Experimental study on thermal environment of scramjet combustor

164
密级: 博士学位论文 超声速燃烧室热环境实验研究 作者姓名: 程迪 指导教师: 范学军 研究员 中国科学院力学研究所 学位类别: 工学博士 学科专业: 流体力学 培养单位: 中国科学院力学研究所 2015 4

description

my phd thesis

Transcript of Experimental study on thermal environment of scramjet combustor

  • :

    2015 4

  • Experimental study on thermal environment of scramjet combustor

    By

    Di Cheng

    A Dissertation Submitted to

    University of Chinese Academy of Sciences

    In partial fulfillment of the requirement

    For the degree of

    Doctor of Fluid Mechanics

    Institute of Mechanics

    April, 2015

  • I

    CFD

    CFD

    1.5

    12.452.84W/cm2/mV 35.312.5K/mV 8.231.20s

    2 / 15 /

    14

    RP-3 ( 77320 K Mach 2.0 2.5

    1305K 1701K 2.0kg/s 3.0kg/s 0.52 0.88

    0.8

    Mach

    DES CFD

  • II

    8 DES

    DES 1/3

    DES DES

    CFD

    CFD

  • III

    Experimental study on thermal environment of scramjet combustor

    Abstract

    Di Cheng

    Directed by Professor Xuejun Fan

    Supersonic combustion ramjet is the key technology to implement hypersonic cruise. As the

    essential part of supersonic combustion ramjet, supersonic combustor is working with the harshest

    thermal environment. So the thermal environment measurement and analysis of supersonic

    combustor is of great significance to the development of scramjet.

    In this thesis, four subjects about thermal environment of scramjet were studied: existing

    manufacturing and calibration method of heat flux sensor were improved to make it more stable

    reliable and applicable to large scale test; Heat flux distribution of supercritical kerosene fueled,

    supersonic combustor was experimentally and parametrically studied, and a group of data is

    obtained and analyzed; Heat flux were compared with the results obtained from quasi-one-

    dimensional performance analysis and Detached Eddy Simulation, the difference were analyzed

    and discussed. An one-dimensionalizing method were proposed to reduce CFD result and verify

    quasi-one-dimensional analysis code.

    Firstly, in order to realize trouble-free operation of the heat flux measurement system in large

    scale test. Original heat flux sensor design were analyzed to increase its stability and reliability.

    A brazing and soldering process were proposed to replace the adhesion process to connect heat

    conducting parts. The rate of finished products was increased by a factor of 1.5 times with new

    process. And the finished products shown lesser degree of dispersion of their sensitivity and better

    stability. The heat flux sensitivity is 12.452.84W/cm2/mV, and temperature difference sensitivity

    is 35.312.5K/mV. And the response time is 8.231.20s. Anew rapid calibration device utilizing

    electric heating were designed and manufactured as a supplement of original calibration methods

    to facilitate and accelerate calibration of heat flux sensors. The time cost reduced from 2 hours per

    sensor to 15 minutes per sensor.

    Secondly, in order to investigate the key parameters influencing heat flux distribution in the

    complex flow field supersonic combustor, five groups of 14 test runs were conducted to study the

    heat flux distribution of a supercritical kerosene fueled, single-side expanded supersonic

  • IV

    combustor with two dislocated opposing cavities on long duration direct-connect supersonic

    combustion test facility in Institute of Mechanics. The isolator inlet Mach number is 2.0 and 2.5,

    the total temperature is 1305 K to 1701 K and the mass flow rate is 2.0 kg/s to 3.0 kg/s. Pilot

    hydrogen and liquid or supercritical (77320 K) China No.3 kerosene were injected in front of the

    cavities with the equivalence ratio ranges from 0.52 to 0.88. Results show that heat flux increases

    with the increasing of inlet temperature and mass flow rate, however, the influence of equivalence

    ratio is nonmonotonic in the range of interest. The two inlet Mach numbers also trigger different

    combustion modes, which further complicates the heat flux distribution. A three-parameter

    correlation were proposed and fitted for average isolator heat flux of unburnt cases, but the

    normalized heat flux distribution of burnt cases also shows certain degree of similarity.

    Thirdly, the experimental result were compared with result of quasi-one-dimensiona l

    performance analysis code (Q1dPAC) and Detached Eddy Simulation (DES) result. The trend and

    order of magnitude could be matched, but there are still some differences locally. Q1dPAC result

    tends to over predict heat flux in region with separation, such as isolator with strong shock-train,

    because of decrease of core flow area. For weaker flow separation, Q1dPAC result is more accurate.

    Comparing with DES result corresponding with the 8th test case, the general trend can be matched.

    But the DES result is about 1/3 times higher in combustion region near the upper wall. And on the

    lower wall where boundary layer is disturbed by the waves, DES heat flux is increased and become

    higher than experimental results. The DES result indicates flow stratification and transverse effects

    could influence spatial distribution of heat flux around a cross-section.

    Finally, a one-dimensionalizing method was proposed for CFD results to verify the accuracy

    and deviation of the Q1dPAC. The results shown that the averaged velocity calculated from

    Q1dPAC is very accurate regardless of flow non-uniformity. But other cross-section average

    quantities obtained can be influenced by flow non-uniformity. The source of error is identified as

    the flow rate equation and specific sensible enthalpy equation. However, the relative error of cross-

    section averaged quantities is limited in the supersonic combustor except around the cavity, and it

    could meet the need of engineering. But the wall loss terms predicted by Q1dPAC differs

    considerably from CFD result, especially in the combustion region.

    KEY WORDS Supersonic combustion, heat flux distribution measurement,

  • V

    supercritical kerosene, quasi-one-dimensional steady flow.

  • VII

    ............................................................. I

    Abstract ......................................................... III

    ........................................................... VII

    ............................................................ XI

    .......................................................... XVII

    ........................................................... XIX

    ...................................................... 1

    1.1 ............................................................ 1

    1.1.1 .................................................. 1

    1.1.2 ................................................ 3

    1.2 .......................................................... 5

    1.2.1 ...................................................... 5

    1.2.2 .................................................... 6

    1.2.3 ...................................................... 6

    1.3 .......................................... 7

    1.3.1 .......................................................... 7

    1.3.2 ......................................................... 21

    1.3.3 ..................................................... 27

    1.3.4 ......................................................... 29

    1.4 ....................................................... 29

    ................................. 31

    2.1 ............................................... 31

    2.2 ..................................... 33

    2.3 ....................................................... 34

    2.3.1 ............................................... 36

    2.4 ............................................. 37

    2.4.1 ............................................... 37

    2.4.2 ..................................................... 41

  • VIII

    2.5 ............................................................... 44

    .................... 45

    3.1 ..................................................... 45

    3.1.1 ............................................. 45

    3.1.2 ....................................................... 45

    3.1.3 ............................................. 46

    3.1.4 ..................................................... 47

    3.1.5 ..................................................... 50

    3.1.6 ..................................................... 51

    3.1.7 ..................................................... 52

    3.1.8 ............................................... 54

    3.2 ........................................................... 54

    3.2.1 ............................................... 55

    3.2.2 ................................................... 58

    3.2.3 ............................................. 60

    3.2.4 ........................................... 64

    3.2.5 ............................................... 66

    3.2.6 Mach ............................................ 68

    3.3 ........................................................... 71

    3.3.1 ................................. 72

    3.4 ............................................................... 77

    ................................... 78

    4.1 ........................................... 78

    4.2 ....................................... 78

    4.2.1 ....................................... 79

    4.2.2 ................................................. 81

    4.2.3 ................................................. 81

    4.3 CFD ......................................... 84

    4.4 ............................................................... 89

  • IX

    .......................... 90

    5.1 ....................................................... 90

    5.1.1 ........................................... 91

    5.1.2 ................................... 94

    5.1.3 ................................... 95

    5.2 CFD ............................. 97

    5.2.1 CFD ..................................................... 97

    5.2.2 ............................................... 98

    5.2.3 ..................................................... 99

    5.2.4 .................................................... 100

    5.2.5 .................................................... 103

    5.2.6 .................................................. 104

    5.2.7 ................................................ 105

    5.2.8 .................................................. 107

    5.2.9 .............................................. 108

    5.3 .............................................................. 109

    .............................................. 111

    6.1 .......................................................... 111

    6.2 ............................................................ 112

    6.3 .......................................................... 112

    ......................................................... 115

    A: ...................................... 119

    B: ........................................... 125

    C: ............................................... 131

    D: ....................................... 137

    ........................................................... 139

  • XI

    1-1 ..................................................................................... 1

    1-2 (a. b. c.

    )............................................................................................................ 2

    1-3 [1] ................................................................ 3

    1-4 ........................................................................................ 3

    1-5 [9] ..................................... 4

    1-6 SJX61-1 [12] ........................................... 5

    1-7 ........................................... 8

    1-8 R.G. Morgan [22] ...................................................................... 9

    1-9 .......................................................................................... 10

    1-10 [23]1 Btu/s/ft2/R = 20428 W/m2K ..... 10

    1-11 Dy:YAG 2D CFD [24] ................. 11

    1-12 HyShot mm[25]............................................. 11

    1-13 HyShot HEG 32.5km ........ 12

    1-14 HyShot II ........................................................................................................ 12

    1-15 HyShot II HEG CFD [26] ....................................... 13

    1-16 HEG [26] ..................................................................... 13

    1-17 ................................................................ 14

    1-18 DCC 1=25.4mm[30]........................................................................ 15

    1-19 JPL DCC [30]1Btu/inch2s = 163.4W/cm2 .................................. 16

    1-20 DCAF 1 = 25.4mm[30] ................................................................... 16

    1-21 DCAF [30]1Btu/inch2s = 163.4W/cm2 .................................................... 17

    1-22 [31] ............................................................... 17

    1-23 CFD [31]MVSV

    ........................................................................................................................... 18

    1-24 [29] ........................................................... 18

    1-25 [29] ............................................................................... 19

  • XII

    1-26 mm[33] ......................... 20

    1-27

    [33] .................................................................................................................................. 20

    1-28 HYPULSE [35] ..................................................................................... 22

    1-29 HyShot II [36, 37] ............................................................................................... 22

    1-30 HyShot II CFD [37] ............................................. 23

    1-31 CFD [38] ..................................... 23

    1-32 ................................................................................................ 24

    1-33 RANS [39] ............................................ 24

    1-34 ab[41] ............... 25

    1-35 / .............................................. 26

    1-36 [50] ..................................... 27

    1-37 [53] ................................................ 28

    1-38

    [53] [61] ............................................................................................................................. 28

    2-1 [33] ..................................................................................... 31

    2-2 Gardon ....................................................................................... 32

    2-3 Gardon [33] ....................................................................... 32

    2-4 ...................................................................................... 33

    2-5 M450 ...................................................................... 35

    2-6 .......................................................................................... 36

    2-7 .................................................................. 37

    2-8 .......................................................................... 38

    2-9 ...................................................................... 39

    2-10 ..................................................................... 39

    2-11 .............................................................................. 40

    2-12 ............................................................................ 40

    2-13 LabVIEW ................................................. 41

    2-14 ............................................................ 42

  • XIII

    2-15 ............................................................ 43

    2-16 EHM HTBBRM

    ........................................................................................................................... 44

    3-1 ............................................................................ 45

    3-2 .................................................................................................. 46

    3-3 ...................................................................................... 47

    3-4 ............................................................................................ 48

    3-5 ............................................................................................... 48

    3-6 .......................................................................................................... 49

    3-7 .......................................................................................................... 50

    3-8 .............................................................................................. 51

    3-9 7 ..................................................... 52

    3-10 ............................................................. 53

    3-11 ................................................. 53

    3-12 1, Mach ...................................................... 56

    3-13 1, ....................................................................................... 56

    3-14 1, ....................................................................................... 57

    3-15 1, ..................................................................................... 57

    3-16 Origin 5%-95%. ........................................ 58

    3-17 No.12 Mach........................................................ 59

    3-18 No.12 ............................................................................... 59

    3-19 No.12 ............................................................................... 60

    3-20 No.12 ............................................................................... 60

    3-21 3: kerosene0.5, 0.7, 0.9, T01300K, qm2.5 kg/s, H2 0.1.

    Mach................................................................................................ 61

    3-22 3: kerosene0.5, 0.7, 0.9, T01300K, qm2.5 kg/s, H2 0.1.

    ................................................................................................................... 61

    3-23 3: kerosene0.5, 0.7, 0.9, T01300K, qm2.5 kg/s, H2 0.1.

    ................................................................................................................... 62

    3-24 3: kerosene0.5, 0.7, 0.9, T01300K, qm2.5 kg/s, H2 0.1.

  • XIV

    ....................................................................................................................... 62

    3-25 ......................................................................................... 63

    3-26 2: qm 2.0 kg/s 3.0 kg/s T01300K, kerosene0.7, H2

    0.1 Mach ..................................................................................... 64

    3-27 2: qm 2.0 kg/s 3.0 kg/s T01300K, kerosene0.7, H2

    0.1 ........................................................................................................ 65

    3-28 2: qm 2.0 kg/s 3.0 kg/s T01300K, kerosene0.7, H20.1

    ............................................................................................................... 65

    3-29 2: qm 2.0 kg/s 3.0 kg/s T01300K, kerosene0.7, H20.1

    ............................................................................................................... 66

    3-30 4: T0 1289K 1687K qm 2.5 kg/s, kerosene0.7, H2

    0.1 Mach................................................................................. 67

    3-31 4: T0 1289K 1687K qm 2.5 kg/s, kerosene0.7, H2

    0.1 .................................................................................................... 67

    3-32 4: T0 1289K 1687K qm 2.5 kg/s, kerosene0.7, H2

    0.1 .................................................................................................... 68

    3-33 4: T0 1289K 1687K qm 2.5 kg/s, kerosene0.7, H2

    0.1 .................................................................................................... 68

    3-34 1 Mach 2.5 2.0, T0 1650K, qm 2.5kg/s, kerosene

    0.7, H20.1 Mach ................................................................. 69

    3-35 1 Mach 2.5 2.0, T0 1650K, qm 2.5kg/s, kerosene

    0.7, H20.1 .................................................................................... 70

    3-36 1 Mach 2.5 2.0, T0 1650K, qm 2.5kg/s, kerosene

    0.7, H20.1 .................................................................................... 70

    3-37 1 Mach 2.5 2.0, T0 1650K, qm 2.5kg/s, kerosene

    0.7, H20.1 ................................................................................... 71

    3-38 ................................................................................................................. 74

    3-39 Mach 2.0 ............................................................................. 75

    3-40 Mach 2.5 ............................................................................. 75

  • XV

    3-41 Mach 2.0 ................................................................................. 76

    3-42 Mach 2.5 ................................................................................ 76

    4-1 .................................................................................. 79

    4-2 2 ...................................................................... 81

    4-3 6 ........................................................................................... 82

    4-4 7 ........................................................................................... 82

    4-5 8 .......................................................................................... 83

    4-6 8 ...................... 84

    4-7 DES .................................................................................. 85

    4-8 DES .................................................................................. 86

    4-9 DES .................................................................................. 86

    4-10 DES ........................................................ 87

    4-11 DES ......................................................................................... 88

    4-12 .................................................................... 88

    4-13 DES ................................................................ 89

    5-1 (Control Volume) ......................................................................................... 92

    5-2 CFD ...................................................... 97

    5-3 mm 80mm ...................................................... 97

    5-4 ..................................................... 98

    5-5 ...................................................................................................... 99

    5-6 (u_1d)(u_avg) ................................................. 100

    5-7 ........................................................ 101

    5-8 (Ac) ................................................................................................. 102

    5-9 (T_1d)(T_avg)................................................ 103

    5-10 MW_avg(MW_1d)

    ................................................................................................................................. 104

    5-11 (hs_1d)(hs_avg) .................................... 105

    5-12 (hs_1d) (hs_avg) .......................... 106

    5-13 ................................................................................... 107

    5-14 (F_avg)(F_1d) .......................................... 108

  • XVI

    5-15 (Integrate Qw_avg)(Integrate Qw _1d)

    ............................................................................................................................. 109

  • XVII

    2-1 .............................................................................................................. 35

    3-1 .............................................................................................................. 54

    3-2 .............................................................................................................. 54

    3-3 .......................................................................................................... 73

    3-4 R2......................................................................................... 74

    A-1 ................................................................................ 123

    A-2 ............................................................................................... 124

    B-1 ............................................................................................... 129

  • XIX

    x

    q

    A

    K1

    K2

    h /

    qm

    u,v,w

    p

    T

    Ma Mach

    St Stanton

    Re Reynolds

    Pe Peclet

    Pr Prandtl

    Da Damkhler

    Q

    cf Darcy

    F

    f

    LHV

    cp

    Ru

    MW

  • XX

    o 293.15K, 101.325 kPa

    s

    0

    t

    *

    b

    w

    inlet

    fuel

    inj

    c

    1d

    avg CFD

  • 1

    1.1

    1.1.1

    20km100km

    /

    /X37B X-43/X-51A 1-1

    1-1

    X-43 X-51A

    (c)X-43 Ma10 H33.5 km (d)X-51A Ma=56 H21km

    (b)X-37B Ma25 (a) Ma25

  • 2

    1-2 (a. b. c.)

    Mach 5-12 1-3scramjet

  • 3

    1-3 [1]

    1.1.2

    1-4

    Mach

    1-4

    Mach Damkhler Reyno lds

    [2]

    [3][4]

    [5]/[6][7 ,

    8]

  • 4

    100W/cm2

    1000 1-5

    Mach

    1300KMach 5.0 1300K

    2500K

    1-5[9]

    [10]

    [11]

    Mach 5-7

    [12] 1-6 X-51A

  • 5

    1-6 SJX61-1 [12]

    [10]

    [13]

    1.2

    1.2.1

    [14]

    convective rad Dqq qq (1-1)

    1. qconvective 2000 m/s

    T0 2000K ~ 3000K

    ( )convective aw wq h T T (1-2)

    2. qrad

    (1-3)

  • 6

    gas Tgas w Tw

    w gasT T

    10%[15, 16]

    4 4 4

    rad gas gas w w gas gasT T Tq (1-3)

    3. qD(1-4)

    (1-4)Dimhi Yi i

    D im i i

    i

    D Yq h (1-4)

    1.2.2

    1.

    2.

    3.

    18mm 250mm 8.231.20

    1.2.3

    1. q

  • 7

    2. q Tw(1-2)

    q Tw

    3. Taw h

    Taw h

    q Tw

    1.3

    1.3.1

    [17]

    1.3.1.1

    [18]

    1.3.1.1.1

    [19][20, 21]

    1-7

    -

  • 8

    0

    0

    ( , 0)

    ( )

    p

    x

    T Tc k

    t x x

    T x t T

    Tk q t

    x

    ( )q t( 0, )T x t

    (a) (b)

    0

    -

    ( 0)

    p

    dTc qA

    dt

    T t T

    V

    ( )T t

    ( )q t

    1-7

    1. R.G. Morgan 1986 [22]

    1-8

    Injector StrutThrust nozzle

  • 9

    1-8 R.G. Morgan [22]

    2. Scott D. Stouffer 1997 Jet-A

    Mach 5.6 82

    MedTherm 1-9[23] 1-10

    1.7 2.7

    Jet-A

    3

  • 10

    1-9

    1-10 [23]1 Btu/s/ft2/R = 20428 W/m2K

    3. K. Kontis 2002 Dy:YAG LIF

    Mach 2.5 5bar

    [24] 1-11 CFD LIF

    800K

  • 11

    1-11 Dy:YAG 2D CFD [24]

    4. A. Gardner 2004 HyShot 1:1

    HEG Mach 7.8 27.1km

    32.5km MedTherm E 1-12

    1-12 HyShot mm[25]

    32.5km 1-13

  • 12

    1-13 HyShot HEG32.5km

    5. Jan Martinez 2008 HyShot II 1-14

    HEG [26] Mach 7.6 28km

    33km MedTherm TCS-061-E-XX-24-10866

    1-14

    1-14 HyShot II

    1-15 CFD 1-16

  • 13

    CFD

    (a) (b)

    1-15 HyShot II HEG CFD [26]

    1-16 HEG [26]

    [17]

  • 14

    1.3.1.1.2

    1-17 Gardon [27]

    S. V. Bobashev (Grad ient

    Heat Flux Sensor, GHFS) [28] K. Paul Direct-Write

    Techonology[29]

    q

    (a)Gardon

    (b)GHFS (c)

    q q

    1-17

    1. 1980 NASP

    Mach 6 0.52 Mach 8 0.37 DCC

    8 1-18

    1-19[30]

    400 W/cm2

  • 15

    1-18 DCC1=25.4mm [30]

    (a) Mach 8

    (b) Mach 6

  • 16

    1-19 JPL DCC [30]1Btu/inch2s = 163.4W/cm2

    2. DCAF

    Mach10 Mach12 1.15 2.25

    1-20[30]

    1-21

    DCC DCAF

    VITMAC

    1-20 DCAF1 = 25.4mm [30]

    (a) Mach 12.5

  • 17

    (b) Mach 10.5

    1-21 DCAF [30]1Btu/inch2s = 163.4W/cm2

    3. S. Ueda 2006 Mach 6

    RANS 1-22[31]

    1-23

    1-23

    1-22 [31]

  • 18

    1-23 CFD [31]MVSV

    4. Paul J. Kennedy Jason R. Trelewicz 2011 Direc t

    Write Technology 1-24 Mach 5

    24kPa 48kPa 0.60.8 1.0 [29] [32]

    1-24 ABCD

    1-25

    ( 4 )

    1-24 [29]

  • 19

    1-25 [29]

    5. Gardon

    1-26 7 Mach 2.5 1.4kg/s 1300K

    1800K 0.70.8 1.1 1-27

    [33]

    1

  • 20

    1-26 mm [33]

    (a) (b)

    1-27 [33]

    [33]

  • 21

    1.3.1.2

    [34]

    1.3.2

    CFD

    1.3.2.1 CFD

    --

    y+=1

    CFD --

    CFD

    1. G. Bobskill 1991 HYPULSE CFD

    1-28 NS

    NS NS

    CFD [35]

  • 22

    1-28 HYPULSE [35]

    2. S. Ueda 2006 Mach 6

    RANS [31] 1-23

    3. C. Fureby 2013 HyShot II

    1-14 RANS LES

    1-29 HyShot II [36, 37]

    1-30 LES

    HyShot II 28km 33km

    RANS 28km[36, 37]

  • 23

    1-30 HyShot II CFD [37]

    4. [38]

    (CARDC-AHL) AHL3D

    (a) (b)

    1-31 CFD[38]

    5. NS

    RANS[39] 1-32

  • 24

    Mach 2.5 1600K 9.1bar 1000K

    147mm 10mm 0.8 0.1

    0.8

    1-33

    1-32

    1-33 RANS[39]

    CFD

    Validation

    1.3.2.2

    [40]

    [13]

    [41]

  • 25

    1.3.2.2.1

    1. W. H. Heiser 1-34

    [41]

    1-34 ab[41]

    2. NASP Richard M. Traci VITMAC

    [30] Mach 6

    1-19

    3. SPIRITECH G. Eric SRHEATTMScramjet/Ramjet Heat

    Exchanger Analysis Tool

    [42]

    4. X-shock

    -

    [43]

    5. W. H. Heiser

    [44] 1-35

  • 26

    1-35 /

    6.

    [45-47]

    1.3.2.2.2

    1. W. H. Heiser

    [41]

    2.

    [40]

    3.

    [48]

    4.

    2000K

    [49]

  • 27

    [33]

    1-36[50]

    1-36 [50]

    [51]

    [52]

    1.3.3

    [53] [54]/

    [51][55, 56]-

    [57]/Mach [58]

    [59][60]

    1-37

    3300-8300 W/cm2[41]

  • 28

    1-37[53]

    1-38

    1-38 [53] [61]

  • 29

    1.3.4

    CFD

    1.4

    CFD

    3 14

    ( 77320 K Mach 2.0 2.5

    1305K 1701K 2.0kg/s 3.0kg/s 0.52 0.88

    DES CFD

  • 30

    8 CFD

    CFD

  • 31

    [62-64]

    2.1

    2-1 [62-64]

    2-1 [33]

    2-2 Gardon q

    Tc-Tb

  • 32

    2-2 Gardon

    Gardon Gardon

    2-3 2-4

    2-3 Gardon [33]

  • 33

    q

    K

    E

    2-4

    2.2

    1. 1/3

    2.

    3.

    4.

    5.

    1.

    2. 4.110-5/K

    1.6710-5/K

    3.

  • 34

    4.

    2.3

    1Cr18Ni9Ti

    25 W/mK 20W/mK

    M450 2-5

    450

  • 35

    2-5 M450

    2-1

    , []

    315 SnPbAg 312

    SD-585T Sn99Bi0.3Ag0.7 227 230 30-40

    SD-510T Sn64Bi35Ag1 172 190 30-40

    2-6

  • 36

    18

    27

    227

    312700

    2-6

    2.3.1

    30 25 85%

    2-7 3

    K1 12.452.84W/cm2/mV K2 35.312.5K/mV

    8.231.20s 3-16

  • 37

    0 5 10 15 20 25 30 35 400

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    New structure

    Original structure

    K2(

    K/m

    V )

    K1(W/cm

    2/mV)

    2-7

    2.4

    15

    2.4.1

    2-8

  • 38

    M

    Cooling

    WatermL/sHB484N

    mVXMZ600B

    degCXMZ600B

    degCXMZ600B

    NI USB 6009

    degCXMZ600B

    WHB404W-ZB

    1.

    2. 3.

    4.

    5. 6.

    7. 9.

    8.

    10. -

    11. -

    12. -

    17 -

    18. -

    13.

    14.

    15.

    16.

    2-8

    1. (1,2,3,4,5,13)(8,9,16,7)(9,10,11,12,17,18,14,15)

    (6)

    2. (1)(3)(2)(4)

    (5)(13)

    3. (8)(9)(16, 2-12)

    (7)

    4. (9)(10,11,18)(12)

    (17)(14)(15) 2-9

    5. P

    Qwater E Tb Twater

    Th

    6. P

    2-14 2-15(2-1) K1 K2

    1 2

    4PK

    D E (2-1)

  • 39

    2h bT TK

    E

    (2-2)

    2-9

    2-10

  • 40

    2-11

    2-12 0.25mm K

    OMEGA CHAL-010-BW

    LabVIEW

    2-12

    LabVIEW 2-13

  • 41

    2-13 LabVIEW

    2.4.2

    10s

    35s

    LabVIEW 2-14 2-15 excel

  • 42

    2-14

    wsf 11:05 2013/12/5 s217

    c:\Documents andSettings\Administrator\MyDocuments\\\time_data_13-12-05_1053_001.lvm

    c:\Documents andSettings\Administrator\MyDocuments\\\calibration_data_13-12-05_1053_001.lvm

  • 43

    2-15

    2-16

    7%

  • 44

    0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.00

    20

    40

    60

    80

    100H

    ea

    t flu

    x (

    W/c

    m2)

    Output Voltage (mV)

    Heat Flux (EHM)

    Heat Flux (HTBBRM)

    Linear fit

    Linear fit

    0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.40

    20

    40

    60

    80

    100

    120

    140

    160

    180

    Te

    mp

    era

    ture

    diffe

    ren

    ce

    (d

    eg

    C)

    Output Voltage (mV)

    Temperature difference

    Linear fit

    (a) (b)

    2-16 EHM HTBBRM

    2.5

  • 45

    3.1

    3.1.1

    3-1

    O2 H2

    Fuel Tank

    Cooling Water

    Gas Valve

    System

    Water Pump

    Air Heater Combustor AssemblyNozzleP-2P-4

    Air

    P-5

    Water Valve

    SystemP-6

    P-8P-9

    P-10

    P-44

    Two-Stage Fuel Heater

    P-11

    P-12

    P-45

    DAQ

    &

    Control

    Pressure Measurement System

    P-14P-15P-16P-35P-36P-37P-38P-39P-40P-41P-42P-43

    Heat Flux Measurement System

    P-7P-8P-9P-10P-11P-12

    P-26P-27P-28P-29P-30P-31P-32P-33P-34

    Sonic Nozzle

    3-1

    0.6-4.0MPa

    700-2200 K 5.0 kg/s 60 s Vitiated air

    0.1% CYB-10S

    B

    1%

    3.1.2

    3-2 1Cr18Ni9Ti

  • 46

    0.72.0 5.3

    20mm 2mm 3mm

    5mm Ra=3.2

    34 1mm 24 18mm

    3-2 12mm 7 50

    64mm 4 2.65mm

    8mm 9 0.4mm 9

    1mm

    3-2

    3.1.3

    MicroMaster440SamHydraulik 3-3

    [65]

  • 47

    [66]

    7685 K 2.87 4.56 MPa

    11

    3-3

    3.1.4

    3-2 0.1% Motorola MPX2200

    3-4

  • 48

    P-17

    DAQNI PCI 6225

    P-15

    P-55

    TC-K

    3-4

    3-5

    3-4 200L (WILO

    MVI410-1/16/E/3-380-50-2 10bar) SS-

    33S6FNU.ER.T-1.6mm-G1/4 SNS-APU6*4

    CN 203519207U

  • 49

    [67], 3-7 18 mm

    12% Ra3.2

    2.4

    10s

    18

    27

    3-6

  • 50

    3-7

    E Tb(Contronix CH6)

    (NI PCI 6225) 10 Hz

    LabVIEW Excel

    30 mL/s

    3.1.5

    2mm 1mm

    0.8 1.2 mm 1.0mm0.5mm 0.1mm

    0.1mm

  • 51

    (a)

    (b)

    3-8

    3.1.6

    1.

    2. 1

    10 3

    35 18 35 20

    35 3-9

    15

    3.

  • 52

    0 10 20 30 40 50 600

    5

    10

    15

    20

    25

    30

    35

    40

    Total Pressure

    Fuel PressureP

    ressure

    [bar]

    Time [s]

    0

    200

    400

    600

    800

    1000

    1200

    combustion

    heating

    Total Temperature

    Tem

    pera

    ture

    [K

    ]

    Exp No.7

    aerodynamic

    heating

    3-9 7

    3.1.7

    qm T0 P0 H2, kerosene

    Mach , 3-1

    3-10

    4 3-11

  • 53

    0 500 1000 1500 20000

    20

    40

    60

    80

    100

    120

    140

    160

    180

    Sta

    tic P

    ressu

    re[k

    Pa

    A]

    Axial Position [mm]

    6 7

    8 9

    10 11

    12 13

    14 15

    16 17

    18 19

    20 21

    22 23

    24 25

    26 27

    28 29

    30 31

    32 33

    34 35

    Mean(cold)

    Mean(hot)

    2014011601 Static Pressure

    3-10

    70 80 90 100 1100

    1

    2

    3

    4

    5

    6

    7

    channel 1

    channel 2

    channel 3

    channel 4

    channel 5

    channel 6

    channel 7

    channel 8

    channel 9

    channel 10

    channel 11

    channel 12

    channel 13

    channel 14

    channel 15

    channel 16

    channel 17

    channel 18

    channel 19

    channel 20

    Heat flux s

    ensor

    sig

    nal E

    [m

    V]

    Time [s]

    Sensor 19

    N = 59

    Mean = 6.76704

    SD = 0.02964

    3-11

    [41] Mach

  • 54

    3.1.8

    14 3-1

    Mach 5

    3-2

    3-1

    Mach

    Exp.

    No. DataSet ID Ma T0 (K)

    P0

    (bar)

    qm

    (g/s) kerosene H2 Comment

    1 2014011401 2.5 1605 9.66 3086 0 0

    2 2014011402 2.5 1608 9.6 3075 0 0

    3 2014011601 2.5 1595 9.53 3074 0.56 0.189

    4 2014012702 2.5 1619 9.51 3091 0.55 0.149

    5 2014022501 2.5 1622 8 2578 0 0

    6 2014031101 2.5 1627 8.01 2568 0.72 0.095

    7 2014031701 2.5 1701 8.11 2580 0.59 0

    8 2014031802 2 1289 4.16 2574 0.69 0.094

    9 2014032001 2 1308 4.15 2579 0.88 0.098

    10 2014032002 2 1308 4.15 2577 0.52 0.095

    11 2014032103 2 1314 3.76 2008 0.71 0.096

    12 2014032105 2 1306 4.94 3061 0.7 0.091

    13 2014032402 2 1469 4.45 2556 0.7 0.093

    14 2014032502 2 1686 4.75 2539 0.7 0.093

    3-2

    0 1,2 - 1 6,14 Mach 2.52.0 2 11,8,12 2.0, 2.5, 3.0 kg/s 3 10,8,9 0.5, 0.7, 0.9 4 8,13,14 1300, 1500, 1700 K

    3.2

    A B

  • 55

    Exp.No.##x## 3-1 ##

    x c x h

    3.2.1

    5 3-12

    1

    20km 5kPa

    2 3.7 4.7

    3 3-16 5% 95% 8.231.20

    15

  • 56

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    40

    80

    120

    160

    200

    240

    280 Static Pressure

    Exp No. 1

    Exp No. 2

    Sta

    tic P

    ressure

    [kP

    a]

    x, [mm]

    0

    1

    2

    3

    4

    Mach Number

    Exp No. 1

    Exp No. 2

    Calc

    ula

    ted

    Ma

    ch

    Nu

    mb

    er

    1

    3-12 1, Mach

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    10

    20

    30

    40

    50

    60

    70 Exp.No.1

    Exp.No.2

    Heat flux [W

    /cm

    2]

    x, [mm]

    3-13 1,

  • 57

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    10

    20

    30

    40

    50

    60

    70

    Exp.No.1

    Exp.No.2

    Heat flux [W

    /cm

    2]

    x, [mm]

    vertical distribution:

    increase from upper wall to lower wall

    3-14 1,

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    10

    20

    30

    40

    50

    60

    70

    Exp.No.1

    Exp.No.2

    Heat flux [W

    /cm

    2]

    x, [mm]

    3-15 1,

  • 58

    70 80 90 100 1100

    1

    2

    3

    4

    5

    6

    7

    channel 1

    channel 2

    channel 3

    channel 4

    channel 5

    channel 6

    channel 7

    channel 8

    channel 9

    channel 10

    channel 11

    channel 12

    channel 13

    channel 14

    channel 15

    channel 16

    channel 17

    channel 18

    channel 19

    channel 20

    Heat flux s

    ensor

    sig

    nal E

    [m

    V]

    Time [s]

    Sensor 19

    Rise Time=7.71482

    Rise Range=6.05045

    3-16 Origin 5%-95%.

    3.2.2

    3-20 Mach

    6

    5

    1900 mm

    3-19

    2.5 1.2

    1400mm 1500mm

    3.3

  • 59

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    50

    100

    150

    200

    250

    300

    Static Pressure

    Exp No. 12c

    Exp No. 12h

    Sta

    tic P

    ressure

    [kP

    a]

    x, [mm]

    10.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Mach Number

    Exp No. 12c

    Exp No. 12h

    Calc

    ula

    ted

    Ma

    ch

    Nu

    mb

    er

    3-17 No.12 Mach

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    25

    50

    75

    100

    125

    Exp.No.12 w/o combustion

    Exp.No.12 with combustion

    Heat flux [W

    /cm

    2]

    x, [mm]

    3-18 No.12

  • 60

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    25

    50

    75

    100

    125

    Exp.No.12 w/o combustion

    Exp.No.12 with combustion

    Heat flux [W

    /cm

    2]

    x, [mm]

    vertical distribution flipped

    after combustion

    3-19 No.12

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    25

    50

    75

    100

    125

    Exp.No.12 w/o combustion

    Exp.No.12 with combustion

    Heat flux [W

    /cm

    2]

    x, [mm]

    3-20 No.12

    3.2.3

    3 kerosene 0.52 0.88

  • 61

    3-21- 3-24 3-21 kerosene

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    50

    100

    150

    200

    250

    300

    Static Pressure

    Exp No. 10h

    Exp No. 8h

    Exp No. 9h

    S

    tatic P

    ressure

    [kP

    a]

    x, [mm]

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    Mach Number

    Exp No. 10h

    Exp No. 8h

    Exp No. 9h

    Calc

    ula

    ted M

    ach N

    um

    ber

    3-21 3: kerosene0.5, 0.7, 0.9, T01300K, qm2.5 kg/s, H2 0.1. Mach

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    25

    50

    75

    100

    125

    Exp.No.10 kerosene

    =0.52

    Exp.No.8 kerosene

    =0.69

    Exp.No.9 kerosene

    =0.88

    Heat flux [W

    /cm

    2]

    x, [mm]

    3-22 3: kerosene0.5, 0.7, 0.9, T01300K, qm2.5 kg/s, H2 0.1.

  • 62

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    10

    20

    30

    40

    50

    60

    70

    80

    Exp.No.10 kerosene

    =0.52

    Exp.No.8 kerosene

    =0.69

    Exp.No.9 kerosene

    =0.88

    Heat flux [W

    /cm

    2]

    x, [mm]

    3-23 3: kerosene0.5, 0.7, 0.9, T01300K, qm2.5 kg/s, H2 0.1.

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    25

    50

    75

    100

    125

    Exp.No.10 kerosene

    =0.52

    Exp.No.8 kerosene

    =0.69

    Exp.No.9 kerosene

    =0.88

    Heat flux [W

    /cm

    2]

    Location, [mm]

    3-24 3: kerosene0.5, 0.7, 0.9, T01300K, qm2.5 kg/s, H2 0.1.

    [23]

    2.230.01 kg/s

  • 63

    3-25

    0 10 20 30 40 500

    5

    10

    15

    20

    25

    30

    35

    coolin

    g w

    ate

    r outlet te

    mpera

    ture

    ris

    e (

    degC

    )

    Time (s)

    exp. 10 combustor

    exp. 8 combustor

    exp. 9 combustor

    3-25

    9

    9

  • 64

    3.2.4

    2 3-29 Mach

    Mach q qm0.8

    [41]

    2/5

    0.8

    1/5Pr R

    0

    e

    .0287 mp p m

    quc T c Tt

    Aq qS (3-1)

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    50

    100

    150

    200

    250

    300

    Static Pressure

    Exp No. 11h

    Exp No. 8h

    Exp No. 12h

    Sta

    tic P

    ressure

    [kP

    a]

    x, [mm]

    0

    1

    2

    3

    Mach Number

    Exp No. 11h

    Exp No. 8h

    Exp No. 12h

    Calc

    ula

    ted

    Ma

    ch

    Nu

    mb

    er

    3-26 2: qm 2.0 kg/s 3.0 kg/s T01300K, kerosene0.7, H20.1 Mach

  • 65

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    25

    50

    75

    100

    125

    Exp.No.11 qm=2008 g/s

    Exp.No.8 qm=2574 g/s

    Exp.No.12 qm=3061 g/s

    Heat flux [W

    /cm

    2]

    x, [mm]

    3-27 2: qm 2.0 kg/s 3.0 kg/s T01300K, kerosene0.7, H20.1

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    10

    20

    30

    40

    50

    60

    70

    80

    Exp.No.11 qm=2008 g/s

    Exp.No.8 qm=2574 g/s

    Exp.No.12 qm=3061 g/s

    Heat flux [W

    /cm

    2]

    x, [mm]

    3-28 2: qm 2.0 kg/s 3.0 kg/s T01300K, kerosene0.7, H20.1

  • 66

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    25

    50

    75

    100

    125

    Exp.No.11 qm=2008 g/s

    Exp.No.8 qm=2574 g/s

    Exp.No.12 qm=3061 g/s

    Heat flux [W

    /cm

    2]

    x, [mm]

    3-29 2: qm 2.0 kg/s 3.0 kg/s T01300K, kerosene0.7, H20.1

    3.2.5

    4 3-33 qm

    T0 P0 T0 0.5

  • 67

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    50

    100

    150

    200

    250

    Static Pressure

    Exp No. 8h

    Exp No. 13h

    Exp No. 14h

    Sta

    tic P

    ressure

    [kP

    a]

    x, [mm]

    0

    1

    2

    3

    Mach Number

    Exp No. 8h

    Exp No. 13h

    Exp No. 14h

    Calc

    ula

    ted

    Ma

    ch

    Nu

    mb

    er

    3-30 4: T0 1289K 1687K qm 2.5 kg/s, kerosene0.7, H20.1 Mach

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    25

    50

    75

    100

    125

    Exp.No.8 T0=1289 K

    Exp.No.13 T0=1469 K

    Exp.No.14 T0=1687 K

    Hea

    t flu

    x [

    W/c

    m2]

    x, [mm]

    3-31 4: T0 1289K 1687K qm 2.5 kg/s, kerosene0.7, H20.1

  • 68

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    15

    30

    45

    60

    75

    Exp.No.8 T0=1289 K

    Exp.No.13 T0=1469 K

    Exp.No.14 T0=1687 K

    Hea

    t flu

    x [

    W/c

    m2]

    x, [mm]

    3-32 4: T0 1289K 1687K qm 2.5 kg/s, kerosene0.7, H20.1

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    25

    50

    75

    100

    125

    Exp.No.8 T0=1289 K

    Exp.No.13 T0=1469 K

    Exp.No.14 T0=1687 K

    Heat flux [W

    /cm

    2]

    x, [mm]

    3-33 4: T0 1289K 1687K qm 2.5 kg/s, kerosene0.7, H20.1

    3.2.6 Mach

    Mach 4 3-37

  • 69

    Mach 2.5

    Mach Mach 2.5

    Mach 2.0

    Mach 2.5 Mach 2.0

    Mach 2.5 Mach 2.0 Mach

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    50

    100

    150

    200

    250

    300

    Static Pressure

    Exp No. 6h

    Exp No. 14h

    Sta

    tic P

    ressure

    [kP

    a]

    x, [mm]

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Mach Number

    Exp No. 6h

    Exp No. 14h

    Calc

    ula

    ted

    Ma

    ch

    Nu

    mb

    er

    3-34 1 Mach 2.5 2.0, T0 1650K, qm 2.5kg/s, kerosene0.7, H20.1

    Mach

  • 70

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    25

    50

    75

    100

    125

    Exp.No.6 Ma=2.5

    Exp.No.14 Ma=2.0

    Heat flux [W

    /cm

    2]

    x, [mm]

    3-35 1 Mach 2.5 2.0, T0 1650K, qm 2.5kg/s, kerosene0.7, H20.1

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    10

    20

    30

    40

    50

    60

    70

    80

    Exp.No.6 Ma=2.5

    Exp.No.14 Ma=2.0

    Heat flux [W

    /cm

    2]

    x, [mm]

    3-36 1 Mach 2.5 2.0, T0 1650K, qm 2.5kg/s, kerosene0.7, H20.1

  • 71

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    25

    50

    75

    100

    125

    Exp.No.6 Ma=2.5

    Exp.No.14 Ma=2.0

    Heat flux [W

    /cm

    2]

    x, [mm]

    3-37 1 Mach 2.5 2.0, T0 1650K, qm 2.5kg/s, kerosene0.7, H20.1

    3.3

    10%

    [15, 16]

    ( ) ( )aw w rad aw wq h hT T q T T (3-2)

    h Tw Taw

    [41]:

    3 * 2

    23 *

    02

    1 Pr1

    Pr2

    11

    aw

    p

    Ma

    T Tu

    cMa

    T

    (3-3)

    1000K 3000K Pr* 0.73 1.33

    0(0.93 0.0 for Ma [1,4]1)aw TT (3-4)

    Taw T0 Mach

    0(0.93T T )wq h (3-5)

  • 72

    Tw T0

    h T0

    0

    0

    0.93

    0.93 wq

    Tq h

    h T T

    (3-6)

    T0

    Stanton

    12 4

    h

    2/5 1/5 2/5

    0.2

    0.8 0.8 0.20.02870.028

    StPr R

    7

    e Prx

    pmp p m

    cuc c q

    A

    qh xA

    (3-7)

    h x-0.2

    1

    [53] p3/p1

    3

    .8

    1

    0

    peak

    ref

    q p

    q p

    (3-8)

    T0 h

    3.3.1

    T0, Ma qm

    (3-5) (3-7) (3-9) Mach

    0.8 20( ) Ma1mK cq q T b (3-9)

  • 73

    3-3 (3-10)

    20.8

    20T27.03 0.653 1 0.05766[W/ cm ] 1000[K]

    Ma[kg/ s]

    mqq

    (3-10)

    3-38 3-498%(3-9)

    3-3

    Exp.No. Ma T0 qm qavg,isolator q

    1000K kg/s W/cm2 W/cm2

    1 2.5 1.605 3.086 39.59 40.56

    2 2.5 1.608 3.075 40.22 40.57

    3 2.5 1.595 3.074 38.78 39.99

    4 2.5 1.619 3.091 40.74 41.18

    5 2.5 1.622 2.578 36.91 35.72

    6 2.5 1.627 2.568 37.47 35.81

    7 2.5 1.701 2.58 39.15 38.68

    8 2 1.289 2.574 28.73 28.18

    9 2 1.308 2.579 29.16 29.05

    10 2 1.308 2.577 29.05 29.07

    11 2 1.314 2.008 23.11 24.03

    12 2 1.306 3.061 33.67 33.22

    13 2 1.469 2.556 35.58 35.94

    14 2 1.686 2.539 45.29 45.25

  • 74

    20 25 30 35 40 4520.0

    22.5

    25.0

    27.5

    30.0

    32.5

    35.0

    37.5

    40.0

    42.5

    45.0

    47.5

    Fitted data Points

    y=x

    y=(15%)x

    Isolator Heat Flux Average at Cold State (W/cm^2)

    Fitte

    d d

    ata

    Poin

    ts

    20.8

    20T27.03 0.653 1 0.05766[W/ cm ] 1000[K

    Ma[k / ]g s]

    mqq

    3-38

    3-4 R2

    K K c c b b

    2 R2

    27.02864 1.94519 0.6529 0.0408 -0.05766 0.00394 3.12408 0.9787

    3-40 3-41 3-41 3-42

    Mach 2.0

    Mach 2.0 Mach 2.5

    Mach 2.0 x=1000mm

    Mach 2.0

    Mach2.5

  • 75

    0 200 400 600 800 1000 1200 1400 1600 1800 20000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    convergence

    Mach 2.0 cases w/o combustion

    Upper Wall

    Lower Wall

    Norm

    aliz

    ed H

    eat flux

    x, [mm]

    divergence

    3-39 Mach 2.0

    0 200 400 600 800 1000 1200 1400 1600 1800 20000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    Mach 2.5 cases w/o combustion

    Upper Wall

    Lower Wall

    Norm

    aliz

    ed H

    eat flux

    x, [mm]

    divergence

    convergence

    3-40 Mach 2.5

  • 76

    0 200 400 600 800 1000 1200 1400 1600 1800 20000.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Mach 2.0 cases

    with combustion

    Upper Wall

    Lower WallN

    orm

    aliz

    ed H

    eat flux

    x, [mm]

    3-41 Mach 2.0

    0 200 400 600 800 1000 1200 1400 1600 1800 20000.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Mach 2.5 cases

    with combustion

    Upper Wall

    Lower Wall

    Norm

    aliz

    ed H

    eat flux

    x, [mm]

    Dashed line:

    Liquid fuel

    Solid line:

    Supercritical fuel

    3-42 Mach 2.5

  • 77

    3.4

    Mach 2.0 2.5

    1300K 1600K 2.0 3.0kg/s 0.5 0.9

    1.

    4

    2.

    0.3

    2.35

    3.40 5.0 7.8

    4-5

    2MW/m2 4.0

    3.

    0.8

    Mach

    4.

    Mach 2.0

  • 78

    4.1

    VerificationValidation[68]

    Guide: Guide for the

    Verification and Validation of Computational Fluid Dynamics Simulations AIAA G-077-1998

    VerificationValidation

    Verification: The process of determining that a model implementation

    accurately represents the developer's conceptual description of the model and

    the solution to the model.

    Validation: The process of determining the degree to which a model is an

    accurate representation of the real world from the perspective of the intended

    uses of the model.

    Detached Eddy Simulation, DES CFD

    Validation

    4.2

  • 79

    4.2.1

    [33]

    4-1

    Cf

    4-1

    1. , ( )m fuelq x

    2. ,m inletq

    3. , , ( )( )m m inlet m fuelq q q xx

    4. ( ), 1,2,3...m ip x i N p(x)

    5. A(x) Cw(x)

    6. u0 T0

    7. cf =0inju

  • 80

    (4-1) u(x)

    ( ) (x)2

    ( ) ( ) ( )f m

    m inj m w

    cd q u x p

    q ux A x u dqx dA C dx

    Ap (4-1)

    8. 0( 0)u x u u(x)

    9. F

    m moutlet inletF q u pA q u pA (4-2)

    10.

    mq uA (4-3)

    ( )x

    11.

    u

    inlet

    R Tp

    MW (4-4)

    T(x)

    12.

    , ( )s s inleth h T (4-5)

    13.

    2

    2st sh h

    u (4-6)

    14. ( )wT x Eckert

    hawStanton St cf

    15. 7

    16. ( )q x

    17.

  • 81

    , , , ,0

    ,

    cos-

    xw

    m st m inlet st inlet m fuel st fuel

    m fuel

    q h q hqC

    dxq h

    q LHV

    (4-7)

    LHV ,st fuelh

    tan/

    wC

    dA dx (4-8)

    4.2.2

    [33] 4-2

    250mm 250mm 1000mm

    1000mm

    0 500 1000 1500 20000

    10

    20

    30

    40

    50

    60

    70

    80

    Exp. No. (2), Ma = 2.5, T0=1608.1[K], qm=3075[g/s],

    Kerosene=0,

    H2=0

    Wa

    ll H

    ea

    t F

    lux(W

    /cm

    2)

    x (mm)

    Upper Wall

    West Wall

    Lower Wall

    Quasi-1d heat flux

    4-2 2

    4.2.3

    6 7

    Mach 2.5

  • 82

    4-3 4-4

    0 400 800 1200 1600 20000

    25

    50

    75

    100

    125

    Exp. No. (6h), Ma = 2.5, T0=1626.8[K], qm=2567.7[g/s],

    Kerosene=0.72,

    H2=0.095

    Heat F

    lux (

    W/c

    m2)

    x (mm)

    Exp. No. 6h

    Calculated Value

    Upper Wall

    West Wall

    Lower Wall

    4-3 6

    0 400 800 1200 1600 20000

    25

    50

    75

    100

    125

    Exp. No. (7h), Ma = 2.5, T0=1701[K], qm=2580.3[g/s],

    Kerosene=0.59,

    H2=0

    Heat F

    lux (

    W/c

    m2)

    x (mm)

    Exp. No. 7h

    Calculated Value

    Upper Wall

    West Wall

    Lower Wall

    4-4 7

  • 83

    Mach 2.0 8 4-5

    Mach

    0 500 1000 1500 20000

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    120

    25

    50

    75

    100

    125

    150

    175

    200

    225

    Exp. No. (8h), Ma = 2, T0=1288.9[K], qm=2574.1[g/s],

    Kerosene=0.69,

    H2=0.094

    Wall

    Heat F

    lux(W

    /cm

    2)

    Location (mm)

    Upper Wall

    West Wall

    Lower Wall

    Quasi-1d

    heat flux

    Static Pressure

    Sta

    tic P

    ressure

    (kP

    aA

    )

    4-5 8

  • 84

    0 400 800 1200 1600 20000

    500

    1000

    1500

    2000

    2500

    3000

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    (K)

    x (mm)

    (W/c

    m2)

    4-6 8

    DES 4-10

    4.3 CFD

    CFD 8

    [69] CFD

    OpenFOAM

    DES LES

    S-A RANS

    directed relation

    graph-aided sensitivity analysis, DRGEPSA RP-3 48

    /197

    (Partially-Stirred Reactor, PaSR)

  • 85

    (In Situ Adaptive Tabulation, ISAT)

    2000

    4-7

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    50

    100

    150

    200

    250

    Sta

    tic P

    ressure

    (kP

    a)

    x (mm)

    DES Pmean

    Measurement

    4-7 DES

    4-9

    1ms

    CFD

  • 86

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    25

    50

    75

    100

    125

    150

    175

    200

    Exp. No. (8h), Ma = 2, T0=1288.9[K], q

    m=2.57[kg/s],

    Kerosene=0.69,

    H2=0.094

    Heat F

    lux (

    W/c

    m2)

    x (m)

    DES upper wall

    Upper

    4-8 DES

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    25

    50

    75

    100

    125

    150

    175

    200

    Exp. No. (8h), Ma = 2, T0=1288.9[K], q

    m=2.57[kg/s],

    Kerosene=0.69,

    H2=0.094

    Heat F

    lux (

    W/c

    m2)

    x (m)

    DES lower wall

    Lower

    4-9 DES

    DES

  • 87

    4-10 50mm X

    X

    200mm 600mm

    9

    4-11

    4-10

    900mm 1100mm

    1400mm

    1400mm

    4-10 DES

  • 88

    4-11 DES

    4-11 4-12

    4-13

    4-12

  • 89

    4-13 DES

    4.4

    DES CFD

    8 DES

    DES

    1/3DES

    DES

  • 90

    [6, 70]

    CFD

    VerificationValidation

    Validation

    Verification CFD

    CFD CFD

    5.1

    [71]

  • 91

    //(Conserved Mass/Momentum/Energy Method,

    CMME)//(Conserved Mass/Energy/Entropy Method, CMES)

    (Langley Distortion Methodology, LDM)

    CMME CMMS

    CFD LDM

    distortion parameters/

    CMME

    5.1.1

    CFD

    3

    1

    i i i i

    i

    y x yx

    0i iV A

    dV u n dAt

    (5-1)

    ( )i i j ij ij j iV A V

    u dV u u n dA dVpt

    f

    (5-2)

    2 2

    i i i is s

    V A

    i i ij i j

    V V A A

    u u u ue dV h dA

    t

    dV QdV n dA qdf u u A

    (5-3)

    V A in

    iu se sh ij if

    Q q ij

    Kronecker delta(5-4)

  • 92

    0,

    1,ij

    i j

    i j

    (5-4)

    (5-1)-(5-3)

    CFD

    p T

    uRp

    TMW

    (5-5)

    ( , )ih h T x (5-6)

    AiAe Aw

    Control Volume

    pTu,v,wh

    AwAe

    A i n

    inflow outflow

    x

    y

    fvqv

    z

    5-1 (Control Volume)

    0t

    (5-7)

    0i iA

    u n dA (5-8)

  • 93

    ( )i j ij ij j iA V

    u u n dAp dVf (5-9)

    2

    i ii i s i i ij i j i i

    A V V A A

    f uu u

    u n h dA dV QdV n dA nu q dA

    (5-10)

    i i

    A

    i iA

    u n dA

    u n dA

    V

    V

    dV

    dV

    Ai Ae

    advective transport rate

    Pe 1diffusive transport rate

    (5-11)

    A

    i w eA AA A (5-12)

    e i w

    i iA A AudA udA dAnu (5-13)

    22

    = cos si

    +

    ne i

    w w w

    A A

    i i w w w w i iA A A V

    p p

    n

    u dA u dA

    u udA pdA dA f u dV (5-14)

    e i w w

    st st i i st w i iA A A A V Vu dA uh dA u n h dA q dA QdVh f u dV (5-15)

    1Fru

    fL (5-16)

    e i w

    i iA A A

    udA udA dAnu (5-17)

    22

    = co

    +

    s sin

    e i

    w w w

    A A

    i i w w w wA A A

    p pu dA u dA

    u udA pdA An d

    (5-18)

    e i w w

    st st i i st wA A A A V

    u dA uh dA u n h dA q dA dh Q V (5-19)

  • 94

    5.1.2

    m

    Aq udA (5-20)

    , , ,m e m i m wq q q (5-21)

    2

    = A

    m

    uu

    q

    dA (5-22)

    AA

    ppd

    A

    (5-23)

    , ,, ( )e i i i m w inj wm e e e m i we iq u p q u p q u p FA A A A (5-24)

    wp p (5-25)

    , ,, ( )e i i i m w injm e e m i wie eq u p q u p uA FA q p A A (5-26)

    sh sth

    =s

    As

    m

    uhh

    q

    dA (5-27)

    =st

    Ast

    m

    uhh

    q

    dA (5-28)

    ,, , ,=ste sti m w st injm e m i w bq q q h Q Qh h (5-29)

    dx 0

    ,m m wdq dq (5-30)

  • 95

    ( )m inj wmd q u pA u dq dAp dF (5-31)

    ,( )m st st inj m w bq h h q dd dQd Q (5-32)

    =mA

    vA

    u dA q

    qudA

    (5-33)

    MW

    m A

    n

    A

    udAqMW

    uqdA

    MW

    (5-34)

    T

    u

    pMWT

    R (5-35)

    5.1.3

    2

    f m w

    w

    c uxd d

    q CF

    A (5-36)

    ( )

    cos

    aw w w mw

    h h CdQ

    A

    qSt dx

    (5-37)

    ,b m fuelQ q LHV (5-38)

  • 96

    fc Darcy LHV bQ

    CFD

    ( )- -m inj mw d q u pA u dq dAdF

    dx

    p

    dx

    (5-39)

    2 ( )- -m inj mf

    m w

    A d q u pA u d dA

    q

    q pc

    u dxC

    (5-40)

    (5-41)

    ,( )m t t inj m wq h h dq Qd d (5-41)

    Stanton

    ,= ( )-w

    w m t t inj m

    qC dxddQ q h h dq

    cos (5-42)

    ,

    ( )

    ( )( ) - ( ) -A x

    A x inlw m t m t t injetinlet

    mQ q h q h h dq (5-43)

    ,( ) co(

    s

    )

    m t t inj m

    aw w w m

    q h h dqASt

    h h

    d

    dxqC

    (5-44)

    haw

    2

    3 Pr2

    aw hhu

    (5-45)

    (5-32)(5-41)

    , -o ob m st t f n fi j m mdQ d dq h h h dq q h (5-46)

    , ,

    ( )

    ,

    -( )

    +inlet

    o o o

    f inj m fuel f fA A x

    m fuel

    h q uh dA uh dAx

    q LHV

    (5-47)

  • 97

    5.2 CFD

    5-2 CFD

    CFD

    5-2 CFD

    5.2.1 CFD

    OpenFOAM DES

    [39] CFD

    5-3 mm 80mm

    Mach 2.5 1600K 9.1bar 0.9

    1000K Fluent 6.3 k

    SST AUSM

    Euler [72]

    [73]

    p(x)

    _avg(x)_1d(x)

    CFD/

    (x,y,z,t)(x,y,z,t)

  • 98

    ~ 1miny

    paraview 4.3.1 3

    5.2.2

    ptop

    CFD

    0 200 400 600 800 1000 1200 14000

    20

    40

    60

    80

    100

    120

    140

    160

    p_avg

    (kP

    a)

    x (mm)

    p_avg

    p_top

    p_side

    5-4

    80mm 5-5

  • 99

    0 200 400 600 800 1000 1200 14000

    20

    40

    60

    80

    100

    120

    140

    160

    p_avg

    (kP

    a)

    x(mm)

    p_avg

    p_side

    16 pts AAv smooth of "p_side"

    5-5

    5.2.3

    5-6

    2%

    Mach

  • 100

    0 200 400 600 800 1000 1200 14000

    500

    1000

    1500

    u_1d(m

    /s)

    x(mm)

    u_1d(m/s)

    u_avg

    5-6(u_1d)(u_avg)

    5.2.4

    5-7

  • 101

    0 200 400 600 800 1000 1200 14000.0

    0.1

    0.2

    0.3

    0.4

    rho_1d

    (kg/m

    3)

    x(mm)

    rho_1d

    rho_avg

    5-7

    vA

    v

    A

    udA qu

    dA A

    (5-48)

    (5-49)

    m vq u A (5-49)

    vu (5-22)u

    Hypersonic Air-breathing Propulsion[41]

    Ac

    (5-33)

  • 102

    mI pq u A

    (5-50)

    (5-22)

    mcA

    q

    u (5-51)

    Ac

    0 200 400 600 800 1000 1200 14000.0

    1.0E-3

    2.0E-3

    3.0E-3

    A (

    m2)

    x(mm)

    A

    Ac

    A_1d

    5-8 (Ac)

    5-8

    Ac /

    / Ac

  • 103

    5.2.5

    5-9

    5%

    0 200 400 600 800 1000 1200 14000

    500

    1000

    1500

    T_1d(K

    )

    x(mm)

    T_1d

    T_avg

    5-9 (T_1d)(T_avg)

    (4-4)

    5-10

    4%[48]

  • 104

    0 200 400 600 800 1000 1200 14000

    5

    10

    15

    20

    25

    30

    Mean M

    ole

    cula

    r W

    eig

    ht (k

    g/k

    mol)

    x(mm)

    MW_1d

    MW_avg

    5-10 MW_avg(MW_1d)

    5.2.6

  • 105

    0 200 400 600 800 1000 1200 14000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    hs_1d

    (MJ/k

    g)

    x(mm)

    hs_1d

    hs_avg

    5-11(hs_1d)(hs_avg)

    5.2.7

    5-12

  • 106

    0 200 400 600 800 1000 1200 14000.0

    0.5

    1.0

    1.5

    2.0

    2.5

    hst_

    1d

    (M

    J/k

    g)

    x(mm)

    hst_1d

    hst_avg

    5-12(hs_1d) (hs_avg)

    2 2 2

    2 2 2 2 2

    1 2 3

    2

    ( ) + ( )22 2

    =

    st s

    s s s

    st

    u v wh h

    u u uh T

    vh T

    wh

    h

    (5-52)

    x x

    CFD

  • 107

    0 200 400 600 800 1000 1200 1400

    -0.04

    -0.02

    0.00

    0.02

    0.04

    0.06

    x(mm)

    1

    2

    3

    5-13

    5-11 5-13

    5.2.8

    (5-39) 5-14

    CFD

  • 108

    0 200 400 600 800 1000 1200 14000

    50

    100

    150

    200

    250

    F_1d (

    N/m

    )

    x(mm)

    F_1d

    F_avg

    5-14 (F_avg)(F_1d)

    5.2.9

    Stanton

    5-15

    CFD DES

  • 109

    0 200 400 600 800 1000 1200 14000

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240

    260

    Integrate Qw_1d

    Integrate Qw_avg

    Inte

    gra

    teQ

    w_1d

    (kW

    )

    x(mm)

    5-15 (Integrate Qw_avg)(Integrate Qw _1d)

    5.3

    CFD

    /

    RANS

    1.

    2.

    3. 3%

    4. CFD 24%

    24%

    5.

    5% 8% 5% 10%

  • 110

    6.

    CFD CFD

  • 111

    6.1

    Mach2.02.5

    1300K 1600K 2.0 3.0kg/s77320

    K 0.5 0.9 0.1 14 5

    Mach

    Mach

    Detached Eddy Simulation

    CFD

    8 DES

  • 112

    DES

    1/3DES

    DES

    CFD

    6.2

    1. 1.5

    1/8

    2.

    Validation

    3. CFD

    6.3

    1.

    3D 2.

    3.

    1.

    2.

  • 113

    3.

    4.

    CFD

  • 115

    [1] MOSES P. X-43C Plans and Status [M]. 12th AIAA International Space Planes and

    Hypersonic Systems and Technologies. American Institute of Aeronautics and Astronautics.

    2003.

    [2] CURRAN E T, HEISER W H, PRATT D T. Fluid phenomena in scramjet combustion

    systems [J]. Annu Rev Fluid Mech, 1996, 28(323-60.

    [3] FOTIA M L, DRISCOLL J F. Isolator-Combustor Interactions in a Direct-Connect Ramjet-

    Scramjet Experiment [J]. J Propul Power, 2012, 28(1): 83-95.

    [4] BOGDANOFF D W. Advanced Injection and Mixing Techniques for Scramjet Combustors

    [J]. J Propul Power, 1994, 10(2): 183-90.

    [5] BEN-YAKAR A, HANSON R K. Cavity flame-holders for ignition and flame stabilization

    in scramjets: An overview [J]. J Propul Power, 2001, 17(4): 869-77.

    [6] SULLINS G A. Demonstration of Mode Transition in a Scramjet Combustor [J]. J Propul

    Power, 1993, 9(4): 515-20.

    [7] INGENITO A, BRUNO C. Physics and Regimes of Supersonic Combustion [J]. Aiaa J,

    2010, 48(3): 515-25.

    [8] , , , . [J]. , 2013, 28(1458-66.

    [9] NATIONAL RESEARCH COUNCIL (U.S.). COMMITTEE ON THE NATIONAL

    AEROSPACE INITIATIVE. Evaluation of the National Aerospace Initiative [M].

    Washington, D.C.: National Academies Press, 2004.

    [10] TANCREDI U, GRASSI M. Approximate trajectories for thermal protection system flight

    tests mission design [J]. Journal of Spacecraft and Rockets, 2007, 44(5): 1003-11.

    [11] , , , . [J]. , 2013, 12): 1659-63.

    [12] JOSEPH H, JAMES M, RICHARD M. The X-51A Scramjet Engine Flight Demonstration

    Program [M]. 15th AIAA International Space Planes and Hypersonic Systems and

    Technologies Conference. American Institute of Aeronautics and Astronautics. 2008.

    [13] . [D]. ; , 2013.

    [14] , . [M]. : , 1997. [15] LIU J, BROWN M. Radiative Heating in Hydrocarbon-fueled Scramjet Engines [M]. 48th

    AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. American Institute of

    Aeronautics and Astronautics. 2012.

    [16] NELSON H F. Radiative Heating in Scramjet Combustors [J]. J Thermophys Heat Tr, 1997,

    11(1): 59-64.

    [17] LI L, FAN X, WANG J. Measurements of Wall Heat Flux and Temperature in a Supersonic

    Model Combustors [M]. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference &

    Exhibit. American Institute of Aeronautics and Astronautics. 2011.

    [18] TRACI R M, FARR JR J L, LAGANELLI T, 1548-8837, 1548-8837 [R]. Suite 1M32,

    Washington, DC, 20546-0001, USA: NASA, 2002.

    [19] , , , , . [J].

  • 116

    , 2009, 04): 661-4. [20] . [J]. , 2008, 04): 317-9. [21] , , , . , F 2012, 2012 [C]. [22] MORGAN R G, STALKER R J. Shock tunnel measurements of heat transfer in a model

    scramjet [J]. Journal of Spacecraft and Rockets, 1986, 23(5): 470-5.

    [23] STOUFFER S D, NEUMANN R D, EMMER D S: DAYTON UNIV OH RESEARCH

    INST, 1997.

    [24] KONSTANTINOS K. Surface Heat-Transfer Measurements Inside a Supersonic Combustor

    by LIF [M]. 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference.

    American Institute of Aeronautics and Astronautics. 2002.

    [25] GARDNER A, STEELANT J, PAULL A, HANNEMANN K. Ground Testing of the HyShot

    Supersonic Combustion Flight Experiment in HEG and Comparison with Flight Data [M].

    40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. American Institute

    of Aeronautics and Astronautics. 2004.

    [26] JAN MARTINEZ S, SEBASTIAN K, KLAUS H, JOHAN S. Ground Testing of the HyShot

    II Scramjet Configuration in HEG [M]. 15th AIAA International Space Planes and

    Hypersonic Systems and Technologies Conference. American Institute of Aeronautics and

    Astronautics. 2008.

    [27] GARDON R. An Instrument for the Direct Measurement of Intense Thermal Radiation [J].

    Review of Scientific Instruments, 1953, 24(5): 366-70.

    [28] SERGEY B, NICKOLAI M, VALERI S, SERGEY S, VLADIMIR M, ANDREY M, DAVID

    VAN W. Application of Gradient Heat Flux Sensor in Shock Tube Experiments [M]. 43rd

    AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and

    Astronautics. 2005.

    [29] PAUL K, JEFFREY D, JASON T, CHRISTOPHER G, JON L. Heat Flux Measurements in a

    Scramjet Combustor Using Direct Write Technology [M]. 17th AIAA International Space

    Planes and Hypersonic Systems and Technologies Conference. American Institute of

    Aeronautics and Astronautics. 2011.

    [30] TRACI R M, FARR JR J L, LAGANELLI T. A thermal management systems model for the

    NASA GTX RBCC concept final report, 1 apr. 1999 - 30 apr. 2001 [J]. STAR, 2002, 40(

    [31] UEDA S, TAKEGOSHI M, KOUCHI T, ONO F, SAITO T, IZUMIKAWA M. Evaluation of

    Heat-flux on Scramjet Engine Wall in Mach 6 Flight Condition [M]. 57th International

    Astronautical Congress. American Institute of Aeronautics and Astronautics. 2006.

    [32] JASON T, CHRISTOPHER G, JON L, JEFFREY D, PAUL K. Diagnostic Sensing for

    Scramjet Combustors [M]. 17th AIAA International Space Planes and Hypersonic Systems

    and Technologies Conference. American Institute of Aeronautics and Astronautics. 2011.

    [33] . [D]. ; , 2011.

    [34] . [D]; , 2011. [35] GLENN B, ROBERT B, DAVID R, CHARLES M. CFD evaluation of Mach 17 HYPULSE

    scramjet combustor data [M]. 3rd International Aerospace Planes Conference. American

    Institute of Aeronautics and Astronautics. 1991.

    [36] FUREBY C, CHAPUIS M, FEDINA E, KARL S. CFD analysis of the HyShot II scramjet

    combustor [J]. P Combust Inst, 2011, 33(2399-405.

  • 117

    [37] CHAPUIS M, FEDINA E, FUREBY C, HANNEMANN K, KARL S, MARTINEZ

    SCHRAMM J. A computational study of the HyShot II combustor performance [J]. P

    Combust Inst, 2013, 34(2): 2101-9.

    [38] . [D]; , 2006. [39] , , , . [M].

    . . 2012: 1. [40] , . [J]. , 2003, 0(01): 88-

    92.

    [41] HEISER W H, PRATT D T. Hypersonic airbreathing propulsion [M]. Washington, D.C.:

    American Institute of Aeronautics and Astronautics, 1994.

    [42] ERIC G, JOSE G, DAVID G, JONATHAN B, TODD J, DOUG W, CHARBEL R.

    Development of a Scramjet/Ramjet Heat Exchanger Analysis Tool (SRHEAT) [M]. 44th

    AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. American Institute of

    Aeronautics and Astronautics. 2008.

    [43] TIAN L, CHEN L, CHEN Q, LI F, CHANG X. Quasi-One-Dimensional Multimodes

    Analysis for Dual-Mode Scramjet [J]. J Propul Power, 2014, 30(6): 1559-67.

    [44] , , . [J]. , 2011, 04): 28-34+58.

    [45] , , . [J]. , 2005, 01): 69-73.

    [46] KRISHNASWAMY S, NAYAN D. One Dimensional Hydrocarbon Fueled Scramjet Model

    with Droplet Evaporation and Finite Rate Chemistry [M]. 42nd AIAA/ASME/SAE/ASEE

    Joint Propulsion Conference & Exhibit. American Institute of Aeronautics and Astronautics.

    2006.

    [47] O T F, BRIEN, STARKEY R P, LEWIS M J. Quasi-One-Dimensional High-Speed Engine

    Model with Finite-Rate Chemistry [J]. J Propul Power, 2001, 17(6): 1366-74.

    [48] . [D]; , 2007.

    [49] , , , . ; proceedings of the , , F, 2011 [C].

    [50] , , , , . ; proceedings of the , , F, 2012 [C].

    [51] SPALDING D B, CHI S W. The Drag of a Compressible Turbulent Boundary Layer on a

    Smooth Flat Plate with and without Heat Transfer [J]. J Fluid Mech, 1964, 18(1): 117-43.

    [52] MEADOR W E, SMART M K. Reference Enthalpy Method Developed from Solutions of

    the Boundary-Layer Equations [J]. Aiaa J, 2005, 43(1): 135-9.

    [53] , , , , , , , , . [J]. , 2015,

    [54] . [M]. , 2007. [55] SCH LEIN E. Skin Friction and Heat Flux Measurements in Shock/Boundary Layer

    Interaction Flows [J]. Aiaa J, 2006, 44(8): 1732-41.

    [56] DOLLING D S. Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What

    Next? [J]. Aiaa J, 2001, 39(8): 1517-31.

    [57] HAINS F D, WAYNE J. Shock Interference Bell Aerospace, Heating in Hypersonic Flows

  • 118

    [J]. Aiaa J, 1972, 10(11): 1441-7.

    [58] HORNUNG H. Regular and Mach Reflection of Shock-Waves [J]. Annu Rev Fluid Mech,

    1986, 18(33-58.

    [59] CARROLL B F, LOPEZFERNANDEZ P A, DUTTON J C. COMPUTATIONS AND

    EXPERIMENTS FOR A MULTIPLE NORMAL SHOCK BOUNDARY-LAYER

    INTERACTION [J]. J Propul Power, 1993, 9(3): 405-11.

    [60] KUMAR C S, REDDY K P J. Hypersonic Interference Heating on Flat Plate with Short

    Three-Dimensional Protuberances [J]. Aiaa J, 2014, 52(4): 747-56.

    [61] ZHELTOVODOV A. Shock waves/turbulent boundary-layer interactions - Fundamental

    studies and applications [M]. Fluid Dynamics Conference. American Institute of Aeronautics

    and Astronautics. 1996.

    [62] , , , . , CN203519207U [P/OL]. 2014-04-02]. [63] , , , . , CN103575427A

    [P/OL]. 2014-02-12].

    [64] , , , . , CN103557945A [P/OL]. 2014-02-05].

    [65] FQ Z, XJ F, J W, G Y, JG L. Characteristics of compressible flow of supercritical kerosene

    [J]. Acta Mech Sinica-Prc, 2012, 28(8-13.

    [66] FAN X, YU G, LI J, ZHANG X, SUNG C J. Investigation of vaporized kerosene injection

    and combustion in a supersonic model combustor [J]. J Propul Power, 2006, 22(1): 103-10.

    [67] LI L, WANG J, FAN X. Development of integrated high temperature sensor for

    simultaneous measurement of wall heat flux and temperature [J]. Review of Scientific

    Instruments, 2012, 83(7): 074901-10.

    [68] Guide: Guide for the Verification and Validation of Computational Fluid Dynamics

    Simulations (AIAA G-077-1998(2002)) [M]. American Institute of Aeronautics and

    Astronautics, Inc. 1998.

    [69] , , , . DRGEPSA RP-3 [M]. . ; . 2014.

    [70] BAO W, YANG Q, CHANG J, ZONG Y, HU J. Dynamic Characteristics of Combustion

    Mode Transitions in a Strut-Based Scramjet Combustor Model [J]. J Propul Power, 2013,

    29(5): 1244-8.

    [71] BAURLE R A, GAFFNEY R L: NASA Langley Research Center, 2007.

    [72] WESTBROOK C K, DRYER F L. Simplified Reaction-Mechanisms for the Oxidation of

    Hydrocarbon Fuels in Flames [J]. Combust Sci Technol, 1981, 27(1-2): 31-43.

    [73] MAGNUSSEN B F, HJERTAGER B H. On mathematical modeling of turbulent combustion

    with special emphasis on soot formation and combustion [J]. Symposium (International) on

    Combustion, 1977, 16(1): 719-29.

  • A:

    119

    A:

    14 A A-2 A-1

    Exp.No.##x## 3-1 ## x c

    x h

    3-2

  • 120

  • A:

    121

  • 122

  • A:

    123

    A-1

    1 2 3c 3h 4c 4h 5 6c 6h 7c 7h 8c 8h 9c 9h 10c 10h 11c 11h 12c 12h 13c 13h 14c 14h mm W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2 W/cm^2

    (K) 1605 1608 1595 1595 1619 1619 1622 1627 1627 1701 1701 1289 1289 1308 1308 1308 1308 1314 1314 1306 1306 1469 1469 1686 1686(bar) 9.66 9.6 9.53 9.53 9.51 9.51 8 8.01 8.01 8.11 8.11 4.16 4.16 4.15 4.15 4.15 4.15 3.76 3.76 4.94 4.94 4.45 4.45 4.75 4.75Mach 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0.56 0 0.55 0 0 0.72 0 0.59 0 0.69 0 0.88 0 0.52 0 0.71 0 0.7 0 0.7 0 0.7H2 0 0 0 0.189 0 0.149 0 0 0.095 0 0 0 0.094 0 0.098 0 0.095 0 0.096 0 0.091 0 0.093 0 0.093

    (g/s) 3086 3075 3074 3074 3091 3091 2578 2568 2568 2580 2580 2574 2574 2579 2579 2577 2577 2008 2008 3061 3061 2556 2556 2539 253980 38.5 38.8 35.0 35.9 36.5 37.5 32.4 33.0 33.7 36.5 38.2 27.5 29.3 27.6 32.3 27.6 29.6 18.4 17.2 33.5 36.8 33.5 36.5 44.3 48.8520 38.7 38.8 38.1 39.2 39.8 40.7 35.4 36.1 47.8 37.3 39.0 27.6 50.0 28.2 51.6 28.1 51.6 23.3 43.0 32.9 57.4 34.8 61.7 43.6 67.6871 18.9 19.3 17.4 45.2 19.0 71.4 21.8 21.8 106.2 23.6 71.1 15.7 102.0 16.3 105.6 16.4 110.5 13.1 86.0 19.6 104.3 19.6 103.2 24.9 115.81046 29.5 29.9 27.1 80.5 -- -- 27.1 27.9 110.5 30.7 95.9 21.1 93.9 21.5 90.2 24.4 92.5 19.9 83.1 29.6 110.7 31.3 101.1 38.0 110.51221 13.9 -- 26.9 87.0 24.1 92.0 20.8 22.6 112.8 18.0 103.4 12.4 84.6 11.9 87.3 12.2 71.6 9.5 64.9 16.3 111.4 16.1 99.1 18.9 119.51321 33.9 34.4 32.1 113.2 27.9 100.4 25.2 16.4 64.1 5.1 58.3 -- -- 16.6 95.2 16.1 81.6 13.0 76.9 20.3 106.9 20.5 99.4 25.8 107.31550 18.8 19.3 18.7 61.0 20.2 58.9 25.6 25.4 55.5 25.2 57.2 17.0 45.8 17.1 40.8 16.9 44.0 16.3 36.2 14.9 50.0 18.1 43.7 19.8 46.61900 13.2 13.8 12.4 65.9 -- -- -- 17.1 69.2 18.1 76.7 21.2 62.5 22.0 63.6 22.5 62.2 27.4 66.2 15.9 75.0 20.3 67.5 19.0 73.21046 27.2 27.7 30.5 86.3 29.5 77.9 25.0 25.6 68.0 24.5 65.9 18.4 49.2 18.7 42.8 19.4 52.7 15.8 45.8 22.8 54.5 23.7 60.8 28.5 56.51321 42.1 43.4 30.9 99.9 32.2 98.1 27.0 15.4 50.8 6.3 63.0 4.9 32.1 5.2 27.0 5.1 32.9 7.1 28.2 18.9 64.1 -- -- -- --1900 18.8 19.6 19.8 65.1 20.2 61.8 22.0 24.3 65.9 25.1 70.4 20.2 59.0 20.8 60.3 20.9 59.6 22.0 59.9 21.8 65.4 23.1 59.7 28.6 59.01900 45.0 44.5 44.6 76.8 43.1 73.3 40.2 41.8 63.4 42.3 72.3 25.7 57.0 25.9 50.6 25.6 62.9 22.6 55.4 29.1 62.4 31.5 58.7 38.5 64.980 42.7 43.7 43.7 45.8 46.4 47.8 43.2 43.3 45.0 44.4 46.3 32.0 32.7 32.5 50.3 32.5 33.6 27.9 29.2 37.2 38.2 40.1 41.1 50.8 52.4520 38.4 39.5 38.3 38.9 40.2 40.4 36.6 37.5 49.4 38.3 38.7 27.8 48.3 28.3 46.1 28.0 49.2 22.9 43.0 31.2 53.9 33.9 60.0 42.4 68.4736 33.2 33.8 32.8 40.4 35.1 38.9 32.3 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --871 25.8 28.0 32.2 55.8 32.2 52.9 28.4 29.4 67.2 27.9 39.3 20.1 33.5 20.4 31.6 20.5 37.1 16.6 31.5 22.6 34.5 23.9 42.7 29.0 50.4971 30.7 31.2 29.5 72.0 32.3 74.0 32.1 30.3 92.5 31.7 87.1 25.4 50.7 25.8 55.2 26.4 61.9 21.1 49.8 30.3 53.7 31.7 65.8 39.1 78.21221 16.7 17.6 17.6 123.1 18.2 128.0 15.1 16.0 101.0 15.2 118.4 10.8 89.7 11.2 87.9 10.9 89.2 8.9 78.1 12.9 97.2 13.4 93.7 16.8 99.51550 28.4 29.0 27.8 153.7 28.9 149.0 33.0 31.6 107.9 29.4 89.9 28.0 79.6 29.0 77.9 28.4 67.0 30.9 61.9 24.6 79.7 25.9 76.4 26.7 85.71900 61.5 51.1 59.3 80.0 63.1 81.8 66.6 64.6 78.7 64.2 72.7 37.2 62.5 37.9 53.1 37.7 62.1 29.7 55.6 39.6 65.7 45.3 63.8 52.7 69.0

  • 124

    A-2

    1 2 3c 3h 4c 4h 5 6c 6h 7c 7h 8c 8h 9c 9h 10c 10h 11c 11h 12c 12h 13c 13h 14c 14h mm kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa kPa

    (K) 1605 1608 1595 1595 1619 1619 1622 1627 1627 1701 1701 1289 1289 1308 1308 1308 1308 1314 1314 1306 1306 1469 1469 1686 1686(bar) 9.66 9.6 9.53 9.53 9.51 9.51 8 8.01 8.01 8.11 8.11 4.16 4.16 4.15 4.15 4.15 4.15 3.76 3.76 4.94 4.94 4.45 4.45 4.75 4.75Mach 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0.56 0 0.55 0 0 0.72 0 0.59 0 0.69 0 0.88 0 0.52 0 0.71 0 0.7 0 0.7 0 0.7H2 0 0 0 0.189 0 0.149 0 0 0.095 0 0 0 0.094 0 0.098 0 0.095 0 0.096 0 0.091 0 0.093 0 0.093

    (g/s) 3086 3075 3074 3074 3091 3091 2578 2568 2568 2580 2580 2574 2574 2579 2579 2577 2577 2008 2008 3061 3061 2556 2556 2539 253975 40.99 40.98 41.05 41.61 42.55 42.53 34.75 35.97 35.60 37.25 37.32 44.16 43.82 43.69 62.99 43.90 43.69 35.00 34.68 52.91 52.73 49.22 48.84 53.98 53.51125 61.53 61.48 61.54 61.91 62.82 62.88 51.69 52.98 53.27 54.89 55.23 57.86 58.13 57.61 126.37 57.91 57.77 46.03 49.17 69.64 76.93 64.52 64.21 70.66 70.87175 38.40 38.59 38.83 39.16 39.94 39.98 32.80 33.80 33.91 35.67 35.88 38.80 54.06 38.16 101.38 38.55 38.16 30.98 66.48 46.35 91.49 43.52 45.79 47.89 47.11225 41.89 42.66 42.73 43.12 45.57 45.75 37.76 39.84 40.27 41.09 41.38 43.07 96.94 42.36 118.40 42.69 42.80 36.05 91.22 51.39 127.29 47.63 79.70 51.96 51.60275 30.94 30.84 30.98 31.51 32.40 32.48 25.88 27.12 27.09 28.15 28.40 33.50 110.44 33.25 150.68 33.48 76.79 26.30 100.90 40.64 146.44 37.82 121.70 42.18 44.40325 46.35 46.22 45.99 46.40 47.47 47.59 39.03 39.95 39.63 40.96 41.30 42.06 118.16 41.52 145.86 41.81 44.14 33.45 104.33 50.34 150.06 46.63 110.47 51.11 50.61375 41.14 41.12 41.63 42.04 44.02 44.44 36.96 38.53 39.14 39.69 40.37 42.49 130.04 41.82 169.17 41.92 107.36 34.87 109.46 49.89 175.53 46.71 140.06 50.95 70.65425 41.35 41.21 41.16 41.40 42.82 42.82 35.17 36.28 36.13 37.51 37.91 41.61 152.39 41.33 181.20 41.52 120.36 33.16 115.61 49.72 197.02 46.60 147.38 51.32 87.08475 36.23 36.14 36.27 36.66 37.67 37.68 30.74 32.27 31.96 33.03 33.17 34.94 160.41 34.62 190.13 34.62 126.06 27.86 119.09 41.81 205.59 38.85 147.97 42.84 113.89525 38.94 38.98 38.93 39.37 40.50 42.25 33.19 41.81 45.64 34.92 35.10 36.46 171.43 35.81 192.59 36.27 128.66 29.21 123.29 43.38 215.99 41.69 151.74 46.31 121.70675 42.99 43.15 43.53 102.62 41.40 54.43 36.99 38.74 124.16 39.88 40.04 41.99 193.60 42.14 206.71 42.61 152.30 34.36 142.06 50.57 236.69 47.62 180.74 52.17 164.31725 37.47 37.08 37.57 118.57 34.56 97.73 31.17 32.33 123.14 34.04 36.16 39.45 198.79 39.09 208.44 39.71 161.13 31.94 147.86 48.71 242.21 44.86 188.46 49.65 174.99775 38.98 39.05 39.37 126.25 36.43 121.60 33.08 35.19 135.63 37.20 61.12 39.15 171.99 -- -- 37.50 165.64 30.23 149.79 45.32 243.01 -- -- 45.96 184.20825 36.00 36.19 36.32 138.00 33.23 121.55 30.02 31.86 130.05 33.25 98.72 35.97 201.90 35.59 211.81 35.86 167.83 28.63 151.59 43.87 244.85 40.37 195.17 44.32 185.05875 36.03 36.16 36.59 136.13 33.80 125.83 30.82 31.91 131.75 34.32 103.63 39.49 199.04 39.37 209.29 39.73 170.04 31.28 150.77 47.17 242.38 44.15 195.60 47.88 183.36925 35.07 35.14 34.82 128.96 33.70 122.55 28.52 28.25 139.47 29.92 107.94 32.15 182.73 31.87 194.82 32.12 153.32 26.28 138.43 38.52 222.30 36.46 175.56 40.16 171.54975 35.66 35.48 36.03 145.05 34.74 136.68 30.54 31.24 119.21 32.28 118.99 38.16 173.52 37.89 186.71 38.40 146.80 30.93 131.36 46.21 211.40 43.12 167.45 47.57 165.581025 34.58 34.71 35.76 147.82 34.32 144.90 31.27 32.62 103.10 34.32 120.58 35.32 165.75 34.71 177.77 35.48 141.84 28.52 124.20 42.48 201.49 39.32 160.41 44.12 165.691075 32.44 32.40 32.45 145.12 32.74 139.23 27.68 31.66 131.01 33.17 127.89 34.69 165.44 34.11 175.34 34.52 147.82 27.23 126.34 42.57 200.61 38.52 164.87 42.30 167.231125 29.30 29.33 29.56 158.27 30.27 152.48 25.14 -- -- 28.62 133.81 26.94 157.24 26.62 165.83 33.47 145.20 21.76 120.10 32.96 191.35 31.11 160.67 34.87 164.551175 33.15 32.93 33.67 160.76 34.92 158.46 28.07 28.73 119.96 30.25 135.34 29.59 156.98 29.15 161.54 29.38 143.49 23.94 118.62 36.03 191.06 33.94 159.12 37.52 164.971225 27.83 27.70 28.11 164.07 29.15 163.25 23.80 26.36 120.10 27.31 126.68 34.25 139.57 33.64 141.78 33.96 128.81 28.45 105.01 41.82 168.54 38.33 143.00 42.04 145.131275 32.95 32.89 33.59 146.09 34.90 142.69 26.15 24.98 133.59 26.40 140.85 29.44 154.12 29.25 158.86 29.62 143.34 24.14 117.55 35.93 187.08 33.78 159.02 38.02 164.581325 30.65 30.50 30.61 142.55 32.18 141.78 26.54 28.23 104.57 29.35 110.94 31.24 126.79 31.04 128.65 31.41 116.86 29.97 94.98 38.40 152.48 35.80 129.91 40.27 130.791475 30.15 29.63 29.94 102.83 31.21 100.38 40.55 50.34 87.44 41.94 87.01 48.50 91.48 48.06 94.63 48.68 84.35 60.76 70.27 34.51 110.62 42.22 93.10 35.31 92.731525 39.11 37.84 39.23 94.01 37.57 94.68 62.67 70.53 80.04 67.88 77.92 58.81 80.67 60.74 82.24 61.33 72.89 65.09 61.49 39.24 97.23 57.47 80.10 40.80 81.531575 56.97 65.92 67.43 79.35 64.21 78.51 70.42 72.35 71.08 73.42 66.82 67.18 72.40 67.21 74.92 67.03 66.58 70.38 56.88 60.76 88.18 69.74 72.73 72.47 69.871625 74.54 78.29 79.59 79.38 73.09 78.75 71.33 72.35 68.12 71.47 65.92 74.45 69.06 73.78 71.30 73.70 61.90 75.43 64.48 75.58 83.91 75.64 68.14 79.07 68.861675 78.54 79.37 78.62 72.06 81.62 71.85 75.99 80.66 64.35 77.71 61.77 78.74 66.54 78.96 69.18 78.23 60.09 79.63 82.80 76.48 80.27 80.40 66.24 77.79 64.211725 72.82 74.36 74.17 66.50 75.26 65.09 80.71 81.84 59.71 81.41 54.74 82.5