Παρουσίαση του PowerPoint 4.pdf · •Το τρανζίστορ Ν ï õ ì ð...

55
ΗΛΕΚΤΡΟΝΙΚΑ Ι Ενότητα 4: Ενισχυτής κοινού εκπομπού Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

Transcript of Παρουσίαση του PowerPoint 4.pdf · •Το τρανζίστορ Ν ï õ ì ð...

ΗΛΕΚΤΡΟΝΙΚΑ Ι Ενότητα 4: Ενισχυτής κοινού εκπομπού

Επ. Καθηγητής Γαύρος Κωνσταντίνος

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ

Άδειες Χρήσης

• Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

• Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

2

Χρηματοδότηση • Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια

του εκπαιδευτικού έργου του διδάσκοντα.

• Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο TEI Δυτικής Μακεδονίας και στην Ανώτατη Εκκλησιαστική Ακαδημία Θεσσαλονίκης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού.

• Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

3

Σκοποί ενότητας (1)

• Διερεύνηση της λειτουργίας ενός τρανζίστορ σε συνδεσμολογία κοινού εκπομπού (CE) με την εφαρμογή στη βάση του μιας μικρής ac τάσης

4

Περιεχόμενα

• Συνδεσμολογία Κοινού Εκπομπού.

• Ανάλυση του ενισχυτή CE.

• Παραδείγματα.

5

Συνδεσμολογία Κοινού Εκπομπού (CE)

• Το θεώρημα της υπέρθεσης.

• AC αντίσταση διόδου.

• AC ανάλυση του ενισχυτή CE.

• Εξουδετέρωση της αντίστασης εκπομπού.

• Ενισχυτικές βαθμίδες σε σύνδεση καταρράκτη.

6

Το Θεώρημα της Υπέρθεσης (Superposition Theorem)

• Σε ένα κύκλωμα με δύο ή περισσότερες εισόδους (πηγές), το ρεύμα ή η τάση σε κάθε σημείο του κυκλώματος ισούται με το άθροισμα των ρευμάτων ή των τάσεων, αντίστοιχα, που προκαλεί κάθε πηγή χωριστά.

7

DC και AC ισοδύναμα κυκλώματα (1/2)

Εικόνα 1: DC και AC ισοδύναμα κυκλώματα. Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

8

DC και AC ισοδύναμα κυκλώματα (2/2)

• για να πάρουμε το dc ισοδύναμο κύκλωμα ...

• αφαιρούμε την ac πηγή ...

• και την αντικαθιστούμε με βραχυκύκλωμα.

• για να πάρουμε το ac ισοδύναμο κύκλωμα ...

• αφαιρούμε τη dc πηγή ...

• και την αντικαθιστούμε με βραχυκύκλωμα.

• Το ολικό ρεύμα είναι το άθροισμα του DC και του AC ρεύματος.

9

Πυκνωτές Σύζευξης (1/2)

• Στο dc ρεύμα, f = 0 οπότε XC είναι άπειρη. Ένας πυκνωτής δε διαρρέεται ποτέ από συνεχές ρεύμα.

• Στα dc ισοδύναμα κυκλώματα, όλοι οι πυκνωτές θεωρούνται ανοικτά κυκλώματα.

• Στο ac ρεύμα, όταν η συχνότητα είναι μεγάλη, η XC τείνει στο μηδέν.

• Στα ac ισοδύναμα κυκλώματα, όλοι οι πυκνωτές θεωρούνται βραχυκυκλώματα.

10

Πυκνωτές Σύζευξης (2/2)

Συμβολισμός

• Όλες οι dc και σταθερές ποσότητες συμβολίζονται με κεφαλαία γράμματα (V, I, κ.λ.π.)

• Όλες οι ac και οι μεταβαλλόμενες ποσότητες συμβολίζονται με μικρά γράμματα (v, i, κ.λ.π.)

11

ΠΑΡΑΔΕΙΓΜΑ 4-1

• Να βρεθεί η ολική τάση vt που προκαλείται από την ac και τη dc πηγή τάσης.

Εικόνα 2:ΠΑΡΑΔΕΙΓΜΑ 4-1. Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

12

ΠΑΡΑΔΕΙΓΜΑ 4-2 (1/2)

• Να βρεθεί η ολική τάση vt που αναπτύσσεται στην αντίσταση των 10 Ω.

Εικόνα 3: ΠΑΡΑΔΕΙΓΜΑ 4-2 . Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

13

ΠΑΡΑΔΕΙΓΜΑ 4-2 (2/2)

Εικόνα 4: ΠΑΡΑΔΕΙΓΜΑ 4-2 . Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

14

AC αντίσταση διόδου (1/2)

• Λειτουργία μικρού σήματος

• Το dc σημείο ηρεμίας Q καθορίζεται από τη dc τάση. Το dc ρεύμα στο σημείο Q είναι σε πρώτη προσέγγιση 1 mA και σε δεύτερη προσέγγιση 0.93 mA.

• Εικόνα 5: AC αντίσταση διόδου .

15

AC αντίσταση διόδου (2/2)

• Όταν το ac ρεύμα είναι μικρό, η χαρακτηριστική της διόδου μεταξύ Α και Β θεωρείται ευθεία. Ένα ac σήμα θεωρείται μικρό όταν είναι μικρότερο από το 1/10 του dc ρεύματος ηρεμίας.

AC αντίσταση διόδου

• Στη λειτουργία μικρού σήματος η δίοδος συμπεριφέρεται σαν αντίσταση

16

ΠΑΡΑΔΕΙΓΜΑ 4-3 (1/2)

• Να βρεθεί το ολικό ρεύμα i της διόδου.

Εικόνα 6: ΠΑΡΑΔΕΙΓΜΑ 4-3 . Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

17

ΠΑΡΑΔΕΙΓΜΑ 4-3 (2/2)

Εικόνα 7: ΠΑΡΑΔΕΙΓΜΑ 4-3. Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

18

Ανάλυση του ενισχυτή CE (1/2) • Ενίσχυση λέγεται η αύξηση του πλάτους του σήματος που

διαδίδεται από την είσοδο (βάση του τρανζίστορ) στην έξοδο (συλλέκτη).

• Κατά τη λειτουργία του σαν ενισχυτής το τρανζίστορ παραμένει στην ενεργό περιοχή, δηλαδή, μακριά από τις περιοχές κορεσμού και αποκοπής, όπου έχουμε παραμόρφωση.

Εικόνα 8: Ανάλυση του ενισχυτή CE. Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

19

Ανάλυση του ενισχυτή CE (2/2)

• AC βήτα είναι ο λόγος του AC ρεύματος συλλέκτη ic προς το ac ρεύμα βάσης ib.

• Το β συμβολίζεται και hfe. Είναι η ενίσχυση του AC ρεύματος της βάσης.

• Υπενθυμίζεται ότι η ενίσχυση του DC ρεύματος της βάσης συμβολίζεται με DC.

Εικόνα 9: Ανάλυση του ενισχυτή CE . Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall 20

Το ac ισοδύναμο κύκλωμα του τρανζίστορ (1/2)

• Η ac αντίσταση εκπομπού (re) είναι η αντίσταση που ‘βλέπει’ ένα ac σήμα, όταν εφαρμόζεται στον εκπομπό.

Εικόνα 10: Το ac ισοδύναμο κύκλωμα του τρανζίστορ . Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

21

Το ac ισοδύναμο κύκλωμα του τρανζίστορ (2/2)

• Η ac αντίσταση βάσης (zin(base)) (ή σύνθετη αντίσταση της βάσης) είναι η αντίσταση που ‘βλέπει’ ένα ac σήμα, όταν εφαρμόζεται στην βάση. Επειδή το ρεύμα στη βάση είναι φορές μικρότερο από το ρεύμα στον εκπομπό, η αντίσταση από τη βάση φαίνεται φορές μεγαλύτερη από την αντίσταση του εκπομπού.

22

Ανάλυση του ac ισοδυνάμου κυκλώματος του τρανζίστορ

Στο ac ισοδύναμο κύκλωμα του τρανζίστορ σε μια ενισχυτική διάταξη CE: • το τμήμα βάσης-εκπομπού αντικαθίσταται από την ac

αντίσταση βάσης re. • ενώ το τμήμα συλλέκτη-εκπομπού αντικαθίσταται από μια πηγή

ρεύματος ic= ib .

Εικόνα 11:Ανάλυση του ac ισοδυνάμου κυκλώματος του τρανζίστορ. Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

23

Το ac ισοδύναμο κύκλωμα του ενισχυτή CE (1/2)

Εικόνα 12: Το ac ισοδύναμο κύκλωμα του ενισχυτή CE . Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

24

Το ac ισοδύναμο κύκλωμα του ενισχυτή CE (2/2)

Για να πάρουμε το AC ισοδύναμο κύκλωμα του ενισχυτή CE κάνουμε τα εξής βήματα : • “νεκρώνουμε” τη DC πηγή πόλωσης VCC (δηλαδή, την

αντικαθιστούμε με μια ac γείωση).

• αντικαθιστούμε όλους τους πυκνωτές (C1, C2 και C3) με βραχυκυκλώματα.

• συνδυάζουμε τις παράλληλες αντιστάσεις (R1//R2, RC//RL ενώ η RE βραχυκυκλώνεται, άρα φεύγει.

• δεν ξεχνάμε να λάβουμε υπ’όψη μας την AC αντίστασης re της επαφής εκπομπού-βάσης.

25

AC αντίσταση εισόδου του ενισχυτή CE (1/2)

• Το AC ισοδύναμο κύκλωμα εισόδου του ενισχυτή CE είναι το κύκλωμα που σχηματίζεται μεταξύ των ακροδεκτών της βάσης και του εκπομπού.

Εικόνα 13: AC αντίσταση εισόδου του ενισχυτή CE . Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

26

AC αντίσταση εισόδου του ενισχυτή CE (2/2)

• AC τάση εισόδου.

vin = ibre

• Σύνθετη αντίσταση εισόδου είναι η αντίσταση που βλέπει η ac πηγή.

Rin ή zin = R2//R1//re Εικόνα 14: AC αντίσταση εισόδου του ενισχυτή CE . Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

27

AC αντίσταση εξόδου του ενισχυτή CE (1/2)

Εικόνα 15: AC αντίσταση εξόδου του ενισχυτή CE . Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

28

AC αντίσταση εξόδου του ενισχυτή CE (2/2)

• Το AC ισοδύναμο κύκλωμα εξόδου του ενισχυτή CE είναι το κύκλωμα που σχηματίζεται μεταξύ των ακροδεκτών του συλλέκτη και του εκπομπού.

• AC τάση εξόδου. vout = ibRC//RL • AC αντίσταση εξόδου. Rout = RC//RL

Εικόνα 16: AC αντίσταση εξόδου του ενισχυτή CE. Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

29

Κέρδος τάσης στον ενισχυτή CE • Κέρδος τάσης A (voltage

gain) ορίζεται ο λόγος της ac τάσης εξόδου vout προς την ac τάση εισόδου vin.

• Αντικαθιστώντας vout = ibRC//RL και vin = ibre παίρνουμε για το κέρδος τάσης .

30

Αντιστροφή φάσης στον ενισχυτή CE

• Αντιστροφή φάσης (phase inversion) ονομάζεται η διαφορά φάσης 180 που έχει πάντα η ac τάση εξόδου ως προς την ac τάση εισόδου σε έναν ενισχυτή CE.

Εικόνα 17:Αντιστροφή φάσης στον ενισχυτή CE. Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

31

ΠΑΡΑΔΕΙΓΜΑ 4-4 (1/2)

• Το τρανζίστορ 2Ν3904 έχει hfe = 200. Πόση είναι η ac τάση εξόδου και η σύνθετη αντίσταση εισόδου του ενισχυτή;

Εικόνα 18: ΠΑΡΑΔΕΙΓΜΑ 4-4. Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

5 m V rm s

R1

47kΩ

R2

15kΩ

2N3904

10kΩ

R

8.2kΩ

R

3.3kΩ

Vcc

C

E

V

+30 V

2

32

ΠΑΡΑΔΕΙΓΜΑ 4-4 (2/2)

33

Εξουδετέρωση της ac αντίστασης εκπομπού re (1/2)

• Γιατί να εξουδετερώσουμε την re ;

ΑΠ.: Διότι η τιμή της re δεν είναι σταθερή, εξαρτάται από την ποιότητα της επαφής εκπομπού-βάσης και τη θερμοκρασία και κυμαίνεται μεταξύ 25 mV/IE και 50 mV/IE. Επειδή A = (RC//RL)/re, κάθε μεταβολή της re μεταβάλλει το κέρδος τάσης του ενισχυτή CE.

• Πως εξουδετερώνουμε την re ;

ΑΠ.: Προσθέτοντας μια αντίσταση rE μεταξύ εκπομπού και ac γείωσης.

34

Εξουδετέρωση της ac αντίστασης εκπομπού re (2/2)

Εικόνα 19: Εξουδετέρωση της ac αντίστασης εκπομπού re . Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

35

ΠΑΡΑΔΕΙΓΜΑ 4-5 (1/2)

• Η re μεταβάλλεται από 50 Ω σε 100 Ω. Ποιό είναι το ελάχιστο και ποιό το μέγιστο κέρδος τάσης;

Εικόνα 20: ΠΑΡΑΔΕΙΓΜΑ 4-5. Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

R1

47kΩ

R2

15kΩ

10kΩ

R

10kΩ

R

82kΩ

R

Vcc

C

E

+25 V

1.0kΩ

rE

Vin

L

Vout

36

ΠΑΡΑΔΕΙΓΜΑ 4-5 (2/2)

37

ΠΑΡΑΔΕΙΓΜΑ 4-6 (1/2)

• Στο κύκλωμα ενισχυτή του Παραδείγματος 4-5 δίνεται hfe = 200 και re=50Ω. Ποιά η σύνθετη αντίσταση εισόδου του ενισχυτή;

Εικόνα 21: ΠΑΡΑΔΕΙΓΜΑ 4-6 . Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

R1

47kΩ

R2

15kΩ

10kΩ

R

10kΩ

R

82kΩ

R

Vcc

C

E

+25 V

1.0kΩ

rE

Vin

L

Vout

38

ΠΑΡΑΔΕΙΓΜΑ 4-6 (2/2)

39

Ενισχυτικές βαθμίδες με σύνδεση καταρράκτη (1/2)

• Για την αύξηση του κέρδους τάσης μπορούμε να χρησιμοποιήσουμε ενισχυτικές διατάξεις σε συνδεσμολογία καταράκτη, δηλαδή, η έξοδος της κάθε ενισχυτικής βαθμίδας (συλλέκτης τρανζίστορ) συνδέεται στην είσοδο της επόμενης (βάση επόμενου τρανζίστορ).

40

Ενισχυτικές βαθμίδες με σύνδεση καταρράκτη (2/2)

Εικόνα 22: Ενισχυτικές βαθμίδες με σύνδεση καταρράκτη . Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

41

Φαινόμενα φόρτισης (1/2)

• Η αντίσταση εισόδου κάθε βαθμίδας λειτουργεί σαν φορτίο για την προηγούμενη βαθμίδα.

• Για να κατανοήσουμε αυτό, ας δούμε το AC ισοδύναμο κύκλωμα του παραπάνω ενισχυτή 2 βαθμίδων.

• “Νεκρώνουμε” τη VCC και βραχυκυκλώνουμε τους πυκνωτές.

• Συνδυάζουμε τις αντιστάσεις.

• Απομονώνουμε το κύκλωμα εξόδου της 1ης βαθμίδας και το κύκλωμα εξόδου της 2ης.

Εικόνα 23: Φαινόμενα φόρτισης . Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

42

Φαινόμενα φόρτισης (2/2) • Η αντίσταση εισόδου της 2ης βαθμίδας είναι: zin = R1//R2//βre

• Η αντίσταση αυτή είναι το φορτίο στην έξοδο της 1ης βαθμίδας.

• Δηλαδή, το κέρδος τάσης της 1ης βαθμίδας μειώνεται λόγω της zin (RC//zin < RC).

• Βλέπουμε, δηλαδή, ότι κάθε επόμενη βαθμίδα ενίσχυσης, λόγω της αντίστασης εισόδου της, μειώνει το κέρδος τάσης που δίνει η προηγούμενη βαθμίδα ενίσχυσης.

Εικόνα 24: Φαινόμενα φόρτισης . Πηγή: Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

43

ΠΑΡΑΔΕΙΓΜΑ 4-7 (1/3)

• Υπολογίστε τη σύνθετη αντίσταση εισόδου κάθε βαθμίδας του ενισχυτή;

44

ΠΑΡΑΔΕΙΓΜΑ 4-7 (2/3)

45

ΠΑΡΑΔΕΙΓΜΑ 4-7 (3/3)

46

ΠΑΡΑΔΕΙΓΜΑ 4-8 (1/3)

• Στο κύκλωμα του Παραδείγματος 4.7, υπολογίστε την ac τάση στο τελικό φορτίο 1.5 kΩ;

47

ΠΑΡΑΔΕΙΓΜΑ 4-8 (2/3)

48

ΠΑΡΑΔΕΙΓΜΑ 4-8 (3/3)

• Τέλος, η ac τάση εξόδου (του 2ου τρανζίστορ) είναι:

vout = A2vb2 = (46.7)(21.2 mV) = 0.99 V

• Ένας άλλος τρόπος να υπολογισθεί η τάση εξόδου είναι με την εύρεση του ολικού κέρδους τάσης.

Α = Α1Α2 = (39.2)(46.7) = 1830

• Αυτό είναι το ολικό κέρδος της τάσης που σημαίνει την ολική ενίσχυση της τάσης από την είσοδο του ενισχυτή (βάση του 1ου τρανζίστορ) στην έξοδό του (συλλέκτης του 2ου τρανζίστορ).

Οπότε vout = Avb1 = (1820)(0.54 mV) = 0.99 V

49

Βιβλιογραφία

50

• Albert P. Malvino, «Βασική Ηλεκτρονική», 4η έκδ./2007, ΙSBN: 978-960-7219-12-0, Εκδ. ΤΖΙΟΛΑ, Κωδικός βιβλίου «ΕΥΔΟΞΟΣ»: 18549034.

• Thomas L. Floyd, «Ηλεκτρονικά Στοιχεία», 1η έκδ./2014, ΙSBN: 0-13-238351-9, ΕΚΔΟΤΙΚΟΣ ΟΜΙΛΟΣ ΙΩΝ

• Γ. Χαριτάντης, «Εισαγωγή στα Ηλεκτρονικά», 2006, ΙSBN: 978-960-91034-6-6, Εκδ. ΔΕΜΕΡΝΤΖΗΣ ΠΑΝΤΕΛΗΣ, Κωδικός βιβλίου «ΕΥΔΟΞΟΣ»: 2139.

• Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hal

Τέλος Ενότητας

Σημείωμα Αναφοράς

Copyright ΤΕΙ Δυτικής Μακεδονίας, Γαύρος Κωνσταντίνος. «Ηλεκτρονικά Ι». Έκδοση: 1.0. Κοζάνη 2015.

Σημείωμα Αδειοδότησης

Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων».

[1] http://creativecommons.org/licenses/by-nc-sa/4.0/

Ως Μη Εμπορική ορίζεται η χρήση:

• που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο.

• που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο.

• που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο.

Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.

53

Διατήρηση Σημειωμάτων

Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει:

το Σημείωμα Αναφοράς.

το Σημείωμα Αδειοδότησης.

τη δήλωση Διατήρησης Σημειωμάτων.

το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει).

μαζί με τους συνοδευόμενους υπερσυνδέσμους.

54

Σημείωμα Χρήσης Έργων Τρίτων

Το Έργο αυτό κάνει χρήση των ακόλουθων έργων:

Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες:

Thomas L. Floyd & David M. Buchla, «The Science of Electronics», 2005, Prentice Hall

55