 9.4 9.4.1 FLUENT

    9.3.1 MRF

    MRF

    z z LES z z VOFmixture Eulerian

    9.4.2

    9.4.19.4.2 9.4.1

    9.4.2

  • 9.4.1 9.4.2

    ,

    FLUENT 9.4.1 9.4.2 p cos ztr o,kps

  • 9.4.3 FLUENT

    13 FLUENT

    FLUENT

    swirl FLUENT

    FLUENT

    T r v

    vS r v 9.4.1

  • streamwise

    downstream upstream

    9.4360 9.4.3 1. SOLVER

    Fluid Solid Fluid Solid Motion Type

    Moving Reference Frame XY Z

    6.17.1 6.18.1 3.

    wall fluid fluid wall 6.13.1 4.velocity inletspressure inlets 6.5.1 FLUENT Mass Flux Average Mass Flux 6.3.16.4.1 6.5.1

  • Mixing plane 9.4.3

    a Upstream Zone Downstream

    Zone b Mixing Plane Geometry

    profiles p(r),T(r) profiles p(x)T(x).

    cInterpolation Points profiles profiles 2 profile interpolation Point Mixing Plane Geometry d Globe Parameter i Underrelaxaton profiles

  • ii Apply Global Parameters Apply Default Global Parameter Default Reset Reset Global Parameter

    e CreatFluent Mixing Plane

    Mixing Plane Delete

    Fluent Fluent Operaing Conditions Reference Pressure Location fluent

    9.4.2

    enable verbosity?,Fluent ID 9.4.4

  • 9.4.5

    Velocity Magnitude and Mach Number Relative Velicity Magnitude and Relative Mach Number Velocity...

    25.9

  • 9.5 9.5.1

    () 9.1

    9.5.1

    9.2 9.5.2 9.5.3 MRF 9.3 9.4

  • 5.3.10

    9.5.2

    9.5.4 9.5.5

  • 9.5.6 9.5.7

    9.5.6 3D 9.5.7 3D

    9.5.8 2D

    9.5.9

  • 9.5.2 9.5.1

    9.5.10

    9.5.11 A-B B-C D-E E-F a-d d-b b-e d-b b-e

  • e-c a-d c-f d-b b-e D-E

    9.5.3 FLUENT z z z 3D

    90

    z 5.3.10

    z

    z z 3D

    FLUENT 9.5.1

  • 1. Solver FLUENT24.15

    2.

    a Boundary Conditions

    interface b Fluid Solid Motion Type

    Moving Mesh

    6.13.1 6 3. Grid Interface 9.5.12

    a Grid Interface

  • b Interface Zone1 Interface Zone 2

    c Interface Type z Periodic z Coupled

    d Create Fluent Wall-9

    Wall-10 Interface Zone1 Interface Zone 2 Boundary Conditions pressure far-fieldsymmetrypressure outlet

    Grid Interface Delete

    Case Case Case Solving the Problem

    24.13.1 Iterate 24.15 Case Iterate Apply Iterate Case Fluent 2b 9.5.2 Case Data

    Fluent Case and Data 3.3.4 ! Data Case Case Data Case Case !Case and Data FLUENT FLUENT Case and Data Case and Data FLUENTCase FLUENT Case 3

    T

  • T= 2D TP/b,P b 5

    10 22 32 32 42 9.5-13

    20

    9.5.4 Case and

    Data Views 27.4 9.5.14 9.5.4

    Vectors Vectors Of Relative Velocity Reference Values

  • Fluid

    3D

    FLUENT FLUENT XY 27.8.4

  • 9.6 9.6.1

    NRBCsFLUENT

    z NRBCs z z