elemtos

316
Actinio - Ac Chemical properties of actinium - Health effects of actinium - Environmental effects of actinium Atomic number 89 Atomic mass 227 g.mol -1 Electronegativity accordi ng to Pauling 1.1 Density 10.07 g.cm -3 at 20°C Melting point 1050 °C Boiling point 3250 °C Vanderwaals radius unknown Ionic radius unknown Isotopes 4 Electronic shell [ Rn ] 6d 1 7s 2 Energy of first ionization 664.6 kJ.mol -1 Energy of second ionization 1165.5 kJ.mol -1 Discovered by André Debierne in 1899

description

elementod

Transcript of elemtos

Page 1: elemtos

Actinio - Ac

Chemical properties of actinium - Health effects of actinium - Environmental effects of actinium

Atomic number 89

Atomic mass 227 g.mol -1

Electronegativity according to Pauling 1.1

Density 10.07 g.cm-3 at 20°C

Melting point 1050 °C

Boiling point 3250 °C

Vanderwaals radius unknown

Ionic radius unknown

Isotopes 4

Electronic shell [ Rn ] 6d1 7s2

Energy of first ionization 664.6 kJ.mol -1

Energy of second ionization 1165.5 kJ.mol -1

Discovered by André Debierne in 1899

Actinium

Actinium is a silvery radioactive metallic element. Actinium glows in the dark due to its intense radioactivity with a blue light.

Actinium was discovered in 1899 by André-Louis Debierne, a French chemist, who separated it from pitchblende. Friedrich Otto Giesel independently discovered actinium in 1902. The chemical behavior of actinium is similar to that of the rare earth lanthanum.

Page 2: elemtos

The word actinium comes from the Greek aktis, aktinos, meaning beam or ray.

Applications

It is about 150 times as radioactive as radium, making it valuable as a neutron source. Otherwise it has no significant industrial applications.

Actinium-225 is used in medicine to produce Bi-213 in a reusable generator or can be used alone as an agent for radio-immunotherapy.

Actinium in the environment

It is found only in traces in uranium ores as 227-Ac, an α and β emitter with a half-life of 21.773 years. One ton of uranium ore contains about a tenth of a gram of actinium. Actinium is found in trace amounts in uranium ore, but more commonly is made in milligram amounts by the neutron irradiation of 226-Ra in a nuclear reactor. Actinium metal has been prepared by the reduction of actinium fluoride with lithium vapor at about 1100 to 1300-degrees C.

Naturally occurring actinium is composed of 1 radioactive isotope; with 227-Ac being the most abundant (100% natural abundance). 27 radioisotopes have been characterized with the most stable being 227-Ac with a half-life of 21.773 years, 225-Ac with a half-life of 10 days, and 226-Ac with a half-life of 29.37 hours. All of the remaining radioactive isotopes have half-life's that are less than 10 hours and the majority of these have half life's that are less than 1 minute. This element also has 2 meta states.

Purified actinium-227 comes into equilibrium with its decay products at the end of 185 days, and then decays according to its 21.773-year half-life.

The isotopes of actinium range in atomic weight from 206 amu (206-actinium) to 234 amu (234-actinium).

Health effects of actiniumActinium-227 is extremely radioactive, and in terms of its potential for radiation induced health effects, actinium-227 is about as dangerous as plutonium. Ingesting even small amounts of actinium-227 would represent a serious health hazard.

The greatest threat of radioactivity to life as we know it is damage to the gene pool, the genetic make-up of all living species. Genetic damage from radiation exposure is cumulative over lifetimes and generations.

Even low-dose exposures are carcinogenic after extended exposure. The current generation, the one in uterus, and all that follow may suffer cancers, immune system damage, leukemia, miscarriages, stillbirths, deformities, and fertility problems. While many of these health problems are on the rise, individuals cannot prove either increase in "background" radiation or specific exposure as the cause. Only epidemiological evidence is scientifically acceptable to impute cause. Perhaps the most extreme outcome over time would be simply the wholesale cessation of the ability to reproduce. Radiation is a known cause of sterility.

Page 3: elemtos

Environmental effects of actiniumThe development of nuclear technology has been accompanied by gross as well as minute releases of radioactivity into the atmosphere, the soil, the oceans, seas, and water table, showing up worldwide in animal, vegetable, and inert matter. Radiation crosses species and concentrates through the food chain, subjecting other animals and humans to its damaging effects.

Actinium-227 is extremely radioactive. Radioactivity damages the gene pool not only of humans, but of all living creatures, causing cancers, immune system damage, leukemia, miscarriages, stillbirths, deformities, and fertility problems. Furthermore, genetic damage from radiation exposure is cumulative over lifetimes and generations.

Plata - Ag

Propiedades químicas de la Plata - Efectos de la Plata sobre la salud - Efectos ambientales de la Plata

Nombre Plata

Número atómico 47

Valencia 1

Estado de oxidación +1

Electronegatividad 1,9

Radio iónico (nm) 0,126

Radio atómico (nm) 0,144

Configuración electrónica [ Kr ] 4d10 5s1

Primer potencial de ionización (kj/mol) 758

Segundo potencial de ionización (kj/mol) 2061

Page 4: elemtos

Potencial estándar 0,779 V (Ag+ / Ag)

Masa atómica (g/mol) 107,87 g.mol -1

Densidad (g/cm3 a 20oC) 10,5

Punto de ebullición (ºC) 2212 °C

Punto de fusión (ºC) 962 °C

Descubridor Los antiguos

PlataElemento químico, símbolo Ag, número atómico 47 y masa atómica 107.870. Es un metal lustroso de color blanco-grisáceo. Desde el punto de vista químico, es uno de los metales pesados y nobles; desde el punto de vista comercial, es un metal precioso. Hay 25 isótopos de la plata. Sus masas atómicas fluctúan entre 102 y 117.

En la mayor parte de sus aplicaciones, la plata se alea con uno o más metales. La plata, que posee las más altas conductividades térmica y eléctrica de todos los metales, se utiliza en puntos de contacto eléctricos y electrónicos. También se emplea mucho en joyería y piezas diversas. Entre la aleaciones en que es un componente están las amalgamas dentales y metales para cojinetes y pistones de motores.

La plata es un elemento bastante escaso. Algunas veces se encuentra en la naturaleza como elemento libre (plata nativa) o mezclada con otros metales. Sin embargo, la mayor parte de las veces se encuentra en minerales que contienen compuestos de plata. Los principales minerales de plata son la argentita, la cerargirita o cuerno de plata y varios minerales en los cuales el sulfuro de plata está combinado con los sulfuros de otros metales. Aproximadamente tres cuartas partes de la plata producida son un subproducto de la extracción de otros minerales, sobre todo de cobre y de plomo.

La plata pura es un metal moderadamente suave (2.5-3 en la escala de dureza de Mohs), de color blanco, un poco más duro que el oro. Cuando se pule adquiere un lustre brillante y refleja el 95% de la luz que incide sobre ella. Su densidad es 10.5 veces la del agua. La calidad de la plata, su pureza, se expresa como partes de plata pura por cada 1000 partes del metal total. La plata comercial tiene una pureza del 999 (ley 0.999).

Aunque la plata es el metal noble más activo químicamente, no es muy activa comparada con la mayor parte de los otros metales. No se oxida fácilmente (como el hierro), pero reacciona con el azufre o el sulfuro de hidrógeno para formar la conocida plata deslustrada. El galvanizado de la plata con rodio puede prevenir esta decoloración. La plata no reacciona con ácidos diluidos no oxidantes (ácidos

Page 5: elemtos

clorhídrico o sulfúrico) ni con bases fuertes (hidróxido de sodio). Sin embargo, los ácidos oxidantes (ácido nítrico o ácido sulfúrico concentrado) la disuelven al reaccionar para formar el ion positivo de la plata, Ag+. Este ion, que está presente en todas las soluciones simples de compuestos de plata solubles, se reduce fácilmente a metal libre, como sucede en la deposición de espejos de plata por agentes reductores orgánicos. La plata casi siempre es monovalente en sus compuestos, pero se conocen óxidos, fluoruro y sulfuro divalentes. Algunos compuesto de coordinación de la plata contienen plata divalente y trivalente. Aunque la plata no se oxida cuando se calienta, puede ser oxidada química o electrolíticamente para formar óxido o peróxido de plata, un agente oxidante poderoso. Por esta actividad, se utiliza mucho como catalizador oxidante en la producción de ciertos materiales orgánicos.

Efectos de la Plata sobre la saludLas sales solubles de plata, especialmente el nitrato de plata (AgNO3), son letales en concentraciones de hasta 2 g. Los compuestos de plata pueden ser absorbidos lentamente por los tejidos corporales, con la consecuente pigmentación azulada o negruzca de la piel (argiria).

Contacto con los ojos: Puede causar graves daños en la córnea si el líquido se pone en contacto con los ojos. Contacto con la piel: Puede causar irritación de la piel. Contacto repetido y prolongado con le piel puede causar dermatitis alérgica. Peligros de la inhalación: Exposición a altas concentraciones del vapor puede causar mareos, dificultades para respirar, dolores de cabeza o irritación respiratoria. Concentraciones extremadamente altas pueden causar somnolencia, espasmos, confusión, inconsciencia, coma o muerte.

El líquido o el vapor pueden irritar la piel, los ojos, la garganta o los pulmones. El mal uso intencionado consistente en la concentración deliberada de este producto e inhalación de su contenido puede ser dañino o mortal.

Peligros de la ingestión: Moderadamente tóxico. Puede causar molestias estomacales, náuseas, vómitos, diarrea y narcosis. Si el material se traga y es aspirado en los pulmones o si se produce el vómito, puede causar neumonitis química, que puede ser mortal.

Órganos de destino: La sobre-exposición crónica a un componente o varios componentes de la plata tiene los siguientes efectos en los animales de laboratorio:

Daños renales Daños oculares Daños pulmonares Daños hepáticos Anemia Daños cerebrales

La sobre-exposición crónica a un componente o varios componentes de la plata se supone que tiene los siguientes efectos en los humanos:

Anormalidades cardiacas

Page 6: elemtos

Se ha informado de la relación entre sobre-exposiciones repetidas y prolongadas a disolventes y daños cerebrales y del sistema nervioso permanentes.

La respiración repetida o el contacto con la piel de la metil-etil-cetona puede aumentar la potencia de las neurotoxinas tales como el hexano si la exposición tiene lugar al mismo tiempo.

Efectos ambientales de la Plata

Para información acerca de:

Niveles ambientales Efectos en los organismos en el laboratorio y en el campo Medio acuático: toxicidad de los componentes de la plata para especies cuáticas Ambiente terrestre Evaluación de los efectos

Aluminio - AlPropiedades químicas del Aluminio - Efectos del Aluminio sobre la salud - Efectos ambientales del Aluminio

Nombre Aluminio

Número atómico 13

Valencia 3

Estado de oxidación +3

Electronegatividad 1,5

Radio covalente (Å) 1,18

Radio iónico (Å) 0,50

Radio atómico (Å) 1,43

Configuración electrónica [Ne]3s23p1

Primer potencial de ionización (eV) 6,00

Masa atómica (g/mol) 26,9815

Page 7: elemtos

Densidad (g/ml) 2,70

Punto de ebullición (ºC) 2450

Punto de fusión (ºC) 660

Descubridor Hans Christian Oersted en 1825

AluminioElemento químico metálico, de símbolo Al, número atómico 13, peso atómico 26.9815, que pertenece al grupo IIIA del sistema periódico. El aluminio puro es blando y tiene poca resistencia mecánica, pero puede formar aleaciones con otros elementos para aumentar su resistencia y adquirir varias propiedades útiles. Las aleaciones de aluminio son ligeras, fuertes, y de fácil formación para muchos procesos de metalistería; son fáciles de ensamblar, fundir o maquinar y aceptan gran variedad de acabados. Por sus propiedades físicas, químicas y metalúrgicas, el aluminio se ha convertido en el metal no ferroso de mayor uso.

El aluminio es el elemento metálico más abundante en la Tierra y en la Luna, pero nunca se encuentra en forma libre en la naturaleza. Se halla ampliamente distribuido en las plantas y en casi todas las rocas, sobre todo en las ígneas, que contienen aluminio en forma de minerales de alúmino silicato. Cuando estos minerales se disuelven, según las condiciones químicas, es posible precipitar el aluminio en forma de arcillas minerales, hidróxidos de aluminio o ambos. En esas condiciones se forman las bauxitas que sirven de materia prima fundamental en la producción de aluminio.

El aluminio es un metal plateado con una densidad de 2.70 g/cm3 a 20ºC (1.56 oz/in3 a 68ºF). El que existe en la naturaleza consta de un solo isótopo, 27

13Al. El aluminio cristaliza en una estructura cúbica centrada en las caras, con lados de longitud de 4.0495 angstroms. (0.40495 nanómetros). El aluminio se conoce por su alta conductividad eléctrica y térmica, lo mismo que por su gran reflectividad.

La configuración electrónica del elemento es 1s2 2s2 2p6 3s2 3p1. El aluminio muestra una valencia de 3+ en todos sus compuestos, exceptuadas unas cuantas especies monovalentes y divalentes gaseosas a altas temperaturas.

El aluminio es estable al aire y resistente a la corrosión por el agua de mar, a muchas soluciones acuosas y otros agentes químicos. Esto se debe a la protección del metal por una

Page 8: elemtos

capa impenetrable de óxido. A una pureza superior al 99.95%, resiste el ataque de la mayor parte de los ácidos, pero se disuelve en agua regia. Su capa de óxido se disuelve en soluciones alcalinas y la corrosión es rápida.

El aluminio es anfótero y puede reaccionar con ácidos minerales para formar sales solubles con desprendimiento de hidrógeno.

El aluminio fundido puede tener reacciones explosivas con agua. El metal fundido no debe entrar en contacto con herramientas ni con contenedores húmedos.

A temperaturas altas, reduce muchos compuestos que contienen oxígeno, sobre todo los óxidos metálicos. Estas reacciones se aprovechan en la manufactura de ciertos metales y aleaciones.

Su aplicación en la construcción representa el mercado más grande de la industria del aluminio. Millares de casas emplean el aluminio en puertas, cerraduras, ventanas, pantallas, boquillas y canales de desagüe. El aluminio es también uno de los productos más importantes en la construcción industrial. El transporte constituye el segundo gran mercado. Muchos aviones comerciales y militares están hechos casi en su totalidad de aluminio. En los automóviles, el aluminio aparece en interiores y exteriores como molduras, parrillas, llantas (rines), acondicionadores de aire, transmisiones automáticas y algunos radiadores, bloques de motor y paneles de carrocería. Se encuentra también en carrocerías, transporte rápido sobre rieles, ruedas formadas para camiones, vagones, contenedores de carga y señales de carretera, división de carriles y alumbrado. En la industria aeroespacial, el aluminio también se encuentra en motores de aeroplanos, estructuras, cubiertas y trenes de aterrizaje e interiores; a menudo cerca de 80% del peso del avión es de aluminio. La industria de empaques para alimentos es un mercado en crecimiento rápido.

En las aplicaciones eléctricas, los alambres y cables de aluminio son los productos principales. Se encuentra en el hogar en forma de utensilios de cocina, papel de aluminio, herramientas, aparatos portátiles, acondicionadores de aire, congeladores, refrigeradores, y en equipo deportivo como esquíes y raquetas de tenis.

Existen cientos de aplicaciones químicas del aluminio y sus compuestos. El aluminio en polvo se usa en pinturas, combustible para cohetes y explosivos y como reductor químico.

Efectos del Aluminio sobre la saludEl Aluminio es uno de los metales más ampliamente usados y también uno de los más frecuentemente encontrados en los compuestos de la corteza terrestre. Debido a este hecho, el aluminio es comúnmente conocido como un compuesto inocente. Pero todavía, cuando uno es expuesto a altas concentraciones, este puede causar problemas de salud. La forma soluble en agua del Aluminio causa efectos perjudiciales, estas partículas son llamadas iones. Son usualmente encontradas en soluciones de Aluminio combinadas con otros iones, por ejemplo cloruro de Aluminio.

Page 9: elemtos

La toma de Alumino puede tener lugar a través de la comida, respirarlo y por contacto en la piel. La toma de concentraciones significantes de Aluminio puede causar un efecto serio en la salud como:

Daño al sistema nervioso central Demencia Pérdida de la memoria Apatía Temblores severos

El Aluminio es un riesgo para ciertos ambientes de trabajo, como son las minas, donde se puede encontrar en el agua. La gente que trabaja en fabricas donde el Aluminio es aplicado durante el proceso de producción puede aumentar los problemas de pulmón cuando ellos respiran el polvo de Aluminio. El Aluminio puede causar problemas en los riñones de los pacientes, cuando entra en el cuerpo durante el proceso de diálisis.

Efectos ambientales del AluminioLos efectos del Aluminio han atraido nuestra atención, mayormente debido a los problemas de acidificación. El Aluminio puede acumularse en las plantas y causar problemas de salud a animales que consumen esas plantas. Las concentraciones de Aluminio parecen ser muy altas en lagos acidificados. En estos lagos un número de peces y anfibios están disminuyendo debido a las reacciones de los iones de Aluminio con las proteinas de las agallas de los peces y los embriones de las ranas.

Elevadas concentraciones de Aluminio no sólo causan efectos sobre los peces, pero también sobre los pájaros y otros animales que consumen peces contaminados e insectos y sobre animales que respiran el Aluminio a través del aire.

Las consecuencias para los pájaros que consumen peces contaminados es que la cáscara de los huevos es más fina y los pollitos nacen con bajo peso. Las consecuencias para los animales que respiran el Aluminio a través del aire son problemas de pulmones, pérdida de peso y declinación de la actividad. Otro efecto negativo en el ambiente del Aluminio es que estos iones pueden reaccionar con los fosfatos, los cuales causan que el fosfato no esté disponible para los organismos acuáticos.

Altas concentraciones de Aluminio no sólo pueden ser encontrados en lagos ácidos y arie, también en aguas subterráneas y suelos ácidos. Hay fuertes indicadores de que el Aluminio puede dañar las raices de los árboles cuando estas están localizadas en las aguas subterráneas.

Americio - Am

Page 10: elemtos

Propiedades químicas del Americio - Efectos del Americio sobre la salud - Efectos ambientales del

AmericioNombre Americio

Número atómico 95

Valencia 3,4,5,6

Estado de oxidación +3

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) 1,06

Radio atómico (Å) -

Configuración electrónica [Rn]5f76d07s2

Primer potencialde ionización (eV) -

Masa atómica (g/mol) 243

Densidad (g/ml) 11,7

Punto de ebullición (ºC) -

Punto de fusión (ºC) -

Descubridor G.T. Seaborg en 1945

Page 11: elemtos

AmericioElemento químico, de símbolo Am, número atómico 95. El isótopo 241Am es emisor de partículas alfa, con una vida promedio de 433 años. Los otros isótopos del americio incluyen desde la masa 232 hasta la 247, pero sólo los isótopos de masas 241 y 243 son importantes. El isótopo 241Am se prepara comúnmente a partir de plutonio <> y se vende para varios usos industriales, entre ellos como fuente de radiaciones gamma de 59 KeV y como componente en fuentes de neutrones. El 243Am, de vida más larga (vida media de 7400 años) es un precursor en la producción de 244Cm.

En su estado de oxidación más importante en solución acuosa, 3+, el americio se parece mucho a las tierras raras tripositivas. La analogía formal con ellas se advierte también en los compuestos anhidros del americio, tanto los tripositivos como los tetrapositivos. La diferencia radica en que el americio puede oxidarse de Am3+ a los estados 5+ y 6+.

El americio metálico tiene una presión de vapor mucho mayor que la de los elementos vecinos, por lo que puede purificarse mediante destilación. El metal no es magnético y es superconductor a 0.79 K. A presión alta, se comprime hasta 80% de su volumen a temperatura ambiente y muestra la estructura del uranio.

Efectos del Americio sobre la salud

El americio es un compuesto que se da en la naturaleza en niveles muy bajos. Puede ser añadido durante un escape accidental en las plantas de producción nuclear. Los humanos pueden estar expuestos a mayores concentraciones de americio a través de la comida, de la respiración o al contacto con la piel, debido a la liberación de americio durante la producción nuclear y los accidentes nucleares. Las personas que trabajan en plantas de energía nuclear o que viven cerca de ellas pueden estar expuestas a niveles mayores de americio.

La radiación por la exposición al americio es la principal causa de efectos sobre la salud causados por el americio absorbido. El americio se mueve rápidamente por el cuerpo después

Page 12: elemtos

de su toma y se concentra en los huesos durante un largo periodo de tiempo. Durante este almacenamiento el americio se desintegrará lentamente y liberará partículas y rayos radiactivos. Estos rayos pueden causar alteración de material genético y cáncer de huesos.

Los daños en los órganos debidos a la exposición al americio son muy poco probables en humanos, porque el americio se acumula en los órganos solo durante un corto periodo de tiempo.

Efectos ambientales del Americio

El americio está formado principalmente solo por isótopos radiactivos creados por los hombres. Estos pueden estar presentes en suelos y agua en muy pequeñas cantidades como resultado de las pruebas de armas nucleares previas a su prohibición en 1963. El americio procedente de las pruebas atmosféricas de armas nucleares puede permanecer en la atmósfera durante décadas viajando alrededor del mundo y sedimentándose despacio en La Tierra. Sus isótopos se desintegran muy despacio en el medio ambiente y como resultado pueden dañar a plantas y animales. Cuando los animales están expuestos a niveles extremos de americio, los resultados pueden ser daños a los órganos tales como los pulmones, el hígado y el tiroides.

El americio que está presente en los suelos puede acabar en las plantas, pero solo en pequeñas cantidades. Normalmente las partículas de americio se almacenan en partes de las plantas que los animales no consumen. En los peces muy poco americio se almacena en su carne o en otras partes comestibles y como resultado de esto no se acumulará en la cadena alimenticia.

Argón - Ar

Propiedades químicas del Argón - Efectos del Argón sobre la salud - Efectos ambientales del

Argón

Nombre Argón

Número atómico 18

Valencia 0

Page 13: elemtos

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) 1,74

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Ne]3s23p6

Primer potencial de ionización (eV) 15,80

Masa atómica (g/mol) 39,948

Densidad (g/ml) 1,40

Punto de ebullición (ºC) -185,8

Punto de fusión (ºC) -189,4

Descubridor Sir Ramsay en 1894

ArgónElemento químico con símbolo Ar, número atómico 15 y peso atómico 39.948. El argón es el tercer miembro del grupo 0 en la tabla periódica. Los elementos gaseosos de este grupo se llaman gases nobles, inertes o raros, aunque en realidad el argón no es raro. La atmósfera de la Tierra es la única fuente de argón; sin embargo, se encuentran trazas de este gas en minerales y meteoritos. El argón constituye el 0.934% del volumen de la atmósfera de la Tierra. De él, el 99.6% es el isótopo de argón-40; el restante es argón-36 y argón-38. Existe evidencia de que todo el argón-40 del aire se produjo por la descomposición radiactiva del radioisótopo potasio-40.

Page 14: elemtos

El argón es incoloro, inodoro e insípido. En condiciones normales es un gas pero puede licuarse y solidificarse con facilidad. El argón no forma compuestos químicos en el sentido normal de la palabra, aunque forma algunos compuestos clatratos débilmente enlazados con agua, hidroquinona y fenol. Las moléculas de argón gaseoso son monoatómicas.

El uso en gran escala más antiguo del argón es en lámparas eléctricas o bombillas. El corte y soldadura de metales consume la mayor parte del argón. Los procesos metalúrgicos constituyen la aplicación de más rápido crecimiento. El argón y las mezclas de argón-kriptón se utilizan, con un poco de vapor de mercurio, para llenar lámparas fluorescentes. El argón mezclado con algo de neón se utiliza para llenar tubos fluorescentes de descarga eléctrica empleados en letreros de propaganda (parecidos a los anuncios de neón); esto se hace cuando se desea un color azul o verde en lugar del color rojo del neón. El argón se utiliza también para llenar tiratrones de contadores de radiación Geiger-Müller, en cámaras de ionización con las que se mide la radiación cósmica y tubos electrónicos de varias clases. La atmósfera de argón se utiliza en la manipulación de reactivos químicos en el laboratorio y en el sellado de empaques de estos materiales.

La mayor cantidad de argón se produce en plantas de separación de aire. El aire se licua y se somete a una destilación fraccionada. Dado que el punto de ebullición del argón está entre el del nitrógeno y el del oxígeno, se puede obtener una mezcla rica en argón de las fracciones de las capas correspondientes a la parte superior de la columna de destilación. La mezcla rica en argón se destila, se calienta y se quema catalíticamente con hidrógeno para eliminar el oxígeno. Mediante una destilación final se elimina el hidrógeno y nitrógeno, produciendo argón de elevada pureza que contiene únicamente pocas partes por millón de impurezas.

Efectos del Argón sobre la salud

Vías de exposición: La sustancia puede ser absorbida por el cuerpo por inhalación.

Riesgo de inhalación: En caso de escape en el contenedor este líquido se evapora muy rápidamente provocando supersaturación del aire con grave peligro de asfixia cuando esto ocurre en un recinto cerrado.Efectos de la exposición: Inhalación: Mareos. Pesadez. Dolor de cabeza. Asfixia. Piel: Congelación en contacto con el líquido. Ojos: Congelación en contacto con el líquido.

Inhalación: Este gas es inerte y está clasificado como un asfixiante simple. La inhalación de éste en concentraciones excesivas puede resultar en mareos, náuseas, vómitos, pérdida de consciencia y muerte. La muerte puede resultar de errores de juicio, confusión, o pérdida de la

Page 15: elemtos

consciencia, que impiden el auto-rescate. A bajas concentraciones de oxígeno, la pérdida de consciencia y la muerte pueden ocurrir en segundos sin ninguna advertencia.

El efecto de los gases asfixiantes simples es proporcional a la cantidad en la cual disminuyen la cantidad (presión parcial) del oxígeno en el aire que se respira. El oxígeno puede reducirse a un 75% de su porcentaje normal en el aire antes de que se desarrollen síntomas apreciables. Esto a su vez requiere la presencia de un asfixiante simple en una concentración del 33% en la mezcla de aire y gas. Cuando el asfixiante simple alcanza una concentración del 50%, se pueden producir síntomas apreciables. Una concentración del 75% es fatal en cuestión de minutos.

Síntomas: Los primeros síntomas producidos por un asfixiante simple son respiración rápida y hambre de aire. La alerta mental disminuye y la coordinación muscular se ve perjudicada. El juicio se vuelve imperfecto y todas las sensaciones se deprimen. Normalmente resulta en inestabilidad emocional y la fatiga se presenta rápidamente. A medida que la asfixia progresa, pueden presentarse náuseas y vómitos, postración y pérdida de consciencia, y fianlmente convulsiones, coma profundo y muerte.

Efectos ambientales del Argón

No se conocen efectos ambientales negativos causados por el argón ni se esperan consecuencias ambientales adversas. El argón se da naturalmente en el medio ambiente. El gas se disipará rápidamente en áreas bien ventiladas.Actualmente no se conocen los efectos del argón en plantas y animales. No se espera que perjudique a los organismos acuáticos.

El argón no contiene ningún material que deteriore la capa de ozono y no está incluído en la lista de contaminantes marinos del DOT (Departamento de Transportes, E.E.U.U.).

Arsénico - As

Propiedades químicas del Arsénico - Efectos del Arsénico sobre la salud - Efectos ambientales del

ArsénicoNombre Arsénico

Page 16: elemtos

Número atómico 33

Valencia +3,-3,5

Estado de oxidación +5

Electronegatividad 2,1

Radio covalente (Å) 1,19

Radio iónico (Å) 0,47

Radio atómico (Å) 1,39

Configuración electrónica [Ar]3d104s24p3

Potencial primerode ionización (eV) 10,08

Masa atómica (g/mol) 74,922

Densidad (g/ml) 5,72

Punto de ebullición (ºC) 613

Punto de fusión (ºC) 817

Descubridor Los antiguos

Arsénico

Page 17: elemtos

Elemento químico, cuyo símbolo es As y su número atómico, 33. El arsénico se encuentra distribuido ampliamente en la naturaleza (cerca de 5 x 10-4% de la corteza terrestre). Es uno de los 22 elementos conocidos que se componen de un solo nucleido estable, 75

33As; el peso atómico es de 74.922. Se conocen otros 17 nucleidos radiactivos de As.

Existen tres alótropos o modificaciones polimórficas del arsénico. La forma a cúbica de color amarillo se obtiene por condensación del vapor a muy bajas temperaturas. La b polimórfica negra, que es isoestructural con el fósforo negro. Ambas revierten a la forma más estable, la l , gris o metálica, del arsénico romboédrico, al calentarlas o por exposición a la luz. La forma metálica es un conductor térmico y eléctrico moderado, quebradizo, fácil de romper y de baja ductibilidad.

Al arsénico se le encuentra natural como mineral de cobalto, aunque por lo general está en la superficie de las rocas combinado con azufre o metales como Mn, Fe, Co, Ni, Ag o Sn. El principal mineral del arsénico es el FeAsS (arsenopirita, pilo); otros arseniuros metálicos son los minerales FeAs2 (löllingita), NiAs (nicolita), CoAsS (cobalto brillante), NiAsS (gersdorfita) y CoAs2 (esmaltita). Los arseniatos y tioarseniatos naturales son comunes y la mayor parte de los minerales de sulfuro contienen arsénico. La As4S4 (realgarita) y As4S6 (oropimente) son los minerales más importantes que contienen azufre. El óxido, arsenolita, As4O6, se encuentra como producto de la alteración debida a los agentes atmosféricos de otros minerales de arsénico, y también se recupera de los polvos colectados de los conductos durante la extracción de Ni, Cu y Sn; igualmente se obtiene al calcinar los arseniuros de Fe, Co o Ni con aire u óxigeno. El elemento puede obtenerse por calcinación de FeAsS o FeAs2 en ausencia de aire o por reducción de As4O6 con carbonato, cuando se sublima As4.

El arsénico elemental tiene pocos usos. Es uno de los pocos minerales disponibles con un 99.9999+ % de pureza. En el estado sólido se ha empleado ampliamente en los materiales láser GaAs y como agente acelerador en la manufactura de varios aparatos. El óxido de arsénico se utiliza en la elaboración de vidrio. Los sulfuros de arsénico se usan como pigmentos y en juegos pirotécnicos. El arseniato de hidrógeno se emplea en medicina, así como otros compuestos de arsénico. La mayor parte de la aplicación medicinal de los compuestos de arsénico se basa en su naturaleza tóxica.

Efectos del Arsénico sobre la saludEl Arsénico es uno de los más toxicos elementos que pueden ser encontrados. Debido a sus efectos tóxicos, los enlaces de Arsénico inorgánico ocurren en la tierra naturalmente en pequeñas cantidades. Los humanos pueden ser expuestos al Arsénico a través de la comida, agua y aire.

La exposición puede también ocurrir a través del contacto con la piel con suelo o agua que contenga Arsérnico.

Los niveles de Arsérnico en la comida son bastante bajos, no es añadido debido a su toxicidad, pero los niveles de Arsénico en peces y mariscos puede ser alta, porque los peces

Page 18: elemtos

absorben Arsénico del agua donde viven. Por suerte esto esta es mayormente la forma de Arsénico orgánico menos dañina, pero peces que contienen suginificantes cantidades de Arsénico inorgánico pueden ser un peligro para la salud humana.

La exposición al Arsénico puede ser más alta para la gente que trabaja con Arsénico, para gente que bebe significantes cantidades de vino, para gente que vive en casas que contienen conservantes de la madera y gente que viven en granjas donde el Arsénico de los pesticidas ha sido aplicados en el pasado.

La exposición al Arsénico inorgánico puede causar varios efectos sobre la salud, como es irritación del estómago e intestinos, disminución en la producción de glóbulos rojos y blancos, cambios en la piel, e irritación de los pulmones. Es sugerido que la toma de significantes cantidades de Arsénico inorgánico puede intensificar las posibilidades de desarrollar cáncer, especialmente las posibilidades de desarrollo de cáncer de piel, pulmón, hígado, linfa.

A exposiciones muy altas de Arsénico inorgánico puede causar infertilidad y abortos en mujeres, puede causar perturbación de la piel, pérdida de la resistencia a infecciones, perturbación en el corazón y daño del cerebro tanto en hombres como en mujeres. Finalmente, el Arsénico inorgánico puede dañar el ADN. El Arsénico orgánico no puede causar cáncer, ni tampoco daño al ADN. Pero exposiciones a dosis elevadas puede causar ciertos efectos sobre la salud humana, como es lesión de nervios y dolores de estómago.

Efectos ambientales del ArsénicoEl Arsénico puede ser encontrado de forma natural en la tierra en pequeñas concentraciones. Esto ocurre en el suelo y minerales y puede entrar en el aire, agua y tierra a través de las tormentas de polvo y las aguas de escorrentía.

El Arsénico es un componente que es extremadamente duro de convertir en productos solubre en agua o volátil. En realidad el Arsénico es naturalmente específicamente un compuesto móvil, básicamente significa que grandes concentraciones no aparecen probablemente en un sitio específico. Esto es una buena cosa, pero el punto negativo es que la contaminación por Arsénico llega a ser un tema amplio debido al fácil esparcimiento de este. El Arsénico no se puede movilizar fácilmente cuando este es inmóvil. Debido a las actividades humanas, mayormente a través de la minería y la fundiciones, naturalmente el Arsénico inmóvil se ha movilizado también y puede ahora ser encontrado en muchos lugares donde ellos no existían de forma natural.

El ciclo del Arsénico ha sido ampliado como consecuencia de la interferencia humana y debido a esto, grandes cantidades de Arsénico terminan en el Ambiente y en organismos vivos. El Arsénico es moyoritariamente emitido por las industrias productoras de cobre, pero también durante la producción de plomo y zinc y en la agricultura.

Este no puede ser destruido una vez que este ha entrado en el Ambiente, así que las cantidades que hemos añadido pueden esparcirse y causar efectos sobre la salud de los humanos y los animales en muchas localizaciones sobre la tierra.

Page 19: elemtos

Las plantas absorben Arsénico bastante fácil, así que alto ranto de concentraciones pueden estar presentes en la comida. Las concentraciones del peligroso Arsénico inorgánico que está actualmente presente en las aguas superficiales aumentan las posibilidades de alterar el material genético de los peces. Esto es mayormente causado por la acumulación de Arsénico en los organismos de las aguas dulces consumidores de plantas. Las aves comen peces que contienen eminentes cantidades de Arsénico y morirán como resultado del envenenamiento por Arsénico como consecuencia de la descomposición de los peces en sus cuerpos.

Ástato - At

Propiedades químicas del Ástato - Efectos del Ástato sobre la salud - Efectos ambientales del

ÁstatoNombre Ástato

Número atómico 85

Valencia -

Estado de oxidación -

Electronegatividad 2,0

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Xe]4f145d106s26p

Primer potencialde ionización (eV) -

Masa atómica (g/mol) 210

Densidad (g/ml) -

Punto de ebullición (ºC) -

Page 20: elemtos

Punto de fusión (ºC) 302

Descubridor D.R. Corson 1940

ÁstatoElemento químico con símbolo At y número atómico 85. El ástato es el elemento más pesado del grupo de los halógenos, ocupa el lugar debajo del yodo en el grupo VII de la tabla periódica. El ástato es un elemento muy inestable, que existe sólo en formas radiactivas de vida corta. Se han preparado unos 25 isótopos mediante reacciones nucleares de transmutación artificial. El isótopo con mayor tiempo de vida es el 210At, el cual decae en un tiempo de vida media de sólo 8.3 h. Es improbable que una forma más estable, o de vida más larga, pueda encontrarse en la naturaleza o prepararse en forma artificial. El isótopo más importante es el 211At y se utiliza en marcaje isotópico. El ástato se encuentra en la naturaleza como parte integrante de los minerales de uranio, pero sólo en cantidades traza de isótopos de vida corta, continuamente abastecidos por el lento decaimiento del uranio. La cantidad total de ástato en la corteza terrestre es menor que 28 g (1 onza).

En solución acuosa, el ástato tiene propiedades similares al yodo excepto por las diferencias atribuibles al hecho de que las soluciones de ástato son, por necesidad, muy diluidas. Al igual que el halógeno yodo, se extrae con benceno cuando se halla como elemento libre en solución. El elemento en solución es reducido por agentes como el dióxido de azufre y es oxidado por bromo. Es el menos electronegativo de todos los halógenos. Tiene estados de oxidación con características de coprecipitación semejantes a las del ion yoduro, yodo libre y del ion yodato. Agentes oxidantes fuertes producen el ion astatato, pero no el ion perastatato. Es más fácil obtenerlo y caracterizarlo en estado libre por su alta volatilidad y facilidad de extracción con disolvente orgánicos.

Efectos del Ástato sobre la saludLa cantidad total de ástato en la corteza terrestre es menor de 30 gramos y solo unos pocos microgramos han sido producidos artificialmente. Esto, junto con su corta vida, no deja ninguna razón para considerar los efectos del ástato en la salud humana. El ástato se estudia en unos pocos laboratorios de investigación donde su alta radioactividad requiere precauciones y técnicas de manipulación especiales. El ástato es un halógeno y posiblemente se acumule en la glándula tiroides como el yodo. Desde un punto de vista químico, se puede especular que su toxicidad será idéntica a la del yodo.

Efectos ambientales del Ástato

Page 21: elemtos

El ástato no se da en cantidades significativas en la biosfera, así que normalmente nunca presenta riesgos.

Oro - Au

Propiedades químicas del Oro - Efectos del Oro sobre la salud - Efectos ambientales del Oro

Nombre Oro

Número atómico 79

Valencia 1,3

Estado de oxidación +1

Electronegatividad 2,4

Radio covalente (Å) 1,50

Radio iónico (Å) 1,37

Radio atómico (Å) 1,44

Configuración electrónica [Xe]4f145d106s1

Primer potencialde ionización (eV) 9,29

Masa atómica (g/mol) 196,967

Densidad (g/ml) 19,3

Punto de ebullición (ºC) 2970

Punto de fusión (ºC) 1063

Descubridor 3000 AC

Page 22: elemtos

OroElemento químico, símbolo Au, número atómico 79 y peso atómico 196.967; es un metal muy denso, blando y de color amarillo intenso. El oro se clasifica como metal pesado y noble; en el comercio es el más común de los metales preciosos. El cobre, la plata y el oro están en el mismo grupo en la tabla periódica. La fuente del símbolo químico, Au, es su nombre en latín aurum (amanecer radiante). Hay sólo un isótopo estable del oro, con número de masa 197.

Usos: Cerca de tres cuartas partes de la producción mundial del oro se consume en joyería. Sus aplicaciones industriales, especialmente en electrónica, consumen 10-15%. El remanente está dividido entre los empleos médicos y dentales, acuñación y reservas para el gobierno y particulares. Las monedas y demás objetos decorativos de oro son en realidad aleaciones porque el metal es muy blando (2.5-3 en la escala de Mohs) para ser útil con un manejo frecuente.

El 198Au radiactivo se utiliza en radiaciones medicinales, en diagnóstico y en algunas aplicaciones industriales como trazador. También se usa como trazador en el estudio del movimiento de sedimentos sobre el fondo oceánico y en los alrededores de los puertos. Las propiedades del oro hacia la energía radiante han permitido el desarrollo de reflectores eficientes para calentadores infrarrojos y hornos, así como para retención y enfoque de calor en procesos industriales.

Localización: El oro se encuentra distribuido por todo el mundo, pero es muy escaso, de tal suerte que es un elemento raro. El agua de mar contiene concentraciones bajas de oro del orden de 10 partes de oro por billón de partes de agua. En el plancton o en el fondo marino se acumulan concentraciones superiores. En la actualidad, no existen procesos económicos

Page 23: elemtos

adecuados para la extracción del oro marino. El oro metálico, o natural, y varios minerales telúricos son las únicas formas de oro presentes en la Tierra. El oro natural existe en las rocas y minerales de otros metales, especialmente en el cuarzo y la pirita, o puede estar disperso en arenas y gravas (oro de aluvión).

Propiedades: La densidad del oro es 19,3 veces la del agua a 20ºC (68ºF), tal que 1 m3 de oro pesa cerca de 19 000 kg (1 pie3, unas 1200 libras). Las masas del oro, al igual que otros metales preciosos, se miden en la escala Troy, la cual contiene 12 onzas por libra. Se funde a 1063ºC (1947.97ºF) y ebulle a 2970ºC (5180ºF). Es algo volátil por debajo de su punto de ebullición. Es un buen conductor de calor y electricidad. Es el metal más dúctil y maleable. Pueden hacerse láminas transparentes, con espesor de 0.00001 mm con facilidad o estirarlo en alambres con pesos de 0.5 mg/m. Su calidad se expresa en la escala de finura como partes de oro puro por mil partes de metal total, o en la escala de quilate como partes de oro puro por 24 partes de metal total. El oro se disuelve con facilidad en mercurio para formar amalgamas. Es uno de los metales menos reactivos químicamente. No pierde lustre, ni se quema al aire. Es inerte en soluciones fuertemente alcalinas y en todos los ácidos puros, menos el ácido selénico.

Compuestos: El oro puede tener valencia 1+ o 3+ en sus compuestos. La tendencia a formar complejos es tan fuerte que todos los compuestos de oxidación 3+ son complejos. Los compuestos del estado de oxidación 1+ no son muy estables y tienden a oxidarse al estado 3+ o reducirse a oro metálico. Todos los compuestos de cualquier estado de oxidación se reducen con facilidad.

En sus complejos el oro forma enlaces más fácilmente y más estables con los halógenos y el azufre, menos estables con oxígeno y fósforo y muy débiles con nitrógeno. Los enlaces entre oro y carbono son normalmente estables, como en los complejos de cianuro y varios compuestos orgánicos.

Efectos del Oro sobre la saludEfectos de la sobre-exposición:  Inhalación: Puede provocar irritación si la exposición es prolongada o excesiva. Ingestión: No se esperan efectos adversos. Piel: Puede provocar irritación y reacción alérgica. Ojos: Puede provocar irritación

Efectos ambientales del OroLa ecotoxicidad del oro no ha sido evaluada. Sin embargo, se espera que la degradación del oro bajo condiciones aerobias sea muy pobre y no hay evidencia que sugiera que pueda crear problemas ecológicos al ser vertido en el medio. Ya que el oro es insoluble, se cree que tiene características mínimas de bioacumulación y biodisponibilidad.

Page 24: elemtos

Boro - B

Propiedades químicas del Boro - Efectos del Boro sobre la salud - Efectos ambientales del Boro

Nombre Boro

Número atómico 5

Valencia 3

Estado de oxidación +3

Electronegatividad 2,0

Radio covalente (Å) 0,82

Radio iónico (Å) 0,20

Radio atómico (Å) 0,98

Configuración electrónica 1s22s22p1

Primer potencialde ionización (eV) 8,33

Masa atómica (g/mol) 10,811

Densidad (g/ml) 2,34

Punto de ebullición (ºC) -

Punto de fusión (ºC) 2030

Descubridores Sir Humphry Davy y J.L Gay-Lussac en 1808

Page 25: elemtos

BoroElemento químico, B, número atómico 5, peso atómico 10.811. Tiene tres elementos de valencia y se comporta como no metal. Se clasifica como metaloide y es el único elemento no metálico con menos de cuatro electrones en la capa externa. El elemento libre se prepara en forma cristalina o amorfa. La forma cristalina es un sólido quebradizo, muy duro. Es de color negro azabache a gris plateado con brillo metálico. Una forma de boro cristalino es rojo brillante. La forma amorfa es menos densa que la cristalina y es un polvo que va del café castaño al negro. En los compuestos naturales, el boro se encuentra como una mezcla de dos isótopos estables, con pesos atómicos de 10 y 11.

Muchas propiedades del boro no están lo suficientemente establecidas en forma experimental por la pureza discutible de algunas fuentes de boro, las variaciones en los métodos y las temperaturas de preparación.

El boro y sus compuestos tienen muchas aplicaciones en diversos campos, aunque el boro elemental se emplea principalmente en la industria metalúrgica. Su gran reactividad a temperaturas altas, en particular con oxígeno y nitrógeno, lo hace útil como agente metalúrgico degasificante. Se utiliza para refinar el aluminio y facilitar el tratamiento térmico del hierro maleable. El boro incrementa de manera considerable la resistencia a alta temperatura, característica de las aleaciones de acero. El boro elemental se emplea en reactores atómicos y en tecnologías de alta temperatura. Las propiedades físicas que lo hacen atractivo en la construcción de misiles y tecnología de cohetes son su densidad baja, extrema dureza, alto punto de fusión y notable fuerza tensora en forma de filamentos. Cuando las fibras de boro se utilizan en material portador o matriz de tipo epoxi (u otro plástico), la composición resultante es más fuerte y rígida que el acero y 25% más ligera que el aluminio. El bórax, Na2B4O710H2O, refinado es un ingrediente importante en ciertas variedades de detergentes, jabones, ablandadores de agua, almidones para planchado, adhesivos, preparaciones para baño, cosméticos. Talcos y papel encerado. Se utiliza también en retardantes a la flama, desinfectantes de frutas y madera, control de hierbas e insecticidas, así como en la manufactura de papel, cuero y plásticos.

El boro constituye el 0.001% en la corteza terrestre. Nunca se ha encontrado libre. Está también presente en el agua de mar en unas cuantas partes por millón (ppm). Existe en pequeñas cantidades en la mayoría de los suelos y es un constituyente esencial de varios silicatos tales como la turmalina y la datolita. La presencia de boro en cantidades muy pequeñas parece ser necesaria en casi todas las plantas, pero en grandes concentraciones es

Page 26: elemtos

muy tóxico para la vegetación. En la naturaleza hay sólo un número limitado de localidades con concentraciones altas de boro o grandes depósitos de minerales; los más importantes parecen ser de origen volcánico.

Efectos del Boro sobre la saludEl Boro ocurre de forma natual en el medioambiente debido a que es liberado al aire, suelo y agua a través de los procesos de erosión. Este puede también aparecer en el agua subterránea en muy pequeñas cantidades. Los humanos utilizan Boro en las industrias del vidrio pero la liberación de Boro por los humanos es más pequeña que las concentraciones liberadas por procesos naturales de erosión.

Las plantas absorben Boro del suelo y a través del consumo de plantas por los animales este termina en las cadena alimentarias. El Boro ha sido encontrado en los tejidos animales pero este no parece ser que se acumule. Cuando los animales absorben grandes cantidades de Boro en un periodo de tiempo corto a través de la comida o el agua los órganos reproductivos masculinos serán afectados. Cuando los animales son expuestos al Boro durante el embarazo sus descencientes pueden sufrir defectos de nacimiento y fallos en el desarrollo. Además, los animales sufren irritación de nariz cuando respiran Boro.

Efectos ambientales del BoroLos humanos pueden ser expuestos al Boro a través de las frutas y vegetales, el agua, aire y el consumo de productos.

Comer peces o carne no incrementará la concentración de Boro en nuestros cuerpos, el Boro no se acumula en los tejidos animales. La exposición al Boro a través del aire y del agua no es muy frecuente que ocurra, pero el riesgo de exposición al polvo de Boro en el lugar de trabajo existe.

Las exposiciones al Boro pueden también ocurrir al consumir productos como cosméticos y productos para lavar.

Cuando los humanos consumen grandes cantidades de comida que contiene Boro, la concentración de Boro en sus cuerpos puede aumentar a niveles que causan problemas de salud. El Boro puede infectar el estómago, hígado, riñones y cerebro y puede eventualmente llevar a la muerte. Cuando la exposición es con pequeñas cantidades de Boro tiene lugar la irritación de la nariz, garganta y ojos.

Bario - Ba

Propiedades químicas del Bario - Efectos del Bario sobre la salud - Efectos ambientales del Bario

Page 27: elemtos

Nombre Bario

Número atómico 56

Valencia 2

Estado de oxidación +2

Electronegatividad 0,9

Radio covalente (Å) 1,98

Radio iónico (Å) 1,35

Radio atómico (Å) 2,22

Configuración electrónica [Xe]6s2

Primer potencial de ionización (eV) 5,24

Masa atómica (g/mol) 137,34

Densidad (g/ml) 3,5

Punto de ebullición (ºC) 1640

Punto de fusión (ºC) 714

Descubridor Sir Humphrey Davy en 1808

BarioElemento químico, Ba, con número atómico 56 y peso atómico de 137.34. El bario ocupa el decimoctavo lugar en abundancia en la corteza terrestre, en donde se encuentra en un 0.04%,

Page 28: elemtos

valor intermedio entre el calcio y el estroncio, los otros metales alcalinotérreos. Los compuestos de bario se obtienen de la minería y por conversión de dos minerales de bario. La barita, o sulfato de bario, es el principal mineral y contiene 65.79% de óxido de bario. La witherita, algunas veces llamada espato pesado, es carbonato de bario y contiene 72% de óxido de bario.

El metal lo aisló por primera vez Sir Humphry Davy en 1808 por electrólisis. En la industria sólo se preparan pequeñas cantidades por reducción de óxido de bario con aluminio en grandes retortas. El metal se utiliza en aleaciones bario-niquel para alambres de bujía (el bario incrementa la capacidad de emisión de la aleación) y en el metal de Frary, que es una aleación de plomo, bario y calcio, que se usa en lugar del metal Babbitt porque puede moldearse.

El metal reacciona con el agua más fácilmente que el estroncio y el calcio, pero menos que el sodio; se oxida con rapidez al aire y forma una película protectora que evita que siga la reacción, pero en aire húmedo puede inflamarse. El metal es lo bastante activo químicamente para reaccionar con la mayor parte de los no metales. El metal es dúctil y maleable; los trozos recién cortados tienen una apariencia gris-blanca lustrosa.

La barita blanda (fácil de moler) se prefiere en la manufactura de los compuestos de bario, pero pueden usarse variedades cristalinas. La barita cruda se muele y mezcla con polvo de carbón. La mezcla se calcina en un horno rotatorio de reducción; el sulfato de bario se reduce a sulfuro de bario o ceniza negra. La ceniza negra consta de cerca de 70% de sulfuro de bario y se trata con agua caliente para hacer una solución que sirve de material de partida en la manufactura de muchos otros compuestos.

El lipoton, un polvo blanco que consta de 20% de sulfato de bario, 30% de sulfuro de zinc y menos del 3% de óxido de zinc, se emplea en forma amplia como pigmento en pinturas blancas. El blanco fijo se emplea en la manufactura de colorantes brillantes. Es el mejor grado de sulfato de bario para pigmento en pinturas. A causa de la gran absorción de rayos X por el bario, el sulfato sirve para cubrir el tubo digestivo en radiografía, para aumentar el contraste. El carbonato de bario es útil en la industria de la cerámica para prevenir la eflorescencia en arcillas para loza. Se usa también como vidriado en alfarería, en vidrio óptico y como veneno para ratas. El cloruro de bario se emplea en la purificación de sal, en la manufactura de cloruro e hidróxido de sodio, como fundente en aleaciones de magnesio, como ablandador de agua de calderas y en preparaciones medicinales. El nitrato de bario, llamado también salitre de barita, se utiliza en pirotecnia y señales luminosas (produce color verde) y un poco menos en preparaciones medicinales. El óxido de bario, conocido como barita, o barita calcinada, se utiliza como agente de secado en la industria y en el endurecimiento de aceros. El peróxido de bario se emplea en ocasiones como agente blanqueador. El cromato de bario, cromo limón o amarillo cromo, se emplea en pigmentos amarillos y fósforos de seguridad. El clorato de bario se utiliza en pirotecnia. El acetato y cianuro de bario su usan en la industria como reactivo químico y en metalurgia, respectivamente.

Page 29: elemtos

Efectos del Bario sobre la saludDe forma natural los niveles de Bario en el medio ambiente son muy bajos. Altas cantidades de Bario pueden sólo ser encontradas en suelos y en comida, como son los frutos secos, algas, pescados y ciertas plantas. La cantidad de Bario que es detectada en la comida y en agua generalmente no es suficientemente alta como para llegar a ser concerniente a la salud. La gente con un gran riesgo a la exposición del bario con efectos adicionales sobre la salud son los que trabajan en la industria del Bario. Los mayores riesgos para la salud que ellos pueden sufrir son causado por respirar aire que contiene sulfato de Bario o Carbonato de Bario.

Muchos vertederos de residuos peligrosos contienen ciertas cantidades de Bario. La gente que vive cerca de ellos posiblemente están expuestos a niveles dañinos. La exposición podrá entonces ser causada por respirar polvo, comer tierra o plantas, o beber agua que está contaminada con Bario. Por contacto en la piel puede también ocurrir.

Los efectos sobre la salud del Bario dependen de la solubilidad de los compuestos. Compuestos del Bario que se disuelven en agua pueden ser dañino para la salud humana. La toma de gran cantidad de Bario que es soluble puede causar parálisis y en algunos casos incluso la muerte.

Pequeñas cantidades de Bario soluble en agua puede causar en las personas dificultad al respirar, incremento de la presión sanguínea, arítmia, dolor de estómago, debilidad en los músculos, cambios en los reflejos nerviosos, inflamación del cerebro y el hígado. Daño en los riñones y el corazón.

No se ha demostrado que el Bario cause cáncer en los humanos. No hay prueba de que el Bario pueda causar infertilidad o defectos de nacimiento.

Efectos ambientas del BarioEl Bario es un metal plateado-blancuzco que puede ser encontrado en el medioambiente, donde existe de forma natural. Aparece combinado con otros elementos químicos, como el azufre, carbón u oxígeno.

Los compuestos del Bario son usado por las industrias del aceite y gas para hacer lubricantes para taladros. Los compuestos del Bario son también usado para hacer pinturas, bricks, azulejos, vidrio y gomas.

Debido al uso extensivo del Bario en las industrias, el Bario ha sido liberado al ambiente en grandes cantidades. Como resultado las concentraciones de Bario en el aire, agua y suelo pueden ser mayores que las concentraciones que ocurren de forma natural en muchos lugares. El Bario es liberado al aire por las minas, proceso de refinado, y durante la producción de compuestos de Bario. Puede entrar también al aire durante la combustión del carbón y aceites.

Page 30: elemtos

Algunos compuestos del Bario que son liberado durante procesos industriales se disuelven fácilmente en agua y son encontrados en lagos, ríos y arroyos.

Debido a sus solubilidades estos compuestos del Bario pueden alcanzar largas distancias desde sus puntos de emisión. Cuando peces y otros organismos acuáticos absorben los compuestos del Bario, el Bario se acumulará en sus cuerpos. Los compuestos del Bario que son persistentes usualmente permanecen en la superficie del suelo, o en el sedimento de las aguas. El Bario es encontrado en la mayoría de los suelos en bajos niveles. Estos niveles pueden ser más altos en vertederos de residuos peligrosos.

Berilio - Be

Propiedades químicas del Berilio - Efectos del Berilio sobre la salud - Efectos ambientales del

BerilioNombre Berilio

Número atómico 4

Valencia 2

Estado de oxidación +2

Electronegatividad 1,5

Radio covalente (Å) 0,90

Radio iónico (Å) 0,31

Radio atómico (Å) 1,12

Configuración electrónica 1s22s2

Primer potencial de ionización (eV) 9,38

Masa atómica (g/mol) 9,0122

Page 31: elemtos

Densidad (g/ml) 1,85

Punto de ebullición (ºC) 2770

Punto de fusión (ºC) 1277

Descubridor Fredrich Wohler en 1798

BerilioEl berilio, metal raro, es uno de los metales estructurales más ligeros, su densidad es cerca de la tercera parte de la del aluminio. En la table de arriba se muestran algunas de las propiedades físicas y químicas importantes del berilio. El berilio tiene diversas propiedades poco comunes e incluso únicas.

El principal uso del berilio metálico se encuentra en la manufactura de aleaciones berilio-cobre y en el desarrollo de materiales moderadores y reflejantes para reactores nucleares. La adición de un 2% de berilio al cobre forma una aleación no magnética seis veces más fuerte que el cobre. Estas aleaciones berilio-cobre tienen numerosas aplicaciones en la industria de herramientas ya que no producen chispas, en las partes móviles críticas de aviones, así como en componentes clave de instrumentos de precisión, computadoras mecánicas, reveladores eléctricos y obturadores de cámaras fotográficas. Martillos, llaves y otras herramientas de berilio-cobre se emplean en refinerías petroleras y otras plantas en las cuales una chispa producida por piezas de acero puede ocasionar una explosión o un incendio.

El berilio tiene muchos usos en la energía nuclear porque es uno de los materiales más eficientes para disminuir la velocidad de los neutrones, así como para reflejarlos. En consecuencia, se utiliza en la construcción de reactores nucleares como moderador y soporte, o en aleaciones con elementos combustibles.

Efectos del Berilio sobre la saludEl berilio no es un elemento crucial para los humanos: en realidad es uno de los más tóxicos que se conocen. Es un metal que puede ser muy perjudicial cuando es respirado por los humanos, porque puede dañar los pulmones y causar neumonía. El efecto más comúnmente

Page 32: elemtos

conocido del berilio es la llamada beriliosis, una peligrosa y persistente enfermedad de los pulmones que puede incluso dañar otros órganos, como el corazón. Alrededor del 20% de todos los casos de berioliosis terminan con la muerte del enfermo. La causa de la beriliosis es la respiración de berilio en el lugar de trabajo. Las personas con el sistema inmune debilitado son más sucestibles a esta enfermedad.

El berilio puede también causar reacciones alérgicas en personas que son hipersensibles a los productos químicos. Estas reacciones pueden ser muy agudas y pueden hacer que la persona caiga fuertemente enferma, una afección conocida como enfermedad crónica por berilio. Los síntomas son debilidad, cansancio y problemas respiratorios. Algunas personas que sufren de esta enfermedad pueden desarrollar anorexia y las manos y pies se les ponen azules. En algunas personas puede causar la muerte.

El berilio puede también incrementar las posibilidades de desarrollar cáncer y daños en el ADN.

Efectos ambientales del BerilioEl berilio entra en el aire, agua y suelo como resultado de procesos naturales y actividades humanas. Esto ocurre de forma natural en el medio ambiente en pequeñas cantidades. El hombre añade berilio a través de la producción de metal y de la combustión de carbón y aceite.

El berilio existe en el aire en pequeñas partículas de polvo. Entra en el agua durante los procesos de desintegración de suelos y rocas. Las emisiones industriales añaden berilio al aire y al agua residual y éstas serán posteriormente traspasadas al agua. Normalmente precipita en el sedimento. El berilio como elemento químico está presente en los suelos en pequeñas cantidades de forma natural, pero las actividades humanas han incrementado esos niveles de berilio. Es probable que el berilio no se mueva hacia la zona profunda del suelo y no entre en contacto con el agua subterránea.

Ciertos elementos químicos reaccionan con el berilio en el agua haciéndolo insoluble. Esto es bueno, porque la forma insoluble del berilio en agua causa mucho meno daño a los organismos que la forma soluble. El berilio no se acumula en los cuerpos de los peces, pero algunas frutas y vegetales como son los frijoles y las peras pueden contener niveles significantes de berilio. Estos niveles pueden entrar en los animales cuando esos alimentos son consumidos, pero por suerte la mayoría de los animales excretan el berilio rápidamente a través de los órganos excretores como el sistema urinario y fecal.

Las pruebas de laboratorio han indicado que es posible que el berilio produzca cáncer y cambios en el ADN de los animales, aunque de momento no hay evidencia el estudios de campo que respalde estos descubrimientos

Bohrio - Bh

Page 33: elemtos

Propiedades químicas del Bohrio - Efectos del Bohrio sobre la salud - Efectos ambientales del

BohrioNombre Bohrio

Número atómico 107

Valencia -

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Rn]5f146d57s2

Primer potencial de ionización (eV) -

Masa atómica (g/mol) (262)

Densidad (g/ml) -

Punto de ebullición (ºC) -

Punto de fusión (ºC) -

Descubridor Peter Armbruster y Gottfried Munzenber en 1976

Page 34: elemtos

BohrioElemento químico que se espera que tenga propiedades químicas semejantes a las del elemento renio. Fue sintetizado e identificado sin ambigüedad en 1981 por un equipo de Darmstadt, Alemania, equipo dirigido por P. Armbruster y G. Müzenberg. La reacción usada para producir el elemento fue propuesta y aplicada en 1976 por un grupo de Dubna (cerca de Moscú), que estaba bajo la guía de Yu. Organessian. Un blanco de 209Bi fue bombardeado por un haz de proyectiles de 54Cr.

La mejor técnica par identificar un nuevo isótopo es su correlación genética con isótopos conocidos a través de una cadena de decaimiento radiactivo. En general, estas cadenas de decaimiento se interrumpen por fisión espontánea. Con el fin de aplicar el análisis de cadena de decaimiento deberían producirse aquellos isótopos que son más estables frente a la fisión espontánea, es decir, isótopos con números impares de protones y neutrones. Para hacer que estas pérdidas por fisión se mantengan pequeñas, debe producirse un núcleo con la mínima energía de excitación posible. En este aspecto, son ventajosas las reacciones en las que se utilizan compañeros de colisión relativamente simétricos y núcleos estrechamente enlazados de capa cerrada como el 209Bi y el 208Pb como blancos, y el 48Ca y el 50Ti como proyectiles.

En el experimento de Darmstadt se encontraron seis cadenas de decaimiento. Todos los decaimientos pueden atribuirse al 262Bh, un núcleo impar producido en una reacción de un neutrón. El isótopo 262Bh decae por decaimiento de partícula alfa, con una vida media de unos 5ms. Ciertos experimentos de Dubna, llevados a cabo en 1983, establecieron la producción de262Bh en la reacción 209Bi + 54Cr.

Efectos del Bohrio sobre la saludAl ser tan inestable, cualquier cantidad formada se descompondrá en otros elementos con tanta rapidez que no existe razón para estudiar sus efectos en la salud humana.

Efectos ambientales del BohrioDebido a su vida media tan extremadamente corta (0,44 segundos), no existe razón para considerar los efectos del bohrio en el medio ambiente.

Bismuto - Bi

Propiedades químicas del Bismuto - Efectos del Bismuto sobre la salud - Efectos ambientales del

Bismuto

Page 35: elemtos

Nombre Bismuto

Número atómico 83

Valencia 3,5

Estado de oxidación +3

Electronegatividad 1,9

Radio covalente (Å) 1,46

Radio iónico (Å) 1,20

Radio atómico (Å) 1,70

Configuración electrónica [Xe]4f145d106s26p3

Primer potencialde ionización (eV) 8,07

Masa atómica (g/mol) 208,980

Densidad (g/ml) 9,8

Punto de ebullición (ºC) 1560

Punto de fusión (ºC) 271,3

Descubridor Los antiguos

Bismuto

Page 36: elemtos

Elemento metálico, Bi, de número atómico 83 y peso atómico 208.980, pertenece al grupo Va de la tabla periódica. Es el elemento más metálico en este grupo, tanto en propiedades físicas como químicas. El único isótopo estable es el de masa 209. Se estima que la corteza terrestre contiene cerca de 0.00002% de bismuto. Existe en la naturaleza como metal libre y en minerales. Los principales depósitos están en Sudamérica, pero en Estados Unidos se obtiene principalmente como subproducto del refinado de los minerales de cobre y plomo.

El principal uso del bismuto está en la manufactura de aleaciones de bajo punto de fusión, que se emplean en partes fundibles de rociadoras automáticas, soldaduras especiales, sellos de seguridad para cilindros de gas comprimido y en apagadores automáticos de calentadores de agua eléctricos y de gas. Algunas aleaciones de bismuto que se expanden al congelarse se utilizan en fundición y tipos metálicos. Otra aplicación importante es la manufactura de compuestos farmacéuticos.

El bismuto es un metal cristalino, blanco grisáceo, lustroso, duro y quebradizo. Es uno de los pocos metales que se expanden al solidificarse. Su conductividad térmica es menor que la de cualquier otro metal, con excepción del mercurio. El bismuto es inerte al aire seco a temperatura ambiente, pero se oxida ligeramente cuando está húmedo. Forma rápidamente una película de óxido a temperaturas superiores a su punto de fusión, y se inflama al llegar al rojo formando el óxido amarillo, Bi2O3. El metal se combina en forma directa con los halógenos y con azufre, selenio y telurio, pero no con nitrógeno ni fósforo. No lo ataca el agua desgasificada a temperaturas comunes, pero se oxida lentamente al rojo por vapor de agua.

En casi todos los compuestos de bismuto está en forma trivalente. No obstante, en ocasiones puede ser pentavalente o monovalente. El bismutato de sodio y el pentafluoruro de bismuto son quizá los compuestos más importantes de Bi(V). El primero es un agente oxidante poderoso y el último un agente fluorante útil para compuestos orgánicos.

Efectos del Bismuto sobre la saludEl bismuto y sus sales pueden causar daños en el hígado, aunque el grado de dicho daño es normalmente moderado. Grandes dosis pueden ser mortales. Industrialmente es considerado como uno de los metales pesados menos tóxicos. Envenenamiento grave y a veces mortal puede ocurrir por la inyección de grandes dosis en cavidades cerradas y de aplicación extensiva a quemaduras (en forma de compuestos solubles del bismuto). Se ha declarado que la administración de bismuto debe ser detenida cuando aparezca gingivitis, ya que de no hacerlo es probable que resulte en stomatitis ulcerosa. Se pueden desarrollar otros resultados tóxicos, tales como sensación indefinida de malestar corporal, presencia de albúmina u otra sustancia proteica en la orina, diarrea, reacciones cutáneas y a veces exodermatitis grave.

Vías de entrada: Inhalación, piel e ingestión.

Efectos agudos: Inhalación: ENVENENAMIENTO. Puede ser un gas desagradable provocando irritación respiratoria. Puede causar mal aliento, sabor metálico y gingivitis. Ingestión: ENVENENAMIENTO. Puede causar náuseas, pérdida de apetito y de peso,

Page 37: elemtos

malestar, albuminuria, diarrea, reacciones cutáneas, estomatitis, dolor de cabeza, fiebre, falta de sueño, depresión, dolores reumáticos y una línea negra se puede formar en las encías debido al depósito de sulfuro de bismuto. Piel: Puede provocar irritación. Ojos: Puede provocar irritación.

Afecciones generalmente agravadas por la exposición al bismuto: Desórdenes cutáneos y respiratorios pre-existentes.

El bismuto no se considera un carcinógeno para los humanos

Efectos ambientales del BismutoEl bismuto metálico no se considera tóxico y presenta una amenaza mínima para el medio ambiente. Los compuestos del bismuto son generalmente muy poco solubles pero deben ser manejados con cuidado, ya que solo se dispone de información limitada de sus efectos y destino en el medio ambiente

Berkelio - Bk

Propiedades químicas del Berkelio - Efectos del Berkelio sobre la salud - Efectos ambientales del

BerkelioNombre Berkelio

Número atómico 97

Valencia 3,4

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Rn]5f86d17s2

Page 38: elemtos

Primer potencialde ionización (eV) -

Masa atómica (g/mol) (247)

Densidad (g/ml) -

Punto de ebullición (ºC) -

Punto de fusión (ºC) -

Descubridor G.T. Seaborg en 1949

BerkelioElemento químico número atómico 97, símbolo Bk, el decimoctavo miembro de la serie de los actínidos. En esta serie de llena la capa electrónica 5f al mismo tiempo que en los lantánidos (tierras raras) se va ocupando la 4f. Estas dos series de elementos son muy semejantes en propiedades químicas, y el berkelio, salvo pequeñas diferencias en el radio iónico, se parece mucho a su homólogo, el terbio.

El berkelio no se encuentra en la corteza terrestre por no tener isótopos estables. Debe prepararse por reacciones nucleares usando elementos blancos más abundantes. Estas reacciones incluyen bombardeo con partículas cargadas, irradiación con neutrones de reactores de alto flujo o producción en un dispositivo termonuclear.

El berkelio metálico es químicamente reactivo, existe en dos formas cristalinas y se funde a 986ºC (1806ºF). Lo descubrieron en 1949 S. G. Thompson, A. Ghiorso y G. T. Seaborg en la Universidad de California en Berkeley y fue nombrado así en honor de aquella ciudad. Se conocen nueve isótopos, cuya masa fluctúa entre 243 y 251 y cuya vida media oscila entre 1 hora y 1380 años. El isótopo de berkelio más fácil de producir es el 249Bk, el cual sufre decaimiento beta con vida media de 314 días, y es una fuente valiosa en la preparación

Page 39: elemtos

de 249Cf. El isótopo de mayor vida media es el 247Bk (1380 años), pero es difícil de obtener en cantidad suficiente para aplicarse al estudio de su química.

Efectos del Berkelio sobre la saludEl berkelio no se da en la naturaleza, y no ha sido encontrado en la corteza terrestre, por lo que no hay motivo para considerar su peligro para la salud. Sin embargo, todos sus isótopos conocidos son radioactivos, y aunque solo se producen artificialmente en laboratorios y son manejados por expertos, a continuación mostramos algunos peligros para la salud de la radioactividad que deben tenerse en cuenta:

El desarrollo de la tecnología nuclear ha estado acompañado por escapes tanto grandes como pequeños de radioactividad a la atmósfera, el suelo, los océanos, los mares y las aguas subterráneas, mostrándose por todo el mundo en la materia vegetal, animal e inerte. La radiación pasa de una especie a otra y se concentra a través de la cadena alimenticia, sometiendo a otros animales y a los humanos a sus efectos dañinos.

La mayor amenaza de la radiactividad para la vida tal y como la conocemos es los daños que produce en el material genético, la configuración genética de todas las especies vivas. El daño genético producido por la exposición a la radiación se acumula durante vidas y generaciones.

Incluso exposiciones de baja dosis son carcinógenas después de una exposición prolongada. La generación actual, la que ahora se encuentra en el útero, y todas las que le sigan pueden padecer de cánceres, daños en el sistema inmunitario, leucemias, abortos espontáneos, nacidos muertos, deformidades y problemas de fertilidad. Mientras que muchos de estos problemas para la salud van en aumento, los individuos no pueden probar que la causa ha sido ni el incremento de la radiación de fondo ni la exposición específica. Solamente la evidencia epidemiológica es científicamente aceptable para imputar la causa. Quizás la más extrema consecuencia con el tiempo será simplemente el cese total de la capacidad reproductora. La radiación es una causa conocida de esterilidad.

Efectos ambientales del BerkelioEl berkelio no se da en la naturaleza, y no ha sido encontrado en la corteza terrestre, por lo que no existe razón para considerar sus efectos en el medio ambiente. Sin embargo, todos sus isótopos conocidos son radioactivos, y aunque solo se producen artificialmente en laboratorios y son manejados por expertos, en el caso de que llegaran a afectar al medio ambiente producirían cánceres, daños en el sistema inmunitario, leucemias, abortos espontáneos, nacidos muertos, deformidades y problemas de fertilidad en todos los seres vivos afectados

Bromo - Br

Page 40: elemtos

Propiedades químicas del Bromo - Efectos del Bromo sobre la salud - Efectos ambientales del

BromoNombre Bromo

Número atómico 35

Valencia +1,-1,3,5,7

Estado de oxidación -1

Electronegatividad 2,8

Radio covalente (Å) 1,14

Radio iónico (Å) 1,95

Radio atómico (Å) -

Configuración electrónica [Ar]3d104s24p5

Primer potencialde ionización (eV) 11,91

Masa atómica (g/mol) 79,909

Densidad (g/ml) 3,12

Punto de ebullición (ºC) 58

Punto de fusión (ºC) -7,2

Descubridor Anthoine Balard en 1826

Page 41: elemtos

BromoElemento químico, Br, número atómico 35 y peso atómico 79.909, por lo común existe como Br2; líquido de olor intenso e irritante, rojo oscuro y de bajo punto de ebullición, pero de alta densidad. Es el único elemento no metálico líquido a temperatura y presión normales. Es muy reactivo químicamente; elemento del grupo de los halógenos, sus propiedades son intermedias entre las del cloro y las del yodo.

Los estados de valencia más estables de las sales de bromo son 1- y 5+, aunque también se conocen 1+, 3+ y 7+. Dentro de amplios límites de temperatura y presión, las moléculas en el líquido y el vapor son diatómicas Br2, con un peso molecular de 159.818. Hay dos isótopos estables (79Br y 81Br) que existen en la naturaleza en proporciones casi idénticas, de modo que el peso atómico es de 79.909. Se conocen también varios radioisótopos. La solubilidad del bromo en agua a 20ºC (68ºF) es de 3.38 a/100 g (3.38 oz/100 oz) de solución, pero ésta se incrementa fuertemente en presencia de sus sales y de ácido bromhídrico. La capacidad de este elemento inorgánico para disolverse en disolventes orgánicos es de importancia considerable en sus reacciones. A pesar de que la corteza terrestre contiene de 1015 a 1016 toneladas de bromo, el elemento está distribuido en forma amplia y se encuentra en concentraciones bajas en forma de sales. La mayor parte del bromo recuperable se halla en la hidrosfera. El agua de mar contiene en promedio 65 partes por millón (ppm) de bromo. Las otras fuentes principales en Estados Unidos son salmueras subterráneas y lagos salados, con producción comercial en Michigan, Arkansas y California.

Muchos bromuros inorgánicos tienen uso industrial, pero los orgánicos tienen una aplicación más amplia. Gracias a la facilidad de reacción con compuestos orgánicos, y a la fácil eliminación o desplazamiento posterior, los bromuros orgánicos se han estudiado y utilizado como intermediarios químicos. Además, las reacciones del bromo son tan limpias que pueden emplearse en el estudio de mecanismos de reacción sin la complicación de reacciones laterales. La capacidad del bromo para unirse a posiciones poco usuales de las moléculas orgánicas tiene un valor adicional como herramienta de investigación.

El bromo y sus compuestos se usan como agentes desinfectantes en albercas y agua potable. Algunos de sus compuestos son más seguros que los análogos de cloro, por la persistencia residual de los últimos. Otros compuestos químicos del bromo se utilizan como fluidos de trabajo en medidores, fluidos hidráulicos, intermediarios en la fabricación de colorantes, en acumuladores, en supresores de explosión y sistemas de extinción de fuego. La densidad de los compuestos de bromo también los hace útiles en la separación gradual del carbón y otros minerales por gradientes de densidad. La gran aplicabilidad de los compuestos de bromo se compureba en el uso comercial de cerca de 100 compuestos de bromo.

El bromo causa daño a la piel en forma casi instantánea y es difícil de eliminar rápidamente para que no provoque quemaduras dolorosas que sanan con lentitud. Sus vapores son muy tóxicos, pero su olor sirve como aviso; es difícil permanecer en un área de suficiente concentración para ser dañado en forma permanente. El bromo puede manejarse con seguridad, pero deben respetarse las recomendaciones de los fabricantes.

Page 42: elemtos

Efectos del Bromo sobre la saludEl bromo es un elemento que se da en la naturaleza y que puede encontrarse en muchas sustancias inorgánicas. Los humanos, sin embargo, empezaron hace muchos años a introducir bromuros orgánicos en el medio ambiente. Estos son todos ellos compuestos que no son naturales y pueden causar graves daños a la salud humana y el medio ambiente.

Los humanos podemos absorber bromuros orgánicos a través de la piel, con la comida y durante la respiración. Los bromuros orgánicos son ampliamente usados como sprays para matar insectos y otras plagas no deseadas. Pero no solo son venenosas para los animales contra los que son usados, sino también para los animales más grandes. En muchos casos también son venenosos para los humanos.

Los efectos sobre la salud más importantes que pueden ser causados por contaminantes orgánicos que contienen bromuros son disfunciones del sistema nervioso y alteraciones del material genético. Pero los bromuros orgánicos pueden también dañar ciertos órganos como el hígado, riñones, pulmones y testículos y puede causar disfunciones estomacales y gastrointestinales. En la naturaleza se encuentran algunas formas de bromuros inorgánicos, pero a pesar de que se dan naturalmente, los humanos han añadido demasiado a lo largo de los años. A través de la comida y del agua los humanos absorbemos altas dosis de bromuros inorgánicos. Estos bromuros pueden perjudicar al sistema nervioso y la glándula tiroides.

Efectos ambientales del BromoLos bromuros orgánicos son a menudo aplicados como agentes desinfectantes y protectores, debido a sus efectos perjudiciales para los microorganismos. Cuando se aplican en invernaderos y en campos de cultivo pueden ser arrastrados fácilmente hasta las aguas superficiales, lo que tiene efectos muy negativos para la salud de las daphnia, peces, langostas y algas.

Los bromuros orgánicos son también perjudiciales para los mamíferos, especialmente cuando se acumulan en los cuerpos de sus presas. Los efectos más importantes sobre los animales son daños nerviosos y daños en el ADN, lo que puede aumentar las probabilidades de desarrollar cáncer.

La toma de bromuro orgánico tiene lugar a través de la comida, de la respiración y a través de la piel.

Los bromuros orgánicos no son muy biodegradables; cuando son descompuestos se forman bromuros inorgánicos. Éstos pueden dañar el sistema nervioso si son absorbidos en grandes dosis. Ha ocurrido en el pasado que los bromuros orgánicos terminaron en la comida del ganado. Miles de vacas y cerdos tuvieron que ser sacrificados para prevenir el contagio a los humanos. El ganado sufrió de síntomas tales como daños en el hígado, pérdida de visión y disminución del crecimiento, reducción de la inmunidad, decrecimiento de la producción de leche y esterilidad y malformaciones fetales

Page 43: elemtos

Carbono - C

Propiedades químicas del Carbono - Efectos del Carbono para la salud - Efectos ambientales del

Carbono

Nombre Carbono

Número atómico 6

Valencia 2,+4,-4

Estado de oxidación +4

Electronegatividad 2,5

Radio covalente (Å) 0,77

Radio iónico (Å) 0,15

Radio atómico (Å) 0,914

Configuración electrónica 1s22s22p2

Primer potencial de ionización (eV) 11,34

Masa atómica (g/mol) 12,01115

Densidad (g/ml) 2,26

Punto de ebullición (ºC) 4830

Punto de fusión (ºC) 3727

Descubridor Los antiguos

Page 44: elemtos

CarbonoEl carbono es único en la química porque forma un número de compuestos mayor que la suma total de todos los otros elementos combinados.

Con mucho, el grupo más grande de estos compuestos es el constituido por carbono e hidrógeno. Se estima que se conoce un mínimo de 1.000.000 de compuestos orgánicos y este número crece rápidamente cada año. Aunque la clasificación no es rigurosa, el carbono forma otra serie de compuestos considerados como inorgánicos, en un número mucho menor al de los orgánicos.

El carbono elemental existe en dos formas alotrópicas cristalinas bien definidas: diamante y grafito. Otras formas con poca cristalinidad son carbón vegetal, coque y negro de humo. El carbono químicamente puro se prepara por descomposición térmica del azúcar (sacarosa) en ausencia de aire. Las propiedades físicas y químicas del carbono dependen de la estructura cristalina del elemento. La densidad fluctúa entre 2.25 g/cm³ (1.30 onzas/in³) para el grafito y 3.51 g/cm³ (2.03 onzas/in³) para el diamante. El punto de fusión del grafito es de 3500ºC (6332ºF) y el de ebullición extrapolado es de 4830ºC (8726ºF). El carbono elemental es una sustancia inerte, insoluble en agua, ácidos y bases diluidos, así como disolventes orgánicos. A temperaturas elevadas se combina con el oxígeno para formar monóxido o dióxido de carbono. Con agentes oxidantes calientes, como ácido nítrico y nitrato de potasio, se obtiene ácido melítico C6(CO2H)6. De los halógenos sólo el flúor reacciona con el carbono elemental. Un gran número de metales se combinan con el elemento a temperaturas elevadas para formar carburos.

Con el oxígeno forma tres compuestos gaseosos: monóxido de carbono, CO, dióxido de carbono, CO2, y subóxido de carbono, C3O2. Los dos primeros son los más importantes desde el punto de vista industrial. El carbono forma compuestos de fórmula general CX4 con los halógenos, donde X es flúor, cloro, bromo o yodo. A temperatura ambiente el tetrafluoruro de carbono es gas, el tetracloruro es un líquido y los otros dos compuestos son sólidos. También se conocen tetrahalogenuros de carbono mixtos. Quizá el más importante de ellos es el diclorodifluorometano, CCl2F2 llamado freón.

El carbono y sus compuestos se encuentran distribuidos ampliamente en la naturaleza. Se estima que el carbono constituye 0.032% de la corteza terrestre. El carbono libre se encuentra

Page 45: elemtos

en grandes depósitos como hulla, forma amorfa del elemento con otros compuestos complejos de carbono-hidrógeno-nitrógeno. El carbono cristalino puro se halla como grafito y diamante.

Grandes cantidades de carbono se encuentran en forma de compuestos. El carbono está presente en la atmósfera en un 0.03% por volumen como dióxido de carbono. Varios minerales, como caliza, dolomita, yeso y mármol, tienen carbonatos. Todas las plantas y animales vivos están formados de compuestos orgánicos complejos en donde el carbono está combinado con hidrógeno, oxígeno, nitrógeno y otros elementos. Los vestigios de plantas y animales vivos forman depósitos: de petróleo, alfalto y betún. Los depósitos de gas natural contienen compuestos formados por carbono e hidrógeno.

El elemento libre tiene muchos usos, que incluyen desde las aplicaciones ornamentales del diamante en joyería hasta el pigmento de negro de humo en llantas de automóvil y tintas de imprenta. Otra forma del carbono, el grafito, se utiliza para crisoles de alta temperatura, electrodos de celda seca y de arco de luz, como puntillas de lápiz y como lubricante. El carbón vegetal, una forma amorfa del carbono, se utiliza como absorbente de gases y agente decolorante.

Los compuestos de carbono tienen muchos usos. El dióxido de carbono se utiliza en la carbonatación de bebidas, en extintores de fuego y, en estado sólido, como enfriador (hielo seco). El monóxido de carbono se utiliza como agente reductor en muchos procesos metalúrgicos. El tetracloruro de carbono y el disulfuro de carbono son disolventes industriales importantes. El freón se utiliza en aparatos de refrigeración. El carburo de calcio se emplea para preparar acetileno; es útil para soldar y cortar metales, así como para preparar otros compuestos orgánicos. Otros carburos metálicos tienen usos importantes como refractarios y como cortadores de metal.

Efectos del Carbono sobre la saludEl carbono elemental es de una toxicidad muy baja. Los datos presentados aquí de peligros para la salud están basados en la exposición al negro de carbono, no carbono elemental. La inhalación continuada de negro de carbón puede resultar en daños temporales o permanentes a los pulmones y el corazón.

Se ha encontrado pneumoconiosis en trabajadores relacionados con la producción de negro de carbón. También se ha dado parte de afecciones cutáneas tales como inflamación de los folículos pilosos, y lesiones de la mucosa bucal debidos a la exposición cutánea.

Carcinogenicidad: El negro de carbón ha sido incluído en la lista de la Agencia Internacional de Investigación del Cáncer (AIIC) dentro del grupo 3 (agente no clasificable con respecto a su carcinogenicidad en humanos).

El carbono-14 es uno de los radionucleidos involucrados en las pruebas nucleares atmosféricas, que comenzó en 1945, con una prueba americana, y terminó en 1980 con una prueba china. Se encuentra entre los radionucleidos de larga vida que han producido y

Page 46: elemtos

continuarán produciendo aumento del riesgo de cáncer durante décadas y los siglos venideros. También puede atravesar la placenta, ligarse orgánicamente con células en desarrollo y de esta forma poner a los fetos en peligro.

Efectos ambientales del CarbonoNo se tiene constancia de que el carbono tenga efectos negativos sobre el medio ambiente

Calcio - Ca

Propiedades químicas del Calcio - Efectos del Calcio sobre la salud - Efectos ambientales del

CalcioNombre Calcio

Número atómico 20

Valencia 2

Estado de oxidación +2

Electronegatividad 1,0

Radio covalente (Å) 1,74

Radio iónico (Å) 0,99

Radio atómico (Å) 1,97

Configuración electrónica [Ar]4s2

Primer potencialde ionización (eV) 6,15

Masa atómica (g/mol) 40,08

Densidad (g/ml) 1,55

Page 47: elemtos

Punto de ebullición (ºC) 1440

Punto de fusión (ºC) 838

Descubridor Sir Humphrey Davy en 1808

CalcioElemento químico, Ca, de número atómico 20; es el quinto elemento y el tercer metal más abundante en la corteza terrestre. Los compuestos de calcio constituyen 3.64% de la corteza terrestre. El metal es trimorfo, más duro que el sodio, pero más blando que el aluminio. Al igual que el berilio y el aluminio, pero a diferencia de los metales alcalinos, no causa quemaduras sobre la piel. Es menos reactivo químicamente que los metales alcalinos y que los otros metales alcalinotérreos. La distribución del calcio es muy amplia; se encuentra en casi todas las áreas terrestres del mundo. Este elemento es esencial para la vida de las plantas y animales, ya que está presente en el esqueleto de los animales, en los dientes, en la cáscara de los huevos, en el coral y en muchos suelos. El cloruro de calcio se halla en el agua del mar en un 0.15%.

Los iones calcio disueltos en el agua forman depósitos en tuberías y calderas cuando el agua es dura, es decir, cuando contiene demasiado calcio o magnesio. Esto se puede evitar con los ablandadores de agua.

El calcio metálico se prepara en la industria por electrólisis del cloruro de calcio fundido. Éste se obtiene por tratamiento de los minerales de carbonato con ácido clorhídrico o como un desperdicio del proceso Solvay de los carbonatos. El metal puro puede ser maquinado en torno, hilado, serrado, extruido; se le puede convertir en alambre, prensar y amartillar en placas.

El calcio forma una película fina de óxido y nitruro en el aire, la cual lo protege de un ataque posterior. Se quema en el aire a temperatura elevada para producir principalmente nitruro.

Page 48: elemtos

El metal producido en forma comercial reacciona fácilmente con el agua y los ácidos y produce hidrógeno que contiene cantidades notables de amoniaco e hidrocarburos como impurezas.

El metal se emplea en aleaciones de aluminio para cojinetes, como auxiliar en la remoción del bismuto del plomo, así como controlador de carbono grafítico en el hierro fundido. Se emplea también como desoxidante en la manufactura de muchos aceros; como agente reductor en la preparación de metales como el cromo, torio, zirconio y uranio, y como material de separación para mezclas gaseosas de nitrógeno y argón.

El óxido de calcio, CaO, se produce por descomposición térmica de los minerales de carbonato en altos hornos, aplicando un proceso de lecho continuo. El óxido se utiliza en arcos de luz de alta intensidad (luz de cal) a causa de sus características espectrales poco usuales y como agente deshidratante industrial. La industria metalúrgica hace amplio uso del óxido durante la reducción de aleaciones ferrosas.

El hidróxido de calcio, Ca(OH)2, tiene muchas aplicaciones en donde el ión hidroxilo es necesario. En el proceso de apagado del hidróxido de calcio, el volumen de cal apagada [Ca(OH)2] se expande al doble que la cantidad de cal viva inicial (CaO), hecho que lo hace útil para romper roca o madera.

La cal apagada es un absorbente excelente para el dióxido de carbono, al producir el carbonato que es muy insoluble.

El siliciuro de calcio, CaSi, preparado en horno eléctrico a partir de cal, sílice y agentes reductores carbonosos, es útil como agente desoxidante del acero. El carburo de calcio, CaC2, se produce al calentar una mezcla de cal y carbón a 3000ºC (5432ºF) en un horno eléctrico y es un acetiluro que produce acetileno por hidrólisis. El acetileno es el material base de un gran número de productos químicos importantes en la química orgánica industrial.

El carbonato de calcio puro existe en dos formas cristalinas: la calcita, de forma hexagonal, la cual posee propiedades de birrefrigencia, y la aragonita, de forma romboédrica. Los carbonatos naturales son los minerales de calcio más abundantes. El espato de Islandia y la calcita son formas esencialmente puras de carbonato, mientras que el mármol es impuro y mucho más compacto, por lo que puede pulirse. Tiene gran demanda como material de construcción. Aunque el carbonato de calcio es muy poco soluble en agua, tiene una solubilidad considerable en agua que contenga dióxido de carbono disuelto, ya que en estas soluciones forma el bicarbonato al disolverse. Este hecho explica la formación de cavernas, donde los depósitos de piedra caliza han estado en contacto con aguas ácidas.

Los halogenuros de calcio incluyen el fluoruro fosforescente, que es el compuesto de calcio más abundante y con aplicaciones importantes en espectroscopia. El cloruro de calcio posee, en la forma anhidra, capacidad notoria de delicuescencia que lo hace útil como agente deshidratante industrial y como factor de control de tolvaneras en carreteras. El hipoclorito de calcio (polvo blanqueador) se produce en la industria al pasar cloro dentro de una solución de cal, y se ha utilizado como agente blanqueador y purificador de agua.

Page 49: elemtos

El sulfato de calcio dihidratado es el yeso mineral, constituye la mayor porción del cemento Portland, y se ha empleado para reducir la alcalinidad de los suelos. Un hemihidrato del sulfato de calcio se produce por calentamiento del yeso a temperaturas altas, y se vende con el nombre comercial de estuco de París.

El calcio es un constituyente invariable de todas las plantas, ya que es esencial para su crecimiento. Lo contienen como constituyente estructural y como ion fisiológico. El calcio se encuentra en el tejido blando, en fluidos tisulares y en la estructura del esqueleto de todos los animales. Los huesos de los vertebrados contienen calcio en forma de fluoruro de calcio, carbonato de calcio y fosfato de calcio.

Efectos del Calcio sobre la salud

Cuando hablamos del calcio algunas veces nos referimos a él con el nombre de cal. Es comúnmente encontrado en la leche y productos lácteos, pero también en frutos secos, vegetales, etc. Es un componente esencial para la preservación del esqueleto y dientes de los humanos. También asiste en funciones de los nervios y musculares. El uso de más de 2,5 gramos de calcio por día sin una necesidad médica puede llevar a cabo el desarrollo de piedras en los riñones, esclerosis y problemas en los vasos sanguíneos.

La falta de calcio es una de las causas principales de la osteoporosis. La osteoporosis es una enfermedad caracterizada por una fragilidad de los huesos producida por una menor cantidad de sus componentes minerales, lo que disminuye su densidad.

Al contrario de lo que mucha gente piensa, dentro de nuestros huesos se desarrolla una gran actividad biológica. Continuamente los huesos se están renovando y el tejido óseo viejo se está continuamente reemplazando por tejido nuevo. Durante la niñez y la adolescencia se crea más tejido óseo que el que se destruye. Sin embargo, en algún momento, posiblemente cercano a los 30 o 35 años de edad el proceso se invierte y comenzamos a perder más tejido óseo del que podemos reemplazar. En las mujeres al llegar la menopausia (cesación natural de la menstruación) se acelera el proceso ya que los ovarios dejan de producir la hormona femenina conocida como estrógeno, una de cuyas funciones es preservar la masa ósea.

La evidencia sugiere que, en condiciones normales, para preservar la masa ósea se necesitan unos 1.000 miligramos (mg) diarios de calcio tanto para hombres como para mujeres que no han llegado a la menopausia. Pasada la menopausia se necesitan unos 1.500 mg.

Las principales fuentes de calcio son los productos lácteos. Entre las fuentes de origen vegetal se encuentran vegetales verdes como el brécol y las espinacas. También contienen calcio la col, la coliflor, las habichuelas, las lentejas y las nueces.

El calcio trabaja conjuntamente con el magnesio para formar nueva masa ósea. Si se han de ingerir suplementos de calcio estos deben combinarse con magnesio en proporción de 2 a 1, es decir, si se ingieren 1.000 mg de calcio se deberán ingerir 500 mg de magnesio. Algunas buenas fuentes de magnesio en la dieta son los guineos o bananos, los mariscos, los granos integrales, las nueces, las habichuelas, el salvado de trigo, las semillas y los vegetales de color verde.

Page 50: elemtos

Otras medidas importantes para la prevención de la osteoporosis son:

Hacer ejercicio regularmente (al menos tres veces por semana) Ingerir cantidades adecuadas de manganeso, ácido fólico, vitamina B6, vitamina B12,

omega 3 (que ayuda a incrementar la absorción de calcio en los huesos y a estimular la producción de nuevo tejido óseo) y vitamina D (que estimula la absorción del calcio en el intestino delgado)

No abusar del azúcar, las grasas saturadas y las proteínas animales No abusar del alcohol, la cafeína, ni de las bebidas gaseosas No fumar

Otros factores que aumentan las posibilidades de padecer osteoporosis son el factor hereditario y el stress.

Efectos ambientales del Calcio

El fosfato de calcio es muy tóxico para los organismos acuáticos

Cadmio - Cd

Propiedades químicas del Cadmio - Efectos del Cadmio sobre la salud - Efectos ambientales del

CadmioNombre Cadmio

Número atómico 48

Valencia 2

Estado de oxidación +2

Electronegatividad 1,7

Radio covalente (Å) 1,48

Radio iónico (Å) 0,97

Page 51: elemtos

Radio atómico (Å) 1,54

Configuración electrónica [Kr]4d105s2

Primer potencial de ionización (eV) 9,03

Masa atómica (g/mol) 112,40

Densidad (g/ml) 8,65

Punto de ebullición (ºC) 765

Punto de fusión (ºC) 320,9

Descubridor Fredrich Stromeyer en 1817

CadmioElemento químico relativamente raro, símbolo Cd, número atómico 48; tiene relación estrecha con el zinc, con el que se encuentra asociado en la naturaleza. Es un metal dúctil, de color blanco argentino con un ligero matiz azulado. Es más blando y maleable que el zinc, pero poco más duro que el estaño. Peso atómico de 112.40 y densidad relativa de 8.65 a 20ºC (68ºF). Su punto de fusión de 320.9ºC (610ºF) y de ebullición de 765ºC (1410ºF) son inferiores a los del zinc. Hay ocho isótopos estables en la naturaleza y se han descrito once radioisótopos inestables de tipo artificial. El cadmio es miembro del grupo IIb (zinc, cadmio y mercurio) en la tabla periódica, y presenta propiedades químicas intermedias entre las del zinc metálico en soluciones ácidas de sulfato. El cadmio es divalente en todos sus compuestos estables y su ion es incoloro.

El cadmio no se encuentra en estado libre en la naturaleza, y la greenockita (sulfuro de cadmio), único mineral de cadmio, no es una fuente comercial de metal. Casi todo el que se produce es obtenido como subproducto de la fundición y refinamiento de los minerales de

Page 52: elemtos

zinc, los cuales por lo general contienen de 0.2 a 0.4%. Estados Unidos, Canadá, México, Australia, Bélgica, Luxemburgo y República de Corea son fuentes importantes, aunque no todos son productores.

En el pasado, un uso comercial importante del cadmio fue como cubierta electrodepositada sobre hierro o acero para protegerlos contra la corrosión. La segunda aplicación es en baterías de níquel-cadmio y la tercera como reactivo químico y pigmento. Se recurre a cantidades apreciables en aleaciones de bajo punto de fusión semejantes a las del metal de Wood, en rociadoras automáticas contra el fuego y en cantidad menor, en aleaciones de latón (laton), soldaduras y cojinetes. Los compuestos de cadmio se emplean como estabilizadores de plásticos y en la producción de cadmio fosforado. Por su gran capacidad de absorber neutrones, en especial el isótopo 113, se usa en barras de control y recubrimiento de reactores nucleares.

Efectos del Cadmio sobre la saludEl Cadmio puede ser encontrado mayoritariamente en la corteza terrestre. Este siempre ocurre en combinación con el Zinc. El Cadmio también consiste en las industrias como inevitable subproducto del Zinc, plomo y cobre extracciones. Después de ser aplicado este entra en el ambiente mayormente a través del suelo, porque es encontrado en estiércoles y pesticidas.

La toma por los humanos de Cadmio tiene lugar mayormente a través de la comida. Los alimentos que son ricos en Cadmio pueden en gran medida incrementar la concentración de Cadmio en los humanos. Ejemplos son patés, champiñones, mariscos, mejillones, cacao y algas secas.

Una exposición a niveles significativamente altas ocurren cuando la gente fuma. El humo del tabaco transporta el Cadmio a los pulmones. La sangre transportará el Cadmio al resto del cuerpo donde puede incrementar los efectos por potenciación del Cadmio que está ya presente por comer comida rico en Cadmio. Otra alta exposición puede ocurrir con gente que vive cerca de los vertederos de residuos peligrosos o fábricas que liberan Cadmio en el aire y gente que trabaja en las industrias de refinerías del metal. Cuando la gente respira el Cadmio este puede dañar severamente los pulmones. Esto puede incluso causar la muerte. El Cadmio primero es transportado hacia el hígado por la sangre. Allí es unido a proteínas pora formar complejos que son transportados hacia los riñones. El Cadmio se acumula en los riñones, donde causa un daño en el mecanismo de filtración. Esto causa la excreción de proteínas esenciales y azúcares del cuerpo y el consecuente daño de los riñones. Lleva bastante tiempo antes de que el Cadmio que ha sido acumulado en los riñones sea excretado del cuerpo humano.

Otros efectos sobre la salud que pueden ser causados por el Cadmio son:

Diarréas, dolor de estómago y vómitos severos Fractura de huesos

Page 53: elemtos

Fallos en la reproducción y posibilidad incluso de infertilidad Daño al sistema nervioso central Daño al sistema inmune Desordenes psicológicos Posible daño en el ADN o desarrollo de cáncer.

Efectos ambientales del CadmioDe forma natural grandes cantidades de Cadmio son liberadas al ambiente, sobre 25.000 toneladas al año. La mitad de este Cadmio es liberado en los ríos a través de la descomposición de rocas y algún Cadmio es liberado al aire a través de fuegos forestales y volcanes. El resto del Cadmio es liberado por las actividades humanas, como es la manufacturación.

Las aguas residuales con Cadmio procedentes de las industrias mayoritariamente termian en suelos. Las causas de estas corrientes de residuos son por ejemplo la producción de Zinc, minerales de fosfato y las bioindustrias del estiércol. El Cadmio de las corrientes residuales pueden también entrar en el aire a través de la quema de residuos urbanos y de la quema de combustibles fósiles. Debido a las regulaciones sólo una pequeña cantidad de Cadmio entra ahora en el agua a través del vertido de aguas residuales de casas o industrias.

Otra fuente importante de emisión de Cadmio es la producción de fertilizantes fosfatados artificiales. Parte del Cadmio terminará en el suelo después de que el fertilizante es aplicado en las granjas y el resto del Cadmio terminará en las aguas superficiales cuando los residuos del fertilizante es vertido por las compañías productoras.

El Cadmio puede ser transportado a grandes distancias cuando es absorbido por el lodo. Este lodo rico en Cadmio puede contaminar las aguas superficiales y los suelos.

El Cadmio es fuertemente adsorbido por la materia orgánica del suelo. Cuando el Cadmio está presente en el suelo este puede ser extremadamente peligroso, y la toma a través de la comida puede incrementar. Los suelo que son ácidos aumentan la toma de Cadmio por las plantas. Esto es un daño potencial para los animales que dependen de las plantas para sobrevivir. El Cadmio puede acumularse en sus cuerpos, especialmente cuando estos comen muchas plantas diferentes. Las vacas pueden tener grandes cantidades de Cadmio en sus riñones debido a esto. 

Las lombrices y otros animales esenciales para el suelo son extremadamente sensibles al envenenamiento por Cadmio. Pueden morir a muy bajas concentraciones y esto tiene consecuencias en la estructura del suelo. Cuando las concentraciones de Cadmio en el suelo son altas esto puede influir en los procesos del suelo de microorganismos y amenazar a todo el ecosistema del suelo.

En ecosistemas acuáticos el Cadmio puede bioacumularse en mejillones, ostras, gambas, langostas y peces. Las subceptibilidad al Cadmio puede variar ampliamente entre organismos

Page 54: elemtos

acuáticos. Organismos de agua salada se sabe que son más resistentes al envenenamiento por Cadmio que organismos de agua dulce. Animales que comen o beben Cadmio algunas veces tienen la presión sanguínea alta, daños del hígado y daños en nervios y el cerebro

Cerio - Ce

Propiedades químicas del Cerio - Efectos del Cerio sobre la salud - Efectos ambientales del Cerio

Nombre Cerio

Número atómico 58

Valencia 3,4

Estado de oxidación +4

Electronegatividad 1,1

Radio covalente (Å) 1,65

Radio iónico (Å) 1,01

Radio atómico (Å) 1,81

Configuración electrónica [Xe]4f15d16s2

Primer potencial de ionización (eV) 6,94

Masa atómica (g/mol) 140,12

Densidad (g/ml) 6,67

Punto de ebullición (ºC) 3468

Punto de fusión (ºC) 795

Descubridor W. von Hisinger en 1903

Page 55: elemtos

CerioElemento químico, Ce, número atómico 58, peso atómico 140.12. Es el elemento metálico más abundante del grupo de las tierras raras en la tabla periódica. El elemento natural está constituido de los isótopos 136Ce, 138Ce, 140Ce y 142Ce. El 142Ce radiactivo tiene una vida media de 5 x 1015 años. El cerio se encuentra mezclado con otras tierras raras en muchos minerales, en particular en monacita y blastnasita y también se halla entre los productos de la fisión de uranio, torio y plutonio.

Aunque la valencia común del cerio es 3, forma también una serie de compuestos tetravalentes y es la única tierra rara que existe como ion tetravalente en solución acuosa. Aunque en alta pureza se le puede separar de las otras tierras raras por métodos de intercambio iónico, por lo general se separa químicamente aprovechando su estado tetravalente.

Efectos del Cerio sobre la saludEl cerio es uno de los elementos químicos raros, que puede ser encontrado en equipos tales como televisiones en color, lámparas fluorescentes y cristales. Todos los compuestos químicos raros tienen propiedades comparables.

El cerio raramente se encuentra en la naturaleza, ya que se da en cantidades muy pequeñas. El cerio normalmente se encuentra solamente en dos tipos distintos de minerales. El uso del cerio sigue aumentando, debido al hecho de que es útil para producir catalizadores y para pulir cristales.

El cerio es más peligroso en el ambiente de trabajo, debido al hacho de que las humedades y los gases pueden ser inhalados con el aire. Esto puede causar embolias pulmonares, especialmente durante exposiciones a largo plazo. El cerio puede ser una amenaza para el hígado cuando se acumula en el cuerpo humano.

Efectos ambientales del CerioEl cerio es vertido al medio ambiente en muchos lugares diferentes, principalmente por industrias productoras de petróleo. También puede entrar en el medio ambiente cuando se

Page 56: elemtos

tiran los equipos domésticos. El cerio se acumulará gradualmente en los suelos y en el agua de los suelos y esto llevará finalmente a incrementar la concentración en humanos, animales y partículas del suelo.

En los animales acuáticos provoca daños a las membranas celulares, lo que tiene varias influencias negativas en la reproducción y en las funciones del sistema nervioso

Californio - Cf

Propiedades químicas del Californio - Efectos del Californio sobre la salud - Efectos ambientales del

CalifornioNombre Californio

Número atómico 98

Valencia 3

Estado de oxidación -

Electronegatividad

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Rn]5f96d17s2

Primer potencial de ionización (eV) -

Masa atómica (g/mol) 251

Densidad (g/ml) -

Punto de ebullición (ºC) -

Punto de fusión (ºC) -

Page 57: elemtos

Descubridor G.T. Seaborg en 1950

CalifornioElemento químico, Cf, número atómico 98, el noveno miembro de la serie de elementos actínidos. Su descubrimiento y producción se basa en la transmutación nuclear artificial de isótopos radiactivos de elementos más ligeros. Todos los isótopos del californio son radiactivos, con intervalo de vidas medias entre un minuto y unos 1000 años. Por su inestabilidad nuclear el californio no existe en la corteza terrestre.

Las propiedades químicas se parecen a las observadas para los otros elementos actínidos con carga 3+: el nitrato, sulfato, cloruro y perclorato son solubles en agua. El californio se precipita como fluoruro, oxalato o hidróxido. La cromatografía de intercambio iónico se puede usar para aislar e identificar el californio en presencia de los otros elementos actínidos. El californio metálico es muy volátil y destila a temperaturas del orden de 1100-1200ºC (2010-2190ºF). Es químicamente reactivo y existe en tres diferentes modificaciones cristalinas entre la temperatura ambiente y su punto de fusión 900ºC (1600ºF).

El isótopo que se produce con mayor facilidad y tiene gran utilidad es el 252Cf; se obtiene en cantidades del orden de gramos en reactores nucleares y tiene una vida media de 2.6 años. Decae en forma parcial por fisión espontánea y se usa mucho en el estudio de la fisión. Tiene también una influencia importante en el desarrollo de contadores y sistemas electrónicos con aplicaciones no sólo en física nuclear, sino también en investigación médica.

Efectos del Californio sobre la saludEl californio 252 es un emisor muy potente de neutrones. Es conocido por ser extremadamente radioactivo. Estos son algunos peligros para la salud de la radioactividad que deben tenerse en cuenta:

El desarrollo de la tecnología nuclear ha estado acompañado por escapes tanto grandes como pequeños de radioactividad a la atmósfera, el suelo, los océanos, los mares y las aguas subterráneas, mostrándose por todo el mundo en la materia vegetal, animal e inerte. La

Page 58: elemtos

radiación pasa de una especie a otra y se concentra a través de la cadena alimenticia, sometiendo a otros animales y a los humanos a sus efectos dañinos.

La mayor amenaza de la radiactividad para la vida tal y como la conocemos es los daños que produce en el material genético, la configuración genética de todas las especies vivas. El daño genético producido por la exposición a la radiación se acumula durante vidas y generaciones.

Incluso exposiciones de baja dosis son carcinógenas después de una exposición prolongada. La generación actual, la que ahora se encuentra en el útero, y todas las que le sigan pueden padecer de cánceres, daños en el sistema inmunitario, leucemias, abortos espontáneos, nacidos muertos, deformidades y problemas de fertilidad. Mientras que muchos de estos problemas para la salud van en aumento, los individuos no pueden probar que la causa ha sido ni el incremento de la radiación de fondo ni la exposición específica. Solamente la evidencia epidemiológica es científicamente aceptable para imputar la causa. Quizás la más extrema consecuencia con el tiempo será simplemente el cese total de la capacidad reproductora. La radiación es una causa conocida de esterilidad.

Efectos ambientales del Californio

El californio 252 es un emisor muy potente de neutrones. Es conocido por ser extremadamente radioactivo.La radioactividad daña el material genético no solo de los seres humanos, sino el de todos los seres vivos, provocando cánceres, daños en el sistema inmunitario, leucemias, abortos espontáneos, nacidos muertos, deformidades y problemas de fertilidad. Además, el daño genético producido por la exposición a la radiación se acumula durante vidas y generaciones.

Cloro - Cl

Propiedades químicas del Cloro - Efectos del Cloro sobre la salud - Efectos ambientales del Cloro

Nombre Cloro

Número atómico 17

Valencia +1,-1,3,5,7

Estado de oxidación -1

Page 59: elemtos

Electronegatividad 3.0

Radio covalente (Å) 0,99

Radio iónico (Å) 1,81

Radio atómico (Å) -

Configuración electrónica [Ne]3s23p5

Primer potencial de ionización (eV) 13,01

Masa atómica (g/mol) 35,453

Densidad (g/ml) 1,56

Punto de ebullición (ºC) -34,7

Punto de fusión (ºC) -101,0

Descubridor Carl Wilhelm Scheele en 1774

CloroElemento químico, símbolo Cl, de número atómico 17 y peso atómico 35.453. El cloro existe como un gas amarillo-verdoso a temperaturas y presiones ordinarias. Es el segundo en reactividad entre los halógenos, sólo después del flúor, y de aquí que se encuentre libre en la naturaleza sólo a las temperaturas elevadas de los gases volcánicos. Se estima que 0.045%

Page 60: elemtos

de la corteza terrestre es cloro. Se combina con metales, no metales y materiales orgánicos para formar cientos de compuestos.

Propiedades: El cloro presente en la naturaleza se forma de los isótopos estables de masa 35 y 37; se han preparado artificialmente isótopos radiactivos. El gas diatómico tiene un peso molecular de 70.906. El punto de ebullición del cloro líquido (de color amarillo-oro) es –34.05ºC a 760 mm de Hg (101.325 kilopascales) y el punto de fusión del cloro sólido es –100.98ºC. La temperatura crítica es de 144ºC; la presión crítica es 76.1 atm (7.71 megapascales); el volumen crítico es de 1.745 ml/g, y la densidad en el punto crítico es de 0.573 g/ml. Las propiedades termodinámicas incluyen el calor de sublimación, que es de 7370 (+-) 10 cal/mol a OK; el calor de vaporización , de 4878 (+-) 4 cal/mol; a –34.05ºC; el calor de fusión, de 1531 cal/mol; la capacidad calorífica, de 7.99 cal/mol a 1 atm (101.325 kilopascales) y 0ºC, y 8.2 a 100ºC.

El cloro es uno de los cuatro elementos químicos estrechamente relacionados que han sido llamados halógenos. El flúor es el más activo químicamente; el yodo y el bromo son menos activos. El cloro reemplaza al yodo y al bromo de sus sales. Interviene en reacciones de sustitución o de adición tanto con materiales orgánicos como inorgánicos. El cloro seco es algo inerte, pero húmedo se combina directamente con la mayor parte de los elementos.

Fabricación: El primer proceso electrolítico para la producción de cloro fue patentado en 1851 por Charles Watt en Gran Bretaña. En 1868, Henry Deacon produjo cloro a partir de ácido clorhídrico y oxígeno a 400ºC (750ºF), con cloruro de cobre impregnado en piedra pómez como catalizador. Las celdas electrolíticas modernas pueden clasificarse casi siempre como pertenecientes al tipo de diafragma y de mercurio. Ambas producen sustancias cáusticas (NaOH o KOH), cloro e hidrógeno. La política económica de la industria del cloro y de los álcalis incluye principalmente la mercadotecnia equilibrada o el uso interno del cáustico y del cloro en las proporciones en las que se obtienen mediante el proceso de la celda electrolítica.

Efectos del Cloro sobre la saludEl cloro es un gas altamente reactivo. Es un elemento que se da de forma natural. Los mayores consumidores de cloro son las compañías que producen dicloruro de etileno y otros disolventes clorinados, resinas de cloruro de polivinilo (PVC), clorofluorocarbonos (CFCs) y óxido de propileno. Las compañías papeleras utilizan cloro para blanquear el papel. Las plantas de tratamiento de agua y de aguas residuales utilizan cloro para reducir los niveles de microorganismos que pueden propagar enfermedades entre los humanos (desinfección).

La exposición al cloro puede ocurrir en el lugar de trabajo o en el medio ambiente a causa de escapes en el aire, el agua o el suelo. Las personas que utilizan lejía en la colada y productos químicos que contienen cloro no suelen estar expuestas a cloro en sí. Generalmente el cloro se encuentra solamente en instalaciones industriales.

El cloro entra en el cuerpo al ser respirado el aire contaminado o al ser consumido con comida

Page 61: elemtos

o agua contaminadas. No permanece en el cuerpo, debido a su reactividad.

Los efectos del cloro en la salud humana dependen de la cantidad de cloro presente, y del tiempo y la frecuencia de exposición. Los efectos también dependen de la salud de la persona y de las condiciones del medio cuando la exposición tuvo lugar.

La respiración de pequeñas cantidades de cloro durante cortos periodos de tiempo afecta negativamente al sistema respiratorio humano. Los efectos van desde tos y dolor pectoral hasta retención de agua en los pulmones. El cloro irrita la piel , los ojos y el sistema respiratorio. No es probable que estos efectos tengan lugar a niveles de cloro encontrados normalmente en la naturaleza.

Los efectos en la salud humana asociados con la respiración o el consumo de pequeñas cantidades de cloro durante periodos prolongados de tiempo no son conocidos. Algunos estudios muestran que los trabajadores desarrollan efectos adversos al estar expuestos a inhalaciones repetidas de cloro, pero otros no.

Efectos ambientales del CloroEl cloro se disuelve cuando se mezcla con el agua. También puede escaparse del agua e incorporarse al aire bajo ciertas condiciones. La mayoría de las emisiones de cloro al medio ambiente son al aire y a las aguas superficiales.

Una vez en el aire o en el agua, el cloro reacciona con otros compuestos químicos. Se combina con material inorgánico en el ahua para formar sales de cloro, y con materia orgánica para formar compuestos orgánicos clorinados.

Debido a su reactividad no es probable que el cloro se mueva a través del suelo y se incorpore a las aguas subterráneas.

Las plantas y los animales no suelen almacenar cloro. Sin embargo, estudios de laboratorio muestran que la exposición repetida a cloro en el aire puede afectar al sistema inmunitario, la sangre, el corazón, y el sistema respiratorio de los animales.

El cloro provoca daños ambientales a bajos niveles. El cloro es especialmente dañino para organismos que viven en el agua y el suelo.

Curio - Cm

Propiedades químicas del Curio - Efectos del Curio sobre la salud - Efectos ambientales del Curio

Nombre Curio

Page 62: elemtos

Número atómico 96

Valencia 3

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Rn]5f76d17s2

Primer potencialde ionización (eV) -

Masa atómica (g/mol) (247)

Densidad (g/ml) -

Punto de ebullición (ºC) -

Punto de fusión (ºC) -

Descubridor G.T. Seaborg en 1944

CurioElemento químico, Cm, de la serie de los actínidos, con número atómico de 96. El curio no existe en el ambiente terrestre, pero puede producirse en forma artificial. Sus propiedades

Page 63: elemtos

químicas se parecen tanto a las de las tierras raras típicas que, si no fuera por su radiactividad, podría con facilidad confundirse fácilmente con uno de estos elementos. Entre los isótopos conocidos del curio figuran los de número de masa 238 a 250. El isótopo 244Cm es de particular interés a causa de su uso potencial como una fuente compacta de fuerza termoeléctrica, al utilizarse el calor generado por decaimiento nuclear para generar fuerza eléctrica.

El curio metálico puede producirse por reducción del trifluoruro de curio, con vapor de bario. El metal tiene un lustre plateado, el cual se pierde al contacto con el aire, y una densidad relativa de 13.5. El punto de fusión es de 1340 (+/-) 40ºC (2444 +/- 72ºF). El metal se disuelve con facilidad en ácidos minerales comunes, con formación de ion tripositivo.

Se han preparado varios compuestos sólidos del curio y sus estructuras se han determinado por difracción de rayos X. Éstos incluyen CmF4, CmF3, CmCl3, CmBr3, CmI3, Cm2O3, CmO2. En los lantánidos hay análogos isoestructurales de los compuestos de curio.

Efectos del Curio sobre la saludEl curio puede entrar en el cuerpo por la ingesta de comida, de agua o por la respiración. La absorción gastrointestinal de la comida o del agua es la fuente más probable de cualquier depósito interno de curio en la población general. Tras la ingestión, la mayor parte del curio es excretado del cuerpo en unos pocos días y nunca entra en el flujo sanguíneo; solo alrededor del 0,05 % de la cantidad ingerida es absorbida en el flujo sanguíneo. Del curio que alcanza la sangre, alrededor del 45 % se deposita en el hígado, donde es retenido con una vida biológica media de 20 años, y el 45 % se deposita en los huesos donde es retenido con una vida biológica media de 50 años (en modelos simplificados que no reflejan la redistribución inmediata). La mayor parte del 10 % restante se excreta directamente. El curio en el esqueleto se deposita principalmente en las superficies internas del hueso mineral y solo se redistribuye lentamente a través del volumen del hueso.

El curio es generalmente un peligro para la salud solamente si entra en el cuerpo; sin embargo, hay un pequeño riesgo externo asociado con ciertos isótopos, por ejemplo curio 243, curio 245, y curio 247. Las principales formas de exposición son la ingestión de comida y agua que contiene curio y la inhalación de polvo contaminado con curio. La ingestión es generalmente la exposición más preocupante a menos que haya una fuente cercana de polvo contaminado. Debido a que el curio entra en el cuerpo con mucha más facilidad si es inhalado que si es ingerido, ambas vías de exposición pueden ser importantes. La mayor preocupación para la salud es los tumores de huesos resultantes de la radiación ionizante emitida por isótopos del curio depositados en la superficie de los huesos.

En ratas expuestas a inyección intravenosa de curio 242 y curio 244 fueron observados cánceres de esqueleto, y cencerrees de pulmón y hígado en ratas expuestas por inhalación.

Efectos ambientales del Curio

Page 64: elemtos

Las pruebas atmosféricas de armas nucleares, que cesaron en 1980 en todo el mundo, generaron la mayor parte del curio ambiental. Los accidentes y otros escapes de las instalaciones de producción de armas nucleares han provocado contaminación localizada. El óxido de curio es la forma más común en el medio ambiente.

El curio es típicamente bastante insoluble y se añade fuertemente a las partículas del suelo. La concentración de curio en las partículas arenosas de suelo se estima que es alrededor de 4.000 veces mayor que en el agua intersticial (en los espacios de poro entre las partículas del suelo), y se une incluso más fuertemente a las margas donde las tasas de concentración son incluso mayores (18.000).

Cobalto - Co

Propiedades químicas del Cobalto - Efectos del Cobalto sobre la salud - Efectos ambientales del

CobaltoNombre Cobalto

Número atómico 27

Valencia 2,3

Estado de oxidación +3

Electronegatividad 1,8

Radio covalente (Å) 1,26

Radio iónico (Å) 0,63

Radio atómico (Å) 1,25

Configuración electrónica [Ar]3d74s2

Primer potencial de ionización (eV) 7,90

Masa atómica (g/mol) 58,93

Densidad (g/ml) 8,9

Page 65: elemtos

Punto de ebullición (ºC) 2900

Punto de fusión (ºC) 1495

Descubridor George Brandt en 1737

CobaltoElemento químico metálico, Co, con número atómico de 27 y un peso atómico de 58.93. El cobalto se parece al hierro y al níquel, tanto en estado libre como combinado. Se encuentra distribuido con amplitud en la naturaleza y forma, aproximadamente, el 0.001% del total de las rocas ígneas de la corteza terrestre, en comparación con el 0.02% del níquel. Se halla en meteoritos, estrellas, en el mar, en aguas dulces, suelos, plantas, animales y en los nódulos de manganeso encontrados en el fondo del océano. Se observan trazas de cobalto en muchos minerales de hierro, níquel, cobre, plata, manganeso y zinc; pero los minerales de cobalto importantes en el comercio son los arseniuros, óxidos y sulfuros. El cobalto y sus aleaciones son resistentes al desgaste y a la corrosión, aun a temperaturas elevadas. Entre sus aplicaciones comerciales más importantes están; la preparación de aleaciones para uso a temperaturas elevadas, aleaciones magnéticas, aleaciones para máquinas y herramientas, sellos vidrio a metal y la aleación dental y quirúrgica llamada vitallium. Las plantas y los animales necesitan cantidades pequeñas de cobalto. Su isótopo radiactivo producido artificialmente, cobalto-60, se utiliza mucho en la industria, la investigación y la medicina.

El cobalto es ferromagnético y se parece al hierro y al níquel, en su dureza, resistencia a la tensión, capacidad de uso en maquinaria, propiedades térmicas y comportamiento electroquímico. Al metal no lo afectan el agua ni el aire en condiciones normales, y lo atacan con rapidez el ácido sulfúrico, el ácido clorhídrico y el ácido nítrico; pero el ácido fluorhídrico, el hirdróxido de amonio y el hidróxido de sodio lo atacan lentamente. El cobalto presenta valencias variables y forma iones complejos y compuestos colerados, como hacen todos los compuestos de transición. La tabla siguiente resume sus propiedades.

El cloruro, nitrato y sulfato de cobalto(II) se forman por la interacción del metal, óxido, hidróxido o carbonato con el ácido correspondiente. Hay tres óxidos principales de cobalto: el

Page 66: elemtos

cobaltoso gris, CoO; el cobáltico negro, Co2O3, formado al calentar compuestos a baja temperatura en exceso de aire, y el cobaltósico, Co3O4, el óxido estable, que se forma cuando las sales se calientan al aire a temperaturas que no excedan de 850ºC (1562ºF). Las sales más comunes de cobalto son derivados del cobalto(II); el estado de valencia mayor sólo se encuentra formando compuestos de coordinación. La vitamina B12 es un compuesto de coordinación del cobalto que se encuentra en la naturaleza y es muy importante. Los compuestos de cobalto tienen gran variedad de aplicaciones industriales, incluso se usan como catalizadores, y en agricultura para remediar la deficiencia de cobalto en el suelo y en la vegetación natural.

Efectos del Cobalto sobre la saludEl Cobalto está ampliamente dispersado en el ambiente de los humanos por lo que estos pueden ser expuesto a él por respirar el aire, beber agua y comer comida que contengan Cobalto. El Contacto cutáneo con suelo o agua que contenga Cobalto puede también aumentar la exposición.

El Cobalto no está a menudo libremente disponible en el ambiente, pero cuando las partículas del Cobalto no se unen a las partículas del suelo o sedimento la toma por las plantas y animales es mayor y la acumulación en plantas y animales puede ocurrir.

El Cobalto es beneficioso para los humanos porque forma parte de la vitamina B12, la cual es esencial para la salud humana. El cobalto es usado para tratar la anemia en mujeres embarazadas, porque este estimula la producción de glóbulos rojos.

De cualquier manera, muy alta concentracíon de Cobalto puede dañar la salud humana. Cuando respiramos elevadas concentraciones de Cobalto a través del aire experimentamos efectos en los pulmones, como asma y neumonia. Esto ocurre principalmente en gente que trabaja con Cobalto.

Cuando las plantas crecen sobre suelos contaminados estas acumularán muy pequeñas partículas de Cobalto, especialmente en las partes de la planta que nosotros comemos, como son los frutos y las semillas.

Los suelos cercanos a minas y fundiciones pueden contener una alta cantidad de Cobalto, así que la toma por los humanos a través de comer las plantas puede causar efectos sobre la salud.

Los efectos sobre la salud que son el resultado de la toma de altas concentraciones de Cobalto son:

Vómitos y náuseas Problemas de Visión Problemas de Corazón Daño del Tiroides

Page 67: elemtos

Efectos sobre la salud pueden también ser causado por radiacción de los Isótopos radiactivos del Cobalto. Este causa esterilidad, pérdida de pelo, vómitos, sangrado, diarréas, coma e incluso la muerte. Esta radiacción es algunas veces usada en pacientes con cáncer para destruir tumores. Estos pacientes también sufren pérdida de pelo, diarréas y vómitos.

Efectos ambientales del CobaltoEl Cobalto es un elemento que ocurre de forma natural en el medio ambiente en el aire, agua, suelo, rocas, plantas y animales. Este puede también entrar en el aire y el agua y depositarse sobre la tierra a través del viento y el polvo y entrar en la superficie del agua a través de la escorrentía cuando el agua de lluvia corre a través del suelo y rocas que contienen Cobalto.

Los humanos añaden Cobalto por liberación de pequeñas cantidades en la atmósfera por la combustión de carbón y la minería, el procesado de minerales que contienen Cobalto y la producción y uso de compuesto químicos con Cobalto.

Los isótopos radiactivos del Cobalto no están presente de forma natural en el medioambiente, pero estos son liberados a través de las operaciones de plantas de energía nuclear y accidentes nucleares. Porque esto tiene relativamente una vida de desintegración media corta estos no son particularmente peligrosos.

El Cobalto no puede ser destruido una vez que este ha entrado en el medioambiente. Puede reaccionar con otras partículas o ser absorbido por las partículas del suelo o el agua. El Cobalto se mueve sólo bajo condiciones ácidas, pero al final la mayoría del Cobalto terminará en el suelo y sedimentos. Los suelo que contienen muy bajas cantidades de Cobalto puede que las plantas que crecen en ellos tengan una deficiencia de Cobalto. Cuando los animales pastorean sobre estos suelos ellos sufren una carencia de Cobalto, el cual es esencial para ellos.

Por otra parte, los suelo cercanos a las minas y las fundiciones pueden contener muy altas cantidades de Cobalto, así que la toma por los animales a través de comer las plantas puede causar efectos sobre la salud. El Cobalto se acumulará en plantas y en cuerpos de animales que comen esas plantas, pero no es conocido que el Cobalto sufra biomagnificación en la cadena alimentaria. Debido a que las frutas, vegetales, peces y otros animales que nosotros comemos usualmente no contienen altas cantidades de Cobalto.

Cromo - Cr

Propiedades químicas del Cromo - Efectos del Cromo sobre la salud - Efectos ambientales del

Cromo

Page 68: elemtos

Nombre Cromo

Número atómico 24

Valencia 2,3,4,5,6

Estado de oxidación +3

Electronegatividad 1,6

Radio covalente (Å) 1,27

Radio iónico (Å) 0,69

Radio atómico (Å) 1,27

Configuración electrónica [Ar]3d54s1

Primer potencial de ionización (eV) 6,80

Masa atómica (g/mol) 51,996

Densidad (g/ml) 7,19

Punto de ebullición (ºC) 2665

Punto de fusión (ºC) 1875

Descubridor Vaughlin en 1797

CromoElemento químico, símbolo Cr, número atómico 24, peso atómico 51.996; metal que es de color blanco plateado, duro y quebradizo. Sin embargo, es relativamente suave y dúctil

Page 69: elemtos

cuando no está tensionado o cuando está muy puro. Sus principales usos son la producción de aleaciones anticorrosivas de gran dureza y resistentes al calor y como recubrimiento para galvanizados. El cromo elemental no se encuentra en la naturaleza. Su mineral más importante por abundancia es la cromita. Es de interés geoquímico el hecho de que se encuentre 0.47% de Cr2O3 en el basalto de la Luna, proporción que es de 3-20 veces mayor que el mismo espécimen terrestre.

Existen cuatro isótopos naturales del cromo, 50Cr, 52Cr, 53Cr, 54Cr, Se han producido diversos isótopos inestables mediante reacciones radioquímicas. El más importante es el 51Cr, el cual emite rayos gamma débiles y tiene un tiempo de vida media aproximadamente de 27 días. El cromo galvanizado y pulido es de color blanco azuloso brillante. Su poder reflejante es 77% del de la plata.

Sus propiedades mecánicas, incluyendo su dureza y la resistencia a la tensión, determinan la capacidad de utilización. El cromo tiene una capacidad relativa baja de forjado, enrollamiento y propiedades de manejo. Sin embargo, cuando se encuentra absolutamente libre de oxígeno, hidrógeno, carbono y nitrógeno es muy dúctil y puede ser forjado y manejado. Es difícil de almacenarlo libre de estos elementos.

El cromo forma tres series de compuestos con otros elementos; éstos se representan en términos de los óxidos de cromo: cromo con valencia dos, CrO, óxido de Cr(II) u óxido cromoso; con valencia tres, Cr2O3, óxido de Cr(III) u óxido crómico, y con valencia seis, CrO3, anhídrido de Cr(VI) o anhídrido de ácido crómico. El cromo es capaz de formar compuestos con otros elementos en estados de oxidación (II), (III) y (VI).

Se conocen también los peróxidos, ácido percrómico y percromatos. Los halogenuros (fluoruro, cloruro, yoduro y bromuro) de cromo son compuestos bastante comunes de este metal. El cloruro, por ejemplo, se utiliza en la producción de cromo metálico mediante la reducción del cloruro cromoso, CrCl2, con hidrógeno.

Efectos del Cromo sobre la saludLa gente puede estar expuesta al Cromo a través de respirarlo, comerlo o beberlo y a través del contacto con la piel con Cromo o compuestos del Cromo. El nivel de Cromo en el aire y el agua es generalmente bajo. En agua para beber el nivel de Cromo es usualmente bajo como en el agua de pozo, pero el agua de pozo contaminada puede contener el peligroso Cromo (VI); Cromo hexavalente. Para la mayoría de la gente que come comida que contiene Cromo III es la mayor ruta de entrada de Cromo, como Cromo III ocurre naturalmente en muchos vegetales, frutas, carnes, levaduras y granos. Varias maneras de preparación de la comida y almacenaje pueden alterar el contenido de Cromo en la comida. Cuando la comida es almacenada en tanques de acero o latas las concentraciones de Cromo pueden aumentar. El Cromo III es un nutriente esencial para los humanos y la falta de este puede causar condiciones del corazón, transtornos metabólicos y diabetes. Pero la toma de mucho Cromo III puede causar efectos sobre la salud también, por ejemplo erupciones cutáneas.

Page 70: elemtos

El Cromo (VI) es un peligro para la salud de los humanos, mayoritariamente para la gente que trabaja en la industria del acero y textil. La gente que fuma tabaco también puede tener un alto grado de exposición al Cromo. El Cromo (VI) es conocido porque causa varios efectos sobre la salud. Cuando es un compuesto en los productos de la piel, puede causar reacciones alérgicas, como es erupciones cutáneas. Después de ser respirado el Cromo (VI) puede causar irritación del nariz y sangrado de la nariz. Otros problemas de salud que son causado por el Cromo (VI) son;

Erupciones cutáneas Malestar de estómago y úlceras Problemas respiratorios Debilitamiento del sistema inmune Daño en los riñones e hígado Alteración del material genético Cáncer de pulmón Muerte

Efectos ambientales del CromoHay varias clases diferentes de Cromo que difieren de sus efectos sobre los organismos. El Cromo entra en el aire, agua y suelo en forma de Cromo (III) y Cromo (VI) a través de procesos naturales y actividades humanas.

Las mayores actividades humanas que incrementan las concentraciones de Cromo (III) son el acero, las peleterias y las industrias textiles, pintura electrica y otras aplicaciones industriales del Cromo (VI). Estas aplicaciones incrementarán las concentraciones del Cromo en agua. A través de la combustión del carbón el Cromo será también emitido al agua y eventualmente se disolverá.

El Cromo (III) es un elementos esencial para organismos que puede interferir en el metabolismo del azúcar y causar problemas de corazón, cuando la dosis es muy baja. El Cromo (VI) es mayoritariamente tóxico para los organismo. Este puede alterar el material genético y causar cáncer.

Los cultivos contienen sistemas para gestionar la toma de Cromo para que está sea lo suficientemente baja como para no causar cáncer. Pero cuando la cantidad de Cromo en el suelo aumenta, esto puede aumentar las concentraciones en los cultivos. La acidificación del suelo puede también influir en la captación de Cromo por los cultivos. Las plantas usualmente absorben sólo Cromo (III). Esta clase de Cromo probablemente es esencial, pero cuando las concentraciones exceden cierto valor, efectos negativos pueden ocurrir.

No es conocido que el Cromo se acumule en los peces, pero altas concentraciones de Cromo, debido a la disponibilidad de metales en las aguas superficiales, pueden dañar las agallas de los peces que nadan cerca del punto de vertido. En animales el Cromo puede causar

Page 71: elemtos

problemas respiratorios, una baja disponibilidad puede dar lugar a contraer las enfermedades, defectos de nacimiento, infertilidad y formación de tumores

Cesio - Cs

Propiedades químicas del Cesio - Efectos del Cesio sobre la salud - Efectos ambientales del

CesioNombre Cesio

Número atómico 55

Valencia 1

Estado de oxidación +1

Electronegatividad 0,8

Radio covalente (Å) 2,25

Radio iónico (Å) 1,69

Radio atómico (Å) 2,67

Configuración electrónica [Xe]6s1

Primer potencial de ionización (eV) 2,25

Masa atómica (g/mol) 132,905

Densidad (g/ml) 1,90

Punto de ebullición ( ºC) 690

Punto de fusión ( ºC) 28,7

Descubridor Fustov Kirchhoff en 1860

Page 72: elemtos

CesioElemento químico, Cs, con número atómico 55 y peso atómico de 132.905, el más pesado de los metales alcalinos en el grupo IA de la tabla periódica, a excepción del francio, miembro radiactivo de la familia de los metales alcalinos. El cesio es un metal blando, ligero y de bajo punto de fusión. Es el más reactivo de los metales alcalinos y en realidad es el menos electronegativo y el más reactivo de todos los elementos. El cesio reacciona en forma vigorosa con oxígeno para formar una mezcla de óxidos. En aire húmedo, el calor de oxidación puede ser suficiente para fundir y prender el metal. El cesio no reacciona con nitrógeno para formar nitruros, pero reacciona con el hidrógeno a temperaturas altas para producir un hidruro muy estable; reacciona en forma violenta con el agua y aun con hielo a temperaturas hasta -116ºC (-177ºF) así como con los halógenos, amoniaco y monóxido de carbono. En general, con compuestos orgánicos el cesio experimenta los mismos tipos de reacciones que los otros metales alcalinos, pero es mucho más reactivo.

El cesio no es muy abundante en la corteza terrestre, hay sólo 7 partes por millón (ppm). Al igual que el litio y el rubidio, se encuentra como un constituyente de minerales complejos y no en forma de halogenuros relativamente puros, como en el caso del sodio y potasio. El litio, el rubidio y el cesio con frecuencia se hallan juntos en minerales lepidolíticos como los existentes en Rodesia. El cesio metálico se utiliza en celdas fotoeléctricas, instrumentos espectrográficos, contadores de centelleo, bulbos de radio, lámparas militares de señales infrarrojas y varios aparatos ópticos y de detección. Los compuestos de cesio se usan en la producción de vidrio y cerámica, como absorbentes en plantas de purificación de dióxido de carbono, como componentes en bulbos de radio y en microquímica. Las sales de cesio se han utilizado en medicina como agentes antishock después de la administración de drogas de arsénico. El isótopo cesio-137 está sustituyendo al colbalto-60 en el tratamiento del cáncer.

Efectos del Cesio sobre la saludLos humanos pueden estar expuestos al Cesio por respiración, por beberlo, o por comerlo. En el aire los niveles de Cesio son generalmente bajo, pero el Cesio radiactivo ha sido detectado en algunos niveles en aguas superficiales y en muchos tipos de comidad.

Page 73: elemtos

La cantidad de cesio en comidas y aguas depende de la emisión de Cesio radiactivo de plantas de energía nuclear, mayoritariamente a través de accidentes. Estos accidentes no han ocurrido desde el desastre de Chernobyl en 1986. La gente que trabaja en industria de energía nuclear pueden estar expuestos a altos niveles de Cesio, pero muchas medidas de precaución pueden ser tomadas para prevenir esto. No es muy probable que la gente con experiencia en efecto sobre la salud que pueden ser relacionado con el mismo Cesio. Cuando hay un contacto con Cesio radiactivo, lo cual es altamente improbable, la persona puede experimentar daño en la célula debido a la radiacción de las partículas del Cesio. Debido a esto, efectos como náuseas, vómitos, diarreas, y hemorragias pueden ocurrir. Cuando la exposición es larga la gente puede incluso perder el conocimiento. Entrar en coma o incluso la muerte puede ocurrir. Como de serios son los efectos depende de la resistencia de cada persona y de la duración de la exposición y de la concentración a la que es expuesta la persona.

Efectos ambientales del CesioEl cesio ocurre de forma natural en la naturaleza mayormente por erosión y desgastado de rocas y minerales. Es también liberado al aire, al agua y al suelo a través de la minería y fábricas de minerales. Los isótopos radiactivos del Cesio pueden sólo ser disminuidos en su concentración a través de la desintergración radiactiva. El Cesio no radiactivo puede también ser destruido cuando entra en el ambiente o reacciona con otros compuestos en moléculas muy específicas.

Tanto el Cesio radiactivo como el estable actuán de la misma manera química en los cuerpos de los humanos y los animales.

El Cesio en el aire puede viajar largas distancias antes de precipitar en la tierra. En el agua y en el suelo la mayoría de los compuestos del Cesio son muy solubles en agua. En suelos, de cualquiermanera, el Cesio no puede ser eliminado del agua subterránea. Permanece en las capas superiores del suelo y es fuertemente unido a las partículas del suelo y como resultado no queda disponible para ser tomado por las raices de las plantas. El Cesio radiactivo tiene la opción de entrar en las plantas por caer sobre las hojas. Animales que son expuestos a muy altas dosis de Cesio muestran cambios en el comportamiento, como es el incremento o el no incremento de la actividad.

Cobre - Cu

Propiedades químicas del Cobre - Efectos del Cobre sobre la salud - Efectos ambientales del

Cobre

Page 74: elemtos

Nombre Cobre

Número atómico 29

Valencia 1,2

Estado de oxidación +2

Electronegatividad 1,9

Radio covalente (Å) 1,38

Radio iónico (Å) 0,69

Radio atómico (Å) 1,28

Configuración electrónica [Ar]3d104s1

Primer potencial de ionización (eV) 7,77

Masa atómica (g/mol) 63,54

Densidad (g/ml) 8,96

Punto de ebullición (ºC) 2595

Punto de fusión (ºC) 1083

Descubridor Los antiguos

Cobre

Page 75: elemtos

Elemento químico, de símbolo Cu, con número atómico 29; uno de los metales de transición e importante metal no ferroso. Su utilidad se debe a la combinación de sus propiedades químicas, físicas y mecánicas, así como a sus propiedades eléctricas y su abundancia. El cobre fue uno de los primeros metales usados por los humanos.

La mayor parte del cobre del mundo se obtiene de los sulfuros minerales como la calcocita, covelita, calcopirita, bornita y enargita. Los minerales oxidados son la cuprita, tenorita, malaquita, azurita, crisocola y brocantita. El cobre natural, antes abundante en Estados Unidos, se extrae ahora sólo en Michigan. El grado del mineral empleado en la producción de cobre ha ido disminuyendo regularmente, conforme se han agotado los minerales más ricos y ha crecido la demanda de cobre. Hay grandes cantidades de cobre en la Tierra para uso futuro si se utilizan los minerales de los grados más bajos, y no hay probabilidad de que se agoten durante un largo periodo.

El cobre es el primer elemento del subgrupo Ib de la tabla periódica y también incluye los otros metales de acuñación, plata y oro. Su átomo tiene la estructura electrónica 1s22s22p63s23p63d104s1. El bajo potencial de ionización del electrón 4s1 da por resultado una remoción fácil del mismo para obtener cobre(I), o ion cuproso, Cu+, y el cobre(II), o ion cúprico, Cu2+, se forma sin dificultad por remoción de un electrón de la capa 3d. El peso atómico del cobre es 63.546. tiene dos isótopos naturales estables 63Cu y 65Cu. También se conocen nueve isótopos inestables (radiactivos). El cobre se caracteriza por su baja actividad química. Se combina químicamente en alguno de sus posibles estados de valencia. La valencia más común es la de 2+ (cúprico), pero 1+ (cuproso) es también frecuente; la valencia 3+ ocurre sólo en unos cuantos compuestos inestables.

Un metal comparativamente pesado, el cobre sólido puro, tiene una densidad de 8.96 g/cm3 a 20ºC, mientras que el del tipo comercial varía con el método de manufactura, oscilando entre 8.90 y 8.94. El punto de fusión del cobre es de 1083.0 (+/-) 0.1ºC (1981.4 +/- 0.2ºF). Su punto de ebullición normal es de 2595ºC (4703ºF). El cobre no es magnético; o más exactamente, es un poco paramagnético. Su conductividad térmica y eléctrica son muy altas. Es uno de los metales que puede tenerse en estado más puro, es moderadamente duro, es tenaz en extremo y resistente al desgaste. La fuerza del cobre está acompañada de una alta ductibilidad. Las propiedades mecánicas y eléctricas de un metal dependen en gran medida de las condiciones físicas, temperatura y tamaño de grano del metal.

De los cientos de compuestos de cobre, sólo unos cuantos son frabricados de manera industrial en gran escala. El más importante es el sulfato de cobre(II) pentahidratado o azul de vitriolo, CuSO4 

. 5H2O. Otros incluyen la mezcla de Burdeos; 3Cu(OH)2CuSO4; verde de París, un complejo de metaarsenito y acetato de cobre; cianuro cuproso, CuCN; óxido cuproso, Cu2O; cloruro cúprico, CuCL2; óxido cúprico, CuO; carbonato básico cúprico; naftenato de cobre, el agente más ampliamente utilizado en la prevención de la putrefacción de la madera, telas, cuerdas y redes de pesca. Las principales aplicaciones de los compuestos de cobre las encontramos en la agricultura, en especial como fungicidas e insecticidas; como pigmentos; en soluciones galvanoplásticas; en celdas primarias; como mordentes en teñido, y como catalizadores.

Page 76: elemtos

Efectos del Cobre sobre la saludEl Cobre es una substancia muy común que ocurre naturalmente y se extiende a través del ambiente a través de fenómenos naturales, los humanos usan ampliamente el Cobre. Por ejemplo este es aplicado en industrias y en agricultura. La producción de Cobre se ha incrementado en las últimas décadas y debido a esto las cantidades de Cobre en el ambiente se ha expandido.

El Cobre puede ser encontrado en muchas clases de comidas, en el agua potable y en el aire. Debido a que absorbemos una cantidad eminente de cobre cada día por la comida, bebiendo y respirando. Las absorción del Cobre es necesaria, porque el Cobre es un elemento traza que es esencial para la salud de los humanos. Aunque los humanos pueden manjear concentraciones de Cobre proporcionalmente altas, mucho Cobre puede también causar problemas de salud.

La mayoría de los compuestos del Cobre se depositarán y se enlazarán tanto a los sedimentos del agua como a las partículas del suelo. Compuestos solubles del Cobre forman la mayor amenaza para la salud humana. Usualmente compuestos del Cobre solubles en agua ocurren en el ambiente después de liberarse a través de aplicaciones en la agricultura.

Las concentraciones del Cobre en el aire son usualmente bastante bajas, así que la exposición al Cobre por respiración es descartable. Pero gente que vive creca de fundiciones que procesan el mineral cobre en metal pueden experimentar esta clase de exposición.

La gente que vive en casas que todavía tiene tuberías de cobre están expuestas a más altos niveles de Cobre que la mayoría de la gente, porque el Cobre es liberado en sus aguas a través de la corrosión de las tuberías.

La exposición profesional al Cobre puede ocurrir. En el Ambiente de trabajo el contacto con Cobre puede llevar a coger gripe conocida como la fiebre del metal. Esta fiebre pasará después de dos días y es causada por una sobre sensibilidad.

Exposiciones de largo periodo al cobre pueden irritar la nariz, la boca y los ojos y causar dolor de cabeza, de estómago, mareos, vómitos y diarreas. Una toma grande de cobre puede causar daño al hígado y los riñones e incluso la muerte. Si el Cobre es cancerígeno no ha sido determinado aún.

Hay artículos científicos que indican una unión entre exposiciones de largo término a elevadas concentraciones de Cobre y una disminución de la inteligencia en adolescentes.

Efectos ambientales del CobreLa producción mundial de Cobre está todavía creciendo. Esto básicamente significa que más y más Cobre termina en le medioambiente. Los ríos están depositando barro en sus orillas que están contaminados con Cobre, debido al vertido de aguas residuales contaminadas con Cobre. El Cobre entra en el aire, mayoritariamente a trav’es de la liberación durante la combustión de fuel. El Cobre en el aire permanecerá por un periódo de tiempo eminente,

Page 77: elemtos

antes de depositarse cuando empieza a llover. Este terminará mayormente en los suelos, como resultado los suelos pueden también contener grandes cantidades de Cobre después de que esté sea depositado desde el aire.

El Cobre puede ser liberado en el medioambiente tanto por actividades humanas como por procesos naturales. Ejemplo de fuentes naturales son las tormentas de polvo, descomposición de la vegetación, incendios forestales y aerosoles marinos. Unos pocos de ejemplos de actividades humanas que contribuyen a la liberación del Cobre han sido ya nombrado. Otros ejemplos son la minería, la producción de metal, la producción de madera y la producción de fertilizantes fosfatados.

El Cobre es a menudo encontrado cerca de minas, asentamientos industriales, vertederos y lugares de residuos.

Cuando el Cobre termina en el suelo este es fuertemente atado a la materia orgánica y menierales. Como resultado este no viaja muy lejos antes de ser liberado y es dificil que entre en el agua subterránea. En el agua superficial el cobre puede viajar largas distancias, tanto suspendido sobre las partículas de lodos como iones libres.

El Cobre no se rompe en el ambiente y por eso se puede acumular en plantas y animales cuando este es encontrado en suelos. En suelos ricos en Cobre sólo un número pequeño de plantas pueden vivir. Por esta razón no hay diversidad de plantas cerca de las fábricas de Cobres, debido al efecto del Cobre sobre las plantas, es una seria amenaza para la producción en las granjas. El Cobre puede seriamente influir en el proceso de ciertas tierras agrícolas, dependiendo de la acidez del suelo y la presencia de materia orgánica. A pesar de esto el estiércol que contiene Cobre es todavía usado.

El Cobre puede interrumpir la actividad en el suelo, su influencia negativa en la actividad de microorganismos y lombrices de tierra. La descomposición de la materia orgánica puede disminuir debido a esto.

Cuando los suelos de las granjas están contaminados con Cobre, los animales pueden absorber concentraciones de Cobre que dañan su salud. Principalmente las ovejas sufren un gran efecto por envenenamiento con Cobre, debido a que los efectos del Cobre se manifiestan a bajas concentraciones

Dubnio - Db

Propiedades químicas del Dubnio - Efectos del Dubnio sobre la salud - Efectos ambientales del

Dubnio

Page 78: elemtos

Nombre Dubnio

Número atómico 105

Valencia -

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Rn]5f146d37s2

Primer potencial de ionización (eV) -

Masa atómica (g/mol) 262

Densidad (g/ml) -

Punto de ebullición (ºC) -

Punto de fusión (ºC) -

Descubridor Albert Ghiorso en 1970

DubnioElemento químico sintetizado e identificado sin lugar a duda por primera vez por A. Ghiorso y colegas en marzo de 1970 en el Laboratorio de Radiación Lawrence, Berkeley (California), en el acelerador lineal de iones pesados (HILAC).

Page 79: elemtos

El isótopo de Dubnio tiene una vida media de 1.6 segundos y decae emitiendo partículas alfa con energías de 9.06 (55%), 9.10 (25%) y 9.14 (20%) MeV. Tiene masa 262, de acuerdo con la identificación de Lawrencio 256 resultante, por dos métodos diferentes.

Efectos del Dubnio sobre la saludAl ser tan inestable, cualquier cantidad formada se descompondrá en otros elementos con tanta rapidez que no existe razón para estudiar sus efectos en la salud humana.

Efectos ambientales del DubnioDebido a su vida media tan extremadamente corta (alrededor de 34 segundos), no existe razón para considerar los efectos del dubnio en el medio ambiente.

Ununilio - UunPropiedades químicas del Ununilio

Nombre Ununilio

Número atómico 110

Valencia -

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) -

Estructura atómica [Rn]5f146d97s1

Potencial primerode ionización (eV) -

Símbolo Uun

Peso atómico (269)

Page 80: elemtos

Densidad (g/ml) -

Punto de ebullición ºC -

Punto de fusión ºC -

Disprosio - Dy

Propiedades químicas del Disprosio - Efectos del Disprosio sobre la salud - Efectos ambientales del

DisprosioNombre Disprosio

Número atómico 66

Valencia 3

Estado de oxidación +3

Electronegatividad 1,1

Radio covalente (Å) 1,59

Radio iónico (Å) 0,99

Radio atómico (Å) 1,77

Configuración electrónica [Xe]4f105d06s2

Primer potencial de ionización (eV) 6,85

Page 81: elemtos

Masa atómica (g/mol) 162,50

Densidad (g/ml) 8,54

Punto de ebullición (ºC) 2600

Punto de fusión (ºC) 1407

DisprosioElemento metálico de las tierras raras, símbolo Dy, número atómico 66 y peso atómico de 162.50. El elemento natural está compuesto por siete isótopos estables. El disprosio forma un óxido blanco, Dy2O3 que se disuelve en ácido para producir una solución amarillo-verdosa.

El metal es atacado con facilidad por el aire a altas temperaturas, pero a la temperatura ambiente, en bloques, es bastante estable en la atmósfera y permanece brillante durante largos periodos. El disprosio es paramagnético, pero al ir bajando la temperatura se convierte en antiferromagnético, en su punto Neel (178 K o –139 F) y ferromagnético en su punto Curie (85 K o –306.4ºF). A muy baja temperatura muestra fuertes propiedades de anisotropía magnética.

El disprosio fue descubierto por Paul-Émile Lecoq de Boisbaudran, un químico francés, en 1886 com una impureza de la erbia, el óxido de erbio. El metal fue aislado por Georges Urbain, otro químico francés, en 1906. Muestras de disprosio puro fueron producidas por primera vez en los años 50. Actualmente el disprosio es principalmente obtenido a través de un proceso de intercambio iónico con la arena monacita ((Ce, La, Th, Nd, Y)PO4), un material rico en elementos de tierras raras.

No existen aplicaciones comerciales del disprosio. Ya que absorbe neutrones fácilmente y tiene un elevado punto de fusión, el disprosio puede ser aleado con acero para ser usado en reactores nucleares. Cuando se combina con vanadio y otros elementos de tierras raras, el disprosio se usa como un material láser.

El óxido de disprosio (Dy2O3), también conocido como disprosia, se combina con el níquel y se añade a un cemento especial usado para enfriar las barras de los reactores nucleares. Otros

Page 82: elemtos

compuestos del disprosio incluyen: fluoruro de disprosio (DyF3), ioduro de disprosio (DyI3) y sulfato de disprosio (Dy2(SO4)3).

Efectos del Disprosio sobre la salud

El disprosio es uno de los elementos químicos raros, que puede ser encontrado en equipos tales como televisiones en color, lámparas fluorescentes y cristales. Todos los compuestos químicos raros tienen propiedades comparables.

El disprosio raramente se encuentra en la naturaleza, ya que se da en cantidades muy pequeñas. El disprosio normalmente se encuentra solamente en dos tipos distintos de minerales. El uso del disprosio sigue aumentando, debido al hecho de que es útil para producir catalizadores y para pulir cristales.

El disprosio es más peligroso en el ambiente de trabajo, debido al hacho de que las humedades y los gases pueden ser inhalados con el aire. Esto puede causar embolias pulmonares, especialmente durante exposiciones a largo plazo. El disprosio puede ser una amenaza para el hígado cuando se acumula en el cuerpo humano.

Efectos ambientales del Disprosio

El disprosio es vertido al medio ambiente en muchos lugares diferentes, principalmente por industrias productoras de petróleo. También puede entrar en el medio ambiente cuando se tiran los equipos domésticos. El disprosio se acumulará gradualmente en los suelos y en el agua de los suelos y esto llevará finalmente a incrementar la concentración en humanos, animales y partículas del suelo.

En los animales acuáticos provoca daños a las membranas celulares, lo que tiene varias influencias negativas en la reproducción y en las funciones del sistema nervioso.

Erbio - Er

Propiedades químicas del Erbio - Efectos del Erbio sobre la salud - Efectos ambientales del Erbio

Nombre Erbio

Número atómico 68

Valencia 3

Estado de oxidación +3

Electronegatividad 1,2

Page 83: elemtos

Radio covalente (Å) 1,57

Radio iónico (Å) 0,96

Radio atómico (Å) 1,75

Configuración electrónica [Xe]4f125d06s2

Primer potencial de ionización (eV) -

Masa atómica (g/mol) 167,26

Densidad (g/ml) 9,05

Punto de ebullición (ºC) 2900

Punto de fusión (ºC) 1497

Descubridor Carl Mosander en 1843

ErbioElemento químico, símbolo Er, número atómico 68, peso atómico 167.26, localizado en el grupo de las tierras raras. El elemento natural consta de seis isótopos estables. El óxido rosa Er2O3 se disuelve en ácidos minerales para dar soluciones color de rosa. Las sales son paramagnéticas y los iones trivalentes. A temperaturas bajas el metal es antiferromagnético y a temperaturas aún más bajas se vuelve fuertemente ferromagnético.

El mineral gadolinita ((Ce, La, Nd, Y)2FeBe2Si2O10), descubierto en una cantera cerca de la ciudad de Ytterby , Suecia, ha sido la fuente de un gran némero de elementos de tierras raras. En 1843, Carl Gustaf Mosander, un químico sueco, fue capaz de separar gadolinita en tres materiales, a los cuales llamó itria, erbia y terbia. Como puede ser supuesto considerando las similitudes entre sus nombres y propiedades, los científicos pronto confundieron el erbio y el terbio y, en 1877, habían intercambiado sus nombres. Lo que Mosander llamó erbia ahora es llamado terbia y viceversa. De estas dos sustancias Mosander descubrió dos elementos nuevos, el terbio y el erbio. Actualmente, el erbio se obtiene principalmente a través de un proceso de intercambio iónico con los minerales xenotima (YPO4) y euxenita ((Y, Ca, Er, La, Ce, U, Th)(Nb, Ta, Ti)2O6).

Page 84: elemtos

El erbio se alea con vanadio para hacerlo más blando y más fácil de dar forma. El erbio también tiene algunos usos en la industria de la energía nuclear.

Erbia, el material renombrado que Mosander descubrió en 1843, es óxido de erbio (Er2O3), uno de los compuestos del erbio. Erbia es de color rosa y se usa para dar color a cristales y vidrios. Otros compuestos del erbio son: fluoruro de erbio (ErF3), cloruro de erbio (ErCl3) y yoduro de erbio (ErI3).

Efectos del Erbio sobre la saludEl erbio es uno de los elementos químicos raros, que puede ser encontrado en equipos tales como televisiones en color, lámparas fluorescentes y cristales. Todos los compuestos químicos raros tienen propiedades comparables.

El erbio raramente se encuentra en la naturaleza, ya que se da en cantidades muy pequeñas. El erbio normalmente se encuentra solamente en dos tipos distintos de minerales. El uso del erbio sigue aumentando, debido al hecho de que es útil para producir catalizadores y para pulir cristales.

El erbio es más peligroso en el ambiente de trabajo, debido al hacho de que las humedades y los gases pueden ser inhalados con el aire. Esto puede causar embolias pulmonares, especialmente durante exposiciones a largo plazo. El erbio puede ser una amenaza para el hígado cuando se acumula en el cuerpo humano.

Efectos ambientales del ErbioEl erbio es vertido al medio ambiente en muchos lugares diferentes, principalmente por industrias productoras de petróleo. También puede entrar en el medio ambiente cuando se tiran los equipos domésticos. El erbio se acumulará gradualmente en los suelos y en el agua de los suelos y esto llevará finalmente a incrementar la concentración en humanos, animales y partículas del suelo.

En los animales acuáticos provoca daños a las membranas celulares, lo que tiene varias influencias negativas en la reproducción y en las funciones del sistema nervioso

Einstenio - Es

Propiedades químicas del Einstenio - Efectos del Einstenio sobre la salud - Efectos ambientales del

EinstenioNombre Einstenio

Page 85: elemtos

Número atómico 99

Valencia -

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Rn]5f117s2

Primer potencialde ionización (eV) -

Masa atómica (g/mol) 254

Densidad (g/ml) -

Punto de ebullición (ºC) -

Punto de fusión (ºC) -

Descubridor Argonne en la Universidad de California en 1952

Einstenio

Page 86: elemtos

Elemento químico, símbolo Es, número atómico 99, miembro de la serie de los actínidos de la tabla periódica. No se encuentra en la naturaleza, sino que se obtiene de manera artificial por transmutación nuclear de elementos más ligeros. Todos los isótopos del einstenio son radiactivos, con vida media que abarca de unos pocos segundos hasta cerca de un año.

El einstenio es el actínido más pesado de aquellos en que puede determinarse esta propiedad. El metal es químicamente reactivo y muy volátil, se funde a 860ºC (1580ºF); se conoce una estructura cristalina.

Efectos del Einstenio sobre la salud

El einstenio no se da en la naturaleza, y no ha sido encontrado en la corteza terrestre, por lo que no hay motivo para considerar sus efectos sobre la salud.

Efectos ambientales del EinstenioEl einstenio no se da en la naturaleza, y no ha sido encontrado en la corteza terrestre, por lo que no hay motivo para considerar sus efectos sobre el medio ambiente.

Europio - Eu

Propiedades químicas del Europio - Efectos del Europio sobre la salud - Efectos ambientales del

EuropioNombre Europio

Número atómico 63

Valencia 2,3

Estado de oxidación +2

Electronegatividad 1,0

Radio covalente (Å) 1,85

Radio iónico (Å) 1,12

Radio atómico (Å) 2,04

Page 87: elemtos

Configuración electrónica [Xe]4f75d06s2

Primer potencial de ionización (eV) 5,72

Masa atómica (g/mol) 151,96

Densidad (g/ml) 5,26

Punto de ebullición (ºC) 1439

Punto de fusión (ºC) 826

Descubridor Carl Mosander en 1843

EuropioElemento químico, símbolo Eu, número atómico 63, peso atómico 151.96, miembro del grupo de las tierras raras. Los isótopos estables, 151Eu y 153Eu, son naturales. El metal es el segundo más volátil de las tierras raras y tiene una presión de vapor considerable en su punto de fusión. Es muy blando, y es atacado rápidamente por el aire; en realidad pertenece más bien a la serie del calcio-estroncio-bario que a las tierras raras.

El elemento es atractivo para la industria atómica, dado que puede usarse en barras de control y como veneno nuclear. Los venenos son materiales adicionados al reactor nuclear para equilibrar el exceso de reactividad en el inicio, y se eligen de tal manera que son consumidos a la misma velocidad con que disminuye el exceso de actividad. La industria de la televisión emplea grandes cantidades de sustancias fosforescentes, como ortovanadatos de itrio activado con europio y otros que están patentados. Estas sustancias dan un color rojo brillante y se emplean en la fabricación de pantallas de televisión.

El europio fue descubierto por Eugène-Antole Demarçay, un químico francés, en 1896. Demarçay sospechaba que muestras de un elemento recientemente descubierto, el samario, estaban contaminadas con un elemento desconocido. Fue capaz de producir europio razonablemente puro en 1901. Actualmente, el europio se obtiene principalmente a través de un proceso de intercambio iónico con arena de monacita ((Ce, La, Th, Nd, Y)PO4), un material rico en elementos de tierras raras.

Page 88: elemtos

El europio es el mas reactivo de todos los elementos de tierras raras. No existen aplicaciones comerciales para el europio metálico, aunque ha sido usado para adulterar algunos tipos de plásticos para hacer lasers. Ya que es un buen absorbente de neutrones, el europio está siendo estudiado para ser usado en reactores nucleares.

El óxido de europio (Eu2O3), uno de los componentes del europio, es ampliamente usado como fósforo rojo en los aparatos de televisión y como un activador de los fósforos basados en el itrio.

Efectos del Europio sobre la saludEl europio es uno de los elementos químicos raros, que puede ser encontrado en equipos tales como televisiones en color, lámparas fluorescentes y cristales. Todos los compuestos químicos raros tienen propiedades comparables.

El europio raramente se encuentra en la naturaleza, ya que se da en cantidades muy pequeñas. El europio normalmente se encuentra solamente en dos tipos distintos de minerales. El uso del europio sigue aumentando, debido al hecho de que es útil para producir catalizadores y para pulir cristales.

El europio es más peligroso en el ambiente de trabajo, debido al hacho de que las humedades y los gases pueden ser inhalados con el aire. Esto puede causar embolias pulmonares, especialmente durante exposiciones a largo plazo. El europio puede ser una amenaza para el hígado cuando se acumula en el cuerpo humano.

Efectos ambientales del EuropioEl europio es vertido al medio ambiente en muchos lugares diferentes, principalmente por industrias productoras de petróleo. También puede entrar en el medio ambiente cuando se tiran los equipos domésticos. El europio se acumulará gradualmente en los suelos y en el agua de los suelos y esto llevará finalmente a incrementar la concentración en humanos, animales y partículas del suelo.

En los animales acuáticos provoca daños a las membranas celulares, lo que tiene varias influencias negativas en la reproducción y en las funciones del sistema nervioso.

Flúor - F

Propiedades químicas del Flúor - Efectos del Flúor sobre la salud - Efectos ambientales del Flúor

Page 89: elemtos

Nombre Flúor

Número atómico 9

Valencia -1

Estado de oxidación -1

Electronegatividad 4,0

Radio covalente (Å) 0,72

Radio iónico (Å) 1,36

Radio atómico (Å) -

Configuración electrónica 1s22s22p5

Primer potencial de ionización (eV) 17,54

Masa atómica (g/mol) 18,9984

Densidad (g/ml) 1,11

Punto de ebullición (ºC) -188,2

Punto de fusión (ºC) -219,6

Descubridor Moissan en 1886

Page 90: elemtos

FlúorSímbolo F, número atómico 9, miembro de la familia de los halógenos con el número y peso atómicos más bajos. Aunque sólo el isótopo con peso atómico 19 es estable, se han preparado de manera artificial los isótopos radiactivos, con pesos atómicos 17 y 22, el flúor es el elemento más electronegativo, y por un margen importante, el elemento no metálico más energético químicamente.

Propiedades: El flúor elemental es un gas de color amarillo pálido a temperaturas normales. El olor del elemento es algo que está todavía en duda. La reactividad del elemento es tan grande que reacciona con facilidad, a temperatura ambiente, con muchas otras sustancias elementales, entre ellas el azufre, el yodo, el fósforo, el bromo y la mayor parte de los metales. Dado que los productos de reacción con los no metales son líquidos o gases, las reacciones continúan hasta consumirlo por completo, con frecuencia con producción considerable de calor y luz. En las reacciones con los metales forma un fluoruro metálico protector que bloquea una reacción posterior a menos que la temperatura se eleve. El aluminio, el níquel, el magnesio y el cobre forman tales películas de fluoruro protector.

El flúor reacciona con violencia considerable con la mayor parte de los compuestos que contienen hidrógeno, como el agua, el amoniaco y todas las sustancias orgánicas, sean líquidos, sólidos o gases. La reacción del flúor con el agua es compleja y produce principalmente fluoruro de hidrógeno y oxígeno, así como cantidades menores de peróxido de hidrógeno, difluoruro de oxígeno y ozono. El flúor desplaza otros elementos no metálicos de sus compuestos, aun aquellos muy cercanos en cuanto a actividad química. Desplaza el cloro del cloruro de sodio y el oxígeno en la sílica, en vidrio y en algunos materiales cerámicos. En ausencia de fluoruro de hidrógeno, el flúor no ataca en forma significativa al cuarzo o al vidrio, ni aun después de varias horas a temperaturas hasta de 200ºC (390ºF).

El flúor es un elemento muy tóxico y reactivo. Muchos de sus compuestos, en especial los inorgánicos, son también tóxicos y pueden causar quemaduras severas y profundas. Hay que tener cuidado para prevenir que líquidos o vapores entren en contacto con la piel y los ojos.

Frecuencia natural: Se estima que se halla en un 0.065% en la corteza terrestre; es casi tan abundante como el carbono, el nitrógeno o el cloro, mucho más que el cobre o el plomo, aunque mucho menos que el hierro, aluminio o el magnesio. Los compuestos cuyas moléculas contienen átomos de flúor están ampliamente distribuidos en la naturaleza. Muchos minerales contienen cantidades pequeñas del elemento, y se encuentra tanto en rocas ígneas como en rocas sedimentarias.

Aplicaciones: Los compuestos que contienen flúor se utilizan para incrementar la fluidez del vidrio fundido y escorias en la industria vidriera y cerámica. El espato flúor (fluoruro de calcio) se introduce dentro del alto horno para reducir la viscosidad de la escoria en la metalurgia del hierro. La criolita, Na2AlF6, se utiliza para formar el electrólito en la metalurgia del aluminio. El óxido de aluminio se disuelve en este electrólito, y el metal se reduce, eléctricamente, de la masa fundida. El uso de halocarburos que contienen flúor como refrigerantes se patentó en

Page 91: elemtos

1930, y estos compuestos estables y volátiles encontraron un mercado como propelentes de aerosoles, así como también en refrigeración y en sistemas de aire acondicionado. Sin embargo, el empleo de fluorocarburos como propelentes ha disminuido en forma considerable a causa del posible daño; a la capa de ozono de la atmósfera. Un uso del flúor, muy importante durante la Segunda Guerra Mundial, fue un el enriquecimiento del isótopo fisionable 235U; el proceso más importante empleaba hexafluoruro de uranio. Este compuesto estable y volátil fue con mucho el material más adecuado para la separación del isótopo por difusión gaseosa.

Mientras que para los consumidores la utilización de compuestos de flúor en la industria pasa casi inadvertida, algunos compuestos se han vuelto familiares a través de usos menores pero importantes, como aditivos en pastas de dientes y superficies fluoropoliméricas antiadherentes sobre sartenes y hojas de afeitar (teflón por ejemplo).

Compuestos: En todos los compuestos de flúor la alta electronegatividad de este compuesto indica que el átomo de flúor tiene un exceso de carga negativa. Es conveniente, sin embargo, dividir los fluoruros binarios inorgánicos en sales (red iónica), fluoruros metálicos no volátiles y fluoruros volátiles, la mayor parte de no metales. Algunos hexafluoruros metálicos y los fluoruros de gases nobles muestran volatilidad que son frecuencia está asociada a un compuesto molecular. La volatilidad se asocia a menudo con números de oxidación altos para el elemento positivo.

Los metales suelen formar fluoruros iónicos no volátiles, donde la transferencia electrónica es sustancial y la red cristalina está determinada por el tamaño iónico y la interacción electrostática predecible. Cuando el número de coordinación y la valencia son la misma, por ejemplo en BF3, SiF4 y WF6, el enlace entre el metal y el flúor no es común; los compuestos resultantes son muy volátiles y los sólidos muestran redes moleculares más que estructuras cristalinas iónicas. Para números de oxidación superiores, las redes iónicas simples son menos comunes y, mientras que el enlace entre el átomo central y el flúor requiere aún transferencia de alguna carga al flúor, las estructuras moleculares son identificables en las fases condensadas.

Además de los fluoruros binarios, se ha aislado un número muy grande de complejos, a menudo con un anión fluoruro que contiene un átomo central de número de oxidación alto. Los fluoruros binarios salinos muestran una gran tendencia a combinarse con otros fluoruros binarios para formar numerosos complejos o sales dobles.

Los compuestos de carbono que contienen flúor pueden dividirse en hidrocarburos fluorados y derivados (compuestos orgánicos del flúor), y los fluorocarburos y sus derivados. El átomo de flúor unido al anillo aromático, como en el fluorobenceno, es poco reactivo. Además reduce la reactividad de toda la molécula. Por ejemplo, aquellos colorantes que contienen flúor unido al anillo aromático son más resistentes a la oxidación y más sensibles a la luz, que los que no lo contienen. La mayor parte de los compuestos alifáticos, como los fluoruros de alquilo, son inestables y pierden fluoruro de hidrógeno con facilidad. Estos compuestos son difíciles de preparar y conservar, y es poco probable que se vuelvan importantes.

Page 92: elemtos

Efectos del Flúor sobre la saludEn el agua, aire, plantas y animales hay presentes pequeñas cantidades de flúor. Como resultado los humanos están expuestos al flúor a través de los alimentos y el agua potable y al respirar el aire. El flúor se puede encontrar en cualquier tipo de comida en cantidades relativamente pequeñas. Se pueden encontrar grandes cantidades de flúor en el té y en los mariscos.

El flúor es esencial para mantener la solidez de nuestros huesos. El flúor también nos puede proteger del decaimiento dental, si es aplicado con el dentifríco dos veces al día. Si se absorbe flúor con demasiada frecuencia, puede provocar caries, osteoporosis y daños a los riñones, huesos, nervios y músculos.

Las industrias liberan la forma gaseosa del flúor. Este gas es muy peligroso, ya que en elevadas concentraciones puede causar la muerte. En bajas concentraciones puede causar irritaciones de los ojos y la nariz.

Efectos ambientales del FlúorEl flúor está presente en la corteza terrestre de forma natural, pudiendo ser encontrado en rocas, carbón y arcilla. Los fluoruros son liberados al aire cuando el viento arrastra el suelo. Los procesos de combustión en las industrias pueden liberar fluoruro de hidrógeno al aire. Los fluoruros que se encuentran en el aire acabarán depositándose en el suelo o en el agua.

Cuando el flúor se fija a partículas muy pequeñas puede permanecer en el aire durante un largo periodo de tiempo. Cuando el flúor del aire acaba en el agua se instala en los sedimentos. Cuando acaba en los suelos, el flúor se pega fuertemente a las partículas del suelo.

En el medio ambiente el flúor no puede ser destruído; solamente puede cambiar de forma. El flúor que se encuentra en el suelo puede acumularse en las plantas. La cantidad de flúor que tomen las plantas depende del tipo de planta, del tipo de suelo y de la cantidad y tipo de flúor que se encuentre en el suelo. En las plantas que son sensibles a la exposición del flúor incluso bajas concentraciones de flúor pueden provocar daños en las hojas y una disminución del crecimiento.

Los animales que ingieren plantas que contienen flúor pueden acumular grandes cantidades de flúor en sus cuerpos. El flúor se acumula principalmente en los huesos. Como consecuencia, los animales expuestos a elevadas concentraciones de flúor sufren de caries y degradación de los huesos. Demasiado flúor también puede provocar la disminución de la cantidad de alimento tomado por el estómago y puede alterar el desarrollo de las garras. Por último, puede provocar bajo peso al nacer.

Hierro - Fe

Page 93: elemtos

Propiedades químicas del Hierro - Efectos del Hierro sobre la salud - Efectos ambientales del

HierroNombre Hierro

Número atómico 26

Valencia 2,3

Estado de oxidación +3

Electronegatividad 1,8

Radio covalente (Å) 1,25

Radio iónico (Å) 0,64

Radio atómico (Å) 1,26

Configuración electrónica [Ar]3d64s2

Primer potencial de ionización (eV) 7,94

Masa atómica (g/mol) 55,847

Densidad (g/ml) 7,86

Punto de ebullición (ºC) 3000

Punto de fusión (ºC) 1536

Descubridor Los antiguos

Page 94: elemtos

HierroElemento químico, símbolo Fe, número atómico 26 y peso atómico 55.847. El hierro es el cuarto elemento más abundante en la corteza terrestre (5%). Es un metal maleable, tenaz, de color gres plateado y magnético. Los cuatro isótopos estables, que se encuentran en la naturaleza, tienen las masas 54, 56, 57 y 58. Los dos minerales principales son la hematita, Fe2O3, y la limonita, Fe2O3.3H2O. Las piritas, FeS2, y la cromita, Fe(CrO2)2, se explotan como minerales de azufre y de cromo, respectivamente. El hierro se encuentra en muchos otros minerales y está presente en las aguas freáticas y en la hemoglobina roja de la sangre.

La presencia del hierro en el agua provoca precipitación y coloración no deseada. Existen técnicas de separación del hierro del agua.

El uso más extenso del hierro (fierro) es para la obtención de aceros estructurales; también se producen grandes cantidades de hierro fundido y de hierro forjado. Entre otros usos del hierro y de sus compuestos se tienen la fabricación de imanes, tintes (tintas, papel para heliográficas, pigmentos pulidores) y abrasivos (colcótar).

Exiten varias forma alotrópicas del hierro. La ferrita es estable hasta 760ºC (1400ºF). El cambio del hierro B comprende principalmente una pérdida de permeabilidad magnética porque la estructura de la red (cúbica centrada en el cuerpo) permanece inalterada. La forma alotrópica tiene sus átomos en arreglos cúbicos con empaquetamiento cerrado y es estable desde 910 hasta 1400ºC (1670 hasta 2600ºF).

Este metal es un buen agente reductor y, dependiendo de las condiciones, puede oxidarse hasta el estado 2+m 3+ o 6+. En la mayor parte de los compuestos de hierro está presente el ion ferroso, hierro(II), o el ion férrico, hierro(III), como una unidad distinta. Por lo común, los compuestos ferrosos son de color amarillo claro hasta café verdoso oscuro; el ion hidratado Fe(H2O)6

2+, que se encuentra en muchos compuestos y en solución, es verde claro. Este ion presenta poca tendencia a formar complejos de coordinación, excepto con reactivos fuertes, como el ion cianuro, las poliaminas y las porfirinas. El ion férrico, por razón de su alta carga (3+) y su tamaño pequeño, tiene una fuerte tendencia a capturar aniones. El ion hidratado Fe(H2O)6

3+, que se encuentra en solución, se combina con OH-, F-, Cl-, CN-, SCN-, N3-, C2O4

2- y otros aniones para forma complejos de coordinación.

Un aspecto interesante de la química del hierro es el arreglo de los compuestos con enlaces al carbono. La cementita, Fe3C, es un componente del acero. Los complejos con cianuro, tanto del ion ferroso como del férrico, son muy estables y no son intensamente magnéticos, en contraposición a la mayor parte de los complejos de coordinación del hierro. Los complejos con cianuro forman sales coloradas.

Efectos del Hierro sobre la salud

Page 95: elemtos

El Hierro puede ser encontrado en carne, productos integrales, patatas y vegetales. El cuerpo humano absorbe Hierro de animales más rápido que el Hierro de las plantas. El Hierro es una parte esencial de la hemoglobina: el agente colorante rojo de la sangre que transporta el oxígeno a través de nuestros cuerpos.

Puede provocar conjuntivitis, coriorretinitis, y retinitis si contacta con los tejidos y permanece en ellos. La inhalación crónica de concentraciones excesivas de vapores o polvos de óxido de hierro puede resultar en el desarrollo de una neumoconiosis benigna, llamada sideriosis, que es observable como un cambio en los rayos X. Ningún daño físico de la función pulmonar se ha asociado con la siderosis. La inhalación de concentraciones excesivas de óxido de hierro puede incrementar elriesgo de desarrollar cáncer de pulmón en trabajadores expuestos a carcinógenos pulmonares. LD50 (oral, rata) =30 gm/kg. (LD50: Dosis Letal 50. Dosis individual de una sustancia que provoca la muerte del 50% de la población animal debido a la exposición a la sustancia por cualquier vía distinta a la inhalación. Normalmente expresada como miligramos o gramos de material por kilogramo de peso del animal.)

Efectos ambientales del HierroEl hierro (III)-O-arsenito, pentahidratado puede ser peligroso para el medio ambiente; se debe prestar especial atención a las plantas, el aire y el agua. Se recomienda encarecidamente que no se permita que el producto entre en el medio ambiente porque persiste en éste

Fermio - Fm

Propiedades químicas del Fermio - Efectos del Fermio sobre la salud - Efectos ambientales de

FermioNombre Fermio

Número atómico 100

Valencia -

Estado de oxidación -

Page 96: elemtos

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Rn]5f127s2

Primer potencial de ionización (eV) -

Masa atómica (g/mol) 257

Densidad (g/ml) -

Punto de ebullición (ºC) -

Punto de fusión (ºC) -

Descubridor Albert Ghiorso en 1952

FermioElemento químico, símbolo Fm, número atómico 100, el undécimo elemento de los actínidos. El fermio no se encuentra en la naturaleza; su descubrimiento y producción se alcanza por transmutación nuclear artificial de elementos más ligeros. Se han descubierto los isótopos radiactivos de número de masa 244-259. El peso total del fermio que ha sido sintetizado es mucho menor de una millonésima de gramo.

Page 97: elemtos

La fisión espontánea es el modo principal de decaimiento para 244Fm, 256Fm y 258Fm. El isótopo con vida más larga es 257Fm, el cual tiene una vida media de unos 100 días. El fermio –258 decae por fisión espontánea y tiene una vida media de 0.38 milisegundos. Esto sugiere la existencia de una anormalidad en este punto en la tabla periódica.

Efectos del Fermio sobre la saludEl fermio no se da en la naturaleza, y no ha sido encontrado en la corteza terrestre, por lo que no hay motivo para considerar sus efectos sobre la salud.

Efectos ambientales del FermioEl fermio no se da en la naturaleza, y no ha sido encontrado en la corteza terrestre, por lo que no hay motivo para considerar sus efectos sobre el medio ambiente.

Francio - Fr

Propiedades químicas del Francio - Efectos del Francio sobre la salud - Efectos ambientales del

FrancioNombre Francio

Número atómico 87

Valencia 1

Estado de oxidación +1

Electronegatividad 0,8

Radio covalente (Å) -

Radio iónico (Å) 1,76

Radio atómico (Å) -

Configuración electrónica [Rn]7s1

Primer potencial de ionización (eV) -

Page 98: elemtos

Masa atómica (g/mol) 223

Densidad (g/ml) -

Punto de ebullición (ºC) -

Punto de fusión (ºC) 27

Descubridor Marguerite Derey en 1939

FrancioElemento químico, símbolo Fr, número atómico 87, metal alcalino colocado abajo del cesio en el grupo Ia de la tabla periódica. Se distingue por su inestabilidad nuclear, ya que existe sólo en formas radiactivas de vida corta; el más estable tiene una vida media de 21 minutos. El principal isótopo del francio es el actinio-K, isótopo de masa 223, el cual proviene del decaimiento del actinio radiactivo, de las propiedades conocidas, es muy probable que ninguna forma de vida larga del elemento 87 se encuentre en la naturaleza o sintetizada de manera artificial.

Las propiedades químicas del francio pueden estudiarse sólo a la escala de trazas. El elemento muestra todas las propiedades esperadas de los elementos alcalinos más pesados. Con pocas excepciones, todas las sales del francio son solubles en agua.

Efectos del Francio sobre la saludAl ser tan inestable, cualquier cantidad formada se descompondrá en otros elementos tan rápidamente que no hay motivo para estudiar sus efectos en la salud humana.

Efectos ambientales del FrancioDebido a su vida media tan extremadamente corta, no existe razón para considerar los efectos del francio en el medio ambiente.

Galio - Ga

Page 99: elemtos

Propiedades químicas del Galio - Efectos del Galio sobre la salud - Efectos ambientales del Galio

Nombre Galio

Número atómico 31

Valencia 3

Estado de oxidación +3

Electronegatividad 1,6

Radio covalente (Å) 1,26

Radio iónico (Å) 0,62

Radio atómico (Å) 1,41

Configuración electrónica [Ar]3d104s24p1

Primer potencial de ionización (eV) 6,02

Masa atómica (g/mol) 69,72

Densidad (g/ml) 5,91

Punto de ebullición (ºC) 2237

Punto de fusión (ºC) 29,8

GalioElemento químico, símbolo Ga, número atómico 31 y peso atómico 69.72. lo descubrió Lecoq de Boisbaudran en Francia en 1875. Tiene un gran intervalo de temperatura en el estado líquido, y se ha recomendado su uso en termómetros de alta temperatura y manómetros. En aleación con plata y estañó, el galio suple en forma adecuada la amalgama en curaciones dentales; también sirve para soldar materiales no metálicos, incluyendo gemas o amtales. El

Page 100: elemtos

arseniuro de galio puede utilizarse en sistemas para transformar movimiento mecánico en impulsos eléctricos. Los artículos sintéticos superconductores pueden prepararse por la fabricación de matrices porosas de vanadio o tántalo impregnados con hidruro de galio. El galio ha dado excelentes resultados como semiconductor para uso en rectificadores, transistores, fotoconductores, fuentes de luz, diodos láser o máser y aparatos de refrigeración.

El galio sólido parece gris azulado cuando se expone a la atmósfera. El galio líquido es blanco plateado, con una superficie reflejante brillante. Su punto de congelación es más bajo que el de cualquier metal con excepción del mercurio (-39ºC o -38ºF) y el cesio (28.5ºC u 83.3ºF).

El galio es semejante químicamente al aluminio. Es anfótero, pero poco más ácido que el aluminio. La valencia normal del galio es 3+ y forma hidróxidos, óxidos y sales. El galio funde al contacto con el aire cuando se calienta a 500ºC (930ºF). Reacciona vigorosamente con agua hirviendo, pero ligeramente con agua a temperatura ambiente. Las sales de galio son incoloras; se preparan de manera directa a partir del metal, dado que la purificación de éste es más simple que la de sus sales.

El galio forma aleaciones eutécticas de bajo punto de fusión con varios metales, y compuestos intermetálicos con muchos otros. Todo el aluminio contiene cantidades pequeñas de galio, como impureza inofensiva, pero la penetración intergranular de grandes cantidades a 30ºC causa fallas catastróficas.

Efectos del Galio sobre la saludEl galio es un elemento que se encuentra en el cuerpo, pero en cantidades muy pequeñas. Por ejemplo, en una persona con una masa de 70 kilos, hay 0,7 miligramos de galio en su cuerpo. Si esta cantidad de galio estuviera condensada en un cubo, el cubo solo mediría 0,49 milímetros de lado. No tiene beneficios provados en las funciones corporales, y lo más probable es que solo esté presente debido a las pequeñas cantidades en el ambiente natural, en el agua, y en los residuos en los vegetales o frutas. Se sabe que algunas vitaminas y aguas de distribución comercial contienen cantidades traza de galio de menos de una parte por millón. El galio puro no es una sustancia peligrosa por contacto para los humanos. Ha sido manipulada muchas veces solo por el simple placer de observar como se derrite por el calor emitido por una mano humana. Sin embargo, deja manchas en las manos. Incluso el componente radioactivo del galio, citrato de galio (67Ga), puede ser inyectado en el cuerpo y usado para escáneres con galio sin efectos perjudiciales. Aunque no es peligroso en pequeñas cantidades, el galio no debe ser consumido a propósito en grandes dosis. Algunos compuestos del galio pueden ser de hecho muy peligrosos, sin embargo. Por ejemplo, altas exposiciones al cloruro de galio (III) pueden causar irritación de la garganta, dificultades de respiración, dolores pectorales, y sus vapores pueden provocar afecciones muy graves como edema pulmonar y parálisis parcial.

Efectos ambientales del Galio

Page 101: elemtos

Una controversia con el galio involucra las armas nucleares y la polución. El galio es usado para unir las minas entre sí. Sin embargo, cuando las minas se cortan y se forma polvo de óxido de plutonio, el galio permanece en el plutonio. El plutonio se ve inutilizado para su uso como combustible porque el galio es corrosivo para varios otros elementos. Si el galio es eliminado, sin embargo, el plutonio se vuelve útil de nuevo. El problema es que el proceso para eliminar el galio contribuye a una gran cantidad de polución en el agua con sustancias radiactivas. El galio es un elemento ideal para ser usado en minas, pero la polución es destructiva para La Tierra y para la salud de sus habitantes. Incluso haciéndose esfuerzos para eliminar la polución del agua, esto incrementaría significativamente los costes de procedimiento de la conversión de plutonio en un combustible (en alrededor de 200 millones de dólares). Los científicos están trabajando en otro método para limpiar el plutonio, pero pueden pasar años hasta que sea completado.

Gadolinio - Gd

Propiedades químicas del Gadolinio - Efectos del Gadolinio sobre la salud - Efectos ambientales del

GadolinioNombre Gadolinio

Número atómico 64

Valencia 3

Estado de oxidación +3

Electronegatividad 1,1

Radio covalente (Å) 1,61

Radio iónico (Å) 1,02

Radio atómico (Å) 1,79

Configuración electrónica [Xe]4f75d16s2

Primer potencial de ionización (eV) 6,20

Masa atómican (g/mol) 157,25

Page 102: elemtos

Densidad (g/ml) 7,89

Punto de ebullición (ºC) 3000

Punto de fusión (ºC) 1312

GadolinioElemento químico metálico, símbolo Gd, número atómico 64 y peso atómico 157.25, perteneciente al grupo de las tierras raras. El elemento natural está compuesto de ocho isótopos. Se llama así en honor del científico sueco J. Gadolin. El óxido, Gd2O3, en forma de polvo, es blanco y las soluciones de sus sales son incoloras. El gadolinio metálico es paramagnético y se vuelve fuertemente ferromagnético a temperaturas inferiores a la ambiente. El punto Curie donde ocurre esta transición es de unos 16 K.

Evidencia espectroscópica de la existencia del gadolinio fue observada por primera vez por el químico suizo Jean Charles Galissard de Marignac en los minerales didimio y gadolinita ((Ce, La, Nd, Y)2FeBe2Si2O10) en 1880. Actualmente, el gadolinio es principalmente obtenido de los minerales monacita ((Ce, La, Th, Nd, Y)PO4) y bastnasita ((Ce,La,Y)CO3F).

 

El gadolinio tiene la mayor habilidad para capturar neutrones térmicos de todos los elementos conocidos y puede ser usado como barra de control para reactores nucleares. Desafortunadamente, los dos isótopos más idóneos para la captura electrónica, el gadolinio 155 y el gadolinio 157, están presentes en el gadolinio en pequeñas cantidades. Como resultado, las barras de control de gadolinio pierden su efectividad con rapidez.

 

El gadolinio puede ser combinado con el itrio para formar granates que tienen aplicaciones en la tecnología de micro-ondas. El gadolinio puede ser aleado con hierro, cromo y otros metales para mejorar su capacidad de trabajo y su resistencia a elevadas temperaturas y a la oxidación. Los compuestos de gadolinio son usados para hacer fósforos para las televisiones en color.

 

Page 103: elemtos

Efectos del Gadolinio sobre la saludEl gadolinio es uno de los elementos químicos raros, que puede ser encontrado en equipos tales como televisiones en color, lámparas fluorescentes y cristales. Todos los compuestos químicos raros tienen propiedades comparables.

El gadolinio raramente se encuentra en la naturaleza, ya que se da en cantidades muy pequeñas. El gadolinio normalmente se encuentra solamente en dos tipos distintos de minerales. El uso del gadolinio sigue aumentando, debido al hecho de que es útil para producir catalizadores y para pulir cristales.

El gadolinio es más peligroso en el ambiente de trabajo, debido al hacho de que las humedades y los gases pueden ser inhalados con el aire. Esto puede causar embolias pulmonares, especialmente durante exposiciones a largo plazo. El gadolinio puede ser una amenaza para el hígado cuando se acumula en el cuerpo humano.

Efectos ambientales del GadolinioEl gadolinio es vertido al medio ambiente en muchos lugares diferentes, principalmente por industrias productoras de petróleo. También puede entrar en el medio ambiente cuando se tiran los equipos domésticos. El gadolinio se acumulará gradualmente en los suelos y en el agua de los suelos y esto llevará finalmente a incrementar la concentración en humanos, animales y partículas del suelo.

En los animales acuáticos provoca daños a las membranas celulares, lo que tiene varias influencias negativas en la reproducción y en las funciones del sistema nervioso

Germanio - Ge

Propiedades químicas del Germanio - Efectos del hidruro de Germanio y el tetrahidruro de Germanio sobre la salud - Efectos ambientales del GermanioNombre Germanio

Número atómico 32

Valencia 4

Estado de oxidación +4

Page 104: elemtos

Electronegatividad 1,8

Radio covalente (Å) 1,22

Radio iónico (Å) 0,53

Radio atómico (Å) 1,37

Configuración electrónica [Ar]3d104s24p2

Primer potencial de ionización (eV) 8,16

Masa atómica (g/mol) 72,59

Densidad (g/ml) 5,32

Punto de ebullición (ºC) 2830

Punto de fusión (ºC) 937,4

Descubridor Clemens Winkler 1886

GermanioElemento químico, metálico, gris plata, quebradizo, símbolo Ge, número atómico 32, peso atómico 72.59, punto de fusión 937.4ºC (1719ºF) y punto de ebullición 2830ºC (5130ºF), con propiedades entre el silicio y estaño. El germanio se encuentra muy distribuido en la corteza terrestre con una abundancia de 6.7 partes por millon (ppm). El germanio se halla como sulfuro o está asociado a los sulfuros minerales de otros elementos, en particular con los del cobre, zinc, plomo, estaño y antimonio.

El germanio tiene una apariencia metálica, pero exhibe las propiedades físicas y químicas de un metal sólo en condiciones especiales, dado que está localizado en la tabla periódica en donde ocurre la transición de metales a no metales. A temperatura ambiente hay poca indicación de flujo plástico y, en consecuencia, se comporta como un material quebradizo.

Page 105: elemtos

El germanio es divalente o tetravalente. Los compuestos divalentes (óxido, sulfuro y los halogenuros) se oxidan o reducen con facilidad. Los compuestos tetravalentes son más estables. Los compuestos organogermánicos son numerosos y, en este aspecto, el germanio se parece al silicio. El interés en los compuestos organogermánicos se centra en su acción biológica. El germanio y sus derivados parecen tener una toxicidad menor en los mamíferos que los compuestos de estaño o plomo.

Las propiedades del germanio son tales que este elemento tiene varias aplicaciones importantes, especialmente en la industria de los semiconductores. El primer dispositivo de estado sólido, el transistor, fue hecho de germanio. Los cristales especiales de germanio se usan como sustrato para el crecimiento en fase vapor de películas finas de GaAs y GaAsP en algunos diodos emisores de luz. Se emplean lentes y filtros de germanio en aparatos que operan en la región infrarroja del espectro. Mercurio y cobre impregnados de germanio son utilizados en detectores infrarrojos; los granates sintéticos con propiedades magnéticas pueden tener aplicaciones en los dispositivos de microondas para alto poder y memoria de burbuja magnética; los aditivos de germanio incrementa los amper-horas disponibles en acumuladores.

Efectos del hidruro de Germanio y el tetrahidruro de germanio sobre la salud

El hidruro de germanio y el tetrahidruro de germanio son extremadamente inflammables e incluso explosives cuando son mezclados con el aire. Inhalación: Calambres abdominales. Sensación de quemadura. Tos. Piel: Enrojecimiento. Dolor. Ojos: Enrojecimiento. Dolor.

Peligros físicos: El gas es más pesado que el aire y puede viajar por el suelo; es possible la ignición a distancia.

Vías de exposición: La sustancia puede ser absorbida por el cuerpo por inhalación.

Riesgo de inhalación: En caso de pérdidas en el contenedor se alcanzará rápidamente una concentración peligrosa del gas en el aire.

Efectos de la exposición a corto plazo: La sustancia irrita los ojos, la piel y el tracto respiratorio. La sustancia puede tener efectos en la sngre, resultando en lesiones de las células sanguíneas. La exposición puede resultar en la muerte.

Efectos ambientales del GermanioComo metal pesado se considera que tiene algún efecto negativo en los ecosistemas acuáticos

Hidrógeno - H

Page 106: elemtos

Propiedades químicas del Hidrógeno - Efectos del Hidrógeno sobre la salud - Efectos ambientales del

HidrógenoNombre Hidrógeno

Número atómico 1

Valencia 1

Estado de oxidación +1

Electronegatividad 2,1

Radio covalente (Å) 0,37

Radio iónico (Å) 2,08

Radio atómico (Å) -

Configuración electrónica 1s1

Primer potencial de ionización (eV) 13,65

Masa atómica (g/mol) 1,00797

Densidad (g/ml) 0,071

Punto de ebullición (ºC) -252,7

Punto de fusión (ºC) -259,2

Descubridor Boyle en 1671

Page 107: elemtos

HidrógenoPrimer elemento de la tabla periódica. En condiciones normales es un gas incoloro, inodoro e insípido, compuesto de moléculas diatómicas, H2. El átomo de hidrógeno, símbolo H, consta de un núcleo de unidad de carga positiva y un solo electrón. Tiene número atómico 1 y peso atómico de 1.00797. Es uno de los constituyentes principales del agua y de toda la materia orgánica, y está distribuido de manera amplia no sólo en la Tierra sino en todo el universo. Existen 3 isótopos del hidrógeno: el protio, de masa 1, que se encuentra en más del 99.98% del elemento natural; el deuterio, de masa 2, que se encuentra en la naturaleza aproximadamente en un 0.02%, y el tritio, de masa 3, que aparece en pequeñas cantidades en la naturaleza, pero que puede producirse artificialmente por medio de varias reacciones nucleares.

Usos: El empleo más importante del hidrógeno es en la síntesis del amoniaco. La utilización del hidrógeno está aumentando con rapidez en las operaciones de refinación del petróleo, como el rompimiento por hidrógeno (hydrocracking), y en el tratamiento con higrógeno para eliminar azufre. Se consumen grandes cantidades de hidrógeno en la hidrogenación catalítica de aceites vegetales líquidos insaturados para obtener grasas sólidas. La hidrogenación se utiliza en la manufactura de productos químicos orgánicos. Grandes cantidades de hidrógeno se emplean como combustible de cohetes, en combinación con oxígeno o flúor, y como un propulsor de cohetes impulsados por energía nuclear. Propiedades: El hidrógeno común tiene un peso molecular de 2.01594. El gas tiene una densidad de 0.071 g/l a 0ºC y 1 atm. Su densidad relativa, comparada con la del aire, es de 0.0695. El hidrógeno es la sustancia más inflamable de todas las que se conocen. El hidrógeno es un poco más soluble en disolventes orgánicos que en el agua. Muchos metales absorben hidrógeno. La adsorción del hidrógeno en el acero puede volverlo quebradizo, lo que lleva a fallas en el equipo para procesos químicos.A temperaturas ordinarias el hidrógeno es una sustancia poco reactiva a menos que haya sido activado de alguna manera; por ejemplo, por un catalizador adecuado. A temperaturas elevadas es muy reactivo.

Aunque por lo general es diatómico, el hidrógeno molecular se disocia a temperaturas elevadas en átomos libres. El hidrógeno atómico es un agente reductor poderoso, aun a la temperatura ambiente. Reacciona con los óxidos y los cloruros de muchos metales, entre ellos la plata, el cobre, el plomo, el bismuto y el mercurio, para producir los metales libres. Reduce a su estado metálico algunas sales, como los nitratos, nitritos y cianuros de sodio y potasio. Reacciona con cierto número de elementos, tanto metales como no metales, para producir hidruros, como el NaH, KH, H2S y PH3. El hidrógeno atómico produce peróxido de hidrógeno, H2O2, con oxígeno. Con compuestos orgánicos, el hidrógeno atómico reacciona para generar una mezcla compleja de productos; con etileno, C2H4, por ejemplo, los productos son etano, C2H6, y butano, C4H10. El calor que se libera cuando los átomos de hidrógeno se recombinan para formar las moléculas de hidrógeno se aprovecha para obtener temperaturas muy elevadas en soldadura de hidrógeno atómico.

El hidrógeno reacciona con oxígeno para formar agua y esta reacción es extraordinariamente lenta a temperatura ambiente; pero si la acelera un catalizador, como el

Page 108: elemtos

platino, o una chispa eléctrica, se realiza con violencia explosiva. Con nitrógeno, el hidrógeno experimenta una importante reacción para dar amoniaco. El hidrógeno reacciona a temperaturas elevadas con cierto número de metales y produce hidruros. Los óxidos de muchos metales son reducidos por el hidrógeno a temperaturas elevadas para obtener el metal libre o un óxido más bajo. El hidrógeno reacciona a temperatura ambiente con las sales de los metales menos electropositivos y los reduce a su estado metálico. En presencia de un catalizador adecuado, el hidrógeno reacciona con compuestos orgánicos no saturados adicionándose al enlace doble.

Compuestos principales: El hidrógeno es constituyente de un número muy grande de compuestos que contienen uno o más de otros elementos. Esos compuestos incluyen el agua, los ácidos, las bases, la mayor parte de los compuestos orgánicos y muchos minerales. Los compuestos en los cuales el hidrógeno se combina sólo con otro elemento se denominan generalmente hidruros.

Preparación: Se pueden aplicar muy diversos métodos para preparar hidrógeno gaseoso. La elección del método depende de factores como la cantidad de hidrógeno deseada, la pureza requerida y la disponibilidad y costo de la materia prima. Entre los procesos que más se emplean están las reacciones de metales con agua o con ácidos, la electrólisis del agua, la reacción de vapor con hidrocarburos u otros materiales orgánicos, y la descomposición térmica de hidrocarburos. La principal materia prima para la producción de hidrógeno son los hidrocarburos, como el gas natural, gas de aceite refinado, gasolina, aceite combustible y petróleo crudo.

Efectos del Hidrógeno sobre la saludEfectos de la exposición al hidrógeno: Fuego: Extremadamente inflamable. Muchas reacciones pueden causar fuego o explosión. Explosión: La mezcla del gas con el aire es explosiva. Vías de exposición: La sustancia puede ser absorbida por el cuerpo por inhalación. Inhalación: Altas concentraciones de este gas pueden causar un ambiente deficiente de oxígeno. Los individuos que respiran esta atmósfera pueden experimentar síntomas que incluyen dolores de cabeza, pitidos en los oídos, mareos, somnolencia, inconsciencia, náuseas, vómitos y depresión de todos los sentidos. La piel de una víctima puede presentar una coloración azul. Bajo algunas circunstancias se puede producir la muerte. No se supone que el hidrógeno cause mutagénesis, embriotoxicidad, teratogenicidad o toxicidad reproductiva. Las enfermedades respiratorias pre-existentes pueden ser agravadas por la sobreexposición al hidrógeno. Riesgo de inhalación: Si se producen pérdidas en su contenedor, se alcanza rápidamente una concentración peligrosa.

Peligros físicos: El gas se mezcla bien con el aire, se forman fácilmente mezclas explosivas. El gas es más ligero que el aire.

Peligros químicos: El calentamiento puede provocar combustión violenta o explosión. Reacciona violentamente con el aire, oxígeno, halógenos y oxidantes fuertes provocando riesgo de incendio y explosión. Los catalizadores metálicos, tales como platino y níquel, aumentan enormemente estas reacciones.

Elevadas concentraciones en el aire provocan una deficiencia de oxígeno con el riesgo de

Page 109: elemtos

inconsciencia o muerte. Comprobar el contenido de oxígeno antes de entrar en la habitación. No hay advertencia de olor si hay concentraciones tóxicas presentes. Medir concentraciones de hidrógeno con un detector de gas adecuado (un detector normal de gas inflamable no es adecuado para este propósito).

Efectos ambientales del Hidrógeno

Estabilidad ambiental: El hidrógeno existe naturalmente en la atmósfera. El gas se disipará rápidamente en áreas bien ventiladas.Efecto sobre plantas o animales: Cualquier efecto en animales será debido a los ambientes deficientes de oxígeno. No se anticipa que tenga efectos adversos sobre las plantas, aparte de la helada producida en presencia de los gases de expansión rápida.

Efecto sobre la vida acuática: Actualmente no se dispone de evidencia sobre el efecto del hidrógeno en la vida acuática

Helio - He

Propiedades químicas del Helio - Efectos del Helio sobre la salud

Nombre Helio

Número atómico 2

Valencia 0

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) 0,93

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica 1s2

Page 110: elemtos

Primer potencial de ionización (eV) 24,73

Masa atómica (g/mol) 4,0026

Densidad (g/ml) 0,126

Punto de ebullición (ºC) -268,9

Punto de fusión (ºC) -269,7

Descubridor Sir Ramsey en 1895

HelioElemento químico gaseoso, símbolo He, número atómico 2 y peso atómico de 4.0026. El helio es uno de los gases nobles del grupo O de la tabla periódica. Es el segundo elemento más ligero. La fuente principal de helio del mundo es un grupo de campos de gas natural en los Estados Unidos.

El helio es un gas incoloro, inodoro e insípido. Tiene menor solubilidad en agua que cualquier otro gas. Es el elemento menos reactivo y esencialmente no forma compuesto químicos. La densidad y la viscosidad del vapor de helio son muy bajas. La conductividad térmica y el contenido calórico son excepcionalmente altos. El helio puede licuarse, pero su temperatura de condensación es la más baja de cualquier sustancia conocida.

El helio fue el primer gas de llenado de globos y dirigibles. Esta aplicación continúa en la investigación de alta altitud y para globos meteorológicos. El uso principal del helio lo constituye el gas inerte de protección en soldadura autógena. Su mayor potencial lo encontramos en aplicaciones a temperaturas muy bajas. El helio es el único refrigerante capaz de alcanzar temperaturas menores que 14 K (-434ºF). El principal valor de la temperatura ultrabaja está en el desarrollo del estado de superconductividad, en el cual hay prácticamente una resistencia cero al flujo de la electricidad. Otras aplicaciones son su uso como gas presurizante en combustibles líquidos de cohetes, en mezclas helio-oxígeno para buzos, como fluido de trabajo en los reactores nucleares enfriados por gas y como gas transportador en los análisis químicos por cromatografía de gases.

Page 111: elemtos

El helio terrestre se forma por decaimiento radiactivo natural de elementos más pesados. La mayor parte de este helio migra a la superficie y entra en la atmósfera. Cabría suponer que la concentración atmosférica del helio (5.25 partes por millón al nivel del mar) fuese superior. Sin embargo, su peso molecular bajo le permite escapar al espacio a una velocidad equivalente a la de su formación. Los gases naturales lo contienen en concentraciones superiores a la atmosférica.

Efectos del Helio sobre la saludEfectos de la exposición: La sustancia puede ser absorbida por el cuerpo por inhalación. Inhalación: Elevación de la voz. Mareos. Pesadez. Dolor de cabeza. Asfixia. Piel: Congelación en contacto con el líquido. Riesgo de inhalación: Si hay pérdidas en el contenedor este gas puede provocar asfixia, ya que hace disminuir el contenido de oxígeno en el aire en los lugares cerrados. Comprobar la concentración de oxígeno antes de entrar en el recinto.

Hafnio - Hf

Propiedades químicas del Hafnio - Efectos del Hafnio sobre la salud - Efectos ambientales del

HafnioNombre Hafnio

Número atómico 72

Valencia 2,3,4

Estado de oxidación +4

Electronegatividad 1,3

Radio covalente (Å) 1,50

Radio iónico (Å) 0,81

Radio atómico (Å) 1,58

Configuración electrónica [Xe]4f145d26s2

Primer potencial de ionización (eV) 5,54

Page 112: elemtos

Masa atómica (g/mol) 178,49

Densidad (g/ml) 13,1

Punto de ebullición (ºC) 5400

Punto de fusión (ºC) 2222

HafnioElemento metálico, símbolo Hf, número atómico 72 y peso atómico 178.49. Hay cinco isótopos naturales. Es uno de los elementos menos abundantes en la corteza terrestre.

El hafnio es un metal plateado, lustroso, que se funde cerca de los 2222ºC (4032ºF). El metal no tiene aplicaciones excepto en barras de control para reactores nucleares.

La química del hafnio es casi idéntica a la del zirconio. La semejanza de ambos es una consecuencia de la contracción lantánida, la cual lleva a valores de radio iónico casi idénticos. Antes de su descubrimiento, y desde entonces, el hafnio se extrae junto con el zirconio de sus minerales y se halla con el zirconio en todos sus derivados. Dado que las propiedades químicas son análogas, no hay incentivos para separar al hafnio, excepto para efectuar estudios nucleares y su uso en componentes de reactores nucleares.

Efectos del Hafnio sobre la salud

El hafnio metálico normalmente no causa problemas pero todos los compuestos del hafnio deben ser considerados como tóxicos aunque evidencias iniciales parecen sugerir que el peligro es limitado. El polvo del metal presenta un peligro de incendio y explosión.

El hafnio metálico no tiene toxicidad conocida. El metal es completamente insoluble en agua, soluciones salinas o productos químicos corporales.

La exposición al hafnio puede ocurrir a través de la inhalación, ingestión, y contacto con los ojos o la piel.

Page 113: elemtos

La sobre-exposición al hafnio y sus compuestos puede provocar leve irritación de los ojos, piel y membranas mucosas.

No se ha informado de signos y síntomas de la exposición crónica al hafnio.

Efectos ambientales del HafnioEfectos en los animales: Son escasos los datos disponibles acerca de la toxicidad del hafnio metálico o su polvo. Los estudio con animales indican que los compuestos del hafnio provocan irritaciones de los ojos, la piel y la membrana mucosa, y daños hepáticos. La LD 50 oral del tetracloruro de hafnio en ratas es de 2,362 mg/kg, y la LD 50 intraperitoneal en ratones para el oxicloruro de hafnio es de 112 mg/k.

(LD 50: Dosis Letal 50. Dosis individual de una sustancia que provoca la muerte del 50% de la población animal debido a la exposición a la sustancia por cualquier vía distinta a la inhalación. Normalmente expresada como miligramos o gramos de material por kilogramo de peso del animal.)

Mercurio - Hg

Propiedades químicas del Mercurio - Efectos del Mercurio sobre la salud - Efectos ambientales del

MercurioNombre Mercurio

Número atómico 80

Valencia 1,2

Estado de oxidación +2

Electronegatividad 1,9

Radio covalente (Å) 1,49

Radio iónico (Å) 1,10

Radio atómico (Å) 1,57

Configuración electrónica [Xe]4f145d106s2

Page 114: elemtos

Primer potencialde ionización (eV) 10,51

Masa atómica (g/mol) 200,59

Densidad (g/ml) 16,6

Punto de ebullición (ºC) 357

Punto de fusión (ºC) -38,4

Descubridor Los antiguos

MercurioElemento químico, símbolo Hg, número atómico 80 y peso atómico 200.59. es un líquido blanco plateado a temperatura ambiente (punto de fusión -38.4ºC o -37.46ºF); ebulle a 357ºC (675.05ºF) a presión atmosférica. Es un metal noble, soluble únicamente en soluciones oxidantes. El mercurio sólido es tan suave como el plomo. El metal y sus compuestos son muy tóxicos. El mercurio forma soluciones llamadas amalgamas con algunos metales (por ejemplo, oro, plata, platino, uranio, cobre, plomo, sodio y potasio).

En sus compuestos, el mercurio se encuentra en los estados de oxidación 2+, 1+ y más bajos; por ejemplo, HgCl2, Hg2Cl2 o Hg3(AsF6)2. A menudo los átomos de mercurio presentan dos enlaces covalentes; por ejemplo, Cl-Hg-Cl o Cl-Hg-Hg-Cl. Algunas sales de mercurio(II), por ejemplo, Hg(NO3)2 o Hg(ClO4)2, son muy solubles en agua y por lo general están disociadas. Las soluciones acuosas de estas sales reaccionan como ácidos fuertes a causa de la hidrólisis que ocurre. Otras sales de mercurio(III), como HgCl2 o Hg(Cn)2, también se disuelven en agua, pero en solución sólo están poco disociadas. Hay compuestos en que los átomos de mercurio están directamente enlazados a átomos de carbono o de nitrógeno; por ejemplo, H3C-Hg-CH3 o H3C-CO-NH-Hg-NH-CO-CH3. En complejos, como K2(HgI4), a menudo tiene tres o cuatro enlaces.

El mercurio metálico se usa en interruptores eléctricos como material líquido de contacto, como fluido de trabajo en bombas de difusión en técnicas de vacío, en la fabricación de

Page 115: elemtos

rectificadores de vapor de mercurio, termómetros, barómetros, tacómetros y termostatos y en la manufactura de lámparas de vapor de mercurio. Se utiliza en amalgamas de plata para empastes de dientes. Los electrodos normales de calomel son importantes en electroquímica; se usan como electrodos de referencia en la medición de potenciales, en titulaciones potenciométricas y en la celda normal de Weston.

El mercurio se encuentra comúnmente como su sulfuro HgS, con frecuencia como rojo de cinabrio y con menos abundancia como metalcinabrio negro. Un mineral menos común es el cloruro de mercurio(I). A veces los minerales de mercurio contienen gotas pequeñas de mercurio metálico.

La tensión superficial de mercurio líquido es de 484 dinas/cm, seis veces mayor que la del agua en contacto con el aire. Por consiguiente, el mercurio no puede mojar ninguna superficie con la cual esté en contacto. En aire seco el mercurio metálico no se oxida, pero después de una larga exposición al aire húmedo, el metal se cubre con una película delgada de óxido. No se disuelve en ácido clorhídrico libre de aire o en ácido sulfúrico diluido, pero sí en ácidos oxidantes (ácido nítrico, ácido sulfúrico concentrado y agua regia).

Efectos del Mercurio sobre la salud

El Mercurio es un elemento que puede ser encontrado de forma natural en el medio ambiente. Puede ser encontrado en forma de metal, como sales de Mercurio o como Mercurio orgánico.

El Mercurio metálico es usado en una variedad de productos de las casas, como barómetros, termómetros, bombillas fluorescentes. El Mercurio en estos mecanismos está atrapado y usualmente no causa ningún problema de salud. De cualquier manera, cuando un termómetro se rompe una exposición significativamente alta al Mercurio ocurre a través de la respiración, esto ocurrirá por un periodo de tiempo corto mientras este se evapora. Esto puede causar efectos dañinos, como daño a los nervios, al cerebro y riñones, irritación de los pulmones, irritación de los ojos, reacciones en la piel, vómitos y diarreas.

El Mercurio no es encontrado de forma natural en los alimentos, pero este puede aparecer en la comida así como ser expandido en las cadenas alimentarias por pequeños organismos que son consumidos por los humanos, por ejemplo a través de los peces. Las concentraciones de Mercurio en los peces usualmente exceden en gran medida las concentraciones en el agua donde viven. Los productos de la cría de ganado pueden también contener eminentes cantidades de Mercurio. El Mercurio no es comúnmente encontrado en plantas, pero este puede entrar en los cuerpos humanos a través de vegetales y otros cultivos. Cuando sprays que contienen Mercurio son aplicados en la agricultura.

El Mercurio tiene un número de efectos sobre los humanos, que pueden ser todos simplificados en las siguientes principalmente:

Daño al sistema nevioso Daño a las funciones del cerebro Daño al ADN y cromosomas

Page 116: elemtos

Reacciones alérgicas, irritación de la piel, cansancio, y dolor de cabeza Efectos negativos en la reproducción, daño en el esperma, defectos de nacimientos y

abortos

El daño a las funciones del cerebro pueden causar la degradación de la habilidad para aprender, cambios en la personalidad, temblores, cambios en la visión, sordera, incoordinación de músculos y pérdida de la memoria. Daño en el cromosoma y es conocido que causa mongolismo.

Efectos ambientales del MercurioEl Mercurio entra en el ambiente como resultado de la ruptura de minerales de rocas y suelos a través de la exposición al viento y agua. La liberación de Mercurio desde fuentes naturales ha permanecido en el mismo nivel a través de los años. Todavía las concentraciones de Mercurio en el medioambiente están creciendo; esto es debido a la actividad humana.

La mayoría del Mercurio liberado por las actividades humanas es liberado al aire, a través de la quema de productos fósiles, minería, fundiciones y combustión de resíduos sólidos.

Algunas formas de actividades humanas liberan Mercurio directamente al suelo o al agua, por ejemplo la aplicación de fertilizantes en la agricultura y los vertidos de aguas residuales industriales. Todo el Mercurio que es liberado al ambiente eventualmente terminará en suelos o aguas superficiales.

El Mercurio del suelo puede acumularse en los champiñones.

Aguas superficiales ácidas pueden contener significantes cantidades de Mercurio. Cuando los valores de pH están entre cinco y siete, las concentraciones de Mercurio en el agua se incrementarán debido a la movilización del Mercurio en el suelo. El Mercurio que ha alcanzado las aguas superficiales o suelos los microorganismos pueden convertirlo en metil mercurio, una substancia que puede ser absorbida rápidamente por la mayoría de los organismos y es conocido que daña al sistema nervioso. Los peces son organismos que absorben gran cantidad de metil mercurio de agua surficial cada día. Como consecuencia, el metil mercurio puede acumularse en peces y en las cadenas alimenticias de las que forman parte.

Los efectos del Mercurio en los animales son daño en los riñones, transtornos en el estómago, daño en los intestinos, fallos en la reproducción y alteración del ADN.

Holmio - Ho

Propiedades químicas del Holmio - Efectos del Holmio sobre la salud - Efectos ambientales del

Holmio

Page 117: elemtos

Nombre Holmio

Número atómico 67

Valencia 3

Estado de oxidación +3

Electronegatividad 1,2

Radio covalente (Å) 1,58

Radio iónico (Å) 0,97

Radio atómico (Å) 1,76

Configuración electrónica [Xe]4f115d06s2

Primer potencial de ionización (eV) -

Masa atómica (g/mol) 164,930

Densidad (g/ml) 8,80

Punto de ebullición (ºC) 2600

Punto de fusión (ºC) 1461

Descubridores J.L. Soret in 1878

Holmio

Page 118: elemtos

Elemento químico, símbolo Ho, número atómico 67, peso atómico 164.930; es un elemento metálico colocado en el grupo de las tierras raras. El isótopo estable 165Ho constituye el 100% del elemento en la naturaleza. El metal es paramagnético, pero a medida que la temperatura disminuye se convierte en antiferromagnético y luego al sistema ferromagnético.

El holmio fue descubierto por Per Theodro Cleve, un químico sueco, en 1879. Cleve usó el mismo método que Carl Gustaf Mosander usó para descubrir el lantano, el erbio y el terbio, buscó impurezas en los óxidos de otros metales de tierras raras. Empezó con erbia, el óxido de erbio (Er2O3), y eliminó todos los contaminantes conocidos.

Después de un mayor procesamiento, obtuvo dos nuevos materiales, uno marrón u otro rojo. Cleve llamó al material marrón holmia y al verde thulia. Holmia es el óxido del elemento holmio y thulia es el óxido del elemento tulio. El espectro de absorción del holmio fue observado con anterioridad en ese mismo año por J. L. Soret y M. Delafontaine, químicos suizos. Actualmente el holmio se obtiene principalmente a través de un proceso de intercambio iónico con la arena monacita ((Ce, La, Th, Nd, Y)PO4), un material rico en metales de tierras raras que puede contener hasta un 0,05% de holmio.

El holmio no tiene aplicaciones comerciales, aunque tiene propiedades magnéticas inusuales que podrían ser aprovechadas en el futuro.

El holmio no forma ningún compuesto comercialmente importante. Algunos de los compuestos del holmio son: óxido de holmio (Ho2O3), fluoruro de holmio (HoF3) y yoduro de holmio (HoI3).

Efectos del Holmio sobre la saludEl holmio es uno de los elementos químicos raros, que puede ser encontrado en equipos tales como televisiones en color, lámparas fluorescentes y cristales. Todos los compuestos químicos raros tienen propiedades comparables.

El holmio raramente se encuentra en la naturaleza, ya que se da en cantidades muy pequeñas. El holmio normalmente se encuentra solamente en dos tipos distintos de minerales. El uso del holmio sigue aumentando, debido al hecho de que es útil para producir catalizadores y para pulir cristales.

El holmio es más peligroso en el ambiente de trabajo, debido al hacho de que las humedades y los gases pueden ser inhalados con el aire. Esto puede causar embolias pulmonares, especialmente durante exposiciones a largo plazo. El holmio puede ser una amenaza para el hígado cuando se acumula en el cuerpo humano.

Efectos ambientales del HolmioEl holmio es vertido al medio ambiente en muchos lugares diferentes, principalmente por industrias productoras de petróleo. También puede entrar en el medio ambiente cuando se tiran los equipos domésticos. El holmio se acumulará gradualmente en los suelos y en el agua

Page 119: elemtos

de los suelos y esto llevará finalmente a incrementar la concentración en humanos, animales y partículas del suelo.

En los animales acuáticos provoca daños a las membranas celulares, lo que tiene varias influencias negativas en la reproducción y en las funciones del sistema nervioso.

Hassio - Hs

Propiedades químicas del Hassio - Efectos del Hassio sobre la salud - Efectos ambientales del

HassioNombre Hassio

Número atómico 108

Valencia -

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Rn]5f146d67s2

Primer potencial de ionización (eV) -

Masa atómica (g/mol) (265)

Densidad (g/ml) -

Punto de ebullición (ºC) -

Punto de fusión (ºC) -

Page 120: elemtos

Descubridores Peter Armbruster y Gottfried Munzenber en 1984

HassioElemento químico que se espera tenga propiedades químicas similares a las del elemento osmio. Fue sintetizado e identificado en 1984 en Darmstadt, Alemania, por el mismo equipo que identificó por primera vez los elementos Bh y Mt. El isótopo 265Hs fue producido en una reacción de fusión bombardeando un blanco de 208Pb con un haz de proyectiles de 58Fe. Las mismas técnicas experimentales se emplearon en la búsqueda de los elementos Bh y Mt.

El descubrimiento de los elementos Bh y Mt se hizo por la detección de isótopos con números impares de protones y neutrones. En esta región, los núcleos impar-impar muestran la mayor estabilidad contra la fisión. Los elementos con número atómico par son intrínsecamente menos estables contra la fisión espontánea que los elemento impares. Se esperaba que los isótopos del elemento Hs decayeran por fisión espontánea, lo que explica por qué el elemento Mt fue sintetizado antes que el elemento Hs.

Como en el caso de los elementos Bh y Mt, el isótopo 265Hs fue producido por fusión en un canal de desexcitación de un neutrón. En este caso, el sistema compuesto fue el 266Hs. Nuevamente, el mecanismo de reacción fue la fusión en frío. El isótopo 265Hs tiene una vida media de alrededor de 2 ms y decae por la emisión de una partícula alfa de 10.36 MeV.

Los experimentos realizados en Dubna se basaban en la existencia de cadenas alfa que llevaban a especies de vida más larga. Estas cadenas fueron observadas directamente en los experimentos de Darmstadt. Suponer dichas cadenas para el 263Hs y el 264Hs, así como para el 265Hs, sugiere que la existencia de estos isótopos del elemento sea muy probable.

Los nuevos elementos Bh a Mt se estabilizan por efectos de capa contra la fisión espontánea por 15 órdenes de magnitud, cuando se comparan con gotas líquidas del mismo volumen. Es posible que esta estabilidad especial ocurra porque estos núcleos prefieran una forma de salchicha, que se ha predicho que es la más favorable para ellos, desde el punto de vista energético.

Efectos del Hassio sobre la saludAl ser tan inestable, cualquier cantidad formada se descompondrá en otros elementos con tanta rapidez que no existe razón para estudiar sus efectos en la salud humana.

Efectos ambientales del Hassio

Page 121: elemtos

Debido a su vida media tan extremadamente corta (12 minutos), no existe razón para considerar los efectos del hassio en el medio ambiente.

Yodo - I

Propiedades químicas del Yodo - Efectos del Yodo sobre la salud - Efectos ambientales del Yodo

Nombre Yodo

Número atómico 53

Valencia +1,-1,3,5,7

Estado de oxidación -1

Electronegatividad 2,5

Radio covalente (Å) 1,33

Radio iónico (Å) 2,16

Radio atómico (Å) -

Configuración electrónica [Kr]4d105s25p5

Primer potencial de ionización (eV) 10,51

Masa atómica (g/mol) 126,904

Densidad (g/ml) 4,94

Punto de ebullición (ºC) 183

Punto de fusión (ºC) 113,7

Descubridor Bernard Courtois en 1811

Yodo

Page 122: elemtos

Elemento no metálico, símbolo I, número atómico 53, masa atómica relativa 126.904, el más pesado de los halógenos (halogenuros) que se encuentran en la naturaleza. En condiciones normales, el yodo es un sólido negro, lustroso, y volátil; recibe su nombre por su vapor de color violeta.

La química del yodo, como la de los otros halogenos, se ve dominada por la facilidad con la que el átomo adquiere un electrón para formar el ion yoduro, I-, o un solo enlace covalente –I, y por la formación, con elementos más electronegativos, de compuestos en que el estado de oxidación formal del yodo es +1, +3, +5 o +7. El yodo es más electropositivo que los otros halógenos y sus propiedades se modulan por: la debilidad relativa de los enlaces covalentes entre el yodo y elementos más electropositivos; los tamaños grandes del átomo de yodo y del ion yoduro, lo cual reduce las entalpías de la red cristalina y de disolución de los yoduros , en tanto que incrementa la importancia de las fuerzas de van der Waals en los compuestos del yodo, y la relativa facilidad con que se oxida éste.

El yodo se encuentra con profusión, aunque rara vez en alta concentración y nunca en forma elemental. A pesar de la baja concentración del yodo en el agua marina, cierta especie de alga puede extraer y acumular el elemento. En la forma de yodato de calcio, el yodo se encuentra en los mantos de caliche de Chile. Se encuentra también como ion yoduro en algunas salmueras de pozos de petróleo en California, Michigan y Japón.

El único isótopo estable del yodo es el 127I (53 protones, 74 neutrones). De los 22 isótopos artificiales (masas entre 117 y 139), el más importante es el 131I, con una vida media de 8 días; se utiliza mucho en el trabajo con trazadores radiactivos y ciertos procedimientos de radioterapia.

El yodo existe como moléculas diatómicas, I2 en las fases sólida, líquida y de vapor, aunque a temperaturas elevadas (>200ºC, o sea, 390ºF) la disociación para formar átomos es apreciable. Las cortas distancias intermoleculares I ... I en el sólido cristalino indican la presencia de fuertes fuerzas intermoleculares de van der Waals. El yodo es moderadamente soluble en líquidos no polares y el color violeta de las soluciones sugiere que se encuentran presentes las moléculas I2, como en su fase vapor.

Aun cuando, por lo común, es menos vigoroso en sus reacciones que los otros halógenos (halogenuros), el yodo se combina directamente con la mayor parte de los elementos; excepciones importantes son los gases nobles, el carbono, el nitrógeno y algunos metales nobles. Los derivados inorgánicos del yodo pueden agruparse en tres clases de compuestos: aquéllos con más elementos electropositivos, es decir, los yoduros; los formados con otros halógenos, y los formados con el oxígeno. Los compuestos organoyódicos caen en dos categorías: los yoduros y los derivados en que el yodo se encuentra en un estado de oxidación formal positiva, en virtud del enlace con otro elemento más electronegativo.

El yodo parece ser un elemento que, en cantidades muy pequeñas, es esencial para la vida animal y vegetal. El yoduro y el yodato que se encuentran en las aguas marinas entran en el ciclo metabólico de la mayor parte de la flora y la fauna marinas, mientras que en los mamíferos superiores el yodo se concentra en la glándula tiroides, allí se convierte en

Page 123: elemtos

aminoácidos yodados (principalmente tiroxina y yodotirosinas). Éstos se encuentran almacenados en la tiroides como tiroglobulina y, aparentemente, la tiroxina es secretada por la glándula. La deficiencia de yodo en los mamíferos lleva al bocio, una condición en que la glándula tiroides crece más de lo normal.

Las propiedades bactericidas del yodo apoyan sus usos principales para el tratamiento de heridas o la esterilización del agua potable. Asimismo los compuestos de yodo se utilizan para tratar ciertas condiciones de la tiroides y del corazón, como suplemento dietético (en la forma de sales yodatadas) y en los medios de contraste para los rayos X.

Los usos industriales principales se encuentran en la fotografía, en donde el yoduro de plata es uno de los constituyentes de las emulsiones para películas fotográficas rápidas, y en la industria de los tintes, en donde los tintes a base de yodo se producen para el procesamiento de alimentos y para la fotografía en colores.

Efectos del Yodo sobre la saludEl yodo se añade a casi cualquier sal. Es un ingrediente del pan, los peces marinos y las plantas oceánicas. El yodo está presente de forma natural en los océanos y algunos peces marinos y plantas acuáticas lo almacenan en sus tejidos.

Muchas medicinas y limpiadores para heridas de la piel contienen yodo. También es un ingrediente de las tabletas purificadoras de agua que se usan para preparar agua potable.

El yodo es un material de construcción de las hormonas tiroideas que son esenciales para el crecimiento, el sistema nervioso y el metabolismo. Las personas que comen muy poco o nada de pan pueden experimentar carencia de yodo. Entonces la función de la glándula tiroides disminuirá y la glándula tiroides empezará a hincharse. Este fenómeno se llama estruma. Ahora esta afección es rara, ya que la sal de mesa lleva una pequeña dosis de yodo. Grandes cantidades de yodo pueden ser peligrosas porque la glándula tiroides trabajaría demasiado. Esto afecta al cuerpo entero; provoca taquicardias y pérdida de peso. El yodo elemental, I2, es tóxico, y su vapor irrita los ojos y los pulmones. La concentración máxima permitida en aire cuando se trabaja con yodo es de solamente 1 mg/m3. Todos los yoduros son tóxicos tomados en exceso.

El yodo 131 es uno de los radionucleidos involucrados en las pruebas nucleares atmosféricas, que comenzaron en 1945, con una prueba americana, y terminaron en 1980 con una prueba china. Se encuentra entre los radionucleidos de larga vida que han producido y continuarán produciendo aumento del riesgo de cáncer durante décadas y los siglos venideros. El iodo 131 aumenta el riesgo de cáncer y posiblemente otras enfermedades del tiroides y aquellas causadas por deficiencias hormonales tiroideas.

Efectos ambientales del Yodo

El yodo puede encontrarse en el aire, el agua y el suelo de forma natural. Las fuentes más importantes de yodo natural son los océanos. El yodo en el aire se puede combinar con

Page 124: elemtos

partículas de agua y precipitar en el agua o los suelos. El yodo en los suelos se combina con materia orgánica y permanece en el mismo sitio por mucho tiempo. Las plantas que crecen en estos suelos pueden absorber yodo. EL ganado y otros animales absorberán yodo cuando coman esas plantas.

El yodo en las aguas superficiales se evaporará y volverá a entrar en el aire. Los humanos también añadimos yodo al aire, al quemar carbón o fuel para producir energía. Pero la cantidad de yodo que entra en el aire debido a la actividad humana es bastante pequeña comparada a la cantidad que se evapora de los océanos.

El yodo puede ser radioactivo. Los isótopos radioactivos se forman de manera natural durante reacciones químicas en la atmósfera. La mayoría de los isótopos radioactivos del yodo tienen unas vidas medias muy cortas y se transformarán rápidamente en compuestos estables de yodo. Sin embargo, hay una forma radioactiva del yodo que tiene una vida media de millones de años y que es seriamente perjudicial para el medio ambiente. Este isótopo entra en el aire desde las plantas de energía nuclear, donde se forma durante el procesamiento del uranio y el plutonio. Los accidentes en las plantas nucleares han provocado la emisión de grandes cantidades de yodo radioactivo al aire.

Indio - In

Propiedades químicas del Indio - Efectos del Indio sobre la salud - Efectos ambientales del Indio

Nombre Indio

Número atómico 49

Valencia 3

Estado de oxidación +3

Electronegatividad 1,7

Radio covalente (Å) 1,44

Radio iónico (Å) 0,81

Radio atómico (Å) 1,66

Page 125: elemtos

Configuración electrónica [Kr]4d105s25p1

Primer potencial de ionización (eV) 5,80

Masa atómica (g/mol) 114,82

Densidad (g/ml) 7,31

Punto de ebullición (ºC) 2000

Punto de fusión (ºC) 156,2

Descubridor Ferdinand Reich 1863

IndioElemento químico de símbolo In, de número atómico 49, el indio tiene un número atómico relativo de 114.82.

Se encuentra aproximadamente en un 0.000001% en la corteza terrestre y normalmente en concentraciones de 0.1% o menores. Se halla distribuido ampliamente en muchas minas y minerales y se recobra en gran parte de los conductos de polvo y residuos de las operaciones de procesamiento de zinc.

El indio se utiliza para soldar alambre de plomo a transistores de germanio y como componente de los semiconductores intermetálicos empleados en los transistores de germanio. El arseniuro de indio, antimoniuro y fosfuro son semiconductores con propiedades especiales. Otros usos del indio se encuentran en la producción de recubrimientos para reducir la corrosión y el desgaste, en las aleaciones para sellado de vidrio y en las aleaciones dentales.

Efectos del Indio sobre la salud

Page 126: elemtos

El indio no tiene ningún papel biológico. Se dice que en pequeñas dosis estimula el metabolismo.

Los compuestos del indio se encuentran muy raramente. Todos los compuestos del indio deben ser considerados como altamente tóxicos. Los compuestos del indio provocan daños en el corazón, riñones e hígado y pueden ser teratógenos.

Los datos disponibles acerca de los efectos de esta sustancia en la salud humana son insuficientes, por lo que se deben tomar extremas precauciones.

Efectos ambientales del IndioLos efectos ambientales de esta sustancia aún no han sido investigados

Iridio - Ir

Propiedades químicas del Iridio - Efectos del Iridio sobre la salud - Efectos ambientales del Iridio

Nombre Iridio

Número atómico 77

Valencia 2,3,4,6

Estado de oxidación +4

Electronegatividad 2,2

Radio covalente (Å) 1,37

Radio iónico (Å) 0,66

Radio atómico (Å) 1,36

Configuración electrónica [Xe]4f145d76s2

Primer potencial de ionización (eV) 9,25

Masa atómica (g/mol) 192,2

Densidad (g/ml) 22,5

Page 127: elemtos

Punto de ebullición (ºC) 5300

Punto de fusión (ºC) 2454

Descubridor Smithson Tennant en 1804

IridioElemento químico, símbolo Ir, número atómico 77 y peso atómico 192.2. El iridio en estado libre es una sustancia metálica blanca y dura.

El iridio tiene mucha menor resistencia a la oxidación que el platino o el rodio, pero mayor que el rutenio o el osmio. Aproximadamente a 600ºC (1110ºF) se forma una fina película de óxido adherente, IrO2. Es el único metal que puede utilizarse sin protección al aire hasta 2300ºC (4170ºF), con esperanza de vida. No lo ataca ningún ácido, incluyendo el agua regia, posee una fuerte tendencia a formar compuestos de coordinación.

Los compuestos principales son el tricloruro de iridio, IrCl3, un compuesto de color verde e insoluble en agua; el cloruro de iridio (IV) y sodio, Na2IrCl6.6H2O, sólido cristalino de color negro soluble en agua; el cloruro de iridio (III) y sodio, Na3IrCl6.12H2O, un sólido cristalino de color verde oliva, soluble en agua, y el cloruro de iridio (IV) y amonio, (NH4)2IrCl6, sólido cristalino de color rojinegro, relativamente insoluble.

Las propiedades especiales de iridio han llevado a aplicaciones especializadas, entre otras, crisoles para el crecimiento a alta temperatura de cristales para láser, termopares de iridio-rodio para muy altas temperaturas y revestimientos aplicados sobre otros materiales. Por lo general se mezcla con platino como base, ya que la aleación platino-iridio 30%, por ejemplo, es casi tan resistente a la corrosión como el iridio y es mucho más fácil de fabricar.

Efectos del Iridio sobre la saludAltamente inflamable.

Page 128: elemtos

Efectos potenciales sobre la salud: Ojos: Puede provocar irritación ocular. Piel: Bajo peligro de manejo industrial normal. Ingestión: Puede provocar irritación del tracto digestivo. Se espera que tenga un bajo peligro si es ingerido. Inhalación: Bajo peligro por su manejo industrial normal.

Efectos ambientales del IridioNo permitir que el producto alcance las aguas del suelo, las reservas de agua o los sistemas de alcantarillado

Potasio - K

Propiedades químicas del Potasio - Efectos del Potasio sobre la salud - Efectos ambientales del

PotasioNombre Potasio

Número atómico 19

Valencia 1

Estado de oxidación +1

Electronegatividad 0,8

Radio covalente (Å) 1,96

Radio iónico (Å) 1,33

Radio atómico (Å) 2,35

Configuración electrónica [Ar]4s1

Primer potencial de ionización (eV) 4,37

Masa atómica (g/mol) 39,098

Densidad (g/ml) 0,97

Punto de ebullición (ºC) 760

Page 129: elemtos

Punto de fusión (ºC) 97,8

Descubridor Sir Davy en 1808

PotasioElemento químico, símbolo K, número atómico 19 y peso atómico 39.098. Ocupa un lugar intermedio dentro de la familia de los metales alcalinos después del sodio y antes del rubidio. Este metal reactivo es ligero y blando. Se parece mucho al sodio en su comportamiento en forma metálica.

El cloruro de potasio se utiliza principalmente en mezclas fertilizantes. Sirve también como material de partida para la manufactura de otros compuestos de potasio (potacio). El hidróxido de potasio se emplea en la manufactura de jabones líquidos y el carbonato de potasio para jabones blandos. El carbonato de potasio es también un material de partida importante en la industria del vidrio. El nitrato de potasio se utiliza en fósforos, fuegos pirotécnicos y en artículos afines que requieren un agente oxidante.

El potasio es un elemento muy abundante y es el séptimo entre todos los elementos de la corteza terrestre; el 2.59% de ella corresponde a potasio en forma combinada. El agua de mar contiene 380 ppm, lo cual significa que el potasio es el sexto más abundante en solución.

Es más reactivo aún que el sodio y reacciona vigorosamente con el oxígeno del aire para formar el monóxido, K2O, y el peróxido, K2O2. En presencia de un exceso de oxígeno, produce fácilmente el superóxido, KO2.

El potasio no reacciona con el nitrógeno para formar nitruro, ni siquiera a temperaturas elevadas. Con hidrógeno reacciona lentamente a 200ºC (390ºF) y con rapidez a 350-400ºC (660-752ºF). Produce el hidruro menos estable de todos los metales alcalinos.

Page 130: elemtos

La reacción entre el potasio y agua o hielo es violenta, aun a temperaturas tan bajas como –100ºC (-148ºF). El hidrógeno que se desprende se inflama normalmente a la temperatura ambiente. La reacción con ácidos acuosos es aún más violenta y casi explosiva.

Efectos del Potasio sobre la salud

El potasio puede ser encontrado en vegetales, frutas, patatas, carne, pan, leche y frutos secos. Juega un importante papel en los sistemas de fluidos físicos de los humanos y asiste en las funciones de los nervios. Cuando nuestros riñones no funcionan bien se puede dar la acumulación de potasio. Esto puede llevar a cabo una perturbación en el ritmo cardiáco.

Efectos ambientales del Potasio

Junto con el nitrógeno y el fósforo, el potasio es uno de los macronutrients esenciales para la supervivencia de las plantas. Su presencia es de gran importancia para la salud del suelo, el crecimiento de las plantas y la nutrición animal. Su función primaria en las plantas es su papel en el mantenimiento de la presión osmótica y el tamaño de la célula, influyendo de esta forma en la fotosíntesis y en la producción de energía, así como en la apertura de los estomas y el aporte de dióxido de carbono, la turgencia de la planta y la translocación de los nutrientes. Como tal, el elemento es requerido en proporciones relativamente elevadas por las plantas en desarrollo.

Las consecuencias de niveles bajos de potasio se muestran por variedad de síntomas: restricción del crecimiento, reducción del florecimiento, cosechas enos abundantes y menor calidad de producción.

Elevados niveles de potasio soluble en el agua pueden causar daños a las semillas en germinación, inhiben la toma de otros minerals y reducen la calidad del cultivo

Kriptón - Kr

Propiedades químicas del Kriptón - Efectos del Kriptón sobre la salud - Efectos ambientales del

KriptónNombre Kriptón

Número atómico 36

Valencia 0

Estado de oxidación -

Page 131: elemtos

Electronegatividad -

Radio covalente (Å) 1,89

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Ar]3d104s24p6

Primer potencial de ionización (eV) 14,09

Masa atómica (g/mol) 83,80

Densidad (g/ml) 2,6

Punto de ebullición (ºC) -152

Punto de fusión (ºC) -157,3

Descubridor Sir Ramsay en 1898

KriptónElemento químico gaseoso, símbolo Kr, número atómico 36 y peso atómico 83.80. El kriptón es uno de los gases nobles. Es un gas incoloro, inodoro e insípido. Su principal aplicación es el llenado de lámparas eléctricas y aparatos electrónicos de varios tipos. Se utilizan ampliamente mezclas de kriptón-argón para llenar lámparas fluorescentes.

La única fuente comercial de kriptón estable es el aire, aunque se encuentran trazas en minerales y meteoritos. Una mezcla de isótopos estables y radiactivos de kriptón se produce en reactores nucleares a partir de uranio por fisión de neutrones, lenta. Se estima que

Page 132: elemtos

aproximadamente 2 x 10-8% del peso de la Tierra es kriptón. El kriptón se encuentra también fuera de nuestro planeta.

Efectos del Kriptón sobre la salud

Inhalación: Este gas es inerte y está clasificado como un asfixiante simple. La inhalación de éste en concentraciones excesivas puede resultar en mareos, náuseas, vómitos, pérdida de consciencia y muerte. La muerte puede resultar de errores de juicio, confusión, o pérdida de la consciencia, que impiden el auto-rescate. A bajas concentraciones de oxígeno, la pérdida de consciencia y la muerte pueden ocurrir en segundos sin ninguna advertencia.

El efecto de los gases asfixiantes simples es proporcional a la cantidad en la cual disminuyen la cantidad (presión parcial) del oxígeno en el aire que se respira. El oxígeno puede reducirse a un 75% de su porcentaje normal en el aire antes de que se desarrollen síntomas apreciables. Esto a su vez requiere la presencia de un asfixiante simple en una concentración del 33% en la mezcla de aire y gas. Cuando el asfixiante simple alcanza una concentración del 50%, se pueden producir síntomas apreciables. Una concentración del 75% es fatal en cuestión de minutos.

Síntomas: Los primeros síntomas producidos por un asfixiante simple son respiración rápida y hambre de aire. La alerta mental disminuye y la coordinación muscular se ve perjudicada. El juicio se vuelve imperfecto y todas las sensaciones se deprimen. Normalmente resulta en inestabilidad emocional y la fatiga se presenta rápidamente. A medida que la asfixia progresa, pueden presentarse náuseas y vómitos, postración y pérdida de consciencia, y finalmente convulsiones, coma profundo y muerte.

Efectos ambientales del Kriptón

El kriptón es un gas raro atmosférico y como tal no es tóxico y es químicamente inerte. Las temperaturas extremadamente frías (-244oC) congelarán a los organismos al contacto, pero no se anticipan efectos ecológicos a largo plazo.

Consideraciones para su vertido: Cuando su vertido sea necesario, descargar el gas lentamente en un lugar exterior y bien ventilado lejano a áreas de trabajo y tomas de aire de edificios. No verter ningún gas residual en cilindros de aire comprimido. Devolver los cilindros al proveedor con alguna presión residual, y la válvula del cilindro fuertemente cerrada. Tener en cuenta que los requerimientos estatales y locales para los vertidos pueden ser más restrictivos o diferentes a las normas federales. Consultar las normas estatales y locales referentes al vertido adecuado de este material.

Lantano - La

Page 133: elemtos

Propiedades químicas del Lantano - Efectos del Lantano sobre la salud - Efectos ambientales del

LantanoNombre Lantano

Número atómico 57

Valencia 3

Estado de oxidación +3

Electronegatividad 1,1

Radio covalente (Å) 1,69

Radio iónico (Å) 1,15

Radio atómico (Å) 1,87

Configuración electrónica [Xe]5d16s2

Primer potencial de ionización (eV) 5,63

Masa atómica (g/mol) 138,91

Densidad (g/ml) 4,47

Punto de ebullición (ºC) 3470

Punto de fusión (ºC) 920

Descubridor Carl Mosander en 1839

Page 134: elemtos

LantanoElemento químico, símbolo La, con número atómico 57 y peso atómico 138.91. El lantano, segundo elemento más abundante del grupo de las tierras raras, es un metal. En estado natural, es una mezcla de los isótopos 138La y 139La. Se encuentra asociado con otras tierras raras en monacita, bastnasita y otros minerales. Es uno de los productos radiactivos de la fisión del uranio, el torio o el plutonio. Es el elemento más básico de las tierras raras e ingrediente importante en la manufactura del vidrio. Proporciona un alto índice de refracción al vidrio y se utiliza en la fabricación de lentes de gran calidad.

Efectos del Lantano sobre la saludEl Lantano es uno de los elementos químicos raros, que puede ser encontrado en equipamientos de las casas, como son las televisiones en color, lámparas fluorescentes, lámparas ahorradoras de energías y vidrios. Todos los elementos químicos raros tienen propiedades comparables. El Lantano puede ser raramente encontrado en la naturaleza, porque aparece en muy poca cantidad. El Lantano es usualmente encontrado sólo en dos diferentes clases de minerales. El uso del Lantano está todavía creciendo, debido en realidad a que es adecuado para producir catalizadores y para darle brillo al vidrio.

El Lantano es mayormente peligroso en el lugar de trabajo, debido al hecho de que se puede inhalar con el aire. Este puede causar embolia de pulmón, especialmente en exposiciones de largo periodo. El Lantano puede dañar al hígado cuando se acumula en el cuerpo humano.

Efectos ambientales del LantanoEl Lantano es introducido en el ambiente en muchos lugares diferentes, mayoritariamente por industrias que procesan el petróleo. Este puede también entrar en el ambiente cuando los equipos de las casas son tirados a las basuras. El Lantano podrá gradualmente acumularse en suelos y agua y eventualmente podrá acumularse en humanos, animales y particulas del suelo. En animales acuáticos el Lantano causa daño en las células de membranas, lo cual tiene bastante influencias negativas en la reproducción y las funciones del sistema nervioso

Page 135: elemtos

Litio - Li

Propiedades químicas del Litio - Efectos del Litio sobre la salud - Efectos ambientales del Litio

Nombre Litio

Número atómico 3

Valencia 1

Estado de oxidación +1

Electronegatividad 1,0

Radio covalente (Å) 1,34

Radio iónico (Å) 0,60

Radio atómico (Å) 1,55

Configuración electrónica 1s22s1

Primer potencial de ionización (eV) 5,41

Masa atómica (g/mol) 6,941

Densidad (g/ml) 0,53

Punto de ebullición (ºC) 1330

Punto de fusión (ºC) 180,5

Descubridor George Urbain en 1907

Page 136: elemtos

LitioEl litio encabeza la familia de los metales alcalinos en la tabla periódica. En la naturaleza se encuentra como una mezcla de los isótopos Li6 y Li7. Es el metal sólido más ligero, es blando, de bajo punto de fusión y reactivo. Muchas propiedades físicas y químicas son tan o más parecidas a las de los metales alcalinotérreos que a las de su grupo.

El principal uso industrial del litio es en forma de estearato de litio como espesante para grasas lubricantes. Otras aplicaciones importantes de compuestos de litio son en cerámica, de modo específico en la formulación de esmaltes para porcelana; como aditivo para alargar la vida y el rendimiento en acumuladores alcalinos y en soldadura autógena y soldadura para latón. El litio es un elemento moderadamente abundante y está presente en la corteza terrestre en 65 partes por millón(ppm).

Esto lo coloca por debajo del níquel, cobre y tungsteno y por encima del cerio y estaño, en lo referente a abundancia.

Entre las propiedades físicas más notables del litio están el alto calor específico (capacidad calorifica), el gran intervalo de temperatura de la fase líquida, alta conductividad térmica, baja viscosidad y muy baja densidad. El litio metálico es soluble en aminas alifáticas de cadena corta, como la etilamina. Es insoluble en los hidrocarburos.

El litio experimenta un gran número de reacciones, tanto con reactivos orgánicos como inorgánicos. Reacciona con el oxígeno para formar el monóxido y el peróxido. Es el único metal alcalino que reacciona con el nitrógeno a temperatura ambiente para producir un nitruro, el cual es de color negro. Reacciona fácilmente con el hidrógeno a casi 500ºC (930ºF) para formar hidruro de litio. La reacción del litio metálico con agua es un extrmo vigorosa. El litio reacciona en forma directa con el carbono para producir el carburo. Se combina fácilmente con los halógenos y forma halogenuros con emisión de luz. Aunque no reacciona con hidrocarburos parafínicos, experimenta reacciones de adición con alquenos sustituidos por grupos arilo y dienos. También reacciona con compuestos acetilénicos, formando acetiluros de litio, los cuales son importantes en la síntesis de la vitamina A.

El compuesto principal del litio es el hidróxido de litio. Es un polvo blanco; el material comercial es hidróxido de litio monohidratado. El carbonato tiene aplicación en la industria de cerámica y en la medicina como un antidepresivo. Tanto el bromuro como el cloruro de litio forman salmueras concentradas que tienen la propiedad de absorber humedad en un intervalo amplio de temperaturas; estas salmueras se emplean en los sistemas comerciales de aire acondicionado.

Efectos del Litio sobre la saludEfectos de la exposición al litio: Fuego: Inflamable. Muchas reacciones pueden causar fuego o explosión. Libera vapores (o gases) irritantes y tóxicos en un incendio. Explosión: Riesgo de incendio y explosión en contacto con sustancias combustibles y agua. Inhalación: Sensación de quemadura. Tos. Respiración trabajosa. Falta de aire. Dolor de garganta. Los síntomas

Page 137: elemtos

pueden ser retrasados. Piel: Enrojecimiento. Quemaduras cutáneas. Dolor. Ampollas. Ojos: Enrojecimiento. Dolor. Quemaduras severas y profundas. Ingestión: Calambres abdominales. Dolor abdominal. Sensación de quemadura. Náuseas. Shock o colapso. Vómitos. Debilidad. Vías de exposición: La sustancia puede ser absorbida por el cuerpo por inhalación de su aerosol y por ingestión. Riesgo de inhalación: La evaporación a 20°C es insignificante; sin embargo cuando se dispersa se puede alcanzar rápidamente una concentración peligrosa de partículas suspendidas en el aire. Efectos de la exposición a corto plazo: La sustancia es corrosiva para los ojos, la piel y el tracto respiratorio. Corrosivo si es ingerido. La inhalación de la sustancia puede causar edema pulmonar. Normalmente los síntomas del edema pulmonar no se manifiestan hasta después de unas horas y son agravados por el esfuerzo físico. El reposo y la observación médica son por lo tanto esenciales. Debe ser considerada la administración inmediata de un spray apropiado, por un médico o una persona autorizada por él.

Riesgos químicos: Su calentamiento puede provocar combustión violenta o explosión. La sustancia puede arder espontáneamente en contacto con el aire cuando se dispersa en finas partículas. Cuando se calienta se forman vapores tóxicos. Reacciona violentamente con oxidantes fuertes, ácidos y muchos compuestos (hidrocarburos, halógenos, halones, cemento, arena y asbestos) provocando peligro de incendio y explosión. Reacciona violentamente con el agua, formando gas hidrógeno altamente inflamable y vapores corrosivos de hidróxido de litio.

Efectos ambientales del LitioEl litio metálico reacciona con el nitrógeno, el oxígeno, y el vapor de agua en el aire. Consecuentemente, la superficie del litio se recubre de una mezcla de hidróxido de litio (LiOH), carbonato de litio (Li2CO3), y nitrato de litio (Li3N). El hidróxido de litio representa un peligro potencialmente significativo porque es extremadamente corrosivo. Se debe prestar especial atención a los organismos acuáticos

Laurencio - Lr

Propiedades químicas del Laurencio - Efectos del Laurencio sobre la salud - Efectos ambientales del

LaurencioNombre Laurencio

Número atómico 103

Valencia -

Page 138: elemtos

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Rn]4f146d17s2

Primer potencial de ionización (eV) -

Masa atómica (g/mol) 262

Densidad (g/ml) -

Punto de ebullición (ºC) -

Punto de fusión (ºC) -

Descubridor Albert Ghiorso en 1961

LaurencioSímbolo Lr, número atómico 103. El laurencio, nombrado así en honor de E. O. Lawrence, es el undécimo elemento transuránico y completa los elementos de la serie de los actínidos.

Se han determinado las propiedades nucleares de todos los isótopos del laurencio de masa 255 a 260. El 260Lr es un emisor alfa con un promedio de vida de 3 minutos y por ello es el isótopo de vida más larga que se conoce.

Efectos del Laurencio sobre la salud

Page 139: elemtos

El laurencio no se da en la naturaleza. Todavía no ha sido encontrado en la corteza terrestre, y es tan inestable que cualquier cantidad formada se descompondría en otros elementos muy rápidamente. Por tanto, no existe motivo para considerar sus efectos sobre la salud.

Efectos ambientales del Laurencio

Debido a su vida media tan extremadamente corta, no existe razón para considerar las efectos del laurencio sobre el medio ambiente

Lutecio - Lu

Propiedades químicas del Lutecio - Efectos del Lutecio sobre la salud - Efectos ambientales del

LutecioNombre Lutecio

Número atómico 71

Valencia 3

Estado de oxidación +3

Electronegatividad 1,2

Radio covalente (Å) 1,56

Radio iónico (Å) 0,93

Radio atómico (Å) 1,74

Configuración electrónica [Xe]4f145d16s2

Primer potencial de ionización (eV) 5,02

Masa atómica (g/mol) 174,97

Densidad (g/ml) 9,84

Page 140: elemtos

Punto de ebullición (ºC) 3327

Punto de fusión (ºC) 1652

Descubridor George Urbain en 1907

LutecioElemento químico, símbolo Lu, número atómico 71 y peso molecular 174.97. es un metal muy raro e el miembro más pesado del grupo de las tierras raras. En estado natural, se compone del isótopo 175Lu, 97.41%, y el emisor ß de vida larga 176Lu, con una vida media de 2.1 x 1010 años.

El lutecio, junto con el itrio y el lantano, es de interés para los científicos que estudian el magnetismo. Estos tres elementos sólo forman iones trivalentes con subcapas que se han completado, por lo que no tienen electrones desapareados para contribuir al magnetismo. Su radio es muy parecido al de otros iones o metales de las tierras raras y forma soluciones de sólidos o mezclas de cristales con los elementos fuertemente magnéticos de las tierras raras en casi todas las composiciones. Por lo tanto, los científicos pueden diluir las tierras raras magnéticamente activas de manera continua, sin cambiar apreciablemente el entorno cristalino.

El metal puro lutecio ha sido aislado solamente en años recientes y es uno de los más difíciles de preparar. Puede ser preparado reduciendo LuCl3 o LuF3 anhidros con una base o con un metal alcalino.

El metal es blanco plateado y relativamente estable en el aire. Es un metal de tierras raras y quizás el más caro de todos los elementos raros. Se encuentra en pequeñas cantidades con todos los metales de tierras raras, y es muy difícil de separar de otros elementos raros.

El lutecio metálico está disponible comercialmente, así que no es normalmente necesario producirlo en el laboratorio.

Los lantánidos se encuentran en la naturaleza en unos cuantos minerales. Los más importantes son xenotima, monacita y bastnaesita. Los dos primeros son minerales de

Page 141: elemtos

ortofosfato LnPO4 (Ln denota una mezcla de todos los lantánidos excepto el promecio que es muy raro) y el tercero es un carbonato de fluoruro LnCO3F. Los lantánidos con números atómicos pares son más comunes. Los lantánidos más comunes en estos minerales son, por orden, cerio, lantano, neodimio y praseodimio. La monacita también contiene torio e itrio, lo que hace difícil su manejo ya que el torio y los productos de su descomposición son radioactivos.

Para muchos de los usos no es particularmente necesario separar los metales, pero si se requiere la separación en metales individuales, el proceso es complejo. Inicialmente, los metales se extraen como sales de los minerales por extracción con ácido sulfúrico (H2SO4), ácido hidroclórico (HCl) y hidróxido de sodio (NaOH). Las técnicas modernas de separación para estas mezclas de sales de lantánidos son ingeniosas e implican unas técnicas de complejación selectiva, extracciones de solventes y cromatografía de intercambio iónico.

El lutecio puro está disponible a través de la reducción de LuF3 con calcio metálico.

2LuF3 + 3Ca  2Lu + 3CaF2

Esto funcionaría también con los otros haluros de calcio pero el producto CaF2 es más fácil de manejar bajo las condiciones de reacción (calentar hasta los 50°C sobre el punto de fusión en una atmósfera de argón). El exceso de calcio se elimina de la mezcla de la reacción en el vacío.

Efectos del Lutecio sobre la saludEl lutecio es uno de los elementos químicos raros, que puede ser encontrado en equipos tales como televisiones en color, lámparas fluorescentes y cristales. Todos los compuestos químicos raros tienen propiedades comparables.

El lutecio raramente se encuentra en la naturaleza, ya que se da en cantidades muy pequeñas. El lutecio normalmente se encuentra solamente en dos tipos distintos de minerales. El uso del lutecio sigue aumentando, debido al hecho de que es útil para producir catalizadores y para pulir cristales.

El lutecio es más peligroso en el ambiente de trabajo, debido al hacho de que las humedades y los gases pueden ser inhalados con el aire. Esto puede causar embolias pulmonares, especialmente durante exposiciones a largo plazo. El lutecio puede ser una amenaza para el hígado cuando se acumula en el cuerpo humano.

Efectos ambientales del Lutecio

El lutecio es vertido al medio ambiente en muchos lugares diferentes, principalmente por industrias productoras de petróleo. También puede entrar en el medio ambiente cuando se tiran los equipos domésticos. El lutecio se acumulará gradualmente en los suelos y en el agua de los suelos y esto llevará finalmente a incrementar la concentración en humanos, animales y partículas del suelo.

Page 142: elemtos

En los animales acuáticos provoca daños a las membranas celulares, lo que tiene varias influencias negativas en la reproducción y en las funciones del sistema nervioso.

Mendelevio - Md

Propiedades químicas del Mendelevio - Efectos del Mendelevio sobre la salud - Efectos ambientales

del MendelevioNombre Mendelevio

Número atómico 101

Valencia -

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Rn]5f137s2

Primer potencial de ionización (eV) -

Masa atómica (g/mol) (258)

Densidad (g/ml) -

Punto de ebullición (ºC) -

Punto de fusión (ºC) -

Descubridor G.T. Seaborg en 1955

Page 143: elemtos

MendelevioSímbolo Md, número atómico 101 y duodécimo miembro de los elementos de la serie de los actínidos. El mendelevio no se encuentra en la naturaleza; fue descubierto y se prepara por transmutación nuclear artificial de un elemento más ligero.

Sus isótopos conocidos tienen números de masa de 248 a 258 y vidas medias que comprenden unos pocos segundos hasta aproximadamente 55 días. Todos se producen al bombardear partículas cargadas de los isótopos más abundantes. Las cantidades de mendelevio que se obtienen y se utilizan en los estudios de las propiedades químicas y nucleares son menores a un millón de átomos; esto es del orden de un millón de veces menor que una cantidad que se pueda pesar.

Los estudios de las propiedades químicas del mendelevio se limitan a cantidades mínimas. El comportamiento del mendelevio en cromatografía de intercambio iónico muestra que existe en solución acuosa, principalmente en el estado de oxidación 3+ característico de los elementos actínidos. Sin embargo, también tiene un estado de oxidación dipositivo (2+) y un monopositivo (1+)

Efectos del Mendelevio sobre la saludEl mendelevio no se da en la naturaleza, y no ha sido encontrado en la corteza terrestre, por lo que no hay motivo para considerar sus efectos sobre la salud.

Efectos ambientales del MendelevioEl mendelevio no se da en la naturaleza, y no ha sido encontrado en la corteza terrestre, por lo que no hay motivo para considerar sus efectos sobre el medio ambiente.

Magnesio - Mg

Page 144: elemtos

Propiedades químicas del Magnesio - Efectos del Magnesio sobre la salud - Efectos ambientales del

MagnesioNombre Magnesio

Número atómico 12

Valencia 2

Estado de oxidación +2

Electronegatividad 1,2

Radio covalente (Å) 1,30

Radio iónico (Å) 0,65

Radio atómico (Å) 1,60

Configuración electrónica [Ne]3s2

Primer potencial de ionización (eV) 7,65

Masa atómica (g/mol) 24,305

Densidad (g/ml) 1,74

Punto de ebullición (ºC) 1107

Punto de fusión (ºC) 650

Descubridor Sir Humphrey Davy en 1808

Page 145: elemtos

MagnesioElemento químico, metálico, de símbolo Mg, colocado en el grupo IIa del sistema periódico, de número atómico 12, peso atómico 24.312. El magnesio es blanco plateado y muy ligero. Su densidad relativa es de 1.74 y su densidad de 1740 kg/m3 (0.063 lb/in3) o 108.6 lb/ft3). El magnesio se conoce desde hace mucho tiempo como el metal estructural más ligero en la industria, debido a su bajo peso y capacidad para formar aleaciones mecánicamente resistentes.

Los iones magnesio disueltos en el agua forman depósitos en tuberías y calderas cuando el agua es dura, es decir, cuando contiene demasiado magnesio o calcio. Esto se puede evitar con los ablandadores de agua.

Con una densidad de sólo dos tercios de la del aluminio, tiene incontables aplicaciones en casos en donde el ahorro de peso es de importancia. También tiene muchas propiedades químicas y metalúrgicas deseables que lo hacen apropiado en una gran variedad de aplicaciones no estructurales.

Es muy abundante en la naturaleza, y se halla en cantidades importanes en muchos minerales rocosos, como la dolomita, magnesita, olivina y serpentina. Además se encuentra en el agua de mar, salmueras subterráneas y lechos salinos. Es el tercer metal estructural más abundante en la corteza terrestre, superado solamente por el aluminio y el hierro.

El magnesio (magnecio) es químicamente muy activo, desplaza al hidrógeno del agua en ebullición y un gran número de metales se puede preparar por reducción térmica de sus sales y óxidos con magnesio. Se combina con la mayor parte de los no metales y prácticamente con todos los ácidos. El magnesio reacciona sólo ligeramente o nada con la mayor parte de los álcalis y muchas sustancias orgánicas, como hidrocarburos, aldehídos, alcoholes, fenoles, aminas, ésteres y la mayor parte de los aceites. Utilizado como catalizador, el magnesio sirve para promover reacciones orgánicas de condensación, reducción, adición y deshalogenación. Se ha usado largo tiempo en la síntesis de compuestos orgánicos especiales y complejos por medio de la conocida reacción de Grignard. Los principales ingredientes de aleaciones son: aluminio, manganeso, zirconio, zinc, metales de tierras raras y torio.

Los compuestos de magnesio se utilizan mucho en la industria y la agricultura.

Page 146: elemtos

Efectos del Magnesio sobre la saludEfectos de la exposición al magnesio en polvo: baja toxicidad y no considerado como peligroso para la salud. Inhalación: el polvo de magnesio puede irritar las membranas mucosas o el tracto respiratorio superior. Ojos: daños mecánicos o las partículas pueden incrustarse en el ojo. Visión directa del polvo de magnesio ardiendo sin gafas especiales puede resultar en ceguera temporal, debido a la intensa llama blanca. Piel: Incrustación de partículas en la piel. Ingestión: Poco posible; sin embargo, la ingestión de grandes cantidades de polvo de magnesio puede causar daños.

El magnesio no ha sido testado, pero no es sospechoso de ser cancerígeno, mutagénico o teratógeno. La exposición a los vapores de óxido de magnesio producidos por los trabajos de combustión, soldadura o fundición del metal pueden resultar en fiebres de vapores metálicos con los siguientes síntomas temporales: fiebre, escalofríos, náuseas, vómitos y dolores musculares. Estos se presentan normalmente de 4 a 12 horas después de la exposición y duran hasta 48 horas. Los vapores de óxido de magnesio son un subproducto de la combustión del magnesio.

Peligros físicos: Posible explosión del polvo o de los gránulos al mezclarse con el aire. En seco se puede cargar electróstaticamente al ser removido, transportado, vertido, etc…

Peligros químicos: La sustancia puede incendiarse espontáneamente al contacto con el aire produciendo gases irritantes o tóxicos. Reacciona violentamente con oxidantes fuertes y con muchas sustancias provocando riesgo de incendio y de explosión. Reacciona con ácidos y agua formando gas hidrógeno inflamable, provocando riesgo de incendio y de explosión.

Primeros auxilios:  Inhalación: Salir al aire fresco. Ojos: Enjuagar los ojos abundantemente con agua. Consultar con un físico. Piel: Lavar con jabón y agua abundantemente para eliminar las partículas. Ingestión: Si se ingieren grandes cantidades de polvo de magnesio, provocar el vómito y cansultar con un físico. Nota para el físico: No existe tratamiento o antídoto específico. Se recomienda cuidado de apoyo. El tratamiento debe estar basado en las reacciones del paciente.

Efectos ambientales del MagnesioHay muy poca información disponible acerca de los efectos ambientales de los vapores de óxido de magnesio. Si otros mamíferos inhalan vapores de óxido de magnesio, pueden sufrir efectos similares a los de los humanos.

En un espectro del 0 al 3, los vapores de óxido de magnesio registran un 0,8 de peligrosidad para el medioambiente. Una puntuación de 3 representa un peligro muy alto para el medioambiente y una puntuación de 0 representa un peligro insignificante. Los factores tomados en cuenta para la obtención de este ranking incluyen el grado de perniciosidad del material y/o su carencia de toxicidad, y la medida de su capacidad de permanecer activo en el

Page 147: elemtos

medioambiente y si se acumula o no en los organismos vivos. No tiene en cuenta el grado de exposición a la sustancia.

El polvo de magnesio no es sospechoso de ser altamente dañino para el medioambiente. En forma de óxido de magnesio se ha establecido una la toxicidad en el agua en 1000 ppm. "Water Quality Characteristics of Hazardous Materials", Hann & Jensen, Enviro. End. Div., Texas A&M, vol. 3 (1974).

Manganeso - Mn

Propiedades químicas del Manganeso - Efectos del Manganeso sobre la salud - Efectos ambientales

del ManganesoNombre Manganeso

Número atómico 25

Valencia 2,3,4,6,7

Estado de oxidación +2

Electronegatividad 1,5

Radio covalente (Å) 1,39

Radio iónico (Å) 0,80

Radio atómico (Å) 1,26

Configuración electrónica [Ar]3d54s2

Potencial primero de ionización (eV) 7,46

Masa atómica (g/mol) 54,938

Densidad (g/ml) 7,43

Punto de ebullición (ºC) 2150

Punto de fusión (ºC) 1245

Page 148: elemtos

Descubridor Johann Gahn en 1774

ManganesoElemento químico, símbolo Mn, de número atómico 25 y peso atómico 54.938. Es uno de los metales de transición del primer periodo largo de la tabla periódica; se encuentra entre el cromo y el hierro. Tiene propiedades en común con ambos metales. Aunque poco conocido o usado en su forma pura, reviste gran importancia práctica en la fabricación de acero.

El manganeso se oxida con facilidad en el aire para formar una capa castaña de óxido. También lo hace a temperaturas elevadas. A este respecto su comportamiento es más parecido a su vecino de mayor número atómico en la tabla periódica ( el hierro), que al de menor número atómico, el cromo.

El manganeso es un metal bastante reactivo. Aunque el metal sólido reacciona lentamente, el polvo metálico reacciona con facilidad y en algunos casos, muy vigorosamente. Cuando se calienta en presencia de aire u oxígeno, el manganeso en polvo forma un óxido rojo, Mn3O4. Con agua a temperatura ambiente se forman hidrógeno e hidróxido de manganeso(II), Mn(OH)2. En el caso de ácidos, y a causa de que el manganeso es un metal reactivo, se libera hidrógeno y se forma una sal de manganeso(II). El manganeso reacciona a temperaturas elevadas con los halógenos, azufre, nitrógeno, carbono, silicio, fósforo y boro.

En sus muchos compuestos, presenta estados de oxidación de 1+ hasta de 7+. Los estados de oxidación más comunes son 2+, 4+ y 7+. Todos los compuestos, excepto los que contienen MnII, son intensamente coloridos. Por ejemplo, el permanganato de potasio, KmnO4, produce soluciones acuosas que son de color rojo púrpura; el manganato de potasio, K2MnO4, produce soluciones de color verde intenso.

Los compuestos de manganeso tienen muchas aplicaciones en la industria. El dióxido de manganeso se usa como un agente desecante o catalizador en pinturas y barnices y como decolorante en la fabricación de vidrio y en pilas secas. El premanganato de potasio se emplea como blanqueador para decoloración de aceites y como un agente oxidante en química analítica y preparativa.

Page 149: elemtos

Efectos del Manganeso sobre la saludEl Manganeso es un compuesto muy común que puede ser encontrado en todas partes en la tierra. El manganeso es uno de los tres elementos trazas tóxicos esenciales, lo cual significa que no es sólo necesario para la supervivencia de los humanos, pero que es también tóxico cuando está presente en elevadas concentraciones en los humanos. Cuando la gente no cumplen con la ración diaria recomendada su salud disminuirá. Pero cuando la toma es demasiado alta problemas de salud aparecerán.

La toma de Manganeso por los humanos mayoritariamente tiene lugar a través de la comida, como son las espinacas, el te y la hierbas. Las comidas que contienen las más altas concentraciones son los granos y arroz, las semillas de soja, huevos, frutos secos, aceite de oliva, judías verdes y ostras. Después de ser absorbido en el cuerpo humano el manganeso será transportado a través de la sangre al hígado, los riñones, el páncreas y las glándulas endocrinas.

Los efectos del manganeso mayormente ocurren en el tracto respiratorio y el cerebro. Los síntomas por envenenamiento con Manganeso son alucinaciones, olvidos y daños en los nervios. El Manganeso puede causar parkinson, embolia de los pulmones y bronquitis.

Cuando los hombres se exponen al manganeso por un largo periodo de tiempo el daño puede llegar a ser importante.

Un síndrome que es causado por el manganeso tiene los siguientes síntomas: esquizofrenia, depresión, debilidad de músculos, dolor de cabeza e insomnio.

Porque el Manganeso es un elemento esencial para la salud de los humanos la falta de este puede también causar efectos sobre la salud. Estos son los siguientes efectos:

Engordar Intolerancia a la glucosa Coágulos de sangre Problemas de la piel Bajos niveles de colesterol Desorden del esqueleto Defectos de nacimiento Cambios en el color del pelo Síntomas neurológicos

Efectos ambientales del ManganesoLos compuestos del manganeso existen de forma natural en el ambiente como sólidos en suelos y pequeñas partículas en el agua. Las partículas de manganeso en el aire están presente en las partículas de polvo. Estas usualmente se depositan en la tierra en unos pocos días.

Page 150: elemtos

Los humanos aumentan las concentraciones de Manganeso en el aire por las actividades industriales y a través de la quema de productos fósiles. El Manganeso que deriva de las fuentes humanas puede también entrar en la superficie del agua, aguas subterráneas y aguas residuales. A través de la aplicación del Manganeso como pesticida el Manganeso entrará en el suelo.

Para los animales el Manganeso es un componente esencial sobre unas 36 enzimas que son usadas para el metabolismo de carbohidratos, proteínas y grasas.

Con animales que comen muy poco manganeso interfiere en el crecimiento normal, la formación de huesos y en la reproducción.

Para algunos animales la dosis letal es bastante baja, lo cual significa que tienen pocas posibilidades de supervivencia incluso a pequeñas dosis de manganeso cuando este excede la dosis esencial. El Manganeso puede causar disturbancias en los pulmones, hígado y vasculares, decremento de la presión sanguínea, fallos en el desarrollo de fetos de animales y daños cerebrales.

Cuando el Manganeso es tomado a través de la piel este puede causar temblores y fallos en la coordinación. Finalmente, las pruebas de laboratorio con animales han mostrado que diversos envenenamientos con Manganeso deberían incluso ser capaces de causar el desarrollo de tumores en animales.

En plantas los iones del Manganeso son transportado hacia las hojas después de ser tomados en el suelo. Cuando muy poco manganeso puede ser absorbido desde el suelo esto causa disturbaciones en los mecanismos de las plantas. Por ejemplo disturbaciones en la división del agua en hidrógeno y oxígeno, en lo cual el Manganeso juega un papel importante.

El Manganseo puede causar síntomas de toxicidad y deficiencia en plantas. Cuando el pH del suelo es bajo las deficiencias de Manganeso son más comunes.

Concentraciones altamente tóxicas de Manganeso en suelo pueden causar inflamación de la pared celular, abrasamiento de las hojas y puntos marrones en las hojas. Las deficiencia puede también causar estos efectos entre concentraciones tóxicas y concentraciones que causan deficiencias una pequeña área de concentraciones donde el crecimiento de la planta es óptimo puede ser detectado.

Molibdeno - Mo

Propiedades químicas del Molibdeno - Efectos del Molibdeno sobre la salud - Efectos ambientales del

Molibdeno

Page 151: elemtos

Nombre Molibdeno

Número atómico 42

Valencia 2,3,4,5,6

Estado de oxidación +6

Electronegatividad 1,8

Radio covalente (Å) 1,45

Radio iónico (Å) 0,62

Radio atómico (Å) 1,39

Configuración electrónica [Kr]4d55s1

Primer potencial de ionización (eV) 7,24

Masa atómica (g/mol) 95,94

Densidad (g/ml) 10,2

Punto de ebullición (ºC) 5560

Punto de fusión (ºC) 2610

Descubridor Carl Wilhelm Scheele en 1778

Molibdeno

Page 152: elemtos

Elemento químico, símbolo Mo, con número atómico 42 y peso atómico 95.94; es uno de los elementos de transición. Metal gris plateado con una densidad de 10.2 g/cm3 (5907 oz/in3), se funde a 2610ºC (4730ºF).

El molibdeno se encuentra en muchas partes del mundo, pero pocos depósitos son lo suficientemente ricos para garantizar la recuperación de los costos. La mayor parte del molibdeno proviene de minas donde su recuperación es el objetivo primario de la operación. El restante se obtiene como un subproducto de ciertas operaciones del beneficio del cobre.

El molibdeno forma compuestos en los cuales presenta estados de oxidación, 0, 2+, 3+, 4+, 5+, 6+. No se ha observado como catión ionizable, pero se conocen especies catiónicas como el molibdenilo. La química del molibdeno es extremadamente compleja y, con excepción de los halogenuros y calcogenuros, son muy pocos los compuestos simples conocidos.

El dióxido y el trióxido de molibdeno son los óxidos más comunes y estables; otros óxidos descritos son metaestables y, en lo esencial, son especies de laboratorio.

El ácido molíbdico, H2MoO4 (o MoO3.H2O), forma una serie estable de sales normales, del tipo M2

2+MoO4, M2+MoO4 y M23+(MoO4)3. Se pueden formar molibdatos poliméricos o isopolimolibdatos

por la acidificación de una solución de molibdato o, en algunos casos, al calentar los molibdatos normales. El peróxido de hidrógeno reacciona con varios molibdatos para formar una serie de compuestos peroxianiónicos. Otro grupo de compuestos del molibdeno son los heteropolielectrólitos, con mucho una familia fundamental de sales y ácidos libres: cada miembro contiene un anión complejo y de alto peso molecular. El molibdeno también forma halogenuros y oxihalogenuros, que representan un intervalo amplio en estabilidad y una serie de compuestos homólogos con S, Se y Te, semejantes a los óxidos.

Efectos del Molibdeno sobre la saludBasado en experimentación animal, el molibdeno y sus compuestos son altamente tóxicos. Se ha informado de alguna evidencia de disfunción hepática con hiperbilirubinemia en trabajadores crónicamente expuestos a una planta soviética de molibdeno y cobre. Además, se han encontrado signos de gota en trabajadores de fábricas y entre los habitantes de zonas de Armenia ricas en molibdeno. Las características principales fueron dolores de la articulación de las rodillas, manos, pies, deformidades en las articulaciones, eritemas, y edema de las zonas de articulación.

Efectos ambientales del MolibdenoNo se han documentado efectos negativos del molibdeno sobre el medio ambiente

Meitnerio - Mt

Page 153: elemtos

Propiedades químicas del Meitnerio - Efectos del Meitnerio sobre la salud - Efectos ambientales del

MeitnerioNombre Meitnerio

Número atómico 109

Valencia -

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Rn]5f146d77s2

Primer potencial de ionización (eV) -

Masa atómica (g/mol) 266

Densidad (g/ml) -

Punto de ebullición (ºC) -

Punto de fusión (ºC) -

Descubridor Heavy Ion Research Laboratory en 1982

Meitnerio

Page 154: elemtos

Elemento que se espera sea químicamente similar al elemento iridio. Se ha producido un átomo y se ha observado su decaimiento en la reacción de fusión entre el 58Fe y el 209Bi. Este experimento fue llevado a cabo en 1982 por el mismo equipo alemán que descubrió el elemento Bh, usando las mismas técnicas.

Se usó una dosis total de 7x1017 iones para bombardear capas delgadas de bismuto, durante un tiempo de irradiación de 250 h. La energía de excitación del sistema compuesto se ajusta bien a la sistemática para un canal de reacción de un neutrón que lleve al isótopo 266Mt de acuerdo con la asignación que se desprende de sus propiedades de decaimiento por partícula alfa (11.1 MeV) está dentro de lo esperado a partir de la sistemática de las energías de decaimiento por partícula alfa. Se ha estimado una vida media de entre 2 y 20 ms.

La sección transversal para una producción es extremadamente pequeña (aproximadamente 10-39 m2). De cada 1011 encuentros nucleares, aparentemente sólo uno lleva a la producción de un átomo de elemento Mt. Sin embargo, la probabilidad de producir el evento observado aleatoriamente es de 10-18. Aun con un solo átomo encontrado, se puede considerar que la existencia del elemento Mt es muy probable.

Yu. Ts. Oranessian y su equipo de Dubna repitieron el experimento de Darmstadt en 1984, con una dosis de irradiación diez veces más alta. Se separó químicamente el nucleido 246Cf, un emisor alfa con una vida media de 1.5 días y el séptimo miembro de la cadena de decaimiento. Se registró que había siete decaimientos alfa que eran compatibles con la energía de decaimiento y la vida media del 246Cf. Además, se observó un evento de fisión del 258Rf. Así, la formación de este isótopo 266Mt ha sido confirmada de manera indirecta.

Efectos del Meitnerio sobre la saludAl ser tan inestable, cualquier cantidad formada se descompondrá en otros elementos con tanta rapidez que no existe razón para estudiar sus efectos en la salud humana.

Efectos ambientales del MeitnerioDebido a su vida media tan extremadamente corta (3,8 milisegundos), no existe razón para considerar los efectos del meitnerio en el medio ambiente.

Nitrógeno - N

Propiedades químicas del Nitrógeno - Efectos del Nitrógeno sobre la salud - Efectos ambientales del

Nitrógeno

Page 155: elemtos

Nombre Nitrógeno

Número atómico 7

Valencia 1,2,+3,-3,4,5

Estado de oxidación - 3

Electronegatividad 3,0

Radio covalente (Å) 0,75

Radio iónico (Å) 1,71

Radio atómico (Å) 0,92

Configuración electrónica 1s22s22p3

Primer potencial de ionización (eV) 14,66

Masa atómica (g/mol) 14,0067

Densidad (g/ml) 0,81

Punto de ebullición (ºC) -195,79 ºC

Punto de fusión (ºC) -218,8

Descubridor Rutherford en 1772

Nitrógeno

Page 156: elemtos

Elemento químico, símbolo N, número atómico 7, peso atómico 14.0067; es un gas en condiciones normales. El nitrógeno molecular es el principal constituyente de la atmósfera ( 78% por volumen de aire seco). Esta concentración es resultado del balance entre la fijación del nitrógeno atmosférico por acción bacteriana, eléctrica (relámpagos) y química (industrial) y su liberación a través de la descomposición de materias orgánicas por bacterias o por combustión. En estado combinado, el nitrógeno se presenta en diversas formas. Es constituyente de todas las proteínas (vegetales y animales), así como también de muchos materiales orgánicos. Su principal fuente mineral es el nitrato de sodio.

Gran parte del interés industrial en el nitrógeno se debe a la importancia de los compuestos nitrogenados en la agricultura y en la industria química; de ahí la importancia de los procesos para convertirlo en otros compuestos. El nitrógeno también se usa para llenar los bulbos de las lámparas incandescentes y cuando se requiere una atmósfera relativamente inerte.

El nitrógeno, consta de dos isótopos, 14N y 15N, en abundancia relativa de 99.635 a 0.365. Además se conocen los isótopos radiactivos 12N, 13N, 16N y 17N, producidos por una variedad de reacciones nucleares. A presión y temperatura normales, el nitrógeno molecular es un gas con una densidad de 1.25046 g por litro.

El nitrógeno elemental tiene una reactividad baja hacia la mayor parte de las sustancias comunes, a temperaturas ordinarias. A altas temperaturas, reacciona con cromo, silicio, titanio, aluminio, boro, berilio, magnesio, bario, estroncio, calcio y litio para formar nitruros; con O2, para formar NO, y en presencia de un catalizador, con hidrógeno a temperaturas y presión bastante altas, para formar amoniaco. El nitrógeno, carbono e hidrógeno se combinan arriba de los 1800ºC (3270ºF) para formar cianuro de hidrógeno.

Cuando el nitrógeno molecular se somete a la acción de un electrodo de descarga condensada o a una descarga de alta frecuencia se activa en forma parcial a un intermediario inestable y regresa al estado basal con emisión de un resplandor amarillo oro.

Los elementos de la familia del nitrógeno exhiben tres estados de oxidación principales, -3, +3 y +5 en sus compuestos, aunque también se presentan otros estados de oxidación. Todos los elementos de la familia del nitrógeno forman hidruros, así como óxidos +3, óxidos +5, haluros +3 (MX3) y, excepto para el nitrógeno y el bimuto, halogenuros +5 (MX5). E1 nitrógeno es el elemento más electronegativo de la familia. Así, además de los estados de oxidación típicos de la familia (-3,+3 y +5), el nitrógeno forma compuestos con otros estados de oxidación.

Los compuestos que contienen una molécula de nitrógeno enlazada a un metal se llaman complejos de nitrógeno o complejos dinitrógeno. Los metales que pertenecen al grupo VIII de la familia de los metales de transición son extraordinarios en su capacidad para formar compuestos de coordinación; para cada metal de este grupo se han identificado varios complejos nitrogenados. Los complejos nitrogenados de estos metales se presentan en estados de oxidación bajos, como Co(I) o Ni(O), los otros ligandos presentes en estos complejos, además de N2, son del tipo que se sabe que estabilizan estados de oxidación bajos: las fofinas parecen ser particularmente útiles a este respecto.

Page 157: elemtos

Efectos del Nitrógeno sobre la saludLas moléculas de Nitrógeno se encuentran principalmente en el aire. En agua y suelos el Nitrógeno puede ser encontrado en forma de nitratos y nitritos. Todas estas substancias son parte del ciclo del Nitrógeno, aunque hay una conexión entre todos.

Los humanos han cambiado radicalmente las proporciones naturales de nitratos y nitritos, mayormente debido a la aplicación de estiércoles que contienen nitrato. El Nitrógeno es emitido extensamente por las industrias, incrementando los suministros de nitratos y nitritos en el suelo y agua como consecuencia de reacciones que tienen lugar en el ciclo del Nitrógeno.

Las concentraciones de Nitrógeno en agua potable aumentarán grandemente debido a esto.

Nitratos y nitritos son conocidos por causar varios efectos sobre la salud. Estos son los efectos más comunes:

Reacciones con la hemoglobina en la sangre, causando una disminución en la capacidad de transporte de oxígeno por la sangre. (nitrito)

Disminución del funcionamiento de la glándula tiroidea. (nitrato) Bajo almacenamiento de la vitamina A. (nitrato) Producción de nitrosaminas, las cuales son conocidas como una de las más común

causa de cáncer. (nitratos y nitritos)

Pero desde un punto de vista metabólico, el óxido de nitrógeno (NO) es mucho más importante que el nitrógeno. En 1987, Salvador Moncada descubrió que éste era un mensajero vital del cuerpo para la relajación de los músculos, y hoy sabemos que está involucrado en el sistema cardiovascular, el sistema inmunitario, el sistema nervioso central y el sistema nervioso periférico. La enzima que produce el óxido nítrico, la óxido-nítrico sintasa, es abundante en el cerebro.

Aunque el óxido nítrico tiene una vida relativamente corta, se puede difundir a través de las membranas para llevar a cabo sus funciones. En 1991, un equipo encabezado por K.–E.Anderson del hospital universitario de Lund, Suecia, demostró que el óxido nítrico activa la erección por medio de la relajación del músculo que controla el flujo de sangre en el pene. La droga Viagra trabaja liberando óxido nítrico para producir el mismo efecto.

Efectos ambientales del NitrógenoLos humanos han cambiado radicalmente los suministros de nitratos y nitritos. La mayor causa de la adición de nitratos y nitritos es el uso intensivo de fertilizantes. Los procesos de combustión pueden también realzar los suministros de nitrato y nitrito, debido a la emisión de óxidos de nitrógeno que puede ser convertidos en nitratos y nitritos en el ambiente.

Los nitratos y nitritos también consisten durante la producción química y son usado como agentes conservantes en las comidas. Esto causa las concentraciones de nitrógeno en el agua subterránea y aguas superficiales y en la comida crece en gran medida.

Page 158: elemtos

La adición de Nitrógeno enlazado en el ambiente tiene varios efectos. Primeramente, puede cambiar la composición de especies debido a la susceptibilidad de ciertos organismos a las consecuencias de los compuestos de nitrógeno. Segundo, la mayoría del nitrito puede tener varios efectos sobre la salud de los humanos asi como en animales. La comida que es rica en compuestos de Nitrógeno puede causar una pérdida en el transporte de oxígeno en la sangre, lo que puede tener consecuencias serias para el ganado.

La toma de altas concentraciones de Nitrógeno puede causar problemas en la glándula tiroidéa y puede llevar a bajos almacenamientos de la Vitamina A. En los estómagos e intestinos de animales los nitratos pueden convertirse en nitrosaminas, un tipo de substancia peligrosamente cancerígena

Sodio - Na

Propiedades químicas del Sodio - Efectos del Sodio sobre la salud - Efectos ambientales del

SodioNombre Sodio

Número atómico 11

Valencia 1

Estado de oxidación +1

Electronegatividad 0,9

Radio covalente (Å) 1,54

Radio iónico (Å) 0,95

Radio atómico (Å) 1,90

Configuración electrónica [Ne]3s1

Primer potencial de ionización (eV) 5,14

Masa atómica (g/mol) 22,9898

Densidad (g/ml) 0,97

Page 159: elemtos

Punto de ebullición (ºC) 892

Punto de fusión (ºC) 97,8

Descubridor Sir Humphrey Davy en 1807

SodioElemento químico, símbolo Na, número atómico 11 y peso atómico 22.9898. Es un metal suave, reactivo y de bajo punto de fusión, con una densidad relativa de 0.97 a 20ºC (68ºF). Desde el punto de vista comercial, el sodio es el más importante de los metales alcalinos.

El sodio ocupa el sexto lugar por su abundancia entre todos los elementos de la corteza terrestre, que contiene el 2.83% de sodio en sus formas combinadas. El sodio es, después del cloro, el segundo elemento más abundante en solución en el agua de mar. Las sales de sodio más importantes que se encuentran en la naturaleza son el cloruro de sodio (sal de roca), el carbonato de sodio (sosa y trona), el borato de sodio (bórax), el nitrato de sodio (nitrato de Chile) y el sulfato de sodio. Las sales de sodio se encuentran en el agua de mar, lagos salados, lagos alcalinos y manantiales minerales.

El sodio reacciona con rapidez con el agua, y también con nieve y hielo, para producir hidróxido de sodio e hidrógeno. Cuando se expone al aire, el sodio metálico recién cortado pierde su apariencia plateada y adquiere color gris opaco por la formación de un recubrimiento de óxido de sodio. El sodio no reacciona con nitrógeno, incluso a temperaturas muy elevadas, pero puede reaccionar con amoniaco para formar amida de sodio. El sodio y el hidrógeno reaccionan arriba de los 200ºC (390ºF) para formar el hidruro de sodio. El sodio reacciona difícilmente con el carbono, si es que reacciona, pero sí lo hace con los halógenos. También reacciona con varios halogenuros metálicos para dar el metal y cloruro de sodio.

El sodio no reacciona con los hidrocarburos parafínicos, pero forma compuesto de adición con naftaleno y otros compuestos aromáticos policíclicos y con aril alquenos. La reacción del sodio con alcoholes es semejante a la reacción del sodio con agua, pero menos rápida. Hay dos reacciones generales con halogenuros orgánicos. Una de éstas requiere la condensación de dos compuesto orgánicos que contengan halógenos al eliminar éstos. El segundo tipo de

Page 160: elemtos

reacciones incluye el reemplazo del halógeno por sodio, para obtener un compuesto organosódico.

Efectos del Sodio sobre la saludEl sodio es un componente de muchas comidas, por ejemplo la sal común. Es necesario para los humanos para mantener el balance de los sistemas de fluidos físicos. El sodio es también requerido para el funcionamiento de nervios y músculos. Un exceso de sodio puede dañar nuestros riñones e incrementa las posibilidades de hipertensión.

Contact of sodium with water, including perspiration causes the formation of sodium hydroxide fumes which are highly irritating to skin, eyes, nose and throat. This may cause sneezing and coughing. Very severe exposures may result in difficult breathing, coughing and chemical bronchitis. Contact to the skin may cause itching, tingling, thermal and caustic burns and permanent damage. Contact with eyes may result in permanent damage and loss of sight.

Efectos ambientales del SodioEcotoxicidad: Límite Medio de Tolerancia (LMT) para el pez mosquito, 125 ppm/96hr (agua dulce); Límite Medio de Tolerancia (LMT) para el pez sol (Lepomis macrochirus), 88 88 mg/48hr (agua del grifo).

Destino medioambiental: Este compuesto químico no es móvil en su forma sólida, aunque absorbe la humedad muy fácilmente. Una vez líquido, el hidróxido de sodio se filtra rápidamente en el suelo, con la posibilidad de contaminar las reserves de agua

Niobio - Nb

Propiedades químicas del Niobio - Efectos del Niobio sobre la salud - Efectos ambientales del

NiobioNombre Niobio

Número atómico 41

Valencia 2,3,4,5

Estado de oxidación +5

Electronegatividad 1,6

Page 161: elemtos

Radio covalente (Å) 1,37

Radio iónico (Å) 0,70

Radio atómico (Å) 1,46

Configuración electrónica [Kr]4d45s1

Primer potencial de ionización (eV) 6,81

Masa atómica (g/mol) 92,906

Densidad (g/ml) 8,4

Punto de ebullición (ºC) 3300

Punto de fusión (ºC) 2468

Descubridor Charles Hatchett 1801

NiobioSímbolo Nb, número atómico 41 y peso atómico 92.906. En Estados Unidos este elemento se llamó originalmente columbio. La industria metalúrgica y los metalurgistas aún utilizan este nombre antiguo.

La mayor parte del niobio se usa en aceros inoxidables especiales, en aleaciones de alta temperatura y en aleaciones superconductoras como Nb3Sn. El niobio también se utiliza en pilas nucleares.

Page 162: elemtos

Es muy inerte a todos los ácidos, menos el fluorhídrico, supuestamente por tener una película de óxido sobre la superficie. El niobio metálico se oxida lentamente en solución alcalina. Reacciona con el oxígeno y los halógenos en caliente para formar los halogenuros y el óxido en estado de oxidación V, con nitrógeno para formar NbN y con carbono para formar NbC, así como con otros elementos como arsénico, antimonio, teluro y selenio.

El óxido Nb2O5, que se funde a 1520º (2768ºF), se disuelve en álcali fundido para formar un niobato complejo soluble, Nb6O19

8-. Los niobatos normales, entre ellos el NbO43-, son insolubles.

El óxido se disuelve en ácido fluorhídrico para producir especies iónicas como NbOF52- y

NbOF63-, según la concentración de los iones fluoruro e hidrógeno. El complejo fluorado mayor

que puede existir en solución es NbF6-.

Efectos del Niobio sobre la saludEl niobio, cuando es inhalado, es retenido principalmente en los pulmones, y secundariamente en los huesos. Interfiere con el calcio como activador del sistema enzimático. En los animales de laboratorio, la inhalación de nitruro o pentóxido de niobio resulta en cicatrizaciones de los pulmones a niveles de exposición superiores a los 40 mg/m3.

Efectos ambientales del NiobioNo se han documentado efectos ambientales negativos

Neodimio - Nd

Propiedades químicas del Neodimio - Efectos del Neodimio sobre la salud - Efectos ambientales del

NeodimioNombre Neodimio

Número atómico 60

Valencia 3

Estado de oxidación +3

Electronegatividad 1,2

Radio covalente (Å) 1,64

Page 163: elemtos

Radio iónico (Å) 1,09

Radio atómico (Å) 1,82

Configuración electrónica [Xe]4f45d06s2

Primer potencial de ionización (eV) 6,33

Masa atómica (g/mol) 144,24

Densidad (g/ml) 7,00

Punto de ebullición (ºC) 3027

Punto de fusión (ºC) 1024

Descubridor Carl Auer von Welsbach 1885

NeodimioElemento químico metálico, símbolo Nd, número atómico 60, peso atómico 144.24. pertenece al grupo de las tierras raras. Se encuentra en la naturaleza en seis isótopos. El óxido, Nd2O3, es un polvo azul claro. Se disuelve en ácidos minerales para dar soluciones violeta rojizas.

El neodimio fue descubierto por Carl F. Auer von Welsbach, un científico alemán, en 1885. Separó neodimio, así como el elemento praseodimio, de un material conocido como didimio. Actualmente, el neodimio se obtiene principalmente a través de un proceso de intercambio iónico con arena de monacita ((Ce, La, Th, Nd, Y)PO4), un material rico en elementos de tierras raras.

 

Page 164: elemtos

El nedimio forma hasta un 18% del metal Misch, un material que es usado para hacer piedras de mecheros. El neodimio también es un componente del cristal didimio, que se usa para hacer ciertos tipos de gafas protectoras para soldadores y sopladores de vidrio. El neodimio se añade al cristal para eliminar el color verde provocado por los contaminantes de hierro. También puede ser añadido al cristal para crear coloraciones violeta, roja o gris. Algunos tipos de cristal que contienen neodimio son usados por astrónomos para calibrar aparatos llamados espectrómetros y otros tipos son usados para crear rubíes artificiales para láser. Algunas sales de neodimio son usadas para colorear esmaltes y vidrios.

Efectos del Neodimio sobre la saludEl neodimio es uno de los elementos químicos raros, que puede ser encontrado en las casas en equipos tales como televisiones en color, lámparas fluorescentes y cristales. Todos los compuestos químicos raros tienen propiedades comparables.

El neodimio raramente se encuentra en la naturaleza, ya que se da en cantidades muy pequeñas. El neodimio normalmente se encuentra solamente en dos tipos distintos de minerales. El uso del neodimio sigue aumentando, debido al hecho de que es útil para producir catalizadores y para pulir cristales.

El neodimio es más peligroso en el ambiente de trabajo, debido al hecho de que las humedades y los gases pueden ser inhalados con el aire. Esto puede causar embolias pulmonares, especialmente durante exposiciones a largo plazo. El neodimio puede ser una amenaza para el hígado cuando se acumula en el cuerpo humano.

Efectos ambientales del NeodimioEl neodimio es vertido al medio ambiente en muchos lugares diferentes, principalmente por industrias productoras de petróleo. También puede entrar en el medio ambiente cuando se tiran los equipos domésticos. El neodimio se acumulará gradualmente en los suelos y en el agua de los suelos y esto llevará finalmente a incrementar la concentración en humanos, animales y partículas del suelo.

En los animales acuáticos provoca daños a las membranas celulares, lo que tiene varias influencias negativas en la reproducción y en las funciones del sistema nervioso

Neón - NePropiedades químicas del Neón - Efectos del Neón sobre la salud -Efectos ambientales

del Neón

Nombre Neón

Page 165: elemtos

Número atómico 10

Valencia 0

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) 1,31

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica 1s22s22p6

Primer potencial de ionización (eV) 21,68

Masa atómica (g/mol) 20,179

Densidad (g/ml) 1,20

Punto de ebullición (ºC) -246

Punto de fusión (ºC) -248,6

DescubridorSir

Ramsay en 1898

Elemento químico gaseoso, símbolo Ne, con número atómico 10 y peso atómico 20.179. El neón es miembro de la familia de los gases nobles. La única fuente comercial del neón es la

Page 166: elemtos

atmósfera terrestre, aunque se encuentran pequeñas cantidades de neón en el gas natural, en los minerales y en los meteoritos.

Se usan cantidades considerables de neón en la investigación física de alta energía. Las cámaras de centelleo con que se detecta el paso de partículas nucleares se llenan de neón. El neón líquido puede utilizarse como un refrigerante en el intervalo de 25-40 K (-416 a -387ºF). También se utiliza en algunos tipos de tubos electrónicos, contadores Geiger-Müller, en lámparas probadoras de corriente eléctrica de alto voltaje. Con baja potencia eléctrica se produce luz visible en lámparas incandescentes de neón; tales lámparas son económicas y se usan como luces nocturnas y de seguridad.

El neón es incoloro, inodoro e insípido; es gas en condiciones normales. El neón no forma ningún compuesto químico en el sentido general de la palabra; hay solamente un átomo en cada molécula de gas neón.

Efectos del Neón sobre la salud

Vías de exposición: La sustancia puede ser absorbida por el cuerpo a través de la inhalación.

Riesgo de inhalación: Si existen pérdidas en su contenedor este líquido se evapora con mucha rapidez provocando sobresaturación del aire con serio peligro de asfixia cuando se trata de recintos cerrados.

Efectos de la exposición: Inhalación: Asfixiante simple. Piel: Congelación en contacto con el líquido. Ojos: Congelación en contacto con el líquido.

Inhalación: Este gas es inerte y está clasificado como un asfixiante simple. La inhalación en concentraciones excesivas puede resultar en mareos, náuseas, vómitos, pérdida de consciencia y muerte. La muerte puede resultar de errores de juicio, confusión, o pérdida de la consciencia, que impiden el auto-rescate. A bajas concentraciones de oxígeno, la pérdida de consciencia y la muerte pueden ocurrir en segundos sin ninguna advertencia.

El efecto de los gases asfixiantes simples es proporcional a la cantidad en la cual disminuyen la cantidad (presión parcial) del oxígeno en el aire que se respira. El oxígeno puede reducirse a un 75% de su porcentaje normal en el aire antes de que se desarrollen síntomas apreciables. Esto a su vez requiere la presencia de un asfixiante simple en una concentración del 33% en la mezcla de aire y gas. Cuando el asfixiante simple alcanza una concentración del 50%, se pueden producir síntomas apreciables. Una concentración del 75% es fatal en cuestión de minutos.

Síntomas: Los primeros síntomas producidos por un asfixiante simple son respiración rápida y hambre de aire. La alerta mental disminuye y la coordinación muscular se ve perjudicada. El juicio se vuelve imperfecto y todas las sensaciones se deprimen. Normalmente resulta en inestabilidad emocional y la fatiga se presenta rápidamente. A medida que la asfixia progresa, pueden presentarse náuseas y vómitos, postración y pérdida de consciencia, y fianlmente convulsiones, coma profundo y muerte.

Page 167: elemtos

Efectos ambientales del NeónEl neón es un gas raro atmosférico, y como tal no es tóxico y es químicamente inerte.

No se conoce ningún daño ecológico causado por este elemento

Níquel - Ni

Propiedades químicas del Níquel- Efectos del Níquel sobre la salud - Efectos ambientales del

NíquelNombre Níquel

Número atómico 28

Valencia 2,3

Estado de oxidación +2

Electronegatividad 1,8

Radio covalente (Å) 1,21

Radio iónico (Å) 0,78

Radio atómico (Å) 1,24

Configuración electrónica [Ar]3d84s2

Primer potencial de ionización (eV) 7,68

Masa atómica (g/mol) 58,71

Densidad (g/ml) 8,9

Page 168: elemtos

Punto de ebullición (ºC) 2730

Punto de fusión (ºC) 1453

Descubridor Alex Constedt 1751

NíquelSímbolo Ni, número atómico 28, metal duro, blanco plateado, dúctil y maleable. La masa atómica del níquel presente en la naturaleza es 58.71.

El níquel tiene cinco isótopos naturales con masas atómicas de 58, 60, 61, 62, 64. También se han identificado siete isótopos radiactivos, con números de masa de 56, 57, 59, 63, 65, 66 y 67.

La mayor parte del níquel comercial se emplea en el acero inoxidable y otras aleaciones resistentes a la corrosión. También es importante en monedas como sustituto de la plata. El níquel finamente dividido se emplea como catalizador de hidrogenación.

El níquel es un elemento bastante abundante, constituye cerca de 0.008% de la corteza terrestre y 0.01% de las rocas ígneas. En algunos tipos de meteoritos hay cantidades apreciables de níquel, y se piensa que existen grandes cantidades en el núcleo terrestre. Dos minerales importantes son los sulfuros de hierro y níquel, pentlandita y pirrotita (Ni, Fe)xSy; el mineral garnierita, (Ni, Mg)SiO3.nH2O, también es importante en el comercio. El níquel se presenta en pequeñas cantidades en plantas y animales. Está presente en pequeñas cantidades en el agua de mar, el petróleo y en la mayor parte del carbón.

El níquel metálico es fuerte y duro (3.8 en la escala de Mohs), Cuando está finamente dividido, es de color negro. La densidad del níquel es 8.90 veces la del agua a 20ºC (68ºF); se funde a 1455ºC (2651ºF) y hierve a 2840ºC (5144ºF); es sólo moderadamente reactivo. Resiste la corrosión alcalina y no se inflama en trozos grandes, pero los alambres muy finos pueden incendiarse. Está por encima del hidrógeno en la serie electroquímica; se disuelve con lentitud en ácidos diluidos liberando hidrógeno. En forma metálica es un agente reductor fuerte.

El níquel es dipositivo en sus compuestos, pero también puede existir en los estados de oxidación 0, 1+, 3+, 4+. Además de los compuestos simples o sales, el níquel forma una variedad de compuestos de coordinación o complejos. La mayor parte de los compuestos de níquel son verdes o azules a causa de la hidratación o de la unión de otros ligandos al metal.

Page 169: elemtos

El ion níquel presente en soluciones acuosas de compuestos simples es a su vez un complejo, el [Ni(H2O)6]2+.

Efectos del Níquel sobre la saludEl níquel es un elemento que ocurre en el ambiente sólo en muy pequeños niveles. Los humanos usan el níquel para muchas aplicaciones diferentes. La aplicación más común del níquel es el uso como ingrediente del acero y otros productos metálicos. Este puede ser encontrado en productos metálicos comunes como es la joyería.

Los alimentos naturalmente contienen pequeñas cantidades de níquel. El chocolate y las grasas son conocidos por contener altas cantidades. El níquel es tomado y este aumentará cuando la gente come grandes cantidades de vegetales procedentes de suelos contaminados. Es conocido que las plantas acumulan níquel y como resultado la toma de níquel de los vegetales será eminente. Los fumadores tiene un alto grado de exposición al níquel a través de sus pulmones. Finalmente, el níquel puede ser encontrado en detergentes. Los humanos pueden ser expuestos al níquel al respirar el aire, beber agua, comer comida o fumar cigarrillos. El contacto de la piel con suelo contaminado por níquel o agua puede también resultar en la exposición al níquel. En pequeñas cantidades el níquel es esencial, pero cuando es tomado en muy altas cantidades este puede ser peligroso par la salud humana.

La toma de altas cantidades de níquel tienen las siguientes consecuencias:

Elevadas probabilidades de desarrollar cáncer de pulmón, nariz, laringe y próstata. Enfermedades y mareos después de la exposición al gas de níquel. Embolia de pulmón. Fallos respiratorios. Defectos de nacimiento. Asma y bronquitis crónica. Reacciones alérgicas como son erupciones cutáneas, mayormente de las joyas. Desordenes del corazón.

Efectos ambientales del NíquelEl níquel es liberado al aire por las plantas de energía y las incineradoras de basuras. Este se depositará en el suelo o caerá después de reaccionar con las gotas de lluvia. Usualmente lleva un largo periodo de tiempo para que el níquel sea eliminado del aire. El níquel puede también terminar en la superficie del agua cuando es parte de las aguas residuales. La mayor parte de todos los compuestos del níquel que son liberados al ambiente se absorberán por los sedimentos o partículas del suelo y llegará a inmovilizarse. En suelos ácidos, el níquel se une para llegar a ser más móvil y a menudo alcanza el agua subterránea.

No hay mucha más información disponible sobre los efectos del níquel sobre los organismos y los humanos. Sabemos que altas concentraciones de níquel en suelos arenosos puede claramente dañar a las plantas y altas concentraciones de níquel en aguas superficiales

Page 170: elemtos

puede disminuir el rango de crecimiento de las algas. Microorganismos pueden también sufrir una disminución del crecimiento debido a la presencia de níquel, pero ellos usualmente desarrollan resistencia al níquel. Para los animales el níquel, es un elemento esencial en pequeñas cantidades. Pero el níquel no es sólo favorable como elemento esencial; puede ser también peligroso cuando se excede la máxima cantidad tolerable. Esto puede causar varios tipos de cánceres en diferentes lugares de los cuerpos de los animales, mayormente en aquellos que viven cerca de refinerías. No es conocido que el níquel se acumule en plantas o animales. Como resultado el níquel no se biomagnifica en la cadena alimentaria

Nobelio - No

Propiedades químicas del Nobelio - Efectos del Nobelio sobre la salud - Efectos ambientales del

NobelioNombre Nobelio

Número atómico 102

Valencia -

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Rn]5f147s2

Primer potencial de ionización (eV) -

Masa atómica (g/mol) 259

Densidad (g/ml) -

Page 171: elemtos

Punto de ebullición (ºC) -

Punto de fusión (ºC) -

Descubridor "Nobel Institute for Physics" en 1957

NobelioSímbolo No, número atómico 102. Es un elemento sintético producido en el laboratorio. Su decaimiento se realiza por emisión de partículas alfa, es decir, un ion de helio doblemente cargado. Hasta la fecha sólo se han producido cantidades atómicas del elemento. El nobelio es el décimo elemento más pesado que el uranio producido sintéticamente y el decimotercer miembro de los actínidos, serie de elementos parecidos a las tierras raras.

Efectos del Nobelio sobre la salud

El nobelio no se da en la naturaleza. Todavía no ha sido encontrado en la corteza terrestre, y es tan inestable que cualquier cantidad formada se descompondría en otros elementos muy rápidamente. Por tanto, no existe motivo para considerar sus efectos sobre la salud.

Efectos ambientales del NobelioDebido a su vida media tan extremadamente corta, no existe razón para considerar las efectos del nobelio sobre el medio ambiente

Neptunio - Np

Propiedades químicas del Neptunio - Efectos del Neptunio sobre la salud - Efectos ambientales del

NeptunioNombre Neptunio

Page 172: elemtos

Número atómico 93

Valencia 3,4,5,6

Estado de oxidación +3

Electronegatividad 1,3

Radio covalente (Å) -

Radio iónico (Å) 1,09

Radio atómico (Å) 1,56

Configuración electrónica [Rn]5f46d17s2

Primer potencial de ionización (eV) -

Masa atómica (g/mol) 237

Densidad (g/ml) 19,5

Punto de ebullición (ºC) -

Punto de fusión (ºC) 637

Descubridor McMillan en 1940

NeptunioElemento químico, símbolo Np, número atómico 93. El neptunio es un miembro de los actínidos o de la serie de elementos 5f. Fue sintetizado como el primer elemento transuránico en 1940 por bombardeo de uranio con neutrones para producir neptunio 239. Desde el punto

Page 173: elemtos

de vista químico es importante el isótopo más ligero 237Np, emisor alfa de larga vida, con una vida media de 2.14 x 106 años.

El neptunio metálico es dúctil, con bajo punto de fusión (637ºC o 1179ºF), y en su forma alfa es de alta densidad, 20.45 g/cm3 (11.82oz/in3). Puede decirse que la química del neptunio es intermedia entre la del uranio y la del plutonio. El neptunio metálico es reactivo y forma muchos compuestos binarios; por ejemplo, con hidrógeno, carbono, nitrógeno, fósforo, oxígeno, azufre y los halógenos.

Efectos del Neptunio sobre la saludPosibles efectos sobre la salud: Cáncer de huesos.

Órgano que recibe la dosis principal: El tracto gastrointestinal.

La mayor parte del neptunio que se retiene en el cuerpo se deposita en los huesos. Algo es también retenido en el hígado. Unos cuantos estudios informan de “concentraciones relativamente altas” de neptunio en las glándulas de los animales de laboratorio. No se ha observado en los seres humanos efectos sobre la salud específicos de la exposición al neptunio. Roy C. Thompson, departamento de biología del laboratorio de Battelle Pacific Northwest, en Richland, E.E.U.U., condujo un resumen extensivo de los estudios relacionados con en neptunio. Este resumen incluyó estudios rusos que encontraron un aumento de los tumores de hueso en animales que recibieron dosis en los huesos de solamente unos pocos rad. Thompson concluyó que “puede haber poca duda” de que el neptunio causa cáncer de huesos.

En 1984, un equipo de científicos alemanes informó de resultados preliminares de un experimento con ratones diseñado para medir el efecto combinado del depósito de neptunio 239 en los huesos y la desintegración a plutonio 239. Estos resultados iniciales encontraron evidencia de que el incremento de plutonio 239 (al desintegrarse el neptunio) aumentaba el número de tumores de hueso comparado con aquellos que se esperaban debidos a la exposición al neptunio solamente.

Efectos ambientales del Neptunio

No se ha informado de efectos del neptunio sobre el medio ambiente. Si usted dispone de alguna información al respecto, por favor contacte con nosotros y díganoslo

Page 174: elemtos

Oxígeno - O

Propiedades químicas del Oxígeno - Efectos del Oxígeno sobre la salud - Efectos ambientales del

OxígenoNombre Oxígeno

Número atómico 8

Valencia 2

Estado de oxidación - 2

Electronegatividad 3,5

Radio covalente (Å) 0,73

Radio iónico (Å) 1,40

Radio atómico (Å) -

Configuración electrónica 1s22s22p4

Primer potencial de ionización (eV) 13,70

Masa atómica (g/mol) 15,9994

Densidad (kg/m3) 1.429

Punto de ebullición (ºC) -183

Punto de fusión (ºC) -218,8

Descubridor Joseph Priestly 1774

Page 175: elemtos

OxígenoElemento químico gaseoso, símbolo O, número atómico 8 y peso atómico 15.9994. Es de gran interés por ser el elemento esencial en los procesos de respiración de la mayor parte de las células vivas y en los procesos de combustión. Es el elemento más abundante en la corteza terrestre. Cerca de una quinta parte (en volumen) del aire es oxígeno.

Existen equipos capaces de concentrar el oxígeno del aire. Son los llamados generadores o concentradores de oxígeno, que son los utilizados en los bares de oxígeno.

El oxígeno gaseoso no combinado suele existir en forma de moléculas diatómicas, O2, pero también existe en forma triatómica, O3, llamada ozono.

El oxígeno se separa del aire por licuefacción y destilación fraccionada. Las principales aplicaciones del oxígeno en orden de importancia son: 1) fundición, refinación y fabricación de acero y otros metales; 2) manufactura de productos químicos por oxidación controlada; 3) propulsión de cohetes; 4) apoyo a la vida biológica y medicina, y 5) minería, producción y fabricación de productos de piedra y vidrio.

Existen equipos generadores de ozono, los cuales son usados para oxidación de materias, para ozonización de piscinas...

En condiciones normales el oxígeno es un gas incoloro, inodoro e insípido; se condensa en un líquido azul claro. El oxígeno es parte de un pequeño grupo de gases ligeramente paramagnéticos, y es el más paramagnético de este grupo. El oxígeno líquido es también ligeramente paramagnético.

Casi todos los elementos químicos, menos los gases inertes, forman compuestos con el oxígeno. Entre los compuestos binarios más abundantes de oxígeno están el agua, H2O, y la sílica, SiO2; componente principal de la arena. De los compuestos que contienen más de dos elementos, los más abundantes son los silicatos, que constituyen la mayor parte de las rocas y suelos. Otros compuestos que abundan en la naturaleza son el carbonato de calcio (caliza y mármol), sulfato de calcio (yeso), óxido de aluminio (bauxita) y varios óxidos de hierro, que se utilizan como fuente del metal.

Page 176: elemtos

Efectos del Oxígeno sobre la saludTodo ser humano necesita oxígeno para respirar, pero como ocurre con mucahs sustancias un exceso de oxígeno no es bueno. Si uno se expone a grandes cantidades de oxígeno durante mucho tiempo, se pueden producir daños en los pulmones. Respirar un 50-100% de oxígeno a presión normal durante un periodo prolongado provoca daños en los pulmones. Las personas que en su trabajo sufren exposiciones frecuentes o potencialmente elevadas a oxígeno puro, deben hacerse un chequeo de funcionamiento pulmonar antes y después de desempeñar ese trabajo. El oxígeno es normalmente almacenado a temperaturas muy bajas y por lo tanto se deben usar ropas especiales para prevenir la congelación de los tejidos corporales.

Efectos ambientales del OxígenoNo ha sido constatado ningún efecto negativo del oxígeno en el medio ambiente

Osmio - Os

Propiedades químicas del Osmio - Efectos del Osmio sobre la salud - Efectos ambientales del

OsmioNombre Osmio

Número atómico 76

Valencia 2,3,4,6,8

Estado de oxidación +4

Electronegatividad 2,2

Radio covalente (Å) 1,28

Radio iónico (Å) 0,67

Radio atómico (Å) 1,35

Configuración electrónica [Xe]4f145d66s2

Page 177: elemtos

Primer potencial de ionización (eV) 8,77

Masa atómica (g/mol) 190,2

Densidad (g/ml) 22,6

Punto de ebullición (ºC) 5500

Punto de fusión (ºC) 3000

Descubridor Smithson Tennant en 1803

OsmioElemento químico, símbolo Os, número atómico 76 y peso atómico 190.2. Es un metal duro, blanco, que aparece rara vez en la naturaleza.

El osmio, al igual que otros metales como el platino, es activo catalíticamente. El tetróxido de osmio se emplea como reactivo orgánico y colorante para observar tejidos al microscopio. Las aleaciones de osmio con rodio, rutenio, iridio o platino se utilizan en plumines de estilográficas, puntas de compases, agujas fonográficas, contactos eléctricos y pivotes de instrumentos, debido a su extrema dureza y resistencia a la corrosión.

La química del osmio es muy complicada por las muchas valencias exhibidas por el elemento y la tendencia de cada una de ellas a formar muchos iones complejos. El osmio es un metal muy duro y sus aleaciones son de gran resistencia. El osmio puro y las aleaciones en que predomina no se pueden trabajar, por lo que deben emplearse en forma fundida o mediante metalurgia de polvos.

El tetracloruro de osmio, OsCl4, es un sólido negro insoluble en ácidos no oxidantes. El tetróxido de osmio, OsO4, es un sólido cristalino de color amarillo muy pálido con punto de fusión de 40ºC (104ºF) y punto de ebullición de 130ºC (266ºF); es el compuesto más importante del osmio. Este compuesto, muy venenoso, es soluble en agua y en tetracloruro de carbono. Es un agente oxidante poderoso.

Efectos del Osmio sobre la salud

Page 178: elemtos

El tetróxido de osmio, OsO4, es altamente tóxico. Concentraciones en el aire tan bajas como 10-7 g/m3 pueden provocar congestión pulmonar, daños cutáneos, y graves daños oculares. El óxido, en particular, debe ser manejado solamente por químicos debidamente cualificados.

El tetróxido de osmio puede ser absorbido en el cuerpo por inhalación de su vapor, inhalación de su aerosol e ingestión.

Riesgo de inhalación: Se puede alcanzar rápidamente una contaminación peligrosa en el aire por evaporación de esta sustancia a 20°C.

Inhalación: Sensación de quemadura, tos, dolor de cabeza, respiración sibilante, falta de aliento, alteraciones visuales. Los síntomas pueden aparecer con retraso. Piel: Enrojecimiento, quemaduras cutáneas, dolor, decoloración cutánea, ampollas. Ojos: Enrojecimiento, dolor, visión borrosa, pérdida de visión, graves quemaduras profundas. Ingestión: Calambres abdominales, sensación de quemadura, conmoción o colapso.

Riesgos químicos: El osmio se descompone en vapores de osmio productores de calor. El osmio es un fuerte oxidante y reacciona con combustibles y materiales reductores. Reacciona con el ácido hidroclórico para formas gas tóxico de cloro. Forma compuestos inestables con las bases.

Efectos de la exposición a largo plazo: Lagrimeo. El osmio es corrosivo para los ojos, la piel y el tracto respiratorio. La inhalación del osmio puede provocar edema pulmonar. La exposición a elevadas concentraciones puede resultar en la muerte. Los efectos pueden presentarse con retraso.

Efectos de la exposición prolongada o repetida: El contacto repetido o prolongado con la piel puede causar dermatitis. Puede tener efectos en los riñones.

Efectos ambientales del OsmioNo se ha encontrado información relativa a los efectos del osmio sobre el medio ambiente. Sin embargo, se espera que su ecotoxicidad sea muy baja debido a su fuerza como oxidante, lo que le hace ser fácilmente convertido en su dióxido, una forma del metal que es razonablemente inocua

Fósforo - P

Propiedades del Fósforo - Efectos del Fósforo sobre la salud - Efectos ambientales del Fósforo

 

Page 179: elemtos

Nombre Fósforo

Número atómico 15

Valencia +3,-3,5,4

Estado de oxidación +5

Electronegatividad 2,1

Radio covalente (Å) 1,06

Radio iónico (Å) 0,34

Radio atómico (Å) 1,28

Configuración electrónica [Ne]3s23p3

Primer potencial de ionización (eV) 11,00

Masa atómica (g/mol) 30,9738

Densidad (g/ml) 1,82

Punto de ebullición (ºC) 280

Punto de fusión (ºC) 44,2

Descubridor Hennig Brandt en 1669

FósforoSímbolo P, número atómico 15, peso atómico 30.9738. El fósforo forma la base de gran número de compuestos, de los cuales los más importantes son los fosfatos. En todas las

Page 180: elemtos

formas de vida, los fosfatos desempeñan un papel esencial en los procesos de transferencia de energía, como el metabolismo, la fotosíntesis, la función nerviosa y la acción muscular. Los ácidos nucleicos, que entre otras cosas forman el material hereditario (los cromosomas), son fosfatos, así como cierto número de coenzimas. Los esqueletos de los animales están formados por fosfato de calcio.

Cerca de tres cuartas partes del fósforo total (en todas sus formas químicas) se emplean en Estados Unidos como fertilizantes. Otras aplicaciones importantes son como relleno de detergentes, nutrientes suplementarios en alimentos para animales, ablandadores de agua, aditivos para alimentos y fármacos, agentes de revestimiento en el tratamiento de superficies metálicas, aditivos en metalurgia, plastificantes, insecticidas y aditivos de productos petroleros.

De casi 200 fosfatos minerales diferentes, sólo uno, la fluoropatita, Ca5F(PO4)3, se extrae esencialmente de grandes depósitos secundarios originados en los huesos de animales y que se hallan en el fondo de mares prehistóricos, y de los guanos depositados sobre rocas antiguas.

La investigación de la química del fósforo indica que pueden existir tantos compuestos basados en el fósforo como los de carbono. En química orgánica se acostumbra agrupar varios compuestos químicos dentro de familias llamadas series homólogas.

Esto también puede hacerse en la química de los compuestos de fósforo, aunque muchas familias están incompletas. La familia mejor conocida de estos compuestos es el grupo de cadenas de fosfatos. Las sales de fosfatos constan de cationes, como el sodio, junto con cadenas de aniones, como (PnO3n+1)(n+2)-, que pueden tener de 1 a 1 000 000 de átomos de fósforo por anión.

Los fosfatos se basan en átomos de fósforo rodeados en una disposición tetraédrica por átomos de oxígeno, el miembro más pequeño de la familia es el anión simple PO3-

4 (el ion ortofosfato). La familia de las cadenas de fosfato se basa en hileras alternadas de átomos de fósforo y oxígeno en que cada átomo de fósforo permanece en el centro de un tetraedro de cuatro átomos de oxígeno. Hay también una familia estrechamente relacionada de fosfatos cíclicos.

Una característica estructural interesante de muchos de los compuestos del fósforo conocidos es la formación de estructuras tipo jaula. Ejemplos de estas moléculas son el fósforo blanco, P4, y uno de los pentóxidos de fósforo, P4O10. Las estructuras tipo red son comunes; por ejemplo, los cristales de fósforo negro en que los átomos están enlazados unos con otros.

En la mayor parte de sus compuestos, el fósforo está enlazado químicamente a cuatro átomos inmediatos. Hay gran número de compuestos en los que uno de los cuatro átomos está ausente y en su lugar hay un par de electrones no compartidos.

Hay también unos cuantos compuestos con cinco o seis átomos unidos al fósforo; son muy reactivos y tienden a ser inestables. Durante los años 60 y 70, se prepararon muchos compuestos orgánicos de fósforo. La mayor parte de estas estructuras químicas incluye tres o

Page 181: elemtos

cuatro átomos enlazados al fósforo, pero existen también estructuras con dos, cinco o seis átomos unidos a cada átomo de fósforo.

Casi todo el fósforo utilizado en el comercio está en forma de fosfatos. La mayor parte de los fertilizantes fosfatados constan de ortofosfato diácido de calcio u otofosfato ácido de calcio muy impuros, Ca(H2PO4)2 y CaHPO4. Estos fosfatos son sales del ácido ortofosfórico.

El compuesto de fósforo de mayor importancia biológica es el adenosintrifosfato (ATP), que es un éster de la sal, el tripolifosfato de sodio, muy utilizado en detergentes y ablandadores de agua. Casi todas las reacciones en el metabolismo y la fotosíntesis requieren la hidrólisis de este tripolifosfato hasta su derivado pirofosfato, llamado adenosindifosfato (ADP).

Efectos del Fósforo sobre la saludEl Fósforo puede ser encontrado en el ambiente más comúnmente como fosfato. Los fosfatos son substancias importantes en el cuerpo de los humanos porque ellas son parte del material de ADN y tienen parte en la distribución de la energía. Los fosfatos pueden ser encontrados comúnmente en plantas. Los humanos han cambiado el suministro natural de fósforo radicalmente por la adición de estiércol ricos en fosfatos. El fosfato era también añadido a un número de alimentos, como quesos, salsas, jamón. Demasiado fosfato puede causar problemas de salud, como es daño a los riñones y osteoporosis. La disminución de fosfato también puede ocurrir. Estas son causadas por uso extensivo de medicinas. Demasiado poco fosfato puede causar problemas de salud.

El Fósforo en su forma pura tiene un color blanco. El fósforo blanco es la forma más peligrosa de fósforo que es conocida. Cuando el fósforo blanco ocurre en la naturaleza este puede ser un peligro serio para nuestra salud. El fósforo blanco es extremadamente venenoso y en muchos casos la exposición a él será fatal. En la mayoría de los casos la gente que muere por fósforo blanco ha sido por tragar accidentalmente veneno de rata. Antes de que la gente muera por exposición al fósforo blanco ellos a menudo experimentan náuseas, convulciones en el estómago y desfallecimiento. El fósforo blanco puede causar quemaduras en la piel, dañar el hígado, corazón y riñones.

Efectos ambientales del FósforoFósforo blanco: El fósforo blanco estra en el ambiente cuando es usado en industrias para hacer otros productos químicos y cuando el ejército lo usa como munición. A través de descargas de aguas residuales el fósforo blanco termina en las aguas superficiales cerca de las fábricas donde es usado.

El fósforo blanco no es probablemente esparcido, porque este reacciona con el oxígeno bastante rápido.

Cuando el fósforo termina en el aire a través de los tubos de escape este teminará usualmente reaccionando con el oxígeno al instante para convertirse en partículas menos

Page 182: elemtos

peligrosas. Pero en suelos profundos y en el fondo de los ríos y lagos el fósforo puede permanecer miles de años y más.

Fosfatos: Los fosfatos tienen muchos efectos sobre los organismos. Los efectos son mayormente consecuencias de las emisiones de grandes cantidades de fosfatos en el ambiente debido a la minería y los cultivos. Durante la purificación del agua los fosfatos no son a menudo eliminado correctamente, así que pueden expandirse a través de largas distancias cuando se encuentran en la superficie de las aguas.

Debido a la constante adición de fosfatos por los humanos y que exceden las concentraciones naturales, el ciclo del fósforo es interrumpido fuertemente.

El incremento de la concentración de fósforo en las aguas superficiales aumenta el crecimiento de organismos dependientes del fósforo, como son las algas. Estos organismos usan grandes cantidades de oxígeno y previenen que los rayos de sol entren en el agua. Esto hace que el agua sea poco adecuada para la vida de otros organismos. El fenómeno es comúnmente conocido como eutrofización

Protactinio - Pa

Propiedades químicas del Protactinio - Efectos del Protactinio sobre la salud - Efectos ambientales del

ProtactinioNombre Protactinio

Número atómico 91

Valencia 4,5

Estado de oxidación +4

Electronegatividad 1,5

Radio covalente (Å) -

Radio iónico (Å) 0,91

Radio atómico (Å) 1,63

Configuración electrónica [Rn]5f26d17s2

Page 183: elemtos

Primer potencialde ionización (eV) -

Masa atómica (g/mol) 231

Densidad (g/ml) 15,4

Punto de ebullición (ºC) -

Punto de fusión (ºC) 1230

DescubridorK. Kajans y O.H. Gohring en 1913

ProtactinioSímbolo Pa, número atómico 91. Los isótopos con número de masa 216, 217 y 222-238 son radiactivos. Sólo 231Pa, 234Pa y 234mPa están presentes en la naturaleza. El más importante de ellos es el 231Pa, emisor alfa con una vida media de 32 500 años. El isótopo artificial 233Pa es intermediario importante en la producción del 233U fisionable. Tanto el 231Pa como el233Pa pueden sintetizarse por irradiación neutrónica del torio.

El protactinio es, desde el punto de vista formal, el tercer miembro de los actínidos y el primero en el que aparecen electrones 5f, pero su comportamiento químico en solución acuosa se asemeja al del tántalo y del niobio más que al de los otros actínidos.

Le protactinio metálico es plateado, maleable y dúctil. Las muestras expuestas al aire a la temperatura ambiente evidencian poco o ningún deslustre al cabo de varios meses. Los muchos compuestos del protactinio que se han preparado y caracterizado son óxidos binarios y polinarios, halogenuros, oxihalogenuros, sulfatos, oxisulfatos, sulfatos dobles, oxinitratos, selenatos, carburos, compuestos organometálicos y aleaciones con metales nobles.

Efectos del Protactinio sobre la saludEl protactinio puede ser tomado por el cuerpo mediante la ingestión de comida, agua o respiración de aire. Cuando se inhala el protactinio, una fracción significante puede moverse

Page 184: elemtos

desde los pulmones a través de la sangre hasta otros órganos, dependiendo de la solubilidad del compuesto.

La absorción gastrointestinal de la comida o el agua es una fuente probable de la deposición interna de protactinio en la población general. La mayor parte del protactinio tomado por ingestión dejará prontamente el cuerpo con las heces; solo alrededor del 0,05 % de la cantidad ingerida es absorbida del tracto intestinal en el flujo sanguíneo. Después de dejar el intestino o el pulmón, alrededor del 40 % del protactinio que entra en el flujo sanguíneo se deposita en el esqueleto, alrededor del 15 % en el hígado, alrededor del 2 % en los riñones, y el resto es excretado. La vida media biológica en el esqueleto es de alrededor de 50 años. Del protactinio depositado en el hígado, se asume que el 70 % es retenido con una vida biológica media de 10 días, teniendo el 30 % restante una vida biológica media de 60 días. Del protactinio depositado en los riñones, se asume que el 20 % es retenido con una vida biológica de 10 días, teniendo el restante 80 % una redistribución biológica media.

Principales efectos sobre la salud: El protactinio es generalmente un peligro para la salud solamente si entra en el cuerpo, aunque existe un pequeño riesgo externo asociado con los rayos gamma emitidos por el protactinio 231 y una serie de productos de vida corta de la desintegración del protactinio 227. Los principales medios de exposición son la ingestión de comida y agua que contenga protactinio y la inhalación de polvo contaminado con protactinio. La ingestión es generalmente la exposición más preocupante a menos que haya una fuente cercana de aire contaminado con el polvo. Debido a que el protactinio es tomado por el cuerpo más fácilmente si es inhalado que si es ingerido, ambas vías de exposición pueden ser importantes.

La mayor preocupación para la salud es el cáncer resultante de la radiación ionizante emitida por el protactinio depositado den el esqueleto, hígado y riñones. Los riesgos para la salud asociados con el protactinio 234m son incluidos con aquellos del uranio 238. El protactinio 234m se desintegra emitiendo una partícula beta de alta energía por lo que se deben tomar precauciones contra esta radiación cuando se maneje el uranio; por ejemplo, se usan duros guantes de goma para proteger las manos y los brazos.

El riesgo de inhalación del protactinio 231 es uno de los más altos de entre todos los radionucleidos. El actino 227 y sus productos de desintegración son los responsables de más del 80 % de este riesgo de inhalación. Mientras que el factor de riesgo de ingestión es mucho más bajo que por inhalación, la ingestión es generalmente la forma más común de entrada en el cuerpo.

Parecido a otros radionucleidos, el coeficiente de riesgo para el agua del grifo es del 75 % del de la ingestión con la dieta.

Además del riesgo por exposición interna, hay un riesgo de exposición externa a los rayos gamma del protactinio 231.

Efectos ambientales del Protactinio

Page 185: elemtos

El protactinio está presente en la naturaleza en el suelo, las rocas, las aguas superficiales, subterráneas, plantas y animales en muy bajas concentraciones, del orden de una parte por trillón, o 0,1 picocurios (pCi)/g. Mayores niveles están presentes en los minerales de uranio y otros materiales geológicos. Esencialmente todo el protactinio de ocurrencia natural está presente como protactinio 231.

El protactinio se adhiere preferentemente bien al suelo, y la concentración asociada con partículas arenosas del suelo es normalmente 550 veces más alta que en el agua intersticial (el agua en el espacio que hay entre las partículas del suelo); las proporciones de concentración son incluso mayores (sobre 2.000 y más) en suelos de margas y arcillas.

El protactinio generalmente no es un contaminante importante para los DOE (Departamentos de Energía) y no es de preocupar para las aguas subterráneas

Plomo - Pb

Propiedades químicas del Plomo - Efectos del Plomo sobre la salud - Efectos ambientales del

PlomoNombre Plomo

Número atómico 82

Valencia 2,4

Estado de oxidación +2

Electronegatividad 1,9

Radio covalente (Å) 1,47

Radio iónico (Å) 1,20

Radio atómico (Å) 1,75

Configuración electrónica [Xe]4f145d106s26p2

Primer potencial de ionización (eV) 7,46

Masa atómica (g/mol) 207,19

Densidad (g/ml) 11,4

Page 186: elemtos

Punto de ebullición (ºC) 1725

Punto de fusión (ºC) 327,4

Descubridor Los antiguos

PlomoElemento químico, Pb, número atómico 82 y peso atómico 207.19. El plomo es un metal pesado (densidad relativa, o gravedad específica, de 11.4 s 16ºC (61ºF)), de color azuloso, que se empaña para adquirir un color gris mate. Es flexible, inelástico, se funde con facilidad, se funde a 327.4ºC (621.3ºF) y hierve a 1725ºC (3164ºF). Las valencias químicas normales son 2 y 4. Es relativamente resistente al ataque de los ácidos sulfúrico y clorhídrico. Pero se disuelve con lentitud en ácido nítrico. El plomo es anfótero, ya que forma sales de plomo de los ácidos, así como sales metálicas del ácido plúmbico. El plomo forma muchas sales, óxidos y compuestos organometálicos.

Industrialmente, sus compuestos más importantes son los óxidos de plomo y el tetraetilo de plomo. El plomo forma aleaciones con muchos metales y, en general, se emplea en esta forma en la mayor parte de sus aplicaciones. Todas las aleaciones formadas con estaño, cobre, arsénico, antimonio, bismuto, cadmio y sodio tienen importancia industrial.

Los compuestos del plomo son tóxicos y han producido envenenamiento de trabajadores por su uso inadecuado y por una exposición excesiva a los mismos. Sin embargo, en la actualidad el envenenamiento por plomo es raro en virtud e la aplicación industrial de controles modernos, tanto de higiene como relacionados con la ingeniería. El mayor peligro proviene de la inhalación de vapor o de polvo. En el caso de los compuestos organoplúmbicos, la absorción a través de la piel puede llegar a ser significativa. Algunos de los síntomas de envenenamiento por plomo son dolores de cabeza, vértigo e insomnio. En los casos agudos, por lo común se presenta estupor, el cual progresa hasta el coma y termina en la muerte. El control médico de los empleados que se encuentren relacionados con el uso de plomo comprende pruebas clínicas de los niveles de este elemento en la sangre y en la orina. Con un control de este tipo y la aplicación apropiada de control de ingeniería, el envenenamiento industrial causado por el plomo puede evitarse por completo.

Page 187: elemtos

El plomo rara vez se encuentra en su estado elemental, el mineral más común es el sulfuro, la galeana, los otros minerales de importancia comercial son el carbonato, cerusita, y el sulfato, anglesita, que son mucho más raros. También se encuentra plomo en varios minerales de uranio y de torio, ya que proviene directamente de la desintegración radiactiva (decaimiento radiactivo). Los minerales comerciales pueden contener tan poco plomo como el 3%, pero lo más común es un contenido de poco más o menos el 10%. Los minerales se concentran hasta alcanzar un contenido de plomo de 40% o más antes de fundirse.

El uso más amplio del plomo, como tal, se encuentra en la fabricación de acumuladores. Otras aplicaciones importantes son la fabricación de tetraetilplomo, forros para cables, elementos de construcción, pigmentos, soldadura suave y municiones.

Se están desarrollando compuestos organoplúmbicos para aplicaciones como son la de catalizadores en la fabricación de espuma de poliuretano, tóxicos para las pinturas navales con el fin de inhibir la incrustación en los cascos, agentes biocidas contra las bacterias grampositivas, protección de la madera contra el ataque de los barrenillos y hongos marinos, preservadores para el algodón contra la descomposición y el moho, agentes molusquicidas, agentes antihelmínticos, agentes reductores del desgaste en los lubricantes e inhibidores de la corrosión para el acero.

Merced a su excelente resistencia a la corrosión, el plomo encuentra un amplio uso en la construcción, en particular en la industria química. Es resistente al ataque por parte de muchos ácidos, porque forma su propio revestimiento protector de óxido. Como consecuencia de esta característica ventajosa, el plomo se utiliza mucho en la fabricación y el manejo del ácido sulfúrico.

Durante mucho tiempo se ha empleado el plomo como pantalla protectora para las máquinas de rayos X. En virtud de las aplicaciones cada vez más amplias de la energía atómica, se han vuelto cada vez más importantes las aplicaciones del plomo como blindaje contra la radiación.

Su utilización como forro para cables de teléfono y de televisión sigue siendo una forma de empleo adecuada para el plomo. La ductilidad única del plomo lo hace particularmente apropiado para esta aplicación, porque puede estirarse para formar un forro continuo alrededor de los conductores internos.

El uso del plomo en pigmentos ha sido muy importante, pero está decreciendo en volumen. El pigmento que se utiliza más, en que interviene este elemento, es el blanco de plomo 2PbCO3.Pb(OH)2; otros pigmentos importantes son el sulfato básico de plomo y los cromatos de plomo.

Se utilizan una gran variedad e compuestos de plomo, como los silicatos, los carbonatos y sales de ácidos orgánicos, como estabilizadores contra el calor y la luz para los plásticos de cloruro de polivinilo. Se usan silicatos de plomo para la fabricación de fritas de vidrio y de cerámica, las que resultan útiles para introducir plomo en los acabados del vidrio y de la cerámica. El azuro de plomo, Pb(N3)2, es el detonador estándar par los explosivos. Los arsenatos de plomo se emplean en grandes cantidades como insecticidas para la protección

Page 188: elemtos

de los cultivos. El litargirio (óxido de plomo) se emplea mucho para mejorar las propiedades magnéticas de los imanes de cerámica de ferrita de bario.

Asimismo, una mezcla calcinada de zirconato de plomo y de titanato de plomo, conocida como PZT, está ampliando su mercado como un material piezoeléctrico.

Efectos del Plomo sobre la saludEl Plomo es un metal blando que ha sido conocido a través de los años por muchas aplicaciones. Este ha sido usado ampliamente desde el 5000 antes de Cristo para aplicaciones en productos metálicos, cables y tuberías, pero también en pinturas y pesticidas. El plomo es uno de los cuatro metales que tienen un mayor efecto dañino sobre la salud humana. Este puede entrar en el cuerpo humano a través de la comida (65%), agua (20%) y aire (15%).

Las comidas como fruta, vegetales, carnes, granos, mariscos, refrescos y vino pueden contener cantidades significantes de Plomo. El humo de los cigarros también contiene pequeñas cantidades de plomo.

El Plomo puede entrar en el agua potable a través de la corrosión de las tuberías. Esto es más común que ocurra cuando el agua es ligeramente ácida. Este es el porqué de los sistemas de tratamiento de aguas públicas son ahora requeridos llevar a cabo un ajuste de pH en agua que sirve para el uso del agua potable. Que nosotros sepamos, el Plomo no cumple ninguna función esencial en el cuerpo humano, este puede principalmente hacer daño después de ser tomado en la comida, aire o agua.

El Plomo puede causar varios efectos no deseados, como son:

Perturbación de la biosíntesis de hemoglobina y anemia Incremento de la presión sanguínea Daño a los riñones Abortos y abortos sutíles Perturbación del sistema nervioso Daño al cerebro Disminución de la fertilidad del hombre a través del daño en el esperma Disminución de las habilidades de aprendizaje de los niños Perturbación en el comportamiento de los niños, como es agresión, comportamiento

impulsivo e hipersensibilidad.

El Plomo puede entrar en el feto a través de la placenta de la madre. Debido a esto puede causar serios daños al sistema nervioso y al cerebro de los niños por nacer.

Efectos ambientales del Plomo

Page 189: elemtos

El Plomo ocurre de forma natural en el ambiente, pero las mayores concentraciones que son encontradas en el ambiente son el resultado de las actividades humanas.

Debido a la aplicación del plomo en gasolinas un ciclo no natural del Plomo tiene lugar. En los motores de los coches el Plomo es quemado, eso genera sales de Plomo (cloruros, bromuros, óxidos) se originarán.

Estas sales de Plomo entran en el ambiente a través de los tubos de escape de los coches. Las partículas grandes precipitarán en el suelo o la superfice de aguas, las pequeñas partículas viajarán largas distancias a través del aire y permanecerán en la atmósfera. Parte de este Plomo caerá de nuevo sobre la tierra cuando llueva. Este ciclo del Plomo causado por la producción humana está mucho más extendido que el ciclo natural del plomo. Este ha causad contaminación por Plomo haciéndolo en un tema mundial no sólo la gasolina con Plomo causa concentración de Plomo en el ambientel. Otras actividades humanas, como la combustión del petróleo, procesos industriales, combustión de residuos sólidos, también contribuyen.

El Plomo puede terminar en el agua y suelos a través de la corrosión de las tuberías de Plomo en los sistemas de transportes y a través de la corrosión de pinturas que contienen Plomo. No puede ser roto, pero puede convertirse en otros compuestos.

El Plomo se acumula en los cuerpos de los organismos acuáticos y organismos del suelo. Estos experimentarán efectos en su salud por envenenamiento por Plomo. Los efectos sobre la salud de los crustáceos puede tener lugar incluso cuando sólo hay pequeñas concentraciones de Plomo presente.

Las funciones en el fitoplancton pueden ser perturbados cuando interfiere con el Plomo. El fitoplancton es una fuente importante de producción de oxígeno en mares y muchos grandes animales marinos lo comen. Este es el porqué nosotros ahora empezamos a preguntarnos si la contaminación por Plomo puede influir en los balances globales. Las funciones del suelo son perturbadas por la intervención del Plomo, especialmente cerca de las autopistas y tierras de cultivos, donde concentraciones extremas pueden estar presente. Los organismos del suelo también sufren envenenamiento por Plomo.

El Plomo es un elemento químico particularmente peligroso, y se puede acumular en organismos individuales, pero también entrar en las cadenas alimenticias

Paladio - Pd

Page 190: elemtos

Propiedades químicas del Paladio - Efectos del Paladio sobre la salud - Efectos ambientales del

PaladioNombre Paladio

Número atómico 46

Valencia 2,4

Estado de oxidación +2

Electronegatividad 2,2

Radio covalente (Å) 1,31

Radio iónico (Å) 0,50

Radio atómico (Å) 1,37

Configuración electrónica [Kr]4d105s0

Primer potencial de ionización (eV) 8,38

Masa atómica (g/mol) 106,4

Densidad (g/ml) 12,0

Punto de ebullición (ºC) 3980

Punto de fusión (ºC) 1552

DescubridorWilliam Wollaston en

1803

Page 191: elemtos

Elemento químico, símbolo Pd, número atómico 46 y peso atómico 106.4. Es un metal blanco y muy dúctil semejante al platino, al que sigue en abundancia e importancia.

El paladio soportado sobre carbono o alúmina se emplea como catalizador en ciertos procesos químicos en que intervienen reacciones de hidrogenación en fase líquida y gaseosa.

Quizá el uso más frecuente del paladio puro corresponda a los contactos eléctricos para bajo voltaje. El paladio sobresale por el número de metales con que forma aleaciones y generalmente produce soluciones sólidas dúctiles.

El paladio es blando y dúctil y puede fabricarse como alambres finos y placas delgadas. Calentado a temperaturas superiores a 80ºC (1472ºF), se forma un óxido opaco, PdO, ligero y adherente, que no tiende a descarapelarse ni a desprenderse.

Por encima de los 800ºC (1472ºF), el óxido se disocia y se obtiene el metal brillante si se enfría rápidamente a la temperatura ambiente. El hidrógeno es absorbido fácilmente por el paladio y se difunde a un a velocidad relativamente rápida cuando se calienta. Esta propiedad se aprovecha en los purificadores de hidrógeno, que dejan pasar este gas, pero no otros. En atmósferas ordinarias, el paladio es resistente al deslustre, mas pierde esta cualidad en atmósferas contaminadas con azufre. A la temperatura ambiente, es resistente a los ácidos fluorhídrico, fosfórico, perclórico, acético, clorhídrico, y a los ácidos sulfúricos como gases, pero puede ser atacado por algunos de ellos a 100ºC (212ºF).

Los cloruros de paladio y los compuestos relacionados con él son los más importantes. El cloruro de paladio, PdCl2, se emplea en electrodeposición, y los cloruros afines se utilizan en el ciclo de refinado y como fuentes de paladio-esponja puro, en procesos de descomposición térmica. El monóxido de paladio, PdO, y el dihidróxido, Pd(OH)2, se emplean como fuentes de catalizadores de paladio. El tetranitropaladato de sodio, Na2Pd(NO2)4, y otras sales complejas se utilizan como bases en galvanoplastia.

Efectos del Paladio sobre la saludPuede provocar irritación de la piel, los ojos o el tracto respiratorio. Puede causar hipersensibilidad de la piel.

Page 192: elemtos

El líquido puede provocar quemaduras en la piel y ojos. Si ingerido, no provocar el vómito, si está consciente darle agua, leche... En caso de contacto, enjuagar los ojos o la piel con abundante agua.

Los compuestos del paladio se encuentran muy raramente. Todos los compuestos del paladio deben ser considerados como altamente tóxicos y carcinógenos. El cloruro de paladio es tóxico, y dañino si es ingerido, inhalado o absorbido a través de la piel. Provoca daños en la médula, hígado y riñones en los animales de laboratorio. Irritante. Sin embargo el cloruro de paladio fue inicialmente prescrito como tratamiento para la tuberculosis en la dosis de 0,065 g por día (aproximadamente 1 mg/k) sin demasiados efectos secundarios negativos.

Efectos ambientales del PaladioNo verter el material al medio ambiente sin los adecuados permisos gubernamentales

Prometio - PmPropiedades químicas del Prometio - Efectos del Prometio sobre la salud - Efectos

ambientales del Prometio

Nombre Promecio

Número atómico 61

Valencia 3

Estado de oxidación +3

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) 1,06

Radio atómico (Å) 1,83

Configuración electrónica [Xe]4f55d06s2

Primer potencial de ionización (eV) -

Masa atómica (g/mol) 147

Densidad (g/ml) -

Page 193: elemtos

Punto de ebullición (ºC) -

Punto de fusión (ºC) 1027

Descubridor Marinsky 1945

PromecioAunque algunos científicos han reclamado haber descubierto este elemento en la naturaleza tras la observación de ciertas líneas espectrales, nadie ha podido aislar el elemento 61 de materiales que se presentan en la naturaleza. Se produce artificialmente en los reactores nucleares, ya que es uno de los elementos que resulta de la fisión del uranio, torio y plutonio.

Todos los isótopos conocidos son radiactivos. Se utiliza principalmente en la investigación con trazadores. Su principal aplicación la encontramos en la industria del fósforo. También se usa en la manufactura de calibradores de aberturas y en baterías nucleares empleadas en aplicaciones espaciales.

La existencia del prometio fue predicha por Branner en 1902. Diversos grupos reivindicaron haber producido el elemento, pero no pudieron confirmar sus descubrimientos debido a la dificultad para separar el prometio de otros elementos. La prueba de la existencia del prometio fue obtenida por Jacob A. Marinsky, Lawrence E. Glendenin y Charles D. Coryell en 1944. Demasiado ocupado con las investigaciones relacionadas con la defensa en la segunda guerra mundial, no reivindicaron su descubrimiento hasta 1946. Descubrieron el prometio analizando los subproductos de la fisión del uranio que fueron producidos en un reactor nuclear situado en los laboratorios Clinton en Tennessee.

Actualmente, el prometio es todavía recuperado de los subproductos de la fisión del uranio. También puede ser producido mediante el bombardeo de neodimio 146 con neutrones. EL neodimio 146 se transforma en neodimio 147 cuando captura un neutrón. El neodimio 147, con una vida media de 11 días, se transforma en prometio 147 emitiendo partículas beta. El prometio no se da naturalmente en La Tierra, aunque ha sido detectado en el espectro de una estrella en la constelación de Andrómeda.

El isótopo más estable del prometio, el prometio 145, tiene una vida media de 17,7 años. Se transforma en neodimio 145 a través de captura electrónica.

Page 194: elemtos

El prometio podría ser usado para hacer una batería que funcione con energía nuclear. Este tipo de batería usaría las partículas beta emitidas por la transformación del prometio para hacer que un fósforo diera luz. Esta luz sería luego convertida en electricidad por un aparato similar a un panel solar. Se estima que este tipo de batería podría suministrar energía durante cinco años.

El prometio también podría ser usado como una fuente portátil de rayos X, en generadores termoeléctricos de radioisótopos para suministrar electricidad a sondas espaciales y satélites, como una fuente de radioactividad para instrumentos que miden espesores y para hacer lasers que pueden ser usados para comunicarse con submarinos sumergidos.

 

Efectos del Prometio sobre la salud El prometio es uno de los elementos químicos raros, que puede ser encontrado en equipos tales como televisiones en color, lámparas fluorescentes y cristales. Todos los compuestos químicos raros tienen propiedades comparables.

El prometio raramente se encuentra en la naturaleza, ya que se da en cantidades muy pequeñas. El prometio normalmente se encuentra solamente en dos tipos distintos de minerales. El uso del prometio sigue aumentando, debido al hecho de que es útil para producir catalizadores y para pulir cristales.

El prometio es más peligroso en el ambiente de trabajo, debido al hacho de que las humedades y los gases pueden ser inhalados con el aire. Esto puede causar embolias pulmonares, especialmente durante exposiciones a largo plazo. El prometio puede ser una amenaza para el hígado cuando se acumula en el cuerpo humano.

Efectos ambientales del PrometioEl prometio es vertido al medio ambiente en muchos lugares diferentes, principalmente por industrias productoras de petróleo. También puede entrar en el medio ambiente cuando se tiran los equipos domésticos. El prometio se acumulará gradualmente en los suelos y en el agua de los suelos y esto llevará finalmente a incrementar la concentración en humanos, animales y partículas del suelo.

En los animales acuáticos provoca daños a las membranas celulares, lo que tiene varias influencias negativas en la reproducción y en las funciones del sistema nervioso

Polonio - Po

Page 195: elemtos

Propiedades químicas del Polonio - Efectos del Polonio sobre la salud - Efectos ambientales del

PolonioNombre Polonio

Número atómico 84

Valencia 4,6

Estado de oxidación -

Electronegatividad 2,0

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) 1,76

Configuración electrónica [Xe]4f145d106s26p4

Primer potencial de ionización (eV) -

Masa atómica (g/mol) 210

Densidad (g/ml) 9,2

Punto de ebullición (ºC) -

Punto de fusión (ºC) 254

Descubridor Pierre y Marie Curie en 1898

Page 196: elemtos

PolonioElemento químico, símbolo Po, de número atómico 84. Marie Curie descubrió el radioisótopo 210Po en la pecblenda (uraninita), isótopo que es el penúltimo miembro de las series del decaimiento del radio. Todos los isótopos del polonio son radiactivos y de vida media corta, excepto los tres emisores alfa, producidos artificialmente. 208Po (2.9 años) y 209Po (100 años), y el natural, 210Po (138.4 días).

El polonio (210Po) se utiliza principalmente en la producción de fuentes de neutrones. Puede usarse también en eliminadores de estática, y cuando está incorporado en la aleación de los electrodos de las bujías, se dice que favorece las propiedades enfriantes en los motores de combustión interna.

La mayor parte de la química del polonio se ha determinado usando 210Po, 1 curie del cual pesa 222.2 microgramos; trabajar con cantidades considerables es peligroso y se requieren técnicas especiales. El polonio es más metálico que su homólogo inferior, el telurio. Como metal, es químicamente parecido al telurio y forma los compuestos rojo brillante SPoO3 y SePoO3. El metal es blando y sus propiedades físicas recuerdan las del talio, plomo y bismuto. Las valencias 2 y 4 están bien establecidas; hay algunas evidencias de hexavalencia. El polonio está colocado entre la plata y el telurio en la serie electroquímica.

Se conocen dos formas del dióxido: a baja temperatura, amarillo, cúbico centrado en las caras (tipo UO2), y a alta temperatura, rojo, tetragonal. Los halogenuros son covalentes, compuestos volátiles, y recuerdan a los análogos del telurio.

Efectos del Polonio sobre la saludEl polonio es estudiado en unos pocos laboratorios de investigación donde por su alta radioactividad como emisor de partículas alfa requiere técnicas y precauciones especiales de manejo.

Page 197: elemtos

El polonio 210 es el único componente del humo de los cigarros que ha producido cáncer por sí mismo en animales de laboratorio por inhalación. Los tumores aparecen con un nivel de polonio 210 cinco veces más bajo que la dosis de una persona que fuma mucho.

Las tasas de cáncer de pulmón entre los hombres no pararon de ascender desde ser raras en 1930 (4/100.000 por año) a ser el causante número uno de las muertes por cáncer en 1980 (72/100.000) a pesar de una reducción de casi el 20 por ciento de fumadores. Pero durante el mismo periodo, el nivel de polonio 210 en el tabaco americano se había triplicado. Esto coincidió con el aumento del uso de fertilizantes fosfatados por los cultivadores de tabaco.

El fosfato de calcio acumula uranio y libera gas radón lentamente. A la vez que el radón se desintegra, sus productos secundarios cargados eléctricamente se unen a partículas de polvo, que se adhieren a los pelos pegajosos del envés de las hojas del tabaco. Esto deja un depósito de polonio radioactivo y plomo en las hojas. Luego, el intenso calor localizado en el extremo ardiente de un cigarrillo volatiliza los metales radioactivos. Mientras que los filtros de cigarrillos pueden atrapar los carcinógenos químicos, no son efectivos contra los vapores radioactivos.

Los pulmones de un fumador crónico acaban teniendo un revestimiento radioactivo en una concentración mucho más alta que la del radón residencial. Estas partículas emiten radiación. Fumar dos paquetes de cigarrillos al día imparte una dosis de radiación de partículas alfa de alrededor de 1.300 milirem por año. Como comparación, la dosis de radiación anual del americano medio por inhalción de radón es de 200 milirem. Sin embargo, la dosis de radiación al “nivel de acción” del radón de 4 pCi/L es más o menos equivalente a fumar 10 cigarrillos al día.

Además, el polonio 210 es soluble y circula por el cuerpo a todos los tejidos y células a niveles mucho más altos que los procedentes del radón residencial. La prueba es que puede encontrarse en la sangre y orina de los fumadores. El polonio 210 circulante provoca daños genéticos y muerte temprana por enfermedades que recuerdan a los anteriores pioneros radiológicos: cáncer de hígado y de vesícula, úlcera estomacal. Leucemia, cirrosis del hígado y enfermedades cardiovasculares.

EL cirujano general C. Everett Koop declaró que la radioactividad, y no el alquitrán, es la responsable del 90% de todos los cánceres de pulmón atribuidos al tabaco. El Centro para Control de Enfermedades concluyó que “los americanos están expuestos a muchas más radiaciones procedentes del humo del tabaco que de cualquier otra fuente”.

Fumar cigarrillos provoca el 30% de todas las muertes por cáncer. Solamente una dieta pobre rivaliza con el tabaco como causa de cáncer en los E.E.U.U., causando un número comparable de muertes cada año. Sin embargo, el Instituto Nacional del Cáncer, con un presupuesto de 500 millones de dólares, no tiene fondos para la investigación del tabaco y el radón residencial como causantes de cáncer de pulmón, presumiblemente para proteger al público de temores infundados acerca de la radiación.

Page 198: elemtos

Efectos ambientales del PolonioNo se conocen bien las fuerzas ambientales y bioquímicas que pueden tender a reconcentrar estos materiales tóxicos en las células vivas.

Aunque el polonio se da en la naturaleza, se ha vuelto mucho más disponible para entrar en el agua, la comida, las células vivas y los tejidos a partir de la explosión de la minería que empezó poco después de la segunda guerra mundial

Praseodimio - Pr

Propiedades químicas del Praseodimio - Efectos del Praseodimio sobre la salud - Efectos

ambientales del PraseodimioNombre Praseodimio

Número atómico 59

Valencia 3,4

Estado de oxidación +3

Electronegatividad 1,1

Radio covalente (Å) 1,65

Radio iónico (Å) 1,09

Radio atómico (Å) 1,82

Configuración electrónica [Xe]4f35d06s2

Primer potencial de ionización (eV) 5,80

Masa atómica (g/mol) 140,907

Densidad (g/ml) 6,77

Punto de ebullición (ºC) 3127

Page 199: elemtos

Punto de fusión (ºC) 935

Descubridor Von Welsbach en 1885

PraseodimioElemento químico, símbolo Pr, número atómico 59 y peso atómico 140.907. El praseodimio es un elemento metálico del grupo de las tierras raras. El isótopo estable 140.907 corresponde al 100% del elemento presente en la naturaleza. El óxido es un polvo negro cuya composición varía según el método de preparación. Si se oxida bajo una presión alta de oxígeno puede aproximarse a la composición PrO2. El óxido negro se disuelve en ácido con liberación de oxígeno para dar soluciones verdes o sales verdes que tienen aplicación en la industria de la cerámica para colorear esmaltes y vidrios.

El uso principal del praseodimio es como agente de aleaciones con magnesio para crear metales de elevada dureza que son usados en motores de aviones. El praseodimio también compone el 5 % del metal de Misch, un material que es usado para hacer piedras de mecheros. El praseodimio forma el núcleo de las lámparas de arco voltaico de carbono que son usadas en la industria del cine para las luces de los estudios y de los proyectores. Las sales de praseodimio son usadas para dar color amarillo a los cristales y los esmaltes. El praseodimio es también un componente del gas didimio, que se usa para hacer ciertos tipos de gafas protectoras para soldadores y sopladores de vidrio.

Efectos del Praseodimio sobre la salud

El praseodimio es uno de los productos químicos raros, que puede ser encontrado en casa en equipos tales como televisiones en color, lámparas fluorescentes y cristales. Todos los compuestos químicos raros tienen propiedades comparables.

El praseodimio raramente se encuentra en la naturaleza, ya que se da en cantidades muy pequeñas. El praseodimio se encuentra normalmente en solo dos tipos diferentes de minerales. El uso del praseodimio sigue creciendo, debido al hecho de que es apropiado para producir catalizadores y para pulir cristal.

El praseodimio es principalmente peligroso en el ambiente de trabajo, debido al hecho de que las humedades y los gases pueden ser inhalados con el aire. Esto provoca embolias pulmonares, especialmente durante la exposición a largo plazo. El praseodimio puede ser una amenaza para el hígado cuando se acumula en el cuerpo humano.

Efectos ambientales del Praseodimio

Page 200: elemtos

El praseodimio se vierte al medio ambiente en muchos lugares diferentes, principalmente por industrias productoras de petróleo. También puede entrar en el medio ambiente cuando se tiran los equipos domésticos. El praseodimio se acumulará gradualmente en el suelo y en las aguas del suelo y esto llevará finalmente al incremento de la concentración en humanos, animales y partículas del suelo.

En los animales acuáticos el praseodimio provoca daño a las membranas celulares, lo que tiene varias influencias negativas en la reproducción y en las funciones del sistema nervioso

Platino - Pt

Propiedades del Platino - Efectos del Platino sobre la salud - Efectos ambientales del Platino

Nombre Platino

Número atómico 78

Valencia 2,4

Estado de oxidación +2

Electronegatividad 2,2

Radio covalente (Å) 1,28

Radio iónico (Å) 0,52

Radio atómico (Å) 1,38

Configuración electrónica [Xe]4f145d96s1

Primer potencial de ionización (eV) 9,03

Masa atómica (g/mol) 195,09

Densidad (g/ml) 21,4

Punto de ebullición (ºC) 4530

Punto de fusión (ºC) 1769

Page 201: elemtos

Descubridor Julius Scaliger en 1735

PlatinoEs un metal noble blanco, blando y dúctil. Los metales del grupo del platino ( platino, paladio, iridio, rodio , osmio y rutenio) se encuentran ampliamente distribuidos sobre la tierra, pero su dilución extrema imposibilita su recuperación, excepto en circunstancias especiales. Los metales del grupo del platino se utilizan mucho en el campo de la química a causa de su actividad catalítica y de su baja reactividad. Como catalizador, el platino se emplea en las reacciones de hidrogenación, deshidrogenación, isomerización, ciclización, deshidratación, deshalogenación y oxidación.

El platino no es afectado por la atmósfera aun en ambientes industriales con contenido de azufre. Conserva su brillantez y no exhibe película de óxido cuando se calienta, aunque se forma una película fina adherente debajo de los 450ºC (842ºF). El hidrógeno u otras atmósferas reductoras no son peligrosas para el platino a temperaturas elevadas. El platino puede ser maquinado en alambres finos y láminas delgadas y, por procesos especiales, en alambres extremadamente finos.

El platino puede obtenerse en forma esponjosa por descomposición térmica del cloroplatinato de amonio o al reducirlo de una solución acuosa. En esta forma muestra un alto poder de absorción respecto a los gases, especialmente oxígeno, hidrógeno y monóxido de carbono. La alta actividad catalítica del platino está relacionada directamente con esta propiedad. El platino posee una fuerte tendencia a formar compuestos de coordinación.

El dióxido de platino, PtO2, es un compuesto castaño oscuro insoluble, conocido comúnmente como catalizador de Adams. El cloruro de platino(II), PtCl2, es un sólido verde oliva insoluble en agua. El ácido cloroplatínico, H2PtCl6, es el compuesto de platino más importante.

Efectos del Platino sobre la saludEl Platino es un metal noble. Las concentraciones de platino en el suelo, agua y aire son mínimas. En algunos lugares los depósitos, puede ser encontrado que son muy rico en platino, mayormente en Sur África, la Unión Soviética y Estados Unidos. El Platino es usado

Page 202: elemtos

como componente de varios productos metálicos, como son los electrodos y este puede ser usado como catalizador en un número de reacciones químicas. Los enlaces del platino son a menudo aplicados en medicina para curar el cáncer. Los efectos sobre la salud del Platino están fuertemente ligados a la clase de enlace que estos forman y el nivle de exposición y la inmunidad de la persona que es expuesta.

El Platino como metal no es muy peligroso, pero las sales de Platino pueden causar varios efectos sobre la salud, como son:

Alteración del ADN. Cáncer Reacciones alérgicas de la piel y mucosas Daños en órganos, como es el intestino, riñones y la médula. Daños en la audición

Finalmente, un peligro del Platino es que este puede causar la potenciación de toxicidad de otros productos químicos peligrosos en el cuerpo humano, como es el Selenio.

Efectos ambientales del PlatinoLa aplicación del platino en productos metálicos no es conocido que cause muchos problemas ambientales, pero sabemos que causa problemas de salud serios en el lugar de trabajo. El Platino es emitido al aire a través de los escapes de los coches que utilizan gasolina. Consecuentemente, los niveles de Platino en el aire pueden ser más altos en ciertas localizaciones, por ejemplo en garajes, en túneles y en terrenos de empresas de camiones.

Los efectos del Platino sobre los animales y el ambiente posiblemente no hayn sido investigado todavía extensamente. La única cosa que conocemos es que el Platino se acumulará en las raices de plantas después de ser tomado. Si se come raices de plantas que contengan Platino puede hacer un daño en los animales y humanos, pero no está todavía claro. Los microorganismos pueden ser capaces de convertir las substancias de platino en sustancias más peligrosas en suelos, pero sobre este tema nosotros también tenemos poca información.

Plutonio - Pu

Propiedades químicas del Plutonio - Efectos del Plutonio sobre la salud - Efectos ambientales del

Plutonio

Page 203: elemtos

Nombre Plutonio

Número atómico 94

Valencia 3,4,5,6

Estado de oxidación +3

Electronegatividad 1,2

Radio covalente (Å) -

Radio iónico (Å) 1,07

Radio atómico (Å) 1,63

Configuración electrónica [Rn]5f56d17s2

Primer potencial de ionización (eV) -

Masa atómica (g/mol) 242

Densidad (g/ml) -

Punto de ebullición (ºC) 3235

Punto de fusión (ºC) 640

Descubridor G.T. Seaborg en 1940

Page 204: elemtos

PlutonioElemento químico, símbolo Pu, número atómico 94. Es un metal plateado, reactivo, de la serie de los actínidos. El isótopo principal de interés químico es 239Pu, que tiene una vida media de 24 131 años. Se forma en los reactores nucleares. El plutonio-239 es fisionable, pero puede capturar también neutrones para formar isótopos superiores de plutonio.

El plutonio-238, con una vida media de 87.7 años. Se utiliza en fuentes de calor para aplicaciones espaciales y se ha empleado en marcapasos cardiacos. El plutonio-239 se emplea como combustible nuclear en la producción de isótopos radiactivos para la investigación y como agente fisionable en armas nucleares.

El plutonio muestra diversos estados de valencia en solución y en estado sólido. El plutonio metálico es muy electropositivo. Se han preparado muchas aleaciones de plutonio y se han caracterizado gran número de compuestos intermetálicos.

La reacción del metal con hidrógeno produce dos hidruros, que se forman a temperaturas tan bajas como 150ºC(300ºF). Su descomposición arriba de los 750ºC (1400ºF) puede usarse para preparar polvo de plutonio reactivo. El óxido más común es el PuO2, formado por ignición de hidróxidos, oxalatos, peróxidos y los oxihalogenuros. El hexafluoruro de plutonio, el compuesto más volátil conocido de este elemento, es un agente fluorante poderoso. Se conocen algunos otros compuestos binarios. Entre éstos están los carburos, siliciuros, sulfuros y seleniuros, que son de interés especial a causa de su naturaleza refractaria.

Por su radiotoxicidad, el plutonio y sus compuestos requieren técnicas de manejo especiales para prevenir su ingestión o inhalación; por ello, todo trabajo con plutonio y sus compuestos debe efectuarse en caja de guantes. Para trabajar con plutonio, y sus aleaciones, que son atacados por la humedad y por los gases atmosféricos, estas cajas pueden llenarse con helio o argón.

Efectos del Plutonio sobre la saludEl plutonio es descrito a veces en los medios como la sustancia más tóxica conocida por los humanos, aunque hay acuerdo general entre los expertos en este campo de que esto es incorrecto. Hasta el 2003 todavía no ha habido ninguna muerte humana oficialmente atribuida a la exposición al plutonio. El radio de ocurrencia natural es alrededor de 200 veces más radiotóxico que el plutonio, y algunas toxinas orgánicas como la toxina botulínica son billones de veces más tóxicas que el plutonio.

La radiación alfa que emite no penetra la piel, pero puede irradiar órganos internos cuando el plutonio es inhalado o ingerido. Partículas de plutonio extremadamente pequeñas del orden de microgramos pueden causar cáncer de pulmón si son inhaladas. Cantidades considerablemente mayores pueden causar envenenamiento agudo por radiación y muerte si ingeridos o inhalados; sin embargo, hasta el momento, no se sabe de ninguna muerte provocada por la inhalación o la ingestión del plutonio y muchas personas tienen cantidades medibles de plutonio en sus cuerpos. El plutonio es una sustancia peligrosa que ha sido usada

Page 205: elemtos

en explosivos durante un largo tiempo. Es liberado a la atmósfera principalmente por las pruebas atmosféricas de armas nucleares y por accidentes en los lugares de producción de armas. Cuando el plutonio es liberado a la atmósfera caerá de nuevo a La Tierra y terminará en los suelos.

La exposición de los humanos al plutonio no es muy probable, pero a veces tiene lugar como resultado de escapes accidentales durante su uso, transporte o vertido.

Debido a que el plutonio no tiene radiaciones gamma, no es probable notar efectos en la salud por trabajar con el plutonio, a menos que sea respirado o tragado de algún modo.

Cuando se respira, el plutonio puede permanecer en los pulmones o moverse hasta los huesos u otros órganos. Generalmente permanece en el cuerpo durante mucho tiempo y expone a los tejidos del cuerpo continuamente a radiación. Después de unos pocos años esto podría resultar en el desarrollo de cáncer.

Lo que es más, el plutonio puede afectar la habilidad de resistir enfermedades y la radioactividad del plutonio puede causar fallo reproductivo.

Efectos ambientales del PlutonioCantidades traza de plutonio se encuentran naturalmente en los minerales ricos en uranio. Los humanos producimos la mayor parte del plutonio existente, en reactores nucleares especiales

Además de estar presente de forma natural en cantidades muy pequeñas, el plutonio también puede entrar en el medio ambiente por escapes de reactores nucleares, plantas de producción de armas, e instalaciones de investigación. Una fuente importante de escapes de plutonio son las pruebas de armas nucleares.

El plutonio puede entrar en las aguas superficiales por escapes accidentales y vertidos de desechos radioactivos. El suelo puede contaminarse con plutonio a través de la lluvia radiactiva durante las pruebas de armas nucleares. El plutonio se mueve lentamente hacia abajo en el suelo, hasta las aguas subterráneas.

Las plantas absorben bajos niveles de plutonio, pero estos niveles no son lo suficientemente altos como para provocar biomagnificación del plutonio en la cadena alimenticia, o acumulación en los cuerpos de animales.

Radio - Ra

Page 206: elemtos

Propiedades químicas del Radio - Efectos del Radio sobre la salud - Efectos ambientales del

RadioNombre Radio

Número atómico 88

Valencia 2

Estado de oxidación +2

Electronegatividad 0,9

Radio covalente (Å) -

Radio iónico (Å) 1,40

Radio atómico (Å) -

Configuración electrónica [Rn]7s2

Primer potencial de ionización (eV) 5,28

Masa atómica (g/mol) 226

Densidad (g/ml) 5,0

Punto de ebullición (ºC) -

Punto de fusión (ºC) 700

Descubridor Pierre y Marie Curie en 1898

Page 207: elemtos

RadioElemento químico, símbolo Ra, de número atómico 88. El radio es un elemento radiactivo raro, encontrado en minerales de uranio en proporción de una parte por aproximadamente 3 millones de partes de uranio. Desde el punto de vista químico, el radio es un metal alcalinotérreo y tiene propiedades muy semejantes a las del bario. Biológicamente, el radio se concentra en los huesos al reemplazar al calcio y, tras una irradiación prolongada, causa anemia y neoplasias cancerosas. Dado que las radiaciones del radio y de sus productos de descomposición destruyen preferentemente los tejidos malignos, el radio se ha utilizado para detener el crecimiento del cáncer. En su aplicación terapéutica, los compuestos de radio puro se sellan en tubos o agujas; también el radón, producto gaseoso de descomposición del radio, se bombea en tubos pequeños. El empleo del radio en pinturas luminosas para relojes de pared o pulsera y esferas de medida, así como en señales visibles en la oscuridad se basa en su radiación alfa que golpea un tubo de centelleo, como el de sulfuro de zinc.

Se conocen 13 isótopos del radio; todos son radiactivos; cuatro se encuentran en la naturaleza y el resto se produce sintéticamente. Sólo el 226Ra es tecnológicamente importante. Se encuentra ampliamente distribuido en al naturaleza, por lo regular en cantidades mínimas. La fuente más concentrada es la pecblenda (uraninita).

Cuando son de preparación reciente, casi todos los compuestos de radio son blancos, pero se decoloran permanentemente a causa de su intensa radiación. Las sales de radio ionizan la atmósfera que los rodea, por eso parece que emiten un resplandor azul. Los compuestos de radio descargan los electroscopios, velan las placas fotográficas protegidas de la luz y producen fosforescencia y fluorescencia en ciertos compuestos inorgánicos como el sulfuro de zinc. El espectro de emisión de los compuestos de radio se parece al de otros alcalinotérreos; los halogenuros de radio imparten color rojo carmín a la llama.

Efectos del Radio sobre la saludEl Radio está presente de forma natural en el medio ambiente en muy pequeña cantidad. Debido a que siempre estamos expuesto al Radio y pequeñas cantidades de radiacción es liberada al ambiente.

Page 208: elemtos

Los niveles de Radio en el medio ambiente han incrementado en gran medida como resultado de las actividades humanas. Los humanos liberan Radio en el medio ambiente por la quema de carbón y otros fueles. Los niveles de Radio en agua potable pueden ser elevados cuando el agua se extrae de profundos pozos que están localizados cerca de un vertedero de residuos radiactivos.

Actualmente no hay información disponible sobre la cantidad de Radio en el aire y suelo. No hay evidencia de que exposición a niveles natures presentes al Radio tengan efecto dañino sobre la salud de los humanos. De cualquier manera, exposiciones a altos niveles de Radio puden causar efecto sobre la salud, como es la fractura de dientes, anemia y cataratas. Cuando la exposición es larga puede incluso causar cáncer y la exposición puede eventualmente producir la muerte. Estos efectos pueden llevar años para desarrollarse. Está causado por la radiacción gamma del Radio, que es capaz de viajar fácilmente largas distancias a través del aire. De cualquiermanera el contacto con el Radio no es necesariamente, la causa de efectos sobre la salud.

Efectos ambientales del RadioEl Radio es constantemente producido por la desintegración radiactiva del uranio y del torio. El Radio está presente en bajas cantidades en rocas y suelo y está unido a estos materiales fuertemente. Es también posible encontrarlo en el aire. Elevadas concentraciones de Radio pueden existir en el agua en algunas localizaciones. Como resultado de los procesos mineros del uráneo elevados niveles de Radio en el agua son encontrado en las aguas cercanas a las minas de uráneo. Las plantas absorben uráneo del suelo. Los animales que comen esas plantas acumulan el uráneo y finalmente, el radio puede encontrarse en peces y otros organismos acuáticos y se de la biomagnificación en la cadena trófica

Rubidio - Rb

Propiedades químicas del Rubidio - Efectos del Rubidio sobre la salud - Efectos ambientales del

RubidioNombre Rubidio

Número atómico 37

Valencia 1

Estado de oxidación +1

Page 209: elemtos

Electronegatividad 0,8

Radio covalente (Å) 2,11

Radio iónico (Å) 1,48

Radio atómico (Å) 2,48

Configuración electrónica [Kr]5s1

Primer potencial de ionización (eV) 4,19

Masa atómica (g/mol) 85,47

Densidad (g/ml) 1,53

Punto de ebullición (ºC) 688

Punto de fusión (ºC) 38,9

DescubridorRobert Wilhem Bunsen and Gustav Robert Kirchhoff en

1861

RubidioElemento químico de símbolo Rb, número atómico 37 y peso atómico 85.47. El rubidio es un metal alcalino, reactivo, ligero y de bajo punto de fusión.

La mayor parte de los usos de rubidio metálico y de sus compuestos son los mismos que los del cesio y sus compuestos. El metal se utiliza en la manufactura de tubos de electrones, y las sales en la producción de vidrio y cerámica.

Page 210: elemtos

El rubidio es un elemento bastante abundante en la corteza terrestre y está presente hasta en 310 partes por millón (ppm). Por su abundancia ocupa un lugar justamente por debajo del carbono y el cloro y por encima del flúor y del estroncio. El agua de mar contiene 0.2 ppm de rubidio, concentración que (aunque baja) es el doble de la concentración de litio. El rubidio es semejante al cesio y al litio en que está integrado en minerales complejos; no se encuentra en la naturaleza como sales simples de halogenuros, como ocurre con el sodio y el potasio.

Tiene una densidad de 1.53 g/cm3 (95.5 lb/ft3), un punto de fusión de 38.9ºC (102ºF) y un punto de ebullición de 688ºC (1270ºF).

Es tan reactivo con oxígeno que puede arder espontáneamente con este elemento puro. El metal pierde el brillo muy rápidamente al aire, forma un recubrimiento de óxido y puede arder. Los óxidos que se producen son una mezcla de Rb2O, Rb2O2 y RbO2. El metal fundido se inflama espontáneamente al aire.

El rubidio reacciona violentamente con agua o hielo a temperaturas por debajo de –100ºC (-148ºF). Reacciona con hidrógeno para formar un hidruro, uno de los hidruros alcalinos menos estables.

No reacciona con nitrógeno. Con bromo o cloro, el rubidio reacciona vigorosamente con formación de flama. Se pueden preparar compuestos organorrubídicos con técnicas parecidas a las que se utilizan con el sodio y el potasio.

Efectos del Rubidio sobre la saludEfectos de la exposición: Reacciona con el agua. Moderadamente tóxico por ingestión. Si el rubidio se incendia, provocará quemaduras térmicas. El rubidio reacciona rápidamente con la humedad de la piel para formar hidróxido de rubidio, que provoca quemaduras térmicas en los ojos y piel. Señales y síntomas de sobre-exposición: Quemaduras en piel y ojos. Problemas para ganar peso, ataxia, hiper irritación, úlceras en la piel, y nerviosismo extremo. Afecciones médicas agravadas por la exposición: Enfermos del corazón, desequilibrios del potasio.

Primeros auxilios: Ojos: Enjuagar inmediatamente con agua corriente durante 15 minutos sujetando el párpado. Conseguir atención médica inmediata. Piel: Retirar el material y enjuagar con agua y jabón. Deshacerse de las ropas contaminadas. Conseguir atención médica rápidamente. Inhalación: Salir al aire libre inmediatamente. Si la irritación persiste, conseguir atención médica. Ingestión: No provocar el vómito. Conseguir atención médica inmediatamente.

Efectos ambientales del RubidioNo se han documentado efectos ambientales negativos del rubidio

Renio - Re

Page 211: elemtos

Propiedades químicas del Renio - Efectos del Renio sobre la salud - Efectos ambientales del

RenioNombre Renio

Número atómico 75

Valencia 2,4,6,7

Estado de oxidación -

Electronegatividad 1,9

Radio covalente (Å) 1,59

Radio iónico (Å) -

Radio atómico (Å) 1,37

Configuración electrónica [Xe]4f145d56s2

Primer potencial de ionización (eV) 7,94

Masa atómica (g/mol) 186,2

Densidad (g/ml) 21,0

Punto de ebullición (ºC) 5900

Punto de fusión (ºC) 3180

Descubridor Walter Noddack en 1925

Page 212: elemtos

RenioElemento químico de símbolo Re, con número atómico 75 y peso atómico 186.2. El renio es un elemento de transición, metal denso con punto de fusión elevado.

El renio, al igual que su homólogo tecnecio, puede oxidarse a temperaturas elevadas con oxígeno, para forma el heptóxido volátil, Re2O7; éste, a su vez, puede reducirse a un óxido menor, ReO2. Los compuestos ReO3, Re2O3 y Re2O se conocen bien. El ácido perrénico, HReO4 es un ácido monobásico fuerte y un agente oxidante muy débil. También se conocen los complejos perrenatos, como el perrenato hexaamina de cobalto [Co(NH3)6(ReO4)3].

Los compuestos halogenados de renio son muy complicados; se ha dado a conocer una larga serie de halogenuros y oxihalogenuros. El renio forma dos sulfuros perfectamente caracterizados, Re2S7 y ReS2, así como también dos seleniuros, Re2Se7 y ReSe2. Los sulfuros tienen su equivalente en los compuestos de tecnecio, Tc2S7 y TcS2.

El renio no se encuentra en la naturaleza en estado elemental y no se ha encontrado ninguna mena mineral. Las menas gadolinita y molibdenita pueden contener un poco de renio y es de esta última de sonde se extrae el renio a partir del polvo liberado en los fundidores de molibdeno. Aunque hubo alguna producción de molibdeno en los años posteriores a su descubrimiento, no fue hasta los años 50 que se volvió comercialmente rentable, cuando el uso del renio en catalizadores creó una demanda. La producción anual mundial está ahora alrededor de las 5 toneladas y las reservas de renio se estiman en 3500 toneladas, encontradas principalmente en menas de EEUU, Rusia y Chile.

El renio es un metal plateado, normalmente producido como polvo gris. Bajo presión en el vacío y calentamiento en presencia de hidrógeno, es posible fabricar objetos de renio puro, aunque hay muy poca demanda de dichos objetos.

El renio es añadido al wolframio y al molibdeno para formar aleaciones que son usadas para filamentos de hornos y lámparas. También se emplea en pares térmicos que pueden medir temperaturas de por encima de 2000 oC, y para contactos eléctricos que resisten arcos eléctricos. Ha sido usado ocasionalemente para platear joyas. El electroplateado con renio fue

Page 213: elemtos

conseguido por primera vez en 1934 y se mostró que daba un depósito brillante y duro. Sin embargo, el metal es susceptible a la oxidación y su superficie necesita ser protegida por una capa de iridio.

El renio también es usado como catalizador en la industria química, especialmente en procesos relacionados con la adición de hidrógeno gas a otras moléculas, y es particularmente valorado porque, al contrario que otros catalizadores, no es fácilmente desactivado por trazas de azufre y fósforo.

Efectos del Renio sobre la saludEfectos potenciales sobre la salud: Puede causar irritación de los ojos. Puede causar irritación de la piel. El líquido puede provocar quemaduras en piel y ojos. Ingestión: Puede causar irritación del tracto respiratorio.

Las propiedades toxicológicas de esta sustancia no han sido totalmente investigadas. Los vapores pueden provocar mareos o asfixia.

Efectos ambientales del RenioNo se ha encontrado información relativa a la toxicidad ambiental del renio

Rutherfordio - Rf

Propiedades químicas del Rutherfordio - Efectos del Rutherfordio sobre la salud - Efectos

ambientales del RutherfordioNombre Rutherfordio

Número atómico 104

Valencia -

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) -

Page 214: elemtos

Radio atómico (Å) -

Configuración electrónica [Rn]5f146d27s2

Primer potencial de ionización (eV) -

Masa atómica (g/mol) 261

Densidad (g/ml) -

Punto de ebullición (ºC) -

Punto de fusión (ºC) -

Descubridor Desconocido

RutherfordioPrimer elemento después de la serie de los actínidos y el duodécimo elemento transuránico. En 1964 G. N. Flerov y colaboradores, en los laboratorios Dubna de la Unión Soviética, declararon ser los primeros en presentar la identificación del elemento 104, y un poco después sugirieron el nombre de Kurchatovio (símbolo Ku). El grupo de Dubna reclamó la preparación del elemento 104, número de masa 260, irradiando plutonio-242, con iones neón-22.

En el laboratorio de Radiación Lawrence de la Universidad de California, en Berkeley, A. Ghiorso y colaboradores intentaron obtener confirmación adicional del descubrimiento de Dubna. Por 1969 el grupo de Berkeley tuvo, sin duda alguna, éxito en el descubrimiento incuestionable de dos isótopos emisores alfa del elemento 104 con número de masa 257 y 259, al bombardear 249Cf con proyectiles de 12C y 13C en el acelerador lineal de iones pesados de Berkeley (HILAC). Dado que el grupo de Berkeley concluyó que el descubrimiento del grupo de Dubna no fue válido, sugirió que el elemento 104 se nombrara Rutherfordio, con el símbolo Rf, en honor de Lord Rutherford.

Efectos del Rutherfordio sobre la salud

Page 215: elemtos

Al ser tan inestable, cualquier cantidad formada se descompondrá en otros elementos con tanta rapidez que no existe razón para estudiar sus efectos en la salud humana.

Efectos ambientales del RutherfordioDebido a su vida media tan extremadamente corta (alrededor de 10 minutos), no existe razón para considerar los efectos del rutherfordio en el medio ambiente

Ununumio - Uuu

Propiedades químicas del Ununumio - Efectos del Ununumio sobre la salud - Efectos ambientales del

UnunumioNombre Ununumio

Número atómico 111

Valencia -

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Rn]5f146d107s1

Primer potencial de ionización (eV) -

Masa atómica (g/mol) 272

Densidad (g/ml) -

Punto de ebullición (ºC) -

Page 216: elemtos

Punto de fusión (ºC) -

Descubridor S. Hoffmann 1994

UnunumioEl ununumio fue producido por primera vez en Alemania por Peter Armbruster, Gottfried Münzenber y sus equipos a finales de 1994. Bombardearon átomos de bismuto 209 con iones de níquel 64 con un aparato conocido como acelerador lineal. Esto produjo tres átomos de ununumio 272, un isótopo de una vida media de alrededor de 1,5 milisegundos (0,0015 segundos), y liberación de un neutrón.

El isótopo más estable del ununumio, el ununumio 272, tiene una vida media de 1,5 milisegundos. Se desintegra en meitnerio 268 emitiendo partículas alfa.

Debido a que solo unos pocos átomos de ununumio han sido producidos, actualmente no tiene ningún uso a parte de los relativos a la investigación científica.

Efectos del Ununumio sobre la saludAl ser tan inestable, cualquier cantidad formada se descompondrá en otros elementos con tanta rapidez que no existe razón para estudiar sus efectos en la salud humana.

Efectos ambientales del UnunumioDebido a su vida media tan extremadamente corta (alrededor de 1,5 milisegundos), no existe razón para considerar los efectos del ununumio en el medio ambiente.

Rodio - Rh

Propiedades químicas del Rodio - Efectos del Rodio sobre la salud - Efectos ambientales del

RodioNombre Rodio

Número atómico 45

Page 217: elemtos

Valencia 2,3,4,6

Estado de oxidación +2

Electronegatividad 2,2

Radio covalente (Å) 1,35

Radio iónico (Å) 0,86

Radio atómico (Å) 1,34

Configuración electrónica [Kr]4d85s1

Primer potencial de ionización (eV) 7,76

Masa atómica (g/mol) 102,905

Densidad (g/ml) 12,4

Punto de ebullición (ºC) 4500

Punto de fusión (ºC) 1966

DescubridorWilliam Wollaston en

1803

Rodio

Page 218: elemtos

Elemento químico, de símbolo Rh, de número atómico 45 y peso atómico 102.905. El rodio es un metal blanco, duro, considerablemente menos dúctil que el platino o el paladio, pero mucho más dúctil que cualquier otro metal de este grupo.

Se usa principalmente como un elemento de aleación para el platino. Es un excelente catalizador para la hidrogenación y es activo en la reformación catalítica de hidrocarburos. El rodio se emplea también en aplicaciones para contactos eléctricos. Es galvanizado fácilmente para formar superficies duras, resistentes al desgaste y de brillo permanente, utilizadas tanto en contactos eléctricos estacionarios como corredizos, en espejos y reflectores, y como acabado en joyería.

El rodio es resistente a al mayor parte de los ácidos comunes, incluida el agua regia, aun a temperaturas moderadas. Lo atacan el ácido sulfúrico caliente, el ácido bromhídrico caliente, el hipoclorito de sodio y los halógenos libres a 200-600ºc (390-1110ºF).

El tricloruro de rodio, RhCl3, es un compuesto rojo insoluble en agua. El trihidróxido de rodio es soluble en algunos ácidos y puede servir para producir sales de rodio. El sulfato de rodio, Rh2 (SO4)3. XH2O, es rojo o amarillo y soluble en agua.

Efectos del Rodio sobre la saludLos compuestos del rodio se encuentran muy raramente. Todos los compuestos del rodio deben ser considerados como altamente tóxicos y carcinógenos. Los compuestos del rodio manchan la piel fuertemente.

Inflamable. Posible explosión del polvo si se encuentra en forma de polvo o granular, mezclado con agua. Reacciona con difluoruro de oxígeno provocando peligro de fuego.

Vías de exposición: La sustancia puede ser absorbida por el cuerpo por inhalación de su aerosol.

Riesgo de inhalación: La evaporación a 20°C es insignificante; sin embargo cuando se dispersa se puede alcanzar rápidamente una concentración peligrosa de partículas en el aire.

Los efectos sobre la salud de la exposición a esta sustancia no han sido investigados. No se dispone de datos suficientes acerca del efecto de esta sustancia en la salud humana, por lo tanto se debe tener la máxima precaución.

Efectos ambientales del RodioNo verter el material al medio ambiente sin los adecuados permisos gubernamentales

Radón - Rn

Page 219: elemtos

Propiedades químicas del Radón - Efectos del Radón sobre la salud - Efectos ambientales del

RadónNombre Radón

Número atómico 86

Valencia 0

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) 2,14

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Xe]4f145d106s26p6

Primer potencial de ionización (eV) 10,82

Masa atómica (g/mol) 222

Densidad (g/ml) -

Punto de ebullición (ºC) -61,8

Punto de fusión (ºC) -71

Descubridor Fredrich Ernst Dorn en 1898

Page 220: elemtos

RadónElemento químico, cuyo símbolo es Rn y número atómico 86. El radón es una emanación gaseosa producto de la desintegración radiactiva del radio. Es muy radiactivo y se desintegra con la emisión de partículas energéticas alfa. Es el elemento más pesado del grupo de los gases nobles, o inertes, y, por tanto, se caracteriza por su inercia química. Todos sus isótopos son radiactivos con vida media corta.

Además de sus tres isótopos naturales, el radón tiene otros 22 que han sido sintetizados por medio de reacciones nucleares de transmutación artificial realizadas en ciclotrones y aceleradores lineales; sin embargo, ninguno de estos isótopos tiene una vida tan larga como el 222Rn.

Cualquier superficie expuesta al 222Rn se recubre con un depósito activo que consta de un grupo de productos filiales de vida corta. En las radiaciones de este depósito activo hay rayos energéticos alfa, beta y gamma.

La configuración electrónica del radón es especialmente estable y le da las propiedades químicas características de los gases nobles elementales. Se ha estudiado mucho el espectro del radón, que es semejante al de los demás gases inertes.

Efectos del Radón sobre la saludEl radón se presenta en la naturaleza principalmente en la fase gaseosa. Consecuentemente, las personas están principalmente expuestas al radón a través de la respiración de aire.

Los niveles de fondo de radón en el aire exterior son generalmente bastante bajos, pero en áreas cerradas los niveles de radón en el aire pueden ser más altos. En las casas, las escuelas y los edificios los niveles de radón están incrementados porque el radón entra en los edificios a través de grietas en los cimientos y en los sótanos.

Algunos de los pozos profundos que nos suministran con agua potable también pueden contener radón. Como resultado una serie de personas pueden estar expuestas al radón a través del agua potable, así como a través de la respiración.

Page 221: elemtos

Los niveles de radón en aguas subterráneas son bastante elevados, pero normalmente el radón es rápidamente liberado al aire tan pronto como las aguas subterráneas entran en las aguas superficiales.

Se sabe que la exposición a altos niveles de radón a través de la respiración provoca enfermedades pulmonares. Cuando se da una exposición a largo plazo el radón aumenta las posibilidades de desarrollar cáncer de pulmón. El radón solo puede ser causa de cáncer después de varios años de exposición.

El radón puede ser radioactivo, pero libera poca radiación gamma. Como resultado, no es probable que se den efectos dañinos por la exposición a radiación de radón sin contacto real con los compuestos de radón.

Se desconoce si el radón puede provocar efectos en la salud de otros órganos a parte de los pulmones. Los efectos del radón, que se encuentra en la comida o en el agua potable, son desconocidos.

Efectos ambientales del RadónRadón es un compuesto radioactivo, el cual se da raramente en la naturaleza. La mayoría de los compuestos del radón encontrados en el medio ambiente provienen de las actividades humanas. El radón entra en el medio ambiente a través del suelo, por las minas de uranio y fosfato, y por la combustión de carbón.

Una parte del radón que se encuentra en el suelo se moverá a la superficie y entrará en el aire a través de la evaporación. En el aire, los compuestos del radón se acoplarán al polvo y otras partículas. El radón también se puede mover hacia abajo en el suelo y alcanzar las aguas superficiales. Sin embargo, la mayor parte del radón permanecerá en el suelo.

El radón tiene una vida media radiactiva de alrededor de cuatro días; esto significa que la mitad de una cantidad dada de radón se degradará en otros componentes, normalmente compuestos menos dañinos, cada cuatro días

Rutenio - Ru

Propiedades químicas del Rutenio - Efectos del Rutenio sobre la salud - Efectos ambientales del

RutenioNombre Rutenio

Número atómico 44

Page 222: elemtos

Valencia 2,3,4,6,8

Estado de oxidación +3

Electronegatividad 2,2

Radio covalente (Å) 1,26

Radio iónico (Å) 0,69

Radio atómico (Å) 1,34

Configuración electrónica [Kr]4d75s1

Primer potencial de ionización (eV) 7,55

Masa atómica (g/mol) 101,07

Densidad (g/ml) 12,2

Punto de ebullición (ºC) 4900

Punto de fusión (ºC) 2500

Descubridor Karl Klaus en 1844

RutenioElemento químico de símbolo Ru, número atómico 44 y peso atómico 101.07. El rutenio es un metal duro, blanco, manejable sólo a altas temperaturas y con dificultad.

Page 223: elemtos

Es un excelente catalizador y se utiliza en reacciones que incluyen hidrogenación, isomerización, oxidación y reformación. Los usos del rutenio metálico puro son mínimos. Es un endurecedor eficaz para el platino y el paladio. Sus aleaciones con grandes porcentajes (30-70%) de rutenio y con otros metales preciosos han sido utilizadas para contactos eléctricos y en aplicaciones donde se requiere resistencia al agua y a la corrosión extrema como en estilográficas y pivotes de instrumentos.

El rutenio es resistente a los ácidos comunes, entre ellos el agua regia, a temperaturas hasta de 100ºC (212ºF) y hasta de 300ºC (570ºF) en el caso del ácido fosfórico a 100ºC (212ºF). El rutenato de potasio, KRuO2.H2O, es soluble en agua y se utiliza en la purificación del rutenio. El tricloruro de rutenio, RuCl3, es soluble en agua pero se descompone en agua caliente; el tetróxido de rutenio es muy volátil y venenoso.

Efectos del Rutenio sobre la saludLos compuestos del rutenio se encuentran muy raramente. Todos los compuestos del rutenio deben ser considerados como altamente tóxicos y como carcinógenos. Los compuestos del rutenio manchan mucho la piel. Parece que el rutenio ingerido es retenido fuertemente en los huesos. El óxido de rutenio, RuO4, es altamente tóxico y volátil, y debe ser evitado.

El rutenio 106 es uno de los radionucleidos implicados en las pruebas atmosféricas de armas nucleares, que empezó en 1945, con una prueba estadounidense, y terminó en 1980 con una prueba china. Está entre los radionucleidos de larga vida que han producido y continuarán produciendo aumentos de riesgo de cáncer durante las décadas y siglos venideros.

Efectos ambientales del RutenioNo se han documentado efectos negativos del rutenio sobre el medio ambiente

Azufre - S

Page 224: elemtos

Propiedades químicas del Azufre - Efectos del Azufre sobre la salud - Efectos ambientales del

AzufreNombre Azufre

Número atómico 16

Valencia +2,2,4,6

Estado de oxidación -2

Electronegatividad 2,5

Radio covalente (Å) 1,02

Radio iónico (Å) 1,84

Radio atómico (Å) 1,27

Configuración electrónica [Ne]3s23p4

Primer potencial de ionización (eV) 10,36

Masa atómica (g/mol) 32,064

Densidad (g/ml) 2,07

Punto de ebullición (ºC) 444,6

Punto de fusión (ºC) 119,0

Descubridor Los antiguos

Page 225: elemtos

AzufreElemento químico, S, de número atómico 16. Los isótopos estables conocidos y sus porcentajes aproximados de abundancia en el azufre natural son éstos: 32S (95.1%); 33S (0.74%); 34S (4.2%) y 36S (0.016%). La proporción del azufre en la corteza terrestre es de 0.03-0.1%. Con frecuencia se encuentra como elemento libre cerca de las regiones volvánicas (depósitos impuros).

Propiedades: Los alótropos del azufre (diferentes formas cristalinas) han sido estudiados ampliamente, pero hasta ahora las diversas modificaciones en las cuales existen para cada estado (gas, líquido y sólido) del azufre elemental no se han dilucidado por completo.

El azufre rómbico, llamado también azufre y azufre alfa, es la modificación estable del elemento por debajo de los 95.5ºC (204ºF, el punto de transición), y la mayor parte de las otras formas se revierten a esta modificación si se las deja permanecer por debajo de esta temperatura. El azufre rómbico es de color amarillo limón, insoluble en agua, ligeramente soluble en alcohol etílico, éter dietílico y benceno, y es muy soluble en disulfuro de carbono. Su densidad es 2.07 g/cm3 (1.19 oz/in3) y su dureza es de 2.5 en la escala de Mohs. Su fórmula molecular es S8.

El azufre monoclínico, llamado también azufre prismático y azufre beta, es la modificación estable del elemento por encima de la temperatura de transición y por debajo del punto de fusión.

El azufre fundido se cristaliza en prismas en forma de agujas que son casi incoloras. Tiene una densidad de 1.96 g/cm3 (1.13 oz/in3) y un punto de fusión de 119.0ºC (246.7ºF). Su fórmula molecular también es S8.

El azufre plástico, denominado también azufre gamma, se produce cuando el azufre fundido en el punto de ebullición normal o cerca de él es enfriado al estado sólido. Esta froma es amorfa y es sólo parcialmente soluble en disulfuro de carbono.

El azufre líquido posee la propiedad notable de aumentar su viscosidad si sube la temperatura. Su color cambia a negro rojizo oscuro cuando su viscosidad aumenta, y el oscurecimiento del color y la viscosidad logran su máximo a 200ºC (392ºF). Por encima de esta temperatura, el color se aclara y la viscosidad disminuye.

Page 226: elemtos

En le punto normal de ebullición del elemento (444.60ºC u 832.28ºF) el azufre gaseoso presenta un color amarillo naranja. Cuando la temperatura aumenta, el color se torna rojo profundo y después se aclara, aproximadamente a 650º (202ºF), y adquiere un color amarillo paja.

El azufre es un elemento activo que se combina directamente con la mayor parte de los elementos conocidos. Puede existir tanto en estados de oxidación positivos como negativos, y puede forma compuestos iónicos así como covalentes y covalentes coordinados. Sus empleos se limitan principalmente a la producción de compuestos de azufre. Sin embargo, grandes cantidades de azufre elemental se utilizan en la vulcanización del caucho, en atomizadores con azufre para combatir parásitos de las plantas, en la manufactura de fertilizantes artificiales y en ciertos tipos de cementos y aislantes eléctricos, en algunos ungüentos y medicinas y en la manufactura de pólvora y fósforos. Los compuestos de azufre se emplean en la manufactura de productos químicos, textiles, jabones, fertilizantes, pieles, plásticos, refrigerantes, agentes blanqueadores, drogas, tintes, pinturas, papel y otros productos.

Compuestos principales: El sulfuro de hidrógeno (H2S) es el compuesto más importante que contiene sólo hidrógeno y azufre. Es un gas incoloro que tiene un olor fétido (semejante al de los huevos podridos) y es muchísimo más venenoso que el monóxido de carbono, pero se advierte su presencia (por su olor) antes de que alcance concentraciones peligrosas.

Los sulfuros metálicos pueden clasificarse en tres categorías: sulfuros ácidos (hidrosulfuros, MHS, donde M es igual a un ion metálico univalente), sulfuros normales (M2S) y polisulfuros (M2S3). Otros sulfuros son los compuestos de carbono-azufre y los compuesto que contienen enlaces carbono-azufre. Algunos compuestos importantes son: disulfuro de carbono, CS2, líquido que es un disolvente excelente del azufre y del fósforo elemental; monosulfuro de carbono, CS, gas inestable formado por el paso de una descarga eléctrica a través del disulfuro de carbono; y oxisulfuro de carbono, SCO, constituido por monóxido de carbono y azufre libre a una temperatura elevada.

Los compuestos de nitrógeno-azufre que han sido caracterizados son el nitruro de azufre, N4S4 (llamado también tetrasulfuro de tetranitrógeno), disulfuro de nitrógeno, NS2, y el pentasulfuro de nitrógeno, N2S5, que pueden ser denominados más propiamente nitruros debido a la gran electronegatividad del nitrógeno, aunque en la literatura se les llama casi siempre sulfuros.

Los compuestos de fósforo-azufre que se han caracterizado son P4S3, P4S5, P4S7 y P4S10. Los cuatro son materiales cristalinos, amarillos y se utilizan en la conversión de compuestos orgánicos oxidados (por ejemplo, alcoholes) en los correspondientes análogos de azufre.

Los óxidos de azufre que han sido caracterizados tienen las fórmulas SO, S2O3, SO2, SO3, S2O7 y SO4. El dióxido de azufre, SO2, y el trióxido de azufre, SO3, son de mayor importancia que los otros. El dióxido de azufre puede actuar como agente oxidante y como agente reductor. Reacciona con el agua para producir una solución ácida (llamada ácido sulfuroso), iones bisulfito (HSO3-) y sulfito (SO3

2-). El dióxido de emplea como gas refrigerante como desinfectante y conservador, así como agente blanqueador, y en el refinado de productos de

Page 227: elemtos

petróleo. Sin embargo, su uso principal está en la manufactura de trióxido de azufre y ácido sulfúrico. El trióxido de azufre se utiliza principalmente en la preparación del ácido sulfúrico y ácidos sulfónicos.

Aunque se conocen sales (o ésteres) de todos los oxiácidos, en muchos casos el ácido mismo no ha sido aislado a causa de su inestabilidad. El ácido sulfuroso no se conoce como sustancia pura. El ácido sulfúrico (H2SO4) es un líquido viscoso, incoloro, con un punto de fusión de 10.31ºC (50.56ºF). Es un ácido fuerte en agua y reacciona con la mayor parte de los metales tanto diluido como concentrado. El ácido concentrado es un poderoso agente oxidante, especialmente a temperaturas elevadas. El ácido pirosulfúrico (H2S2O7) es un excelente agente sulfonante y pierde trióxido de azufre cuando se calienta. También reacciona vigorosamente con agua, liberando gran cantidad de calor. Se conocen los ácidos persulfúricos (el ácido peroximonosulfúrico, H2SO5, llamado ácido de Caro, y el ácido peroxidisulfúrico, H2S2O8, llamado ácido de Marshall), así como las sales. Se conocen los ésteres y halógenos de ácidos sulfénicos. Los ácidos sulfínicos se forman por la reducción de los cloruros de ácido sulfónico con zinc o por la reacción con reactivos de Grignard sobre dióxido de azufre en solución etérea. Los ácidos sulfónicos (alquil) se preparan al oxidar mercaptanos (RSH) o sulfuros alquílicos con ácido nítrico concentrado, por el tratamiento de sulfitos con haluros de alquilo o por la oxidación de ácidos sulfínicos. Otros compuestos orgánicos importantes que contienen oxígeno-azufre incluyen los sulfóxidos, R2SO (que pueden ser considerados como derivados del ácido sulfuroso), y las sulfonas, R2SO2 (del ácido sulfúrico).

Derivados halogenados importantes del ácido sulfúrico son los halogenuros orgánicos de sulfonilo y los ácidos halosulfónicos. Los compuestos de halógenos-azufre que han sido bien caracterizados son S2F2 (monosulfuro de azufre), SF2, SF4, SF6, S2F10, S2Cl2 (monoclururo de azufre), SCl2. SCl4 y S2Br2 (monobromuro de azufre). Los cloruros de azufre se utilizan en la manufactura comercial del hule y los monocloruros, que son líquidos a la temperatura ambiente, se emplean también como disolventes para compuestos orgánicos, azufre, yodo y ciertos compuestos metálicos.

Efectos del Azufre sobre la saludEl azufre se puede encontrar frecuentemente en la naturaleza en forma de sulfuros. Durante diversos procesos se añaden al medio ambiente enlaces de azufre dañinos para los animales y los hombres. Estos enlaces de azufre dañinos también se forman en la naturaleza durante diversas reacciones, sobre todo cuando se han añadido sustancias que no están presentes de forma natural. Los compuestos del azufre presentan un olor desagradable y a menudo son altamente tóxicos. En general las sustancias sulfurosas pueden tener los siguientes efectos en la salud humana:

Efectos neurológicos y cambios comportamentales Alteración de la circulación sanguínea Daños cardiacos

Page 228: elemtos

Efectos en los ojos y en la vista Fallos reproductores Daños al sistema inmunitario Desórdenes estomacales y gastrointestinales Daños en las funciones del hígado y los riñones Defectos en la audición Alteraciones del metabolismo hormonal Efectos dermatológicos Asfixia y embolia pulmonar

Efectos ambientales del AzufreEl azufre puede encontrarse en el aire en varias formas diferentes. Puede provocar irritaciones en los ojos y garganta de los animales, cuando la toma tiene lugar a través de la inhalación del azufre en su fase gaseosa. El azufre se aplica extensivamente en las industrias y es emitido al aire, debido a las limitadas posibilidades de destrucción de los enlaces de azufre que se aplican.

Los efectos dañinos del azufre en los animales son principalmente daños cerebrales, a través de un malfuncionamiento del hipotálamo, y perjudicar el sistema nervioso.

Pruebas de laboratorio con animales de prueba han indicado que el azufre puede causar graves daños vasculares en las venas del cerebro, corazón y riñones. Estos tests también han indicado que ciertas formas del azufre pueden causar daños fetales y efectos congénitos. Las madres pueden incluso transmitirles envenenamiento por azufre a sus hijos a través de la leche materna.

Por último, el azufre puede dañar los sistemas enzimáticos internos de los animales

Antimonio - Sb

Propiedades químicas del Antimonio - Efectos del Antimonio sobre la salud - Efectos ambientales del

AntimonioNombre Antimonio

Número atómico 51

Page 229: elemtos

Valencia +3,-3,5

Estado de oxidación +5

Electronegatividad 1,9

Radio covalente (Å) 1,38

Radio iónico (Å) 0,62

Radio atómico (Å) 1,59

Configuración electrónica [Kr]4d105s25p3

Primer potencial de ionización (eV) 8,68

Masa atómica (g/mol) 121,75

Densidad (g/ml) 6,62

Punto de ebullición (ºC) 1587

Punto de fusión (ºC) 630,5

Descubridor Los antiguos

Page 230: elemtos

AntimonioElemento químico con símbolo Sb y número atómico 51. El antimonio no es un elemento abundante en la naturaleza; raras veces se encuentra en forma natural, a menudo como una mezcla isomorfa con arsénico: la allemonita. Su símbolo Sb se deriva de la palabra latina stibium. El antimonio se presenta en dos formas: amarilla y gris. La forma amarilla es metaestable, y se compone de moléculas Sb4, se le encuentra en el vapor de antimonio y es la unidad estructural del antimonio amarillo; la forma gris es metálica, la cual cristaliza en capas formando una estructura romboédrica.

El antimonio difiere de los metales normales por tener una conductividad eléctrica menor en estado sólido que en estado líquido (como su compañero de grupo el bismuto). El antimonio metálico es muy quebradizo, de color blanco-azuloso con un brillo metálico característico, de apariencia escamosa. Aunque a temperaturas normales es estable al aire, cuando se calienta se quema en forma luminosa desprendiendo humos blancos de Sb2O3. La vaporización del metal forma moléculas de Sb4O6, que se descomponen en Sb2O3 por arriba de la temperatura de transición.

El antimonio se encuentra principalmente en la naturaleza como Sb2S3 (estibnita, antimonita); el Sb2O3 (valentinita) se halla como producto de descomposición de la estibnita. Forma parte por lo general de los minerales de cobre, plata y plomo. También se encuentran en la naturaleza los antimoniuros metálicos NiSb (breithaupita), NiSbS (ulmanita) y Ag2Sb (dicrasita); existen numerosos tioantimoniatos como el Ag3SbS3 (pirargirita).

El antimonio se obtiene calentando el sulfuro con hierro, o calentando el sulfuro y el sublimado de Sb4O6 obtenido se reduce con carbono; el antimonio de alta pureza se produce por refinado electrolítico.

El antimonio de grado comercial se utiliza en muchas aleaciones (1-20%), en especial de plomo, las cuales son más duras y resistentes mecánicamente que el plomo puro; casi la mitad de todo el antimonio producido se consume en acumuladores, revestimiento de cables, cojinetes antifricción y diversas clases de metales de consumo. La propiedad que tienen las aleaciones de Sn-Sb-Pb de dilatarse al enfriar el fundido permiten la producción de vaciados finos, que hacen útil este tipo de metal.

Efectos del Antimonio sobre la saludEl antimonio se da naturalmente en el medio ambiente. Pero también entra en el medio ambiente a través de diversas aplicaciones de los humanos. Especialmente las personas que trabajan con antimonio pueden sufrir los efectos de la exposición por respirar polvo de antimonio. La exposición de los humanos al antimonio puede tener lugar por medio de la respiración, del agua potable y de la comida que lo contenga, pero también por contacto cutáneo con tierra, agua y otras sustancias que lo contengan. Respirar antimonio enlazado con hidrógeno en la fase gaseosa es lo que produce principalmente los efectos sobre la salud.

Page 231: elemtos

La exposición a cantidades relativamente altas de antimonio (9 mg/m3 de aire) durante un largo periodo de tiempo puede provocar irritación de los ojos, piel y pulmones.

Si la exposición continúa se pueden producir efectos más graves, tales como enfermedades pulmonares, problemas de corazón, diarrea, vómitos severos y úlceras estomacales.

No se sabe si el antimonio puede provocar cáncer o fallos reproductores.

El antimonio es usado como medicina para infecciones parasitarias, pero las personas que toman demasiada medicina o que son especialmente sensibles a ella experimentan efectos en su salud. Estos efectos sobre la salud nos han hecho estar más alerta acerca de los peligros de la exposición al antimonio.

Efectos ambientales del AntimonioEl antimonio se puede encontrar en los suelos, agua y aire en cantidades muy pequeñas. El antimonio contamina principalmente los suelos. Puede viajar grandes distancias con las aguas subterráneas hacia otros lugares y aguas superficiales.

Las pruebas de laboratorio con ratas, conejos y conejillos de indias nos han mostrado que niveles relativamente altos de antimonio pueden matar a pequeños animales. Las ratas pueden experimentar daños pulmonares, cardiacos, hepáticos y renales previos a la muerte.

Los animales que respiran bajos niveles de antimonio durante un largo periodo de tiempo pueden experimentar irritación ocular, pérdida de pelo y daños pulmonares. Los perros pueden experimentar problemas cardiacos incluso cuando son expuestos a bajos niveles de antimonio. Los animales que respiran bajos niveles de antimonio durante un par de meses también pueden experimentar problemas de fertilidad.

Todavía no ha podido ser totalmente especificado si el antimonio produce cáncer o no

Escandio - Sc

Propiedades químicas del Escandio - Efectos del Escandio sobre la salud - Efectos ambientales del

EscandioNombre Escandio

Número atómico 21

Valencia 3

Page 232: elemtos

Estado de oxidación +3

Electronegatividad 1,3

Radio covalente (Å) 1,44

Radio iónico (Å) 0,81

Radio atómico (Å) 1,62

Configuración electrónica [Ar]3d14s2

Primer potencial de ionización (eV) 6,59

Masa atómica (g/mol) 44,956

Densidad (g/ml) 3,0

Punto de ebullición (ºC) 2730

Punto de fusión (ºC) 1539

Descubridor Lars Nilson en 1879

EscandioElemento químico, símbolo Sc, número atómico 21 y peso atómico 44.956. Es el primer elemento de transición del primer periodo largo. Los isótopos del escandio son 40Sc y 51 Sc y uno correspondiente a cada valor intermedio. Excepto 45Sc, presente en la naturaleza, los isótopos se obtienen durante reacciones nucleares.

El óxido y otros compuestos del escandio se emplean como catalizadores en la conversión de ácido acético en acetona, en la manufactura de propanol y en la conversión de ácidos

Page 233: elemtos

dicarboxílicos en cetonas y compuestos cíclicos. El tratamiento con solución de sulfato de escandio es un medio económico para mejorar la germinación de semillas de muchas especies vegetales.

El escandio-47 tiene una vida media adecuada para su empleo como trazador y se puede preparar sin transportador. La presencia de un 2.5-25% de átomos de escandio en el ánodo incrementa el voltaje, la estabilidad de éste y la vida de las baterías alcalinas de níquel.

El m¡neral principal del escandio es la thortveitita, que se encuentra en formaciones graníticas (pegmatita) y en algunos minerales de estaño, tungsteno y de las tierras raras. Está ampliamente distribuido en muchas partes del mundo.

Efectos del Escandio sobre la saludEl escandio es uno de los productos químicos raros, que puede encontrarse en las casas en equipos como televisiones en color, lámparas fluorescentes, lámparas ahorradoras de energía y cristales. Todos los productos químicos raros tienen propiedades comparables.

El escandio se raramente se puede encontrar en la naturaleza, ya que se da en cantidads muy pequeñas. El escandio se encuentra normalmente solo en dos tipos diferentes de menas minerales. El uso del escandio todavía está creciendo, debido al hecho de que es adecuado para producir catalizadores y para pulir cristales.

El escandio es principalmente peligroso en el lugar de trabajo, debido al hecho de que las humedades y los gases pueden ser inhalados con el aire. Esto puede provocar embolias pulmonares, especialmente durante largas exposiciones. El escandio puede ser una amenaza para el hígado cuando se acumula en al cuerpo humano.

Efectos ambientales del Escandio

El escandio es vertido al medio ambiente en muchos lugares diferentes, principalmente por industrias productoras de petróleo. También pueden entrar en el medio ambiente cuando se tiran los equipos domésticos. El escandio se acumula gradualmente en los suelos y el agua y esto conducirá finalmente al incremento de las concentraciones en humanos, animales y partículas del suelo.

En los animales acuáticos el escandio produce daños a las membranas celulares, lo que tiene diversas influencias negativas en la reproducción y en las funciones del sistema nervioso

Page 234: elemtos

Selenio - Se

Propiedades químicas del Selenio - Efectos del Selenio sobre la salud - Efectos ambientales del

SelenioNombre Selenio

Número atómico 34

Valencia +2,-2,4,6

Estado de oxidación -2

Electronegatividad 2,4

Radio covalente (Å) 1,16

Radio iónico (Å) 1,98

Radio atómico (Å) 1,40

Configuración electrónica [Ar]3d104s24p4

Primer potencial de ionización (eV) 9,82

Masa atómica (g/mol) 78,96

Densidad (g/ml) 4,79

Punto de ebullición (ºC) 685

Punto de fusión (ºC)

Page 235: elemtos

SelenioElemento químico, símbolo Se, número atómico 34 y peso atómico 78.96. Sus propiedades son semejantes a las del telurio.

La abundancia de este elemento, ampliamente distribuido en la corteza terrestre, se estima aproximadamente en 7 x 10-5% por peso, encontrándose en forma de seleniuros de elementos pesados y, en menor cantidad, como elemento libre en asociación con azufre elemental. Sus minerales no se encuentran en suficiente cantidad para tener utilidad, como fuente comercial del elemento, y por ello los minerales de sulfuro de cobre seleníferos son los que representan la fuente primaria.

Los empleos más importantes del selenio son el proceso de fotocopiado xerográfico, la decoloración de vidrios teñidos por compuestos de hierro, y también se usa como pigmento en plásticos, pinturas, barnices, vidrio y cerámica y tintas. Su utilización en rectificadores ha disminuido por el mayor empleo del silicio y el germanio en esta aplicación. El selenio se emplea también en exposímetros fotográficos y como aditivo metalúrgico que mejora la capacidad de ciertos aceros para ser maquinados.

El selenio arde en el aire con una flama azul para dar dióxido de selenio, SeO2. El elemento también reacciona directamente con diversos metales y no metales, entre ellos el hidrógeno y los halógenos. Los ácidos no oxidantes, no reaccionan con el selenio; pero el ácido nítrico, el ácido sulfúrico concentrado y los hidróxidos alcalinos fuertes lo disuelven.

El único compuesto importante del selenio con hidrógeno es el seleniuro de hidrógeno, H2Se, gas venenoso incoloro e inflamable con un olor desagradable, gran toxicidad y estabilidad térmica menor que la del sulfuro de hidrógeno. Disuelto en agua, el seleniuro de hidrógeno puede precipitar muchos iones de metales pesados como seleniuros muy poco solubles. Los compuestos orgánicos con enlaces C-Se son muchos e incluyen desde simples selenoles, RSeH; ácido selenénico, RseOH; haluros organil selénicos, RSeX; seleniuros diorganílicos y diseleniuros, R2Se y R2Se2, hasta moléculas que exhiben actividad biológica, como los selenoaminoácidos y los selenopéptidos.

Efectos del Selenio sobre la saludLos humanos pueden estar expuestos al selenio de varias formas diferentes. La exposición al selenio tiene lugar bien a través de la comida o el agua, o cuando nos ponemos en contacto con tierra o aire que contiene altas concentraciones de selenio. Esto no es muy sorprendente, porque el selenio se da naturalmente en el medio ambiente de forma muy amplia y está muy extendido.

La exposición al selenio tiene lugar principalmente a través de la comida, porque el selenio está presente naturalmente en los cereales y la carne. Los humanos necesitan absorber ciertas cantidades de selenio diariamente, con el objeto de mantener una buena salud. La comida normalmente contiene suficiente selenio para prevenir las enfermedades causadas por su carencia.

Page 236: elemtos

La toma de selenio a través de la comida puede ser más elevada de lo normal en muchos casos, porque en el pasado se aplicaron muchos fertilizantes ricos en selenio en los cultivos.

Las personas que viven cerca de lugares donde hay residuos peligrosos experimentarán una mayor exposición a través del suelo y del aire. El selenio procedente de cultivos y de lugares donde hay residuos peligrosos acabará en las aguas subterráneas o superficiales por irrigación. Este fenómeno hace que el selenio acabe en el agua potable local, de forma que la exposición al selenio a través del agua aumentará temporalmente.Las personas que trabajan en las industrias del metal, industrias recuperadoras de selenio e industrias de pintura también tienden a experimentar una mayor exposición al selenio, principalmente a través de la respiración. El selenio es liberado al aire a través de la combustión de carbón y aceite.

Las personas que comen muchos cereales que crecen cerca de las industrias pueden experimentar una mayor exposición al selenio a través de la comida. La exposición al selenio a través del agua potable puede ser aumentada cuando el selenio de la eliminación de residuos peligrosos termina en los pozos de agua.

La exposición al selenio a través del aire suele ocurrir en el lugar de trabajo. Puede provocar mareos, fatiga e irritaciones de las membranas mucosas. Cuando la exposición es extremadamente elevada, puede ocurrir retención de líquido en los pulmones y bronquitis.

La toma de selenio a través de la comida es normalmente lo suficientemente grande como para satisfacer las necesidades humanas; la escasez raramente ocurre. Cuando hay escasez puede que las personas experimenten problemas de corazón y musculares. Cuando la toma de selenio es demasiado grande es probable que se presenten efectos sobre la salud. La gravedad de estos efectos depende de las concentraciones de selenio en la comida y de la frecuencia con que se tome esa comida.

Los efectos sobre la salud de las diversas formas del selenio pueden variar de pelo quebradizo y uñas deformadas, a sarpullidos, calor, hinchamiento de la piel y dolores agudos. Cuando el selenio acaba en los ojos las personas experimentan quemaduras, irritación y lagrimeo.

El envenenamiento por selenio puede volverse tan agudo en algunos casos que puede incluso causar la muerte.

La sobre-exposición a vapores de selenio puede producir acumulación de líquido en los pulmones, mal aliento, bronquitis, neumonía, asma bronquítica, náuseas, escalofríos, fiebre, color de cabeza, dolor de garganta, falta de aliento, conjuntivitis, vómitos, dolores abdominales, diarrea y agrandamiento del hígado. El selenio es irritante y sensibilizador de los ojos y del sistema respiratorio superior.

Page 237: elemtos

La sobre-exposición puede resultar en manchas rojas en las uñas, dientes y pelo. El dióxido de selenio reacciona con la humedad para formar ácido selénico, que es corrosivo para la piel y ojos.

Carcinogenicidad: La Agencia Internacional de la Investigación del Cáncer (IARC) ha incluido al selenio dentro del grupo 3 (el agente no es clasificable en relación a su carcinogenicidad en humanos.).

Efectos ambientales del SelenioEl selenio se presenta naturalmente en el medio ambiente. Es liberado tanto a través de procesos naturales como de actividades humanas. En su forma natural el selenio como elemento no puede ser creado ni destruido, pero tiene la capacidad de cambiar de forma.

Bajos niveles de selenio pueden terminar en suelos o agua a través de la erosión de las rocas. Será entonces tomado por las plantas o acabará en el aire cuando es absorbido en finas partículas de polvo. Es más probable que el selenio entre en el aire a través de la combustión de carbón y aceite, en forma de dióxido de selenio. Esta sustancia será transformada en ácido de selenio en el agua o el sudor.

Las sustancias en el aire que contienen selenio son normalmente descompuestas en selenio y agua bastante deprisa, de forma que no son peligrosas para la salud de los organismos.

Los niveles de selenio en el suelo y agua aumentan, porque el selenio sedimenta del aire y el selenio de los residuos también tiende a acabar en los suelos de los vertederos.

Cuando el selenio en los suelos no reacciona con el oxígeno permanece bastante inmóvil. El selenio que es inmóvil y no se disuelve en el agua representa menor riesgo para los organismos. Los niveles de oxígeno en el aire y la acidez del suelo aumentarán las formas móviles del selenio. Las actividades humanas tales como los procesos industriales y agrícolas incrementan los niveles de oxígeno y la acidez de los suelos.

Cuando el selenio es más móvil, las probabilidades de exposición a sus componentes aumentarán considerablemente. La temperatura del suelo, la humedad, las concentraciones de selenio soluble en agua, la estación del año, el contenido en materia orgánica y la actividad microbiana determinarán la rapidez con la que el selenio se mueve a través del suelo. En otras palabras, estos factores determinan su movilidad.

La agricultura puede no solo incrementar el contenido de selenio en el suelo; también puede aumentar las concentraciones de selenio en las aguas superficiales, ya que las aguas de drenaje de irrigación portan selenio.

El comportamiento del selenio en el medio ambiente depende fuertemente de sus interacciones con otros componentes y de las condiciones medio ambientales en el lugar en concreto y a una hora concreta.

Page 238: elemtos

Existe evidencia de que el selenio puede acumularse en los tejidos corporales de los organismos y puede ser transportada en la cadena alimenticia hacia niveles superiores. Normalmente esta biomagnificación de selenio comienza cuando los animales ingieren muchas plantas que han estado absorbiendo enormes cantidades de selenio, antes de la ingestión. Debido a la irrigación, las concentraciones de selenio en la escorrentía tienden a ser muy altas en organismos acuáticos en muchas zonas.

Cuando los animales absorben o acumulan concentraciones de selenio extremadamente grandes, puede causar fallo reproductivo y defectos de nacimiento

Seaborgio - Sg

Propiedades químicas del Seaborgio - Efectos del Seaborgio sobre la salud - Efectos ambientales del

SeaborgioNombre Seaborgio

Número atómico 106

Valencia -

Estado de oxidación -

Electronegatividad -

Radio covalente (Å) -

Radio iónico (Å) -

Radio atómico (Å) -

Configuración electrónica [Rn]5f146d47s2

Potencial primero de ionización (eV) -

Masa atómica (g/mol) (263)

Densidad (g/ml) -

Page 239: elemtos

Punto de ebullición (ºC) -

Punto de fusión (ºC) -

Descubridor Albert Ghiorso en 1974

SeaborgioElemento con número atómico 106. Sintetizado e identificado en 1974; es el decimocuarto de los elementos transuránicos sintéticos. El descubrimiento del Seaborgio tuvo lugar casi simultáneamente en dos laboratorios nucleares muy distantes: el Lawrence de Berkeley, en la Universidad de California, y el Instituto Conjunto de Investigación Nuclear de Dubna (cerca de Moscú). Se usaron dos aproximaciones diferentes e independientes en esta difícil realización, en que se bombardeó con iones pesados.

Con base en su posición en la tabla periódica se espera que tenga propiedades análogas a las del tungsteno (número atómico 74).

Efectos del Seaborgio sobre la saludAl ser tan inestable, cualquier cantidad formada se descompondrá en otros elementos con tanta rapidez que no existe razón para estudiar sus efectos en la salud humana.

Efectos ambientales del SeaborgioDebido a su vida media tan extremadamente corta (21 segundos), no existe razón para considerar los efectos del seaborgio en el medio ambiente

Silicio - Si

Page 240: elemtos

Propiedades químicas del Silicio - Efectos del Silicio sobre la salud - Efectos ambientales del

SilicioNombre Silicio

Número atómico 14

Valencia 4

Estado de oxidación +4

Electronegatividad 1,8

Radio covalente (Å) 1,11

Radio iónico (Å) 0,41

Radio atómico (Å) 1,32

Configuración electrónica [Ne]3s23p2

Primer potencial de ionización (eV) 8,15

Masa atómica (g/mol) 28,086

Densidad (g/ml) 2,33

Punto de ebullición (ºC) 2680

Punto de fusión (ºC) 1410

Descubridor Jons Berzelius en 1823

Page 241: elemtos

SilicioSímbolo Si, número atómico 14 y peso atómico 28.086. El silicio es el elemento electropositivo más abundante de la corteza terrestre. Es un metaloide con marcado lustre metálico y sumamente quebradizo. Por lo regular, es tetravalente en sus compuestos, aunque algunas veces es divalente, y es netamente electropositivo en su comportamiento químico. Además, se conocen compuestos de silicio pentacoordinados y hexacoordinados.

El silicio elemental crudo y sus compuestos intermetálicos se emplean como integrantes de aleaciones para dar mayor resistencia al aluminio, magnesio, cobre y otros metales. el silicio metalúrgico con pureza del 98-99% se utiliza como materia prima en la manufactura de compuestos organosilícicos y resinas de silicona, elastómeros y aceites. Los chips de silicio se emplean en circuitos integrados. Las células fotovoltaicas para la conversión directa de energía solar en eléctrica utilizan obleas cortadas de cristales simples de silicio de grado electrónico. El dióxido de silicio se emplea como materia prima para producir silicio elemental y carburo de silicio. Los cristales grandes de silicio se utilizan para cristales piezoeléctricos. Las arenas de cuarzo fundido se transforman en vidrios de silicio que se usan en los laboratorios y plantas químicas, así como en aislantes eléctricos. Se emplea una dispersión coloidal de silicio en agua como agente de recubrimiento y como ingrediente de ciertos esmaltes.

El silicio natural contiene 92.2% del isótopo de masa número 28, 4.7% de silicio-29 y 3.1% de silicio-30. Además de estos isótopos naturales estables, se conocen varios isótopos radiactivos artificiales. El silicio elemental tiene las propiedades físicas de los metaloides, parecidas a las del germanio, situado debajo de él en el grupo IV de la tabla periódica. En su forma más pura, el silicio es un semiconductor intrínseco, aunque la intensidad de su semiconducción se ve enormemente incrementada al introducir pequeñas cantidades de impurezas. El silicio se parece a los metales en su comportamiento químico. Es casi tan electropositivo como el estaño y mucho más positivo que el germanio o el plomo. De acuerdo con este carácter más bien metálico, forma iones tetrapositivos y diversos compuestos covalentes; aparece como un ion negativo sólo en unos pocos siliciuros y como un constituyente positivo de oxiácidos o aniones complejos.

Forma varias series de hidruros, diversos halogenuros (algunos de los cuales contienen enlaces silicio-silicio) y muchas series de compuestos que contienen oxígeno, que pueden tener propiedades iónicas o covalentes.

El silicio se encuentra en muchas formas de dióxidos y en innumerables variaciones de los silicatos naturales. Para un análisis de las estructuras y composiciones de las clases representativas.

Por su abundancia, el silicio excede en mucho a cualquier otro elemento, con excepción del oxígeno. Constituye el 27.72% de la corteza sólida de la Tierra, mientras que el oxígeno constituye el 46.6%, y el siguiente elemento después del silicio, el aluminio se encuentra en un 8.13%.

Page 242: elemtos

Se sabe que el silicio forma compuestos con 64 de los 96 elementos estables y probablemente forme siliciuros con otros 18 elementos. Además de los siliciuros metálicos, que se utilizan en grandes cantidades en metalurgia, forma compuestos importantes y de empleo frecuente con hidrógeno, carbono, los halógenos, nitrógeno, oxígeno y azufre. Además, se han preparado derivados organosilícicos de gran utilidad.

Efectos del Silicio sobre la saludEl silicio elemental es un material inerte, que parece carecer de la propiedad de causar fibrosis en el tejido pulmonar. Sin embargo, se han documentado lesiones pulmonares leves en animales de laboratorio sometidos a inyecciones intratraqueales de polvo de silicio. El polvo de silicio tiene pocos efectos adversos sobre los pulmones y no parece producir enfermedades orgánicas significativas o efectos tóxicos cuando las exposiciones se mantienen por debajo de los límites de exposición recomendados. El silicio puede tener efectos crónicos en la respiración. El silicio cristalino (dióxido de silicio) es un potente peligro para la respiración. Sin embargo, la probablilidad de que se produzca dióxido de silicio durante los procesamientos normales es muy remota. LD50 (oral)-3160 mg/kg. (LD50: Dosis Letal 50. Dosis individual de una sustancia que provoca la muerte del 50% de la población animal debido a la exposición a la sustancia por cualquier vía distinta a la inhalación. Normalmente expresada como miligramos o gramos de material por kilogramo de peso del animal.)

El silicio cristalino irrita la piel y los ojos por contacto. Su inhalación causa irritación de los pulmones y de la membrana mucosa. La irritación de los ojos provoca lagrimeo y enrojecimiento. Enrojecimiento, formación de costras y picores son características de la inflamación cutánea.

El cáncer de pulmón está asociado con exposiciones a silicio cristalino (especialmente cuarzo y cristobalita) en lugares de trabajo. En estudios realizados a mineros, trabajadores con tierra de diatomeas, trabajadores del granito, trabajadores de cerámica, trabajadores de ladrillos refractarios y otros trabajadores se ha documentado una relación exposición-respuesta.

Diversos estudios epidemiológicos han informado de números estadísticamente significativos de exceso de muertes o casos de desorden inmunológico y enfermedades autoinmunes en trabajadores expuestos al silicio. Estas enfermedades y trastornos incluyen scleroderma, artritis reumatoide, eritematosis sistémica y sarcoidosis.

Estudios epidemiológicos recientes han informado de asociaciones estadísticamente significativas de exposiciones ocupacionales a silicio cristalino con enfermedades renales y cambios renales subclínicos.

El silicio cristalino puede afectar el sistema inmunitario, resultando en infecciones micobacterianas (tuberculosas y no tuberculosas) o fúngicas, especialmente en trabajadores con silicosis.

Page 243: elemtos

La exposición ocupacional al silicio cristalino respirable está asociado con bronquitis, enfermedad crónica de obstrucción pulmonar (COPD) y enfisema. Algunos estudios epidemiológicos sugieren que estos efectos sobre la salud pueden ser menos frecuentes o ausentes en los no fumadores.

Efectos ambientales del SilicioNo se ha informado de efectos negativos del silicio sobre el medio ambiente.

Samario - Sm

Propiedades químicas del Samario - Efectos del Samario sobre la salud - Efectos ambientales del

SamarioNombre Samario

Número atómico 62

Valencia 2,3

Estado de oxidación +3

Electronegatividad 1,1

Radio covalente (Å) 1,66

Radio iónico (Å) 1,04

Radio atómico (Å) 1,66

Configuración electrónica [Xe]4f65d06s2

Primer potencial de ionización (eV) 5,63

Masa atómica (g/mol) 150,35

Densidad (g/ml) 7,54

Punto de ebullición (ºC) 1900

Page 244: elemtos

Punto de fusión (ºC) 1072

Descubridor Paul Emile Lecoq de Boisbaudran en 1879

SamarioElemento químico de símbolo Sm y número atómico 62; miembro del grupo de las tierras raras. Su peso atómico es 150.35 y son 7 los isótopos que se encuentran en la naturaleza; 147Sm, 148Sm y 149Sm son radiactivos y emiten partículas a .

El óxido de samario es de color amarillo pálido; muy soluble en la mayor parte de los ácidos, dando sales amarillo-topacio en solución. El samario tiene un empleo limitado en la industria cerámica y se utiliza como catalizador en ciertas reacciones orgánicas. Uno de sus isótopos tiene una superficie grande para la captura de neutrones, por lo que es de gran interés en la industria atómica como barra de control y envenenamientos nucleares.

El samario fue observado espectroscópicamente por Jean Charles Galissard de Marignac, un químico suizo, en un material conocido como didimio en 1853. Paul-Émile Lecoq de Boisbaudran, un científico francés, fue el primero en aislar el samario del mineral samarskita ((Y, Ce, U, Fe)3(Nb, Ta, Ti)5O16) en 1879.

 

Actualmente el samario es obtenido principalmente a través de un proceso de intercambio iónico de la arena de monacita ((Ce, La, Th, Nd, Y)PO4), un material rico en elementos de tierras raras que contiene hasta un 2,8 % de samario.

 

El samario es uno de los elementos de tierras raras usados para hacer lámparas de arco voltaico de carbono las cuales son usadas en la industria del cine para la iluminación de los estudios y las luces de los proyectores. El samario también compone sobre el 1 % del metal Misch, un material que es usado para hacer piedras de mecheros.

Page 245: elemtos

 

El samario forma un compuesto con el cobalto (SmCo5) que es un poderoso imán permanente con mayor resistencia a la desmagnetización que cualquier otro material conocido. El óxido de samario (Sm2O3) se añade al cristal para absorber radiación infrarroja y actúa como un catalizador de la deshidratación y deshidrogenización del etanol (C2H6O).

Efectos del Samario sobre la saludEl samario es uno de los elementos químicos raros, que puede ser encontrado en equipos tales como televisiones en color, lámparas fluorescentes y cristales. Todos los compuestos químicos raros tienen propiedades comparables.

El samario raramente se encuentra en la naturaleza, ya que se da en cantidades muy pequeñas. El samario normalmente se encuentra solamente en dos tipos distintos de minerales. El uso del samario sigue aumentando, debido al hecho de que es útil para producir catalizadores y para pulir cristales.

El samario es más peligroso en el ambiente de trabajo, debido al hacho de que las humedades y los gases pueden ser inhalados con el aire. Esto puede causar embolias pulmonares, especialmente durante exposiciones a largo plazo. El samario puede ser una amenaza para el hígado cuando se acumula en el cuerpo humano.

Efectos ambientales del SamarioEl samario es vertido al medio ambiente en muchos lugares diferentes, principalmente por industrias productoras de petróleo. También puede entrar en el medio ambiente cuando se tiran los equipos domésticos. El samario se acumulará gradualmente en los suelos y en el agua de los suelos y esto llevará finalmente a incrementar la concentración en humanos, animales y partículas del suelo.

En los animales acuáticos provoca daños a las membranas celulares, lo que tiene varias influencias negativas en la reproducción y en las funciones del sistema nervioso.

Estaño - Sn

Propiedades químicas del Estaño - Efectos del Estaño sobre la salud - Efectos ambientales del

EstañoNombre Estaño

Page 246: elemtos

Número atómico 50

Valencia 2,4

Estado de oxidación +4

Electronegatividad 1,8

Radio covalente (Å) 1,41

Radio iónico (Å) 0,71

Radio atómico (Å) 1,62

Configuración electrónica [Kr]4d105s25p2

Primer potencial de ionización (eV) 7,37

Masa atómica (g/mol) 118,69

Densidad (g/ml) 7,30

Punto de ebullición (ºC) 2270

Punto de fusión (ºC) 231,9

Descubridores Los antiguos

Estaño

Page 247: elemtos

Elemento químico, de símbolo Sn, número atómico 50 y peso atómico 118.69. Forma compuesto de estaño(II) o estañoso(Sn2+) y estaño(IV) o estánico (Sn4+), así como sales complejas del tipo estanito (M2SnX4) y estanato (M2SnX6).

Se funde a baja temperatura; tiene gran fluidez cuando se funde y posee un punto de ebullición alto. es suave, flexible y resistente a la corrosión en muchos medios. Una aplicación importante es el recubrimiento de envases de acero para conservar alimentos y bebidas. Otros empleos importantes son: aleaciones para soldar, bronces, pletres y aleaciones industriales diversas. Los productos químicos de estaño, tanto inorgánicos como orgánicos, se utilizan mucho en las industrias de galvanoplastia, cerámica y plásticos, y en la agricultura.

El mineral del estaño más importante es la casiterita, SnO2. No se conocen depósitos de alta calidad de este mineral. La mayor parte del mineral de estaño del mundo se obtiene de depósitos aluviales de baja calidad.

Existen dos formas alotrópicas del estaño: estaño blanco y estaño gris. Es estño reacciona tanto con ácidos fuertes como con bases fuertes, pero es relativamente resistente a soluciones casi neutras. En muy diversas circunstancias corrosiva, no se desprende el gas hidrógeno del estaño y la velocidad de corrosión está controlada por el suministro de oxígeno u otros agentes oxidantes; en su ausencia, la corrosión es despreciable. Se forma una película delgada de óxido estánico sobre el estaño que está expuesto al aire y esto origina una protección superficial. Las sales que tienen una reacción ácida en solución, como el cloruro de aluminio y el cloruro férrico, atacan el estaño en presencia de oxidantes o aire. La mayor parte de los líquidos no acuosos, como los aceite, los alcoholes o los hidrocarburos clorinados, no tienen efectos obvios sobre el estaño o son muy pequeños. El estaño y las sales inorgánicas simples no son tóxicos, pero sí lo son algunas formas de compuesto organoestañosos.

El óxido estanoso, SnO es un producto cristalino de color negro-azul, soluble en los ácidos comunes y en bases fuertes. Se emplea para fabricar sales estanosas en galvanoplastia y en manufactura de vidrio. El óxido estánico, SnO2, es un polvo blanco, insoluble en ácidos y álcalis. Es un excelente opacador de brillo y componente de colorantes cerámicos rosas, amarillos y marrones y de cuerpos refractarios y dieléctricos. Es un importante agente pulidor del mármol y de las piedras decorativas.

El cloruro estanoso, SnCl2, es el ingrediente principal en el galvanoestañado ácido con electrólitos e intermediario de algunos compuesto químicos de estaño. El cloruro estánico, SnCl4, en la forma pentahidratada es un sólido blanco. Se utiliza en la preparación de compuestos organoestañosos y químicos para añadir peso a la seda y para estabilizar perfumes y colores en jabones. El fluoruro estañoso, SnF2, compuesto blanco soluble en agua, es un aditivo de las pastas dentales.

Los compuestos organoestañosos son aquellos en que existe al menos un enlace estaño-carbono; el estaño suele presentar un estado de oxidación de +IV. Los compuestos organoestañosos que encuentran aplicación en la industria son los que tienen la fórmula R4Sn, R3SnX, R2SnX2 y RSnX3. R es un grupo orgánico, como metilo, butilo, octilo, o fenilo, mientras

Page 248: elemtos

que X es un sustituyente inorgánico, por lo regular cloruro, fluoruro, óxido, hidróxido, carboxilatos o tioles.

Efectos del Estaño sobre la saludEl estaño se aplica principalmente en varias sustancias orgánicas. Los enlaces orgánicos de estaño son las formas más peligrosas del estaño para los humanos. A pesar de su peligro son aplicadas en gran número de industrias, tales como la industria de la pintura y del plástico, y en la agricultura a través de los pesticidas. El número de aplicaciones de las sustancias orgánicas del estaño sigue creciendo, a pesar del hecho de que conocemos las consecuencias del envenenamiento por estaño.

Los efectos de las sustancias orgánicas de estaño pueden variar. Dependen del tipo de sustancia que está presente y del organismo que está expuesto a ella. El estaño trietílico es la sustancia orgánica del estaño más peligrosa para los humanos. Tiene enlaces de hidrógeno relativamente cortos. Cuanto más largos sean los enlaces de hidrógeno, menos peligrosa para la salud humana será la sustancia del estaño. Los humanos podemos absorber enlaces de estaño a través de la comida y la respiración y a través de la piel. La toma de enlaces de estaño puede provocar efectos agudos así como efectos a largo plazo.

Los efectos agudos son:

Irritaciones de ojos y piel Dolores de cabeza Dolores de estómago Vómitos y mareos Sudoración severa Falta de aliento Problemas para orinar

Los efectos a largo plazo son:

Depresiones Daños hepáticos Disfunción del sistema inmunitario Daños cromosómicos Escasez de glóbulos rojos Daños cerebrales (provocando ira, trastornos del sueño, olvidos y dolores de cabeza)

Efectos ambientales del EstañoEl estaño como simple átomo o en molécula no es muy tóxico para ningún tipo de organismo. La forma tóxica es la forma orgánica. Los compuestos orgánicos del estaño pueden mantenerse en el medio ambiente durante largos periodos de tiempo. Son muy persistentes y

Page 249: elemtos

no fácilmente biodegradables. Los microorganismos tienen muchas dificultades en romper compuestos orgánicos del estaño que se han acumulado en aguas del suelo a lo largo de los años. Las concentraciones de estaño orgánico todavía aumentan debido a esto.

Los estaños orgánicos pueden dispersarse a través de los sistemas acuáticos cuando son absorbidos por partículas residuales. Se sabe que causan mucho daño en los ecosistemas acuáticos, ya que son muy tóxicos para los hongos, las algas y el fitoplancton. El fitoplancton es un eslabón muy importante en el ecosistema acuático, ya que proporciona oxígeno al resto de los organismos acuáticos. También es una parte importante de la cadena alimenticia acuática.

Hay muchos tipos diferentes de estaño orgánico que pueden variar mucho en su toxicidad. Los estaños tributílicos son los compuestos del estaño más tóxicos para los peces y los hongos, mientras que el estaño trifenólico es mucho más tóxico para el fitoplancton.

Se sabe que los estaños orgánicos alteran el crecimiento, la reproducción, los sistemas enzimáticos y los esquemas de alimentación de los organismos acuáticos. La exposición tiene lugar principalmente en la capa superior del agua, ya que es ahí donde los compuestos orgánicos del estaño se acumulan

Estroncio - Sr

Propiedades químicas del Estroncio - Efectos del Estroncio sobre la salud - Efectos ambientales del

EstroncioNombre Estroncio

Número atómico 38

Valencia 2

Estado de oxidación +2

Electronegatividad 1,0

Radio covalente (Å) 1,92

Radio iónico (Å) 1,13

Page 250: elemtos

Radio atómico (Å) 2,15

Configuración electrónica [Kr]5s2

Primer potencial de ionización (eV) 5,73

Masa atómica (g/mol) 87,62

Densidad (g/ml) 2,6

Punto de ebullición (ºC) 1380

Punto de fusión (ºC) 768

Descubridor A. Crawford en 1790

EstroncioElemento químico, símbolo Sr, de número atómico 38 y peso atómico 87.62. El estroncio es el menos abundante de los metales alcalinotérreos. La corteza de la Tierra contiene el 0.042% de estroncio, y este elemento es tan abundante como el cloro y el azufre. Los principales minerales son la celestita, SrSO4, y la estroncianita, SrCO3.

El nitrato de estrocio se emplea en pirotecnia, señalamiento de vías férreas y en fórmulas de balas trazadoras. El hidróxido de estroncio forma con cierto número de ácidos orgánicos jabones y grasas de estructura estable, resistentes a la oxidación y a la descomposición en una amplia gama de temperaturas.

El estroncio es divalente en todos sus compuestos, que son, al igual que el hidróxido, el fluoruro y el sulfato, totalmente solubles. El estroncio es un formador de complejos más débiles que el calcio, formando unos cuantos oxi-complejos débiles con tartratos, citratos, etc.

Page 251: elemtos

Efectos del Estroncio sobre la saludLos compuestos del estroncio que son insolubles en agua pueden llegar a ser solubles en agua, como resultado de reacciones químicas. Los compuestos solubles en agua constituyen una mayor amenaza para la salud de los humanos que los compuestos insolubles en agua. Además, las formas solubles del Estroncio tienen la oportunidad de contaminar el agua. Afortunadamente las concentraciones en agua potable son a menudo bastante bajas.

La gente puede estar expuesta a pequeños niveles de estroncio radiactivo por respirar aire o polvo, comer comida, beber agua, o por contacto con el suelo que contiene Estroncio. Es más probable para nosotros entrar en contacto con el Estroncio comiendo o bebiendo. Las concentraciones de Estroncio en las comidas contribuye a que el estroncio se acumule en el cuerpo humano. Productos comestibles que contienen suficientemente altas concentraciones de estroncio son los cereales, vegetales de hojas y productos lácteos.

Para la mayoría de la gente, el estroncio se tomará de forma moderada. El único compuesto del Estroncio que es considerado peligroso para la salud humana, incluso en pequeñas cantidades, es el cromato de estroncio. El Cromo tóxico que este contiene es el que causa la toxicidad del compuesto. El cromato de estroncio es conocido por causar cáncer de pulmón, pero el riesgo de exposición ha sido reducido por los procedimientos de seguridad de las compañías, así que no es un riesgo importante para la salud.

La toma de alta concentraciones de Estroncio no es conocida generalmente como un gran peligro para la salud humana. En algún caso alguien experimenta una reacción alérgica hacia el Estroncio, pero no ha habido casos desde entonces. Para los niños una toma excesiva puede ser un riesgo para la salud, debido a que puede causar problemas en el crecimiento de los huesos.

Las sales de Estroncio no son conocidas por causar erupciones cutáneas u otros problemas de la piel en algunos niños. Cuando el Estroncio es tomado en alta cantidad, esto puede causar problema en el desarrollo de huesos. Pero este efecto sólo ocurre cuando el Estroncio es tomado en concentración de miles de ppm. Los niveles de Estroncio en la comidad y agua no son suficientemente altos para ser capaz de producir estos efectos.

El Estroncio radiactivo tiene un mayor riesgo para la salud que el Estroncio estable. Cuando es tomado en grandes concentraciones puede producir anemia y falta de oxígeno, y en extremadamente altas concentraciones puede incluso causar cáncer como resultado de dañar el material genético de las células.

Efectos ambientales del EstroncioEl Estroncio en su estado elemental ocurre de forma natural en muchos compartimentos del medio ambiente, incluyendo rocas, suelo, agua y aire. Los compuestos del estroncio pueden moverse a través del medio ambiente con bastante facilidad, porque mucho de los compuestos son soluble en agua.

Page 252: elemtos

El Estroncio está siempre presente en el aire como polvo, en un cierto nivel. Las concentraciones de Estroncio en el aire son incrementadas por las actividades humanas, como e la combustión de carbón y aceite. Partículas de polvo que contienen Estroncio precipitarán en las aguas superficiales, en el suelo o en las superficies de las plantas en algún lugar. Cuando las partículas no precipitan estas volverán a caer a la tierra coando llueve o cuando nieve. Todo el Estroncio eventualmente terminará en los suelos o en los fondos de las masas de aguas, donde se mezcla con el Estroncio que está ya presente. El Estroncio puede terminar en el agua a través de suelos y a través de la erosión de rocas. Sólo una pequeña parte del Estroncio en agua procede de partículas de polvo del aire. La mayor parte del Estroncio en agua está disuelto, pero algo de él está suspendido, causando turbidez de agua en algunos puntos. No mucho Estroncio termina en el agua potable.

Cuando las concentraciones de Estronico en agua exceden las concentraciones regulares, esto es usualmente causado por actividades humanas, mayoritariamente por vertidos directamente al agua. Concentraciones excesivas de Estroncio pueden también causar precipitación de partículas de polvo del aire que han reaccionado con partículas de Estroncio procedentes de procesos industriales.

Las concentraciones de Estroncio en el suelo pueden también ser incrementadas por actividades humanas, como es la disposición de ceniza de carbón y las cenizas de incineración, y residuos industriales. El Estroncio del suelo se disuelve en agua. Así que es probable que se mueva hacia la zona profunda del suelo y entre en el agua subterránea. Una parte del Estroncio que es introducido por los humanos no se moverá hacia el agua subterránea y puede estar en el suelo por décadas. Debido a la naturaleza del Estroncio, algo de él puede terminar en peces, vegetales, animales de granja y otros animales.

Uno de los isótopos del Estroncio es radiactivo. Este isótopo no es muy probable que ocurra de forma natural en la naturaleza. Termina en le medio ambiente, a través de las actividades humanas, como son las pruebas de bombas nucleares y escapes en el almacenamiento de productos radiactivos. La única manera de disminuir las concentraciones del estroncio radiactivo en el medio ambiente son relativamente baja y las partículas siempre terminarán en suelos y zonas profundas del agua, eventualmente, donde se mezcla con otras partículas de estroncio. No es probable que termine en el agua potable

Tantalio - Ta

Propiedades químicas del Tantalio - Efectos del Tantalio sobre la salud - Efectos ambientales del

Tantalio

Page 253: elemtos

Nombre Tantalio

Número atómico 73

Valencia 2,3,4,5

Estado de oxidación +5

Electronegatividad 1,5

Radio covalente (Å) 1,38

Radio iónico (Å) 0,73

Radio atómico (Å) 1,46

Configuración electrónica [Xe]4f145d36s2

Primer potencial de ionización (eV) 6,02

Masa atómica (g/mol) 180,948

Densidad (g/ml) 16,61

Punto de ebullición (ºC) 5425

Punto de fusión (ºC) 2996

Descubridor Anders Ekeberg en 1802

TantalioElemento químico cuyo símbolo es Ta, su número atómico es 73 y su peso atómico 180.948. Es un elemento del quinto grupo de la tabla periódica y pertenece a la serie de los de transición 5d. Se le conocen también estados de oxidación de IV, III y II.

Page 254: elemtos

El metal tantalio se emplea en la fabricación de capacitores para equipo electrónico, los cuales incluyen radios de banda civil, detectores de humo, marcapasos cardiacos y automóviles. Se utiliza también en las superficies para transferencia de calor del equipo de producción en la industria química, en especial cuando se tienen condiciones extraordinarias corrosivas. Su inercia química ha hecho que se le hayan encontrado aplicaciones dentales y quirúrgicas. El tantalio forma aleaciones con un gran número de metales. Tiene una importancia especial el ferrotantalio, el cual se agrega a los aceros austeníticos con el fin de reducir la corrosión intergranular.

El metal es bastante inerte al ataque con ácidos, excepto al ácido fluorhídrico. Se oxida con mucha lentitud en soluciones alcalinas. Los halógenos (halogenuros) y el oxígeno reaccionan con él en caliente, para formar haluros y óxido correspondientes, con estado de oxidación V. A temperatura elevada absorbe hidrógeno y se combina con el nitrógeno, el fósforo, el arsénico, el antimonio, el silicio, el carbono y el boro. El tantalio forma también compuestos por reacción directa con el azufre, el selenio y el telurio, a temperaturas elevadas.

Efectos del Tantalio sobre la saludPuede ser dañino por inhalación, ingestión o absorción cutánea. Provoca irritación de los ojos y la piel. El material es irritante de las membranas mucosas y el tracto respiratorio superior.

No se han documentado efectos adversos sobre la salud de trabajadores expuestos industrialmente al tantalio. Dosis masivas de tantalio administradas a ratas por vía intratraqueal han producido lesiones en el tracto respiratorio. En contacto con el tejido, el tantalio metálico es inerte.

Efectos ambientales del TantalioNo verter el material al medio ambiente sin los adecuados permisos gubernamentales. Aislar los óxidos de tantalio para prevenir la polución del medio

Terbio - Tb

Propiedades químicas del Terbio - Efectos del Terbio sobre la salud - Efectos ambientales del

TerbioNombre Terbio

Número atómico 65

Page 255: elemtos

Valencia 3,4

Estado de oxidación +3

Electronegatividad 1,2

Radio covalente (Å) 1,59

Radio iónico (Å) 1,0

Radio atómico (Å) 1,77

Configuración electrónica [Xe]4f95d06s2

Primer potencial de ionización (eV) 6,76

Masa atómica (g/mol) 158,924

Densidad (g/ml) 8,27

Punto de ebullición (ºC) 2800

Punto de fusión (ºC) 1356

Descubridor Carl Mosander en 1843

TerbioElemento químico 65 con símbolo Tb; metal poco común del grupo de las tierras raras. Su peso atómico es 158.924, y el isótopo estable 159Tb constituye el 100% de este elemento en la naturaleza.

Page 256: elemtos

El óxido común, Tb4O7, es de color café y se obtiene cuando sus sales se calientan en aire. Todas sus sales son trivalentes y de color blanco; cuando se disuelven, dan soluciones incoloras. Los óxidos mayores se descomponen lentamente cuando son tratados con ácido diluido para dar iones trivalentes en solución. Aunque el metal es atacado fácilmente a temperaturas altas por el aire, el ataque es muy lento a la temperatura ambiente. El metal, tiene un punto de Néel cercano a 229 K y un punto Curie cercano a 220 K.

El mineral gadolinita ((Ce, La, Nd, Y)2FeBe2Si2O10), descubierto en una cantera cerca de la ciudad de Ytterby, en Suiza, ha sido la fuente de un gran número de elementos de tierras raras. En 1843, Carl Gustaf Mosander, un químico suizo, fue capaz de separar gadolinita en tres materiales, a los cuales llamó itria, erbia y terbia. Como puede ser supuesto considerando las similitudes entre sus nombres y propiedades, los científicos pronto confundieros el erbio y el terbio y, en 1877, habían intercambiado sus nombres. Lo que Mosander llamó erbia ahora es llamado terbia y viceversa. De estas dos sustancias Mosander descubrió dos elementos nuevos, el terbio y el erbio. Actualmente, el terbio puede obtenerse de los minerales xenotima (YPO4) y euxenita ((Y, Ca, Er, La, Ce, U, Th)(Nb, Ta, Ti)2O6), pero se obtiene principalemente a través de un proceso de intercambio iónico con la arena monacita ((Ce, La, Th, Nd, Y)PO4), un material rico en elementos de tierras raras que típicamente contiene hasta un 0,03 % de terbio. El terbio se usa para adulterar algunos tipos de aparatos en estado sólido y, junto con el dióxido de zirconio (ZrO2), como un estabilizador de los cristales en las celdas de fuel que trabajan a altas temperaturas.

Terbia, el material vuelto a nombrar que Mosander descubrió en 1843, es óxido de terbio (Tb2O3), uno de los componentes del terbio. La terbia puede ser potencialmente usada para fósforos verdes en los tubos de las televisiones. El borato de sodio y terbio, otro compuesto del terbio, se usa para hacer luz láser.

Efectos del Terbio sobre la saludEl terbio es uno de los elementos químicos raros, que puede ser encontrado en equipos tales como televisiones en color, lámparas fluorescentes y cristales. Todos los compuestos químicos raros tienen propiedades comparables.

El terbio raramente se encuentra en la naturaleza, ya que se da en cantidades muy pequeñas. El terbio normalmente se encuentra solamente en dos tipos distintos de minerales. El uso del terbio sigue aumentando, debido al hecho de que es útil para producir catalizadores y para pulir cristales.

El terbio es más peligroso en el ambiente de trabajo, debido al hacho de que las humedades y los gases pueden ser inhalados con el aire. Esto puede causar embolias pulmonares, especialmente durante exposiciones a largo plazo. El terbio puede ser una amenaza para el hígado cuando se acumula en el cuerpo humano.

Efectos ambientales del Terbio

Page 257: elemtos

El terbio es vertido al medio ambiente en muchos lugares diferentes, principalmente por industrias productoras de petróleo. También puede entrar en el medio ambiente cuando se tiran los equipos domésticos. El terbio se acumulará gradualmente en los suelos y en el agua de los suelos y esto llevará finalmente a incrementar la concentración en humanos, animales y partículas del suelo.

En los animales acuáticos provoca daños a las membranas celulares, lo que tiene varias influencias negativas en la reproducción y en las funciones del sistema nervioso

Tecnecio - Tc

Propiedades químicas del Tecnecio - Efectos del Tecnecio sobre la salud - Efectos ambientales del

TecnecioNombre Tecnecio

Número atómico 43

Valencia 7

Estado de oxidación -

Electronegatividad 1,9

Radio covalente (Å) 1,56

Radio iónico (Å) -

Radio atómico (Å) 1,36

Configuración electrónica [Kr]4d55s2

Primer potencial de ionización (eV) 7,29

Masa atómica (g/mol) 97

Densidad (g/ml) 11,5

Punto de ebullición (ºC) -

Page 258: elemtos

Punto de fusión (ºC) 21,40

Descubridor Carlo Perrier en 1937

TecnecioElemento químico de símbolo Tc y número atómico 43. Fue el primer elemento obtenido de manera artificial en un clclotrón. También se obtiene como el principal constituyente de los productos de fisión en un reactor nuclear o, en forma alterna, por la acción de neutrones sobre el 98Mo. El isótopo 99Tc es el más útil en la investigación química por su larga vida media: 2 x 105 años. La química del tecnecio se parece mucho a la del renio, y se han preparado algunos compuestos en muchos casos.

Efectos del Tecnecio sobre la saludSe ha informado de que los acero no aleado, bajos en carbono, pueden estar protegidos efectivamente por una cantidad tan pequeña como 55 ppm de KTcO4 en agua destilada aireada a temperaturas de hasta 250oC. Esta protección contra la corrosión está limitada a los sistemas cerrados, ya que el tecnecio es radioactivo y debe estar confinado. El tecnecio 98 tiene una actividad específica de 6.2 x 108 Bq/g. Una actividad de este nivel no se puede permitir que se extienda. El tecnecio 99 es un peligroso contaminante y debe ser manejado en una caja de guantes.

Efectos ambientales del TecnecioNo se han documentado efectos ambientales negativos del tecnecio

Page 259: elemtos

Teluro - Te

Propiedades químicas del Teluro - Efectos del Teluro sobre la salud - Efectos ambientales del

TeluroNombre Teluro

Número atómico 52

Valencia +2,-2,4,6

Estado de oxidación -2

Electronegatividad 2,1

Radio covalente (Å) 1,35

Radio iónico (Å) 2,21

Radio atómico (Å) 1,60

Configuración electrónica [Kr]4d105s25p4

Primer potencial de ionización (eV) 9,07

Masa atómica (g/mol) 127,60

Densidad (g/ml) 6,24

Punto de ebullición (ºC) 989,8

Punto de fusión (ºC) 449,5

Descubridor Franz Muller von Reichenstein en 1782

Page 260: elemtos

TeluroElemento químico de símbolo Te, número atómico 52 y peso atómico 127.60. Existen ocho isótopos estables del telurio. El telurio constituye aproximadamente el 10-9 % de la roca ígnea que hay en la Tierra. Se encuentra como elemento libre, asociado algunas veces con selenio, y también existe como telururo de silvanita (teluro gráfico), nagiagita (telurio negro), hessita, tetradimita, altaita, coloradoita y otros telururos de plata y oro, así como el óxido, telurio ocre.

Existen dos modificaciones alotrópicas importantes del telurio elemental: la forma cristalina y la amorfa. La forma cristalina tiene un color blanco plateado y apariencia metálica. Esta forma se funde a 449.5ºC (841.6ºF). Tiene una densidad relativa de 6.24 y una dureza de 2.5 en la escala de Mohs. La forma amorfa (castaña) tiene una densidad relativa de 6.015. El telurio se quema en aire despidiendo una flama azul y forma dióxido de telurio, TeO2. Reacciona con los halógenos, pero no con azufre o selenio, y forma, entre otros productos, tanto el anión telururo dinegativo (Te2-), que se asemeja al selenuro, como el catión tetrapositivo (Te4+), que se parece al platino (IV).

El telurio se utilizó inicialmente como aditivo del acero para incrementar su ductilidad, como abrillantador en electroplateados, como aditivo en catalizadores para la desintegración catalítica del petróleo, como material colorante de vidrios y como aditivo del plomo para incrementar su fuerza y resistencia a la corrosión.

Efectos del Teluro sobre la saludAfortunadamente, los compuestos del telurio se encuentran muy raramente. Son teratógenos y deben ser manejados solamente por químicos competentes ya que la ingestión incluso en pequeñas cantidades provoca un terrible mal aliento y un espantoso olor corporal.

 

 

Vías de exposición: La sustancia puede ser absorbida por el cuerpo por medio de la inhalación de su aerosol.

 

 

Page 261: elemtos

Riesgo de inhalación: La evaporación a 20°C es insignificante; sin embargo cuando se dispersa se puede alcanzar rápidamente una concentración dañina de partículas suspendidas en el aire. Efectos de la inhalación: Somnolencia. Boca seca. Gusto metálico. Dolor de cabeza. Olor a ajo. Náuseas. 

Efectos de la exposición a corto plazo: El aerosol de esta sustancia irrita los ojos y el tracto respiratorio. La sustancia puede tener efectos en el hígado y el sistema nervioso central. La exposición puede resultar en aliento de ajo. Se recomienda observación médica. Ingestión: Dolores abdominales. Estreñimiento. Vómitos.

Peligros químicos: Cuando se calienta se forman vapores tóxicos. Reacciona vigorosamente con halógenos o interhalógenos provocando riesgo de incendio. Reacciona con el zinc con incandescencia. El siluro de litio ataca al teluro con incandescencia. Combustible. Las partículas dispersas en el aire forman mezclas explosivas en el aire.

Efectos ambientales del Teluro 

 

No es peligroso o es fácilmente transformado en inocuo por procesos naturales.

Cuando es calentado para descomponerlo, el cloruro de teluro puede emitir vapores tóxicos de teluro y cloro

Torio - Th

Propiedades químicas del Torio - Efectos del Torio sobre la salud - Efectos ambientales del Torio

Nombre Torio

Número atómico 90

Valencia 3

Estado de oxidación +4

Electronegatividad 1,3

Radio covalente (Å) 1,65

Page 262: elemtos

Radio iónico (Å) 0,95

Radio atómico (Å) 1,82

Configuración electrónica [Rn]6d27s2

Primer potencial de ionización (eV) -

Masa atómica (g/mol) 232,038

Densidad (g/ml) 11,7

Punto de ebullición (ºC) 3850

Punto de fusión (ºC) 1750

Descubridor Jons Berzelius en 1828

TorioElemento químico, símbolo Th, número atómico 90. Es uno de los elementos de la serie de los actínidos. Es radiactivo con una vida media de aproximadamente 1.4 x 1010años.

Los compuestos de óxido de torio se utilizan en la producción de mantas de gas incandescentes. El óxido de torio se ha empleado también incorporado al tungsteno metálico, y sirve para producir filamentos para lámparas eléctricas. Se emplea en catalizadores para facilitar ciertas reacciones de química orgánica y tiene aplicaciones especiales como material cerámico de alta temperatura. El metal o sus óxidos se utilizan en algunas lámparas electrónicas, fotoceldas y electrodos especiales para soldadura. El torio tiene aplicaciones importantes como agente de aleación en algunas estructuras metálicas. Tal vez el empleo más importante del torio metálico, aparte del campo nuclear, esté en la tecnología del magnesio. En un reactor nuclear, el torio puede ser convertido en uranio 233, que es un

Page 263: elemtos

combustible atómico. Se ha estimado que la energía que se puede obtener de las reservas mundiales de torio es tan grande como la energía combinada que pueden proporcionar todo el uranio, el carbón y el petróleo del mundo. La monazita, el mineral de torio más común y el más importante desde el punto de vista comercial, está ampliamente distribuida en la naturaleza.

La monazita se obtiene principalmente como una arena, que se separa de otras arenas por medios físicos o mecánicos.

El torio tiene un peso atómico de 232.038. La temperatura a la cual se funde el torio puro no se conoce con certeza; se cree que es cercana a 1750ºC (3182ºF). El torio metálico de buena calidad es relativamente suave y dúctil. Puede ser conformado fácilmente por cualesquiera de las operaciones comunes para trabajar los metales. El metal masivo es de color plateado, pero pierde el brillo por una exposición prolongada a la atmósfera; el torio finamente dividido tiende a ser pirofórico en el aire.

Todos los elementos no metálicos, excepto los gases raros, forman compuestos binarios con él. Con pocas excepciones, el torio exhibe una valencia de 4+ en todas sus sales. Químicamente, tiene algunas semejanzas con el zirconio y el hafnio. El compuesto más soluble del torio es el nitrato, el cual, como se prepara generalmente, parece tener la fórmula Th(NO3)4 

.4H2O. El óxido más común del torio es ThO2, toria. El torio se combina con los halógenos para formar gran variedad de sales. El sulfato de torio se puede obtener en forma anhidra o como cierto número de hidratos. Se conocen bien los carbonatos, fosfatos, yodatos, cloratos, cromatos, molibdatos y otras sales inorgánicas de torio. El torio forma también sales con muchos ácidos orgánicos, de los cuales el oxalato insoluble en agua Th(C2O4)2 6H2O, es importante en la preparación de compuestos puros de torio.

Efectos del Torio sobre la saludLas personas siempre estarán expuestas a pequeñas cantidades de torio a través del aire, la comida y el agua, porque se encuentra casi en cualquier lugar en La Tierra.

Todo el mundo absorbemos algo de torio a través de la comida o el agua que bebemos, y las cantidades en el aire son tan pequeñas, que la toma a través del aire normalmente puede ser ignorada.

Grandes cantidades incontroladas de torio pueden ser encontradas cerca de vertederos peligrosos donde el torio no fue vertido de acuerdo con los procedimientos adecuados. Las personas que viven cerca de estos lugares de vertidos peligrosos pueden estar expuestos a más torio de lo normal porque respiran polvo arrastrado por el viento y porque termina en la comida que es cultivada cerca del lugar.

Las personas que trabajan en las industrias o laboratorios mineros, molineros o del torio también pueden experimentar exposiciones al torio que superan la exposición natural.

Page 264: elemtos

Las cantidades de torio en el medio ambiente pueden verse aumentadas accidentalmente debido a escapes accidentales de las plantas procesadoras de torio.

Respirar torio en el lugar de trabajo puede incrementar las posibilidades de desarrollar enfermedades de pulmón y cáncer de pulmón y páncreas muchos años después de la exposición. El torio tiene la habilidad de cambiar el material genético. Las personas a las que les ha sido inyectado torio para los rayos X especiales pueden desarrollar enfermedades del hígado.

El torio es radiactivo y puede ser almacenado en los huesos. Debido a ésto tiene la habilidad de causar cáncer de huesos muchos años después de que la exposición haya tenido lugar.

La respiración de grandes cantidades de torio puede ser letal. Las personas a menudo mueren de envenenamiento por metales cuando se someten a una exposición excesiva.

Efectos ambientales del TorioEstabilidad ambiental: El torio reaccionará lentamente con el agua, el oxígeno y otros compuestos para formar una variedad de compuestos del torio.

Efectos del material en plantas y animales: Debido al tamaño del producto, no se esperan efectos ambientales inusuales de estos productos; sin embargo, grandes escapes de torio pueden ser dañinos para las plantas y animales afectados.

Efectos de los productos químicos en la vida acuática: Debido al tamaño del producto y a la forma del producto, estos productos no se puede anticipar que causen efectos adversos en la vida acuática; sin embargo, grandes escapes de torio en un cuerpo de agua pueden ser dañinos para las plantas acuáticas y los animales.

La eliminación de los vertidos debe realizarse de acuerdo con las adecuadas regulaciones federales, estatales y locales