Explosion Mechanisms of Core-Collapse Supernovae...

53
Explosion Mechanisms of Core-Collapse Supernovae: perspectives for multi-messenger astronomy 超新星と超新星残骸の融合研究会 -恒星進化・爆発メカニズムと元素合成 Kei Kotake National Astronomical Observatory of Japan) with Tomoya Takiwaki (NAOJ),Yudai Suwa (Kyoto), Takami Kuroda (NAOJ), Ko Nakamura (NAOJ), Akihiro Suzuki (NAOJ), , and Youhei Masada (Kobe)

Transcript of Explosion Mechanisms of Core-Collapse Supernovae...

Page 1: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Explosion Mechanisms of

Core-Collapse Supernovae:

perspectives for

multi-messenger astronomy

超新星と超新星残骸の融合研究会

-恒星進化・爆発メカニズムと元素合成

Kei Kotake (National Astronomical Observatory of Japan)

with Tomoya Takiwaki (NAOJ),Yudai Suwa (Kyoto),

Takami Kuroda (NAOJ), Ko Nakamura (NAOJ), Akihiro Suzuki (NAOJ),

, and Youhei Masada (Kobe)

Page 2: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Outline

✓ Part 1 : Tutorial (30 min)

§1-0 Overview & general introduction

§1-1 Physics of Core-Collapse Supernovae

:what is the essence to blow up massive stars?

§1-2 Candidate mechanisms: based on the state-of-the-art

numerical simulations

✓ Part 2 :Observational Signatures (20 min)

✓ Signatures and detectability of

gravitational waves and neutrino emission

✓ Perspectives for “MM” astronomy (correlation analysis between GWs/neutrinos, electromagnetic messengers)

What can we learn from the central engine ?

Page 3: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

De Laney et al. (2010)

Cas A Fe

Long-lasting questions (1/3)

Final goal (1): Origin of the explosion asymmetry ?!

: Origin of heavy elements

(e.g., see talks by Wanajo-san, Tominaga-san, Ono-san !)

Page 4: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

✓Seed Asymmety: SN dynamics, mixing instability (unclear yet)

✓Final goal (2): Toward “MM” astronomy:

“Consistent modeling” from the center to SNRs is numerically

challenging !

Long-lastgin questions(2/3) ? First-principle 3D simulation:

Takiwaki, KK, Suwa (2012)

Approximate 3D simulation:

Scheck et al. (2009)

9000 km

Piston model:

Hammer et al. (2011)

7.5 e7 km

500 km

Page 5: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Long-lasting questions(3/3) ?

✓Final goal (3) : To reproduce the canonical explosion

energy of 1 Bethe (= 1051 erg)

(Ultimately) : To understand the bifurcating trend !

Nomoto et al. (2003), Tanaka et al. (2009)

Page 6: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

§1-1

The standard supernova theory

:Dynamics from gravitational

collapse to explosion

Page 7: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

core collapse

H

HeC+O

Si

Fe

trapping core bounce

NSNS

shock propagation in coreshock in envelopeSN explosion

Standard scenario of core-collapse SNe

✓ Gravitational collapse starts in the iron core.

(e.g., Kotake+06, Janka+07 for a review)

K.Sato (1975)

Page 8: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

core collapse

H

HeC+O

Si

Fe

trapping core bounce

NSNS

shock propagation in coreshock in envelopeSN explosion

Standard scenario of core-collapse SNe (e.g., Kotake+06, Janka+07 for a review)

Neutrino sphere

Neutrinos are trapped inside the “neutrino sphere”

K.Sato (1975)

Page 9: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

core collapse

H

HeC+O

Si

Fe

trapping core bounce

NSNS

shock propagation in coreshock in envelopeSN explosion

Standard scenario of core-collapse SNe

✓ Gravitational collapse starts in the iron core.

(e.g., Kotake+06, Janka+07 for a review)

Neutrino sphere

Neutrinos are trapped inside the “neutrino sphere”

Stiff !

Radial velocity profile based on 1D radiation-transport

simulations

K.Sato (1975)

Page 10: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

core collapse

H

He C+O

Si

Fe

trapping core bounce

NS NS

shock propagation in core shock in envelope SN explosion

Standing

Accretion shock

✓Have to find the way to revive the stalled bounce shock.

✓ The best-studied & most promising:

the neutrino-heating mechanism (Bethe, Wilson 1985)

: neutrinos heat material to produce explosions.

✓ Except for special cases(Kitaura + (06)), the simplest,

1D form of this mechanism does not work. (Liebendoerfer et al. (2001), Rampp & Janka (2000), Sumiyoshi et al. (2005))

Standard scenario of core-collapse SNe

Neutrino sphere

Page 11: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Iron core

20yr

Proto-Neutron Star (PNS)

shock

(Wilson 1985)

(Rampp & Janka 2002)

(Liebendoerfer et al. 2003)

(Sumiyoshi et al. 2004)

Looking back 20+ Years of Modeling & Theory

Multidimensional modeling is crucial !

Page 12: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Iron core

20yr

Proto-Neutron Star (PNS)

shock

(Wilson 1985)

(Rampp & Janka 2002)

(Liebendoerfer et al. 2003)

(Sumiyoshi et al. 2004)

Looking back 20+ Years of Modeling & Theory

M

HST image

Maeda et al. (2008)

CCSNe are aspherical.

Multidimensional modeling is crucial !

Page 13: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Stalled shock

10 km Stellar radius

Heating rate

cooling rate

~200km

Cooling rate ~ R^{-6}

Heating rate ~ R^{-2}

PNS

Cooing domintated

Heating domintated

~ 100 km (Gain Radius)

Why no explosion in 1D (1)? heating

cooling

with T~1/R

Neutrino sphere

Page 14: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Stalled shock

~200km

Cooling-dominated

Heating-dominated

(Gain region)

PNS

In spherical symmetry

Advection timescale Neutrino heating timescale

No explosion!!

In multi-dimensional simulations (convection, SASI)

could be satisfied !

Why no explosion in 1D (2)?

heating

cooling

Thompson et al.(05)

Ohnishi et al. (06)

Marek & Janka (09)

(Standing Accretion Shock Instability)

Page 15: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

PNS

M Standing shock

50km

Tantalizing problems in 1D

Burrows & Goshy(93)

Page 16: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

PNS

M Standing shock

50km

Tantalizing problems in 1D

Burrows & Goshy(93)

Page 17: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Energy budget problem in the neutrino heating mechanism

Releasable energy = binding energy of neutron star, essentially carried away by neutrinos.

For the neutrino heating mechanism working,

・ ~1% energy transfer via neutrinos to matter.

.

Typical observed explosion energy:

✓ Have to deal with 6D Boltzmann transport

(fermion・σ~ε2, coupling between energy/angle)

✓ over the entire simulations (for 2D, ~10^{20} operations,

1 CPU year/ one simulation @ 10Tflops supercomputer.) → A grand challenge in computational astrophysics !

Page 18: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

(e.g., Kotake (2011), Kotake et al. (2012a,b) )

A list of recent “rad-hydro” milestones making “explosions”

Page 19: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Current paradigm: multi-D neutrino-heating mechanism

✓After bounce, the bounce shock stalls.

✓ “Standing Accretion Shock

Instability (SASI)” develops.

✓ The dwell timescales of matter in the

gain region ⇒ much longer in multi-D.

✓ At around O(100)s ms after bounce,

the neutrino-driven explosion occurs.

Suwa, KK+ (10,11) 15 Msun star (WW95)

✓2D rad. hydro core-

collapse simulation with spectral

neutrino transport

✓Lattimer-Swesty EOS

(K=180MeV)

Color map: entropy

1000 km (~size of Fe core)

(see Janka (2012), Kotake et al. (2012) for recent reviews)

Y.Suwa (KITP)

Page 20: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Ye profile in our 2D models (pioneered by Arcones et al. (2006)

Fischer et al. (2010,2011), Arcones & Janka (2011))

In the beginning of the neutrino-driven wind phase

(tpb ~ 550 ms for 15 Msun progenitor (WW95))

✓The neutrino-driven wind ⇒ proton-rich in multi-D simulations.

(Interested in our multi-D data , Emails, start collaboration !)

✓ Link of MHD models to r-process cites (yet explored in great detail !)

Takiwaki & KK (2011)

Magnetic

field line

Suwa et al. (2012)

Page 21: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

List of recent milestones reported “explosions”

✓ Different SN groups have a tendency to employ

different progenitors with different transport schemes and

different EOSs, …and providing different results…..

✓ Detailed comparison is needed !

✓ Systematic study (see Suwa’s talk tomorrow !)

(e.g., Kotake (2011), Kotake et al. (2012a,b) )

✓ Still (a little) behind to successfully produce explosions

as energetic as 1051 erg.

✓ “Something” may be missing ….

✓ 3D hydro and general relativity : the final frontier !

Page 22: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

3D Core-Collapse Supernova Simulations

(Long history: Shimizu, Yamada, Sato (1993), Kotake, Iwakami + (2009))

解くべきはBoltzmann equation左辺:ニュートリノ数の変動

右辺:衝突項(Collisional term)

反応によるニュートリノ数

の変動

f (t,r,,,E,p,p )

ER (t,r,,,E) dp dp f

ER (t,r,,) dE dp dp f

“MGMA”(6 dimensional problem)

“MG”(Multi energy-Group:エネルギー群) ) or IDS(isotropic diffusion source approximation)

“Gray (no energy-dependence)”

資源不足

近似×

輻射輸送基礎方程式: IDSA法(Liebendoerfer et al.(2009))

(2成分流速制限法)

輻射は implicit・流体は explicit

空間3次元+ニュートリノ位相空間1次元のシミュレーション

Page 23: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Tomoya Takiwaki

Visualization:Tomohide Wada

(4D2U)

Our most up-to-date 3D results

Takiwaki, KK, and Suwa (2012) ApJ

✓ 11.2 Msun progenitor (Woosley, Heger, Weaver (2002))

✓ Spectral neutrino transport is solved (IDSA: Liebendoerfer+09)

✓ 320(r)x64(θ)x128(φ)x20(ε) (4 times finer than our ApJ paper)

✓ 8192pararell x 3 CPU weeks @ “K” computers.

Click here for animation

Page 24: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Comparison of average shock radii

Dim. r x Θ x Φ x ε

3D: 320x64 x128 x 20

3D low: 200x32x 64 x 20

2D : 320x64 x 20

1D: : 320 x 20

✓ Our 3D model with highest resolution

⇒ most energetic shock propagation!

11.2 Msun star

Page 25: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Easy to obtain explosions in 3D ?(Yes and No!)

✓For working the

neutrino-heating mechanism

The residency timescales become longer

in 3D than in 2D.

✓From the hydrodynamic point of view,

it would be more easier for 2D. 2D

3D

Marek & Janka (2012) Suwa et al. (09) Kotake et al. (09) Iwakami et al. (08)

Stay tuned for our

high resolution 3D simulations using

the K computer !!

(640x128x256x20)

Page 26: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Moderately rotating model

11.2 Msun star (P0 = 4 s)

Bipolar explosions:

✓Explosion energy

higher !

✓ Nucleosynthesis,

neutrino, and

GW signatures

between rotating

and non-rotating

models exciting !

Non-Rotating

Page 27: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

1D 3D

Gray

Multi-

Energy

Adia

-batic General relativity

2D

GR 3D

GR

Mueller et al. (2012)

Kuroda + (2012)

Short summary toward ultimate 6D SN simulations

Iwakami+08,09 Ohnishi+07

Burrows+07 Bruenn+09

Marek & Janka 09

Ott+08

Murphy

& Burrows

+08

Fryer et al. 02

Fernandes 09

Blondin + 03 Blondin + 07

Nordhaus et al. 2010

Hanke et al. (2011) Wongwathanarat + (08)

Takiwaki et al. (2011)

Suwa+09,11

Obergaulinger &Janka(10) 15 Msun progenitor (WW95)

✓ K. Thorne’s momentum

formalism for GR M1

transport (Thorne 1981,

Shibata + 2011).

Color : entropy

Linear scale

Is general relativity (GR) helpful for explosions !?

Kuroda, KK, Takiwaki (2012), ApJ

Page 28: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Comparison of average shock radii

✓Except for our 3D-GR model, the shock has shown a trend of recession.

✓ why ? Neutrino energy and luminosity increases due to stronger gravity !

(SR:special relativity)

(GR:special relativity)

15 Msun (WW95)

(see also B.Mueller+12)

Page 29: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Diagnostic of explosion : residency timescale/heating timescale

✓The combination of 3D and GR

⇒ the most supportive condition of explosions !

✓ In order to extract hydro-data for nucleosynthesis…

✓1000ms/(2 ms per day) ~ 500 days…

Page 30: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Summary of current status of SN mechanism

Energy-drivers for explosions:

☆Neutrino heating mechanism

aided by convection/SASI

(Marek & Janka 09, Suwa et al. 10, Takiwaki+12)

also aided by rotation

(KK+03,06, Walder+05,Ott+08, Suwa et al. 10)

☆Acoustic-power

Acoustic mechanism:

(Burrows+. 2005,6, Ott+07)

☆ Extraction of rotational energy via B-fields

MHD models: (LeBlanc & Wilson (70), Symbalisty (84),

KK+04, Takiwaki+05 Shibata+06, Obergaulinger+06,

Cerda Duran+07, Burrows+07, Suwa+07,

Takiwaki+08….)

Explosion

Likely !

(but the

explosion energy

is still less than

10^{51} erg..)

3D and GR needed!

Strong explosion!

but remains

uncertain.

Jet-like explosion! (relevance to

magnetar or Collapsar), but minor

(< 1% of all supernovae) .

☆ Which one is the final answer ?

☆ To pin down the proposed explosion scenarios,

⇒important to discuss a connection to observables!

✓supernova nucleosynthesis

✓gravitational-wave (∝1/R) and neutrino astronomy (∝1/R2)

Primary observables: “direct” information of engine

Page 31: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

§2: Multi-messengers from

Core-Collapse Supernovae “Multi-Dimensionality as a key to bridge theory and observation”

Page 32: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

One Slide for Gravitational Waves (GWs)

y

z

represents the degree of anisotropy.

What makes the SN-dynamics deviate

from spherical symmetry ?

☆ A back-of-envelope estimation

GW amplitude

(see reviews in Kotake et al. (2006), Ott (2009), Fryer & New (2011), Kotake (2011))

✓CCSN in our galaxy are the target of GWs

z Multidimensionality

(origin of anisotropy)

GW emission Explosion dynamics

✓Dream is…

“To clarify the long-veiled

explosion dynamics of CCSNe

(and collapsars)

via GW observations ! “

✓ Theoretically we have to

understand the expl. dynamics !

Page 33: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

(e.g., Kotake et al. (04), Obergaulinger et al.(06), Shibata et al.(06), Takiwaki & Kotake (11))

Gravitational-wave features in MHD explosions

Bounce signals

✓ In the MHD exploding models, the

gravitational waveforms

show an increasing trend after bounce.

✓The MHD mechanism works only if

pre-collapse core has

rapid rotation (P0 < 4 s) and

strong magnetic fields(B0>10^{11}G).

✓ GW amplitudes from prolately

expanding material positively increase

Takiwaki & KK (2011) Rotational

axis

Magnetic

field line

Gravitational waveform from MHD explosion

Page 34: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Gravitational waveforms in 3D simulation with spectral transport

(see also, Mu”ller & Janka (1997), Ott(2009), KK et al. (09,11), Mueller et al. (2012))

Total amplitudes (matter + neutrino) Neutrino only

Prompt convection

2D model Total amplitudes

(matter + neutrino)

Neutrino only

✓The total amplitudes in 3D become ~ one-order-of magnitude

smaller than those in 2D, however within the target for

the next-generation detectors (like KAGRA and adv LIGO).

@10kpc

KK + in prep

Page 35: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Comparison of Waveforms between candidate mechanisms

(KK et al. 09, KK et al. 11)

Burrows

+06

Acoustic-wave mechanism

Ott+06

Burrows

+06

Acoustic-wave mechanism

Ott+06

Bounce signalsBounce signals

MHD feature

MHD mechanisms (Takiwaki and KK 10)

A clear correlation:

between the explosion mechanism and the GW signals !

Page 36: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

@10kpc@10kpc

Current detector

Upcoming

detector

GWs from

neutrino-driven SN (KK+09)

Detectability of GW signals

MHD

Take-take messages

(1) To detect these signals for a Galactic source,

the next generation detectors (KAGRA, adv. LIGO, 2015~) needed.

A

Acoustic

Mechanism

(Burrows+07

Ott+06)

Page 37: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Les Miserable: Nearby CC SNe

CCSNe within 5 Mpc since the

operation of the LIGO

Page 38: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

MHD

Acoustic Take-home message (2):

✓ Horizon to advanced-class

detectors extends to ~Mpc

Logue+(2011)

Logue+(2011)

Take-home message (3):

✓ Spectrum analysis will tell

us the dynamics of the

engine (power-excess method)

Murphy+(08)

Page 39: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

@10kpc@10kpc

Current detector

Upcoming

detector

GWs from

neutrino-driven SN (KK+09)

Importance of multi-messenger approach

MHD

☆By only by GWs, it is difficult to tell the difference between them.

☆Coincident analysis of GWs, neutrinos, and electromagnetic messengers

should be important for breaking degeneracy!

(see e.g., KK + (2012) for a review)

A

Acoustic

Mechanism

(Burrows+07

Ott+06)

Page 40: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

If a supernova occurs tomorrow?

SN 20XX !

“in the Galactic center”

Page 41: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Large Detectors for Supernova Neutrinos

Super-Kamiokande (104)

KamLAND (330) MiniBooNE (200)

For a galactic SN

LVD (400)

Borexino (80)

IceCube (106)

arXiv:1108.0171

Page 42: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Neutrino and GW signatures between 3D models with/without rotation Takiwaki et al. in prep (see also Lund+10,12)

Electron-type neutrino Anti-electron-type neutrino

Spectrum

(P0 = 4 s) (P0 = 4 s)

✓Variation timescale of neutrino signals reflect the activity of SASI and

:neutrino-driven convection: longer for rotating models

⇒would provide one additional clue : the difference between

the rotating and non-rotating model.

Page 43: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Neutrino signatures in MHD explosion of supernovae Kawagoe et al.JCAP(2009), Kotake et al. (2012)

High resonance

Low resonance

Ev

ent

rate

[ /

sec]

Event rate ofe

Time [sec]

polar direction

equatorial

direction E

ven

t ra

te [

/se

c]

@SK

Inverted mass

hierarcy

Time [sec] polar direction

equatorial

direction

@ SK Event rate ofe

✓ These features are inherent to MHD explosions.

✓ Good measure to tell the difference from other scenarios.

Page 44: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Earth (Earth effect)

Supernova neutrinos

Neutrino emissionNeutrino emission

MSW effectMSW effect

SelfSelf--interactioninteraction

✓ Exposed to environments outside the central engine

✓ Neutrino oscillations are also dependent on the neutrino parameters.

(mixing angles, mass squared differences and mass hierarchy).

⇒ Rather indirect for the SN mechanism

✓ Could have a great impact on the elementary physics

✓ Useful as a tomography, i.e., the time evolution of the SN dynamics!

(see reviews for KK+06, Dighe+09)

Takahashi+06Takahashi+06

ν e

ν xν e

ν e

ν xν eν e

Supernova Neutrinos

Exp. Mechanism Neutrino Parameters

Gravitational Waves

Nucleosynthesis

Numerical Modeling

Page 45: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

“Three eyes” to decipher the SN mechanism!

milliseconds 0 seconds(?) >hours

Convection SASI G-mode?

GWs

bounce

Time

Neutrinos

Expected event number Shock-revivals (?)

Nucleosynthesis

Electromag. rad.

X-ray,

optical,

radio..

MAXI

The gap is now being bridged !

Page 46: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Origin of Pulsar Kicks

モデルの数

Kick velocity Could explain the bimordal features.

外挿

(いくつかのモデルは

長時間進化を追っておいて)

Scheck et al. (2004,06)

v=90 km/s (40%)

500 km/s (60%)

Page 47: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

✓ Heavy element

synthesis may

occur strongly

opposite direction

of the kick.

Page 48: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Electromagnetic messengers from CC supernovae

Ni56-rich

Si28-rich

O16-rich

1.5s

✓Explosive nucleosynthesis in SASI-aided 2D explosions

Si-rich jets, as in Cas A ? Si in Cas A

(NASA)

Matter Mixing

O16-rich

O16-rich

Ni

Si O

Spherical model

(Fujimoto, Kotake + 2011)

✓Explosive nucleosynthesis

occurs more drastically

along the direction of explosion

✓ This may account for

some observational features

such as in Cas A and SNR.

(Kifonidis et al. (2003,2006), Hungerford et al. (05), Young et al. (2006), Maeda et al. (2008))

Page 49: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Summary of “SN Multi-messengers” (Kotake +12)

Page 50: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Perspectives on “SN Multi-messengers” (Kotake +12)

BH-forming SNe

Bounce signals

Black hole formation

Ott et al. (2011) PRL

Fischer et al. (2008) A&A

LS EOSSHEN EOS

✓A correlation analysis of these messengers should be

very important to get a unified picture of stellar

collapse that bifurcates between NS or BH forming SNe!

✓ Multi-dimensionalities(convection, SASI, rotation, B-fields)

hold a key to bridge the SN theory (incl. nuclear theory) and

these multi-messenger observation.

Page 51: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

Light-curve asymmetry at the shock-breakout signatures Preliminary

with A.Suzuki, M.Takana (pioneered by Kifonidis+2003, Hammer+10)

✓Detectability ?

✓Relevance to late-time

asymmetry ?

✓Integrated analysis ?

L = 2.5x 1052 erg/s

(rapidly rotating:

Ω0 = 0.5 pi rad/s)

K. Nakamura et al.

Page 52: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

☆ On the 3D effects:

✓ Systematic studies in the first-principle 3D

simulations by changing resolutions, perturbations,

and so on) should be done !

⇒ Need peta- or exa-scale supercomputers! (see our recent review (accepted to PTEP: Kotake et al.

toward 6D simulations with exact Boltzmann transport in full general relativity !)

☆ Our 1st generation GR results: the combination of

GR and 3D provides the most favorable condition.

☆ Significantly further to reach the goal !

☆ Theoretical prediction of nucleosythesis, GWs, neutrinos

will be all updated by forthcoming simulations,

stellar evolution calculation !

☆ Hoping this conference to provide us with an opportunity

to bridge the gap between us !

Summary and Outlook

Thank you very much !

Page 53: Explosion Mechanisms of Core-Collapse Supernovae ...cosmic.riken.jp/snsnr2012/presen/day1/kotake.pdf · §1-0 Overview & general introduction §1-1 Physics of Core-Collapse Supernovae

☆ On the 3D effects:

✓ Systematic studies in the first-principle 3D

simulations by changing resolutions, perturbations,

and so on) should be done !

⇒ Need peta- or exa-scale supercomputers! (see our recent review (accepted to PTEP: Kotake et al.

toward 6D simulations with exact Boltzmann transport in full general relativity !)

☆ Our 1st generation GR results: the combination of

GR and 3D provides the most favorable condition.

☆ Significantly further to reach the goal !

☆ Theoretical prediction of nucleosythesis, GWs, neutrinos

will be all updated by forthcoming simulations,

stellar evolution calculation !

☆ Hoping this conference to provide us with an opportunity

to bridge the gap between us !

Summary and Outlook