Equilibrium)ataPoint - Memphis Equilibrium.pdfEquilibrium)ataPoint ... 41 Particle Equilibrium...

22
1 Equilibrium at a Point Never slap a man who's chewing tobacco.” Will Rogers Wednesday, September 12, 2011 Particle Equilibrium 2 Objec3ves Understand the concept of sta3c equilibrium Understand the use of the freebody diagram to isolate a system for analysis Understand the reac3on provided by the connec3on to a rope Understand the reac3on provided by the connec3on to a spring

Transcript of Equilibrium)ataPoint - Memphis Equilibrium.pdfEquilibrium)ataPoint ... 41 Particle Equilibrium...

1

Equilibrium  at  a  Point  

“Never  slap  a  man  who's  chewing  tobacco.”    -­‐Will  Rogers  

Wednesday, September 12, 2011 Particle Equilibrium 2

Objec3ves  

¢  Understand  the  concept  of  sta3c  equilibrium  ¢  Understand  the  use  of  the  free-­‐body  diagram  to  

isolate  a  system  for  analysis  ¢  Understand  the  reac3on  provided  by  the  

connec3on  to  a  rope  ¢  Understand  the  reac3on  provided  by  the  

connec3on  to  a  spring  

2

Wednesday, September 12, 2011 Particle Equilibrium 3

Tools  

¢  Basic  Trigonometry  ¢  Pythagorean  Theorem  ¢  Algebra  ¢  Scalar  analysis  of  forces    

Wednesday, September 12, 2011 Particle Equilibrium 4

Scalar  Representa3on  

¢ We  noted  that  the  magnitude  of  forces  is  always  posi3ve.    

¢  A  nega3ve  sign  in  front  of  a  magnitude  actually  represents  the  direc3on  of  the  force  and  not  its  absolute  magnitude.  

¢  A  posi3ve  sign  is  in  the  direc3on  of  the  label.  ¢  A  nega3ve  sign  is  in  the  direc3on  away  from  the  label.  

3

Wednesday, September 12, 2011 Particle Equilibrium 5

Equilibrium  

¢  The  unifying  concept  to  this  course  is  that  of  sta3c  equilibrium  

¢  Sta3c  equilibrium  in  this  course  means  that  there  is  no  change  in  velocity  with  3me  

Wednesday, September 12, 2011 Particle Equilibrium 6

Equilibrium  

¢  Stated  mathema3cally,  sta3c  equilibrium  would  be  

ΔvΔt

= 0

4

Wednesday, September 12, 2011 Particle Equilibrium 7

Equilibrium  

¢  If  we  express  this  as  an  instantaneous  change  in  velocity,  the  expression  becomes  

dv

dt= 0

Wednesday, September 12, 2011 Particle Equilibrium 8

Equilibrium  

¢  From  physics,  you  may  remember  that  instantaneous  change  in  velocity  is  also  known  as  accelera3on  so  

dv

dt= a= 0

5

Wednesday, September 12, 2011 Particle Equilibrium 9

Equilibrium  

¢ Now  also  from  physics,  you  may  remember  that  accelera3on  is  produced  by  the  ac3on  of  a  force  on  a  mass  

¢  This  is  Newton’s  first  law  of  mo3on  

dv

dt= a= 0

F= ma

Wednesday, September 12, 2011 Particle Equilibrium 10

Equilibrium  

¢ Mass  is  a  scalar  quan3ty  so  there  is  no  direc3on  assigned  to  it.  Force  however  will  have  the  same  direc3on  as  the  accelera3on  

dv

dt= a= 0

F= ma

6

Wednesday, September 12, 2011 Particle Equilibrium 11

Equilibrium  

¢ We  can  then  remove  some  of  the  elements  in  our  long  expression  to  get  to  the  heart  of  the  maOer  in  this  course  

dv

dt= a= 0 = F

mF= 0

Wednesday, September 12, 2011 Particle Equilibrium 12

Equilibrium  

¢  This  means  that  the  net  resultant  force  ac3ng  on  a  body  must  be  equal  to  zero  for  the  body  to  be  in  equilibrium  

F= 0

7

Wednesday, September 12, 2011 Particle Equilibrium 13

Equilibrium  

¢  If  we  have  a  number  of  forces  ac3ng  on  a  body,  then  the  vector  sum  of  those  forces  (the  resultant)  must  be  equal  to  0  

F

∑ i= 0

Wednesday, September 12, 2011 Particle Equilibrium 14

Equilibrium  ¢  Since  the  resultant  is  equal  to  0,  the  coefficient  of  each  of  the  components  of  the  resultant  must  be  equal  to  0  

Fx i

∑ = 0

Fy j

∑ = 0

Fz k

∑ = 0

8

Wednesday, September 12, 2011 Particle Equilibrium 15

Equilibrium  

¢  If  we  take  the  sign  from  the  direc3on  of  the  vector  components  3mes  the  magnitude  for  each  of  the  components  we  can  then  write  

0

0

0

x

y

z

F

F

F

=

=

=

∑∑∑

Wednesday, September 12, 2011 Particle Equilibrium 16

Free-­‐Body  Diagram  

¢  The  second  important  concept  that  we  introduce  is  the  idea  of  a  free-­‐body  diagram  

¢  The  free-­‐body  diagram  is  an  isola3on  of  an  element  and  the  iden3fica3on  of  all  forces  which  are  ac3ng  on  that  element  

¢  By  an  element,  we  mean  a  part  of  a  mechanical  system  

9

Wednesday, September 12, 2011 Particle Equilibrium 17

Free-­‐Body  Diagram  

¢  Forces  can  act  on  a  system  as  either  an  applied  force  from  some  external  source  

or  ¢  Forces  can  act  due  to  the  connec3on  of  the  system  we  have  isolated  to  some  other  system  in  response  to  the  applied  forces  –  these  forces  are  known  as  reac3ons  

Wednesday, September 12, 2011 Particle Equilibrium 18

Free-­‐Body  Diagram  

¢  In  order  to  be  able  to  draw  a  correct  free-­‐body  diagram  (I  will  use  FBD  for  the  free-­‐body  diagram)  we  have  to  understand  what  types  of  forces/reac3ons  are  generated  through  different  types  of  connec3ons  

10

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 19

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 20

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

Nothing is the system is accelerating. Since the block is at rest, nothing is moving at all. What forces are acting on the block?

11

Wednesday, September 12, 2011 Particle Equilibrium 21

Springs  

¢  Springs  are  systems  that  exert  forces  that  are  propor3onal  to  the  condi3on  of  the  spring    

¢  Springs  may  be  in  compression  (pushed  together)  or  in  tension  (stretched  apart)  

Wednesday, September 12, 2011 Particle Equilibrium 22

Springs  

¢  Springs  that  are  in  compression  tend  to  push  on  the  objects  that  they  are  connected  to  

¢  Springs  that  are  in  tension  (stretched)  tend  to  pull  on  the  objects  that  they  are  connected  to  

¢  Springs  always  generate  a  force  that  is  along  the  axis  of  the  spring  

12

Wednesday, September 12, 2011 Particle Equilibrium 23

Springs  

¢  The  force  that  they  exert  will  be  propor3onal  to  the  amount  they  are  compressed  or  extended  

¢  The  magnitude  of  the  force  will  be  given  by  

F = k Δl( )k is the spring constant and has dimensions of force/length Δl is the amount by which the spring changes from its original unstretched length. If Δl is positive, the spring is stretched and it pulls on what it is connected to. If Δl is negative, the spring is compressed and it pushes on what it is connected to.

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 24

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

We will assume that the spring is being stretched and draw a force pulling on the block along the line of the spring.

13

Wednesday, September 12, 2011 Particle Equilibrium 25

Weight  

¢ Weight  always  acts  toward  the  center  of  the  earth  

¢  In  typical  problems,  that  will  be  towards  the  boOom  of  the  page  

¢  If  the  weight  or  mass  of  an  element  is  not  given,  you  may  assume  that  it  is  negligible  in  the  analysis  that  is  being  done  

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 26

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

We can add a force representing the action of gravity on the block (the weight) acting straight down.

14

Wednesday, September 12, 2011 Particle Equilibrium 27

Smooth  Surface  

¢  A  smooth  or  fric3onless  surface  provides  a  force  that  is  perpendicular  to  the  surface.  

¢  It  only  stops  something  from  moving  through  it.  

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 28

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

Finally, we add a force representing the reaction of the smooth surface on the box.

15

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 29

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

We can consider the box as a point and make all the force coincident at a point.

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 30

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

We can label each of the forces acting on the system to make the work and representation a bit easier.

F1

F2

F3

16

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 31

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

In order to make the math easier, we can set the x-axis along the 0.4m side and the y-axis parallel to the 0.3m side.

F1

F2

F3

x

y

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 32

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

Now we can write each of the forces in Cartesian form.

F1

F2

F3

x

y

F1x =45F1

F1y =35F1

17

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 33

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

Now we can write each of the forces in Cartesian form.

F1

F2

F3

x

y

F2x = 0F2y = F2

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 34

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

Now we can write each of the forces in Cartesian form.

F1

F2

F3

x

y

F3x = −F3 cos 450( )

F3y = −F3 sin 450( )

18

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 35

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

Summing the forces in the x and y directions we have.

F1

F2

F3

x

y

Fx∑ = 45F1 + 0 − F3 cos 45

0( )Fy∑ = 3

5F1 + F2 − F3 sin 45

0( )

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 36

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

Both of these sums must be equal to 0.

F1

F2

F3

x

y

Fx∑ = 45F1 + 0 − F3 cos 45

0( ) = 0

Fy∑ = 35F1 + F2 − F3 sin 45

0( ) = 0

19

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 37

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

F3 is equal to the weight of the block and weight is equal to mass times gravity.

F1

F2

F3

x

y

Fx∑ = 45F1 + 0 −mgcos 45

0( ) = 0

Fy∑ = 35F1 + F2 −mgsin 45

0( ) = 0

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 38

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

Substituting what we know F1

F2

F3

x

y

Fx∑ = 45F1 + 0 − 5kg( ) 9.81m

s2⎛⎝⎜

⎞⎠⎟ cos 45

0( ) = 0

Fy∑ = 35F1 + F2 − 5kg( ) 9.81m

s2⎛⎝⎜

⎞⎠⎟ sin 45

0( ) = 0

20

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 39

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

Using the first equation and isolating F1.

F1

F2

F3

x

y

45F1 + 0 − 5kg( ) 9.81m

s2⎛⎝⎜

⎞⎠⎟ cos 45

0( ) = 0

F1 =545kg( ) 9.81m

s2⎛⎝⎜

⎞⎠⎟ cos 45

0( )F1 = 43.35N

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 40

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

Using the expression for a spring.

F1

F2

F3

x

y

F1 = 43.35NF1 = k1 Δl( )

43.35N = 200 Nm

⎛⎝⎜

⎞⎠⎟ Δl( )

Δl = 0.22m

21

Problem  F3-­‐4  

Wednesday, September 12, 2011 Particle Equilibrium 41

The block has a mass of 5 kg and rests on the smooth plane. Determine the unstretched length of the spring.

So the spring is increased by 0.22m. From the diagram the stretched length of the spring is 0.5m, so the original length of the spring was 0.28m.

F1

F2

F3

x

y

F1 = 43.35NF1 = k1 Δl( )

43.35N = 200 Nm

⎛⎝⎜

⎞⎠⎟ Δl( )

Δl = 0.22m

Problem  3-­‐27  

Wednesday, September 12, 2011 Particle Equilibrium 42

The 10-lb weight A is supported by the cord AC and roller C, and by spring AB. If the spring has an unstretched length of 8 in, and the weight is in equilibrium when d = 4 in., determine the k of the spring.

22

Wednesday, September 12, 2011 Particle Equilibrium 43

Homework  

¢  Problem  3-­‐2  ¢  Problem  3-­‐6  ¢  Problem  3-­‐21