Embedded Green System Project - 小野寺研究室 - 京都 … Green System Project 65nm Process,...

1
Embedded Green System Project 65nm Process, 1.4mm square LSI IP Award Multiple-Performance Processor Dynamic Voltage and Frequency Scaling Dynamic Reconfigurable Cache Structure Grant: Japan Cabinet Funding Program for Next Generation World-Leading Researchers Target: Embedded computer system Goal: Battery-less operation of the system Approach: improving the efficiency of energy generation, transfer and consumption Members: Project Overview Research Topics Onodera Laboratory Energy Harvesting System OS-based Energy Management 10mm x 7.5mm 0.18um Process High efficiency by concerning the transferring efficiency Results: 20~70% Reduction of power loss System Hardware (Kyungsoo LEE) - Control engineering - Energy harvesting - Fuel cells - Modeling System Software (Tohru ISHIHARA) - Leader - RTOS - Compiler - Processor Onodera Lab. - VLSI design - Low-Power & Dependable Circuits Collaboration with Prof. Chang of SNU - Control theory - Energy harvesting - RTOS - Embedde d system Collaboration with Prof. Takada of Nagoya Univ. Configuration e.g.) VDD, Freq. Configuration e.g.) MPPT Periodically checks statuses of generation, charge, and consumption Make actions; change QoS, configurations, and execution modes Quality of Service e.g.pixel resolution Quality of Service e.g.frame rate Execution mode e.g.) CPU speed, cache size Execution mode e.g.) LCD backlight Configuration Charge/discharge Configuration Series/parallel Quality of Service e.g.Service cycle DC-DC converter Scalable Processor Scalable I/O OS-based Energy Management Software E generator Controller Application Application Application E storage Charger Reduce voltage difference by the array reconfiguration Direct power supply from the supercapacitor I/O aware task scheduling Output voltage (V) Output current (mA) IV curve PV curve Output power (mW) 400 0 100 200 300 500 80 0 20 40 60 100 MPP (5.08V, 81.8mA) PV VI curve Efficiency of DC-DC converter Power loss (mW) Voltage dierence (V in - V out ) Efficiency (%) 100 75 50 25 0 100 75 50 25 0 -1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5 Power loss at 10 mA output Power loss at 100 mA output Efficiency at 10 mA output Efficiency at 100 mA output 2. The system operation mode - Power pass configuration - Amount of charge/discharge control DC-DC DC-DC DC-DC DC-DC Charger L 1 L 2 L i (m pv ,n pv ) PV Cap(m c ,n c ) SW1 SW2 SW3 V junc = V MPP DC-DC DC-DC DC-DC DC-DC Charger L 1 L 2 L i (m pv ,n pv ) PV Cap(m c ,n c ) SW1 SW2 SW3 V junc = V MPP DC-DC DC-DC DC-DC DC-DC Charger L 1 L 2 L i (m pv ,n pv ) PV Cap(m c ,n c ) SW1 SW2 SW3 V junc = V Cap 1. The voltage of energy source - Dynamic array configuration - Solar cell and supercapacitor array 3. I/O aware task scheduling

Transcript of Embedded Green System Project - 小野寺研究室 - 京都 … Green System Project 65nm Process,...

Embedded Green System Project

65nm Process, 1.4mm square

LSI IP Award

Multiple-Performance Processor• Dynamic Voltage and Frequency Scaling• Dynamic Reconfigurable Cache Structure

Grant: Japan Cabinet Funding Program for Next Generation World-Leading Researchers

Target: Embedded computer systemGoal: Battery-less operation of the system

Approach: improving the efficiency of energy generation, transfer and consumption

Members:

Project Overview

Research Topics

OnoderaLaboratory

Energy Harvesting System

OS-based Energy Management

10mm x 7.5mm0.18um Process

• High efficiency by concerning the transferring efficiency

Results: 20~70% Reduction of power loss

SystemHardware(Kyungsoo LEE)

-Control engineering

-Energy harvesting

-Fuel cells-Modeling

SystemSoftware(Tohru ISHIHARA)

-Leader-RTOS-Compiler-Processor

Onodera Lab.

-VLSI design-Low-Power & Dependable Circuits

Collaboration with Prof. Chang of SNU

-Control theory-Energy harvesting

-RTOS-Embedded system

Collaboration with Prof. Takada of Nagoya Univ.

Configuratione.g.) VDD, Freq.

Configuratione.g.) MPPT

Periodically checks statuses of generation, charge, and consumption Make actions; change QoS, configurations, and execution modes

Quality of Servicee.g.)pixel resolution

Quality of Servicee.g.)frame rate

Execution modee.g.) CPU speed,

cache size

Execution modee.g.) LCD backlight

ConfigurationCharge/discharge

ConfigurationSeries/parallel

Quality of Servicee.g.)Service cycle

DC-DCconverter

ScalableProcessor

Scalable I/O

OS-based Energy Management Software

E generator Controller

Application Application Application

E storage Charger

Reduce voltage difference by the array reconfiguration Direct power supply from the supercapacitor I/O aware task scheduling

0 2 4 6 8Output voltage (V)

Out

put c

urre

nt (m

A)

IV curve

PV curve

Out

put p

ower

(mW

)400

0

100

200

300

500

80

0

20

40

60

100 MPP (5.08V, 81.8mA)

PV VI curve Efficiency of DC-DC converter

Pow

er lo

ss (m

W)

Voltage di↵erence (Vin

� Vout

)

Effic

ienc

y (%

)

100

75

50

25

0

100

75

50

25

00

25

50

75

100

-1.5 -1.0 -0.5 0 0.5 1.0 1.5 2.0 2.5

Power loss at 10 mA outputPower loss at 100 mA outputEfficiency at 10 mA outputEfficiency at 100 mA output

2. The system operation mode - Power pass configuration - Amount of charge/discharge control

DC-DC

DC-DC

DC-DC

DC-DC

Charger

L1

L2

Li

(mpv, npv)PV

Cap(mc, nc)

SW1

SW2

SW3

Vjunc = VMPP

DC-DC

DC-DC

DC-DC

DC-DC

Charger

L1

L2

Li

(mpv, npv)PV

Cap(mc, nc)

SW1

SW2

SW3

Vjunc = VMPP

DC-DC

DC-DC

DC-DC

DC-DC

Charger

L1

L2

Li

(mpv, npv)PV

Cap(mc, nc)

SW1

SW2

SW3

Vjunc = VCap

1. The voltage of energy source - Dynamic array configuration - Solar cell and supercapacitor array

3. I/O aware task scheduling