Evans Slides SoilsDroughtMicrobes

47
How do soil microbes respond to drought and rainfall? Sarah Evans Assistant Professor Kellogg Biological Sta>on

description

Microbial Ecology

Transcript of Evans Slides SoilsDroughtMicrobes

How  do  soil  microbes  respond  to  drought  and  rainfall?    

Sarah  Evans  Assistant  Professor  

Kellogg  Biological  Sta>on  

Major  ques>ons  addressed  in  this  lecture  

•  How  does  rainfall/drought  alter  the  soil  environment?  

•  What  kind  of  stress  does  this  impose  for  a  microbe?  

•  What  traits  do  microbes  use  to  tolerate  these  stresses?  

But  first:  why  should  we  care?  

•  Rainfall  drives  biology  – Biology  drives  process  

• Rainfall  changing  in  future  – Process  changing  in  future?  

Soil  carbon  

Climate  change  

Background:    Climate  -­‐  carbon  -­‐  microbe  interac5ons  

CO2  

Climate:  predicted  shiLs  in  rainfall  •  “More  intense  rainfall  regimes”  •  =  Higher  propor>on  of  rain  from  large  events  •  =  Fluctua>on  in  soil  moisture  (dry  then  rewet)    

More  intense  rainfall  

IPCC  2007  

•  Microbes  decompose  soil  C  and  produce  CO2  

•  Sudden  changes  in  moisture  are  stressful  to  microbes  

CO2  

Ques5ons:  1.   How  do  changes  in  rainfall  affect  microbes?    2.   How  do  these  changes  affect  carbon  flux?  

CO2  

How  do  changes  in  rainfall  affect  plants?  How  does  this  affect  carbon  flux?  •  Rain  affects  plant  physiology  and  species  composi>on  

•  Different  plants  will  have  different  effects  on  carbon  flux…  

Mean  annual  precipita>on  

Mean  annu

al  te

mpe

rature  

How  soil  water  affects  microbes  

Various ways that soil water affects microbial activity:

•  rate of solute diffusion through soil •  nutrient availability / uptake into cells •  solute concentration; hyperosmotic stress in saline soils •  microbial movement in soil (cells swim in the fluid phase).

Bacterial movement ceases when soil dries sufficiently to produce discontinuous water-filled pores, or when the water film is smaller than what’s needed for the microbe to swim. For microbial motility, water films must be > 0.5 µm for bacteria; ≥ 4 µm for protozoa and flagellated fungal zoospores.

•  Impacts directly on status of soil aeration [especially O2 diffusion] within pore spaces, hence regulates aerobic vs. anaerobic metabolism

•  drying imposes desiccation stress, common in surface soils

•  Physical (solute movement •  Chemical (nutrient limited) •  Biological (osmotic stress) •  Physical (microbe

movement)

•  Chemical (O2 limitation)

•  Biological (desiccation stress)

The  soil  environment  

•  Flight  through  soil   Physical (solute movement Physical (microbe movement) Chemical (nutrient limited) Chemical (O2 limitation) Biological (osmotic stress) Biological (desiccation stress)

1.      2.      3.  

Physical  constraints  •  Physical (solute movement •  Physical (microbe movement)

Chemical  •  Chemical (nutrient limited) •  Chemical (O2 limitation)

Drought Large rainfall event

Microbial cell

•  Biological (osmotic stress) •  Biological (desiccation stress)

Biological  

I.  Do  micro-­‐scale  mechanisms  help  explain  soil  CO2  flux  aLer  a  large  rain  event?  

II.  Can  we  use  life  history  strategies  to  understand  microbial  responses  to  moisture  stress?    

   

Rest  of  lecture:  Two  studies      

-­‐-­‐Fill  in  traits  table-­‐-­‐  

Observed  Predicted  

Li  et  al.  2005  

Moisture    pulse  

Difficult  to  predict  

I.  Do  micro-­‐scale  mechanisms  help  explain  soil  CO2  flux  aIer  a  large  rain  event?  

Are  there  other  mechanisms  we  haven’t  accounted  for  that  could  be  causing  this  large  pulse  of  CO2?  

First,  how  is  CO2  produced  in  soil?  

Enzymes  

Organic  maPer  

Dissolved  substrate  

1.  Need  microbes  2.  Need  movement  

•  Individual-­‐based,  theore>cal  model  •  Micro-­‐scale  •  3  func>onal  groups  •  Quan>fies  output  

Microbial  func5onal  groups  

DOC:DON  Enzyme  ac5vity  Respira5on  

1  cm    

Biogeochemical  -­‐  microbial  model  

Implemented  water  dynamics  

0  20  40  60  80  

100  120  140  160  180  

Water  level  (mm

3 )  

Time  (days)  

Evapora>on  

Rainfall  

Water  level  linked  to:  •  Diffusion  •  Leaching  •  Microbial  growth  

Mechanisms:  processes  responding  to  water  

1.  Water-­‐dependent  growth  2.  Microbial  diversity  3.  Substrate  diffusion  

Patches  Diffusion  of  substrates  Growth  of  different  microbial  groups  

Cheaters  (red)  respond  

Rainfall  pahern:  

Cheaters  Producers  

Simula>ons  

1.  Water-­‐dependent  growth  2.  Microbial  diversity  3.  Substrate  diffusion  

Reproducing  CO2  pulse  with  model  

One  water  pulse  With  mechanisms,  simulated  pulse  

CO2  

What  is  the  rela>ve  influence  of  different  mechanisms  on  CO2  pulse?  

Time  

CO2  

Mechanisms,  in  different  combina>ons:  1.  Water-­‐dependent  growth  2.  Microbial  diversity  3.  Substrate  diffusion  

Rela>ve  influence  of  different  mechanisms  Produced  highest:  Diffusion  +  Water-­‐dependent  growth  

Exclud

e  Diffu

sion  

Exclud

e  Grow

th  

Add  microbial  diversity  

CO

2 res

pire

d (fm

ol C

/hou

r)

Proportion of m

aximum

pulse (%)

100  %  

Diffusion  contributed  more  Effect  of  diversity  depends  on:  •  Compe>>ve  

interac>ons  •  Specific  func>onal  

groups  present  

86  %  ±  22%  

Conclusions:  study  1  •  Reproduced  biogeochemical  pulse  with  a  model  •  Once  separated,  physical  factors  (diffusion)  might  influence  CO2  flux  more  than  biological  stress  

•  CO2  flux  did  depend  on  microbial  func>onal  groups  that  were  present,  but  needs  more  work  

I.  Do  micro-­‐scale  mechanisms  help  explain  soil  CO2  flux  aLer  a  large  rain  event?  

II.  Can  we  use  life  history  strategies  to  understand  microbial  responses  to  moisture  stress?    

   

Outline  of  talk:  Two  studies      

Exercise  

•  What  traits  would  be  useful  to  survive  under  drought?  

Trait     Does  it  contribute  to  drought  tolerance?  How?    

What  are  the  disadvantages  and  costs?    

Can  move  (mo5lity)    

Cheat  off  of  others’  enzyme  produc5on  

Ability  to  store  resources  

Synthesizes  intra-­‐cellular  solutes  

Can  change  metabolism  (plas5c)  

Large  cell  size  

Responds  quickly  to  environment    

Can  form  spores  

Other?  

How  can  we  understand  microbial  diversity  in  an  ecologically  meaningful  way?  Ambient  rainfall  

•  Want  to  categorize  microbes  based  on  their  ecology  

•  Can’t  measure  all  species  traits  directly  

•  Way  of  organizing  organisms  based  on  growth  or  stress  response  

•  e.g.  r-­‐  and  k-­‐  strategists  (MacArthur  and  Wilson  1967)  

•  “life  history  strategy”  in  plants  (Grime  1979)  

– opportunist,  ruderal,  tolerant  

•  Do  we  see  ecological  strategies  in  microbes?  

Ecological  strategies  

Strategy  based  on  historical  condi>ons  

•  Certain  disturbance  regime  results  in  certain  life  strategy    

•  Evidence  accumula>ng,  history  mahers  for  microbes  too  

Disturbance  regime  (history)  

Specific  ques>ons:  study  2  1.  Do  microbial  species  express  certain  

“strategies”  when  responding  to  a  stress?    Are  these  strategies  related  to  phylogeny?    

2.  Does  the  distribu>on  of  these  strategies  change  with  disturbance  history?    Is  this  due  to  shi4s  in  species  or  in  strategy?  

Disturbance  regime:  fluctua>on  in  moisture  condi>ons  

Methods:  describing  life  strategies  •  Used  454  pyrosequencing  

to  describe  rela>ve  abundance  of  each  species  

•  Visualize  on  heatmap  •  Hierarchical  clustering  

N=5  

MODERATE   HIGH   LOW  

Results:    Q1:  Do  species  cluster  into  strategies?  

Tolerant      Opportunis>c        Sensi>ve  

Strategy  

Tolerant  Opportunis>c  Sensi>ve  

Related  to  phylogeny?            à  Plot  strategy  on  phylogene>c  tree  

Tolerant  Opportunis>c  Sensi>ve  

Does  strategy  relate  to  phylogeny?  

Sensi>ve  clustered,  tolerant  overdispersed  

Ques>ons  

1.  Do  microbial  species  express  certain  “strategies”  when  responding  to  a  stress?  

•  Are  these  strategies  related  to  phylogeny?  

2.  Does  the  distribu@on  of  these  strategies  change  with  disturbance  history?  

•  Is  this  due  to  shiLs  in  species  or  shiLs  in  organism  strategy?  

Yes  

Varies  

KONZA  Biological  Research  Sta>on  

Rainfall  Manipula>on  Plot  Study  (RaMPS)  

•  Manipulated  plot:  altered  rainfall  >ming    – more  >me  between  rainfall  events,  larger  events  

More  drying  rewesng  

Ambient  rainfall  Lab  drying-­‐rewesng  

Evans  and  Wallenstein  2012  Biogeochemistry  

Konza  biological  sta@on  

Results:    Q2:  Does  history  affect  distribu>on  of  strategies?  

Exposed  to  moisture  fluctua>on  Ambient  rainfall  in  the  field  Tolerant    Opportunis>c        Sensi>ve  

Specula>on:  related  to  carbon  flux?  •  “Tolerance”  to  drying-­‐rewesng  could  mean  more  

carbon  for  growth,  less  carbon  respired.    •  Communi>es  from  Intense  Rainfall  plots  did  respire  less  

when  exposed  to  moisture  pulse1  

1Evans  and  Wallenstein  2012  Biogeochemistry  

Lower  soil  respira@on  because  more  tolerant  species?  

Exposed  to  moisture  fluctua>on  Ambient  rainfall  in  the  field  

Tolerant  strategy  

Change  species  or  change  strategy?  

Opportunis>c    Sensi>ve  Tolerant  

Change  species  or  change  strategy?  

•  75%  were                                                                                                                different  spp  

 •  Do  the  species  that  responded  from  both  historical  treatments  respond  in  the  same  way?  Is  life  strategy  conserved?  

Opportunis>c    Sensi>ve  Tolerant  

Previously  exposed  to  moisture  pulses  25%  

overlap  

Control  

Inside:  drying-­‐reweMng  disturbance  history  

82%  of  species  changed    strategy  

Tolerant  Opportunis>c  Sensi>ve  

Change  strategy?  

Outside:  Control  field  treatment  

Colors  of  tree  =  Phyla  

Results  summary  

1. Do  microbial  species  express  certain  “strategies”  when  responding  to  a  stress?  

•  Are  these  strategies  related  to  phylogeny?  

2. Does  the  distribu@on  of  these  strategies  change  with  disturbance  history?  

•  Is  this  due  to  shiLs  in  species  or  shiLs  in  organism  strategy?  

Yes  

Varies  

Yes  

Both  occur  

Review:  What  makes  a  Tolerant,  Opportunis>c,  or  Sensi>ve  taxa?    

Tolerant      Opportunis>c        Sensi>ve  

Strategy  

Tolerant  Opportunis>c  Sensi>ve  

Review:  Drought  in  soils  imposes  physical,  chemical,  and  biological  stress  on  microbes  

Physical (solute movement Physical (microbe movement) Chemical (nutrient limited) Chemical (O2 limitation) Biological (osmotic stress) Biological (desiccation stress)

1.      2.      3.  

Like  any  disturbance,  need  specific  traits  to  survive.      Traits  come  at  a  cost    Impacts  carbon  cycling  

Trait    

Can  move  (mo5lity)    

Cheat  off  of  others’  enzyme  produc5on  

Ability  to  store  resources  

Synthesizes  intra-­‐cellular  solutes  

Can  change  metabolism  (plas5c)  

Large  cell  size  

Responds  quickly  to  environment    

Can  form  spores  

Other?  

Soil  carbon  

Climate  change  

Climate  -­‐  carbon  -­‐  microbe  interac5ons  

CO2