Elementi strojeva I

67
Elementi strojeva I Stručni studij strojarstva

description

Elementi strojeva I. Stručni studij strojarstva. Opterećenja promjenjiva s vremenom - d inamička opterećenja Dinamička opterećenja su ona opterećenja koja se tijekom vremena mijenjaju po veličini i/ili po smjeru. Promjene veličine opterećenja općenito mogu biti : a) stohastičke (slučajne) - PowerPoint PPT Presentation

Transcript of Elementi strojeva I

Page 1: Elementi strojeva I

Elementi strojeva I

Stručni studij strojarstva

Page 2: Elementi strojeva I

19.04.23 2

Opterećenja promjenjiva s vremenom - dinamička opterećenja

Dinamička opterećenja su ona opterećenja koja se tijekom vremena mijenjaju po veličini i/ili po smjeru. Promjene veličine opterećenja općenito mogu biti:a) stohastičke (slučajne)b) periodičke ili c) harmoničke. Postoje također udarna dinamička opterećenja, pri kojima se veličina opterećenja mijenja skokovito u vrlo kratkom vremenskom intervalu, tako da imaju karakter kratkotrajnog impulsa.

Page 3: Elementi strojeva I

19.04.23 3

S obzirom na smjer djelovanja dinamička se opterećenja dijele na:

istosmjerna

izmjenična

Pri proračunu strojnih dijelova opterećenih dinamičkim opterećenjima, najčešće se pretpostavlja da su opterećeni harmonijskim opterećenjima, a dodatni nepoželjni utjecaji zbog udarnih opterećenja obuhvaćena su faktorima radnih uvjeta.

Page 4: Elementi strojeva I

19.04.23 4

Vrste dinamičkih harmonijskih opterećenja

a) Općenito jednosmjerno dinamičko opterećenje

b) impulsno dinamičko opterećenje

c) općenito izmjenično dinamičko opterećenje

d) čisto izmjenično opterećenje

Fa

Fa

Fa

Fa

FaFm Fm

Fm

Fm

0 1

= 0

-1 0

= -1

Page 5: Elementi strojeva I

19.04.23 5

Pri harmonijskom opterećenju, veličina se opterećenja mijenja od minimalne vrijednosti Fmin do maksimalne vrijednosti Fmax.

Amplituda dinamičkog opterećenja je Fa, a određuje se prema izrazu:

2minmax FF

Fa

Srednje opterećenje je:

2minmax FF

Fm

Karakter dinamičkog opterećenja definira se koeficijentom asimetrije:

max

min

F

F

Page 6: Elementi strojeva I

19.04.23 6

U strojarskoj praksi su česta dva slučaja dinamičkog opterećenja:

1. Pulzirajuće opterećenje (slučaj b) kod kojeg je:

= 0,

Fmin = 0,

Fa = Fmax/2,

Fm = Fmax/2.

2. Titrajuće opterećenje (slučaj d) kod kojeg je:

= -1,

Fa = Fmax,

Fm = 0. Opći slučajevi dinamičkog opterećenja za različite koeficijente asimentrije, mogu se prikazati kao kombinacija statičkog opterećenja Fm i titrajućeg opterećenja amplitude Fa (slučajevi a i c) .

Statičko opterećenje će biti kada je = 1

Page 7: Elementi strojeva I

19.04.23 7

Svi izrazi i definicije vrijede kako se opterećenje silom tako i za opterećenja momentima (torzije T i savijanja Ms).

Isto tako svi se pojmovi primijenjuju i na ogovarajuća naprezanja koje izazivaju ta opterećenja.

Primjeri dinamičkog opterećenja - naprezanja

Klackalica za otvaranje ventila motora opterećena na pulzirajuće naprezanje na savijanje.

min = 0

m = a

max = 2 a

= 0

Page 8: Elementi strojeva I

19.04.23 8

Osovina vagona opterećena je na izmjenično naprezanje na savijanje

m = 0

max = a

min= - a

= -1

Page 9: Elementi strojeva I

19.04.23 9

Zamorni lom

Strojni dio koji je dulje vremena podvrgnut naprezanjima promjenjivim u vremenu, lomi se pri naprezanjima koja su znatno manja od statičke čvrstoće Rm i granice tečenja Re, Rp0,02. Ovo je posljedica tzv. zamora materijala. Za razliku od lomova pri statičkom opterećenju, lomovi zbog zamora materijala redovito nastaju bez prethodnog razvlačenja materijala (dakle bez trajne deformacije i kontrakcije presjeka), bez obzira na vrstu i osobine materijala i na vrstu naprezanja.

Page 10: Elementi strojeva I

19.04.23 10

Proces zamaranja uvijek počinje začećem inicijalne (mikro) pukotine duljine reda veličine kristalnog zrna (oko 0,05 mm), a proces začeća pukotine započinje cikličkim gomilanjem plastičnih deformacija na mjestima mikrokoncentracije naprezanja.

Page 11: Elementi strojeva I

19.04.23 11

Proces širenja pukotine traje sve dok se ostatak presjeka ne smanji toliko da naprezanja u njemu dostignu vrijednost statičke čvrstoće materijala, pa se on odjednom nasilno prelomi.

Tako površina loma uslijed zamora materijala ima dvije jasno izražene zone: zonu širenja pukotine, koja je glatka (hrapavost na nivou kristalnih zrna), i zonu statičkog loma vrlo grube i nepravilne površine, karakteristične za statički lom (slika).

Page 12: Elementi strojeva I

19.04.23 12

Izvori mikrokoncentracije naprezanja su najčešće na površini napregnutog elementa, i to pri dnu udubina površinskih neravnina:

u okolini oksida koji djeluju kao strano tijelo (uključina) na mjestima svih ostalih nehomogenosti izazvanih okolišem i obradom (npr. gubitak ugljika pri kovanju ili uključine pri lijevanju).

Page 13: Elementi strojeva I

19.04.23 13

Dinamička čvrstoća – granica zamora

Oprema laboratorija za ispitivanje zamorne čvrstoće i mehanike loma

Mjerodavna karakteristika čvrstoće pri promjenjivim naprezanjima strojnih dijelova jest dinamička čvrstoća (ili granica zamora) strojnog dijela, koja se dobije ispitivanjem na zamor samog strojnog dijela, ili češće, na temelju ispitivanja na zamor probne epruvete, izrađene od materijala jednakog materijalu strojnog dijela. Epruvete su definirane odgovarajućim standardom, ali ako su okrugle, promjer im je najčešće 7 mm, a površina polirana.Epruvete su izložene periodično promjenjivim opterećenjima određenog intenziteta, sve do pojave loma.

Page 14: Elementi strojeva I

19.04.23 14

Wőhlerov dijagram

Ispitivanje čvrstoće dinamički opterećenih dijelova započeo je August Wőhler 1886. god.

August Wöhler (1819-1914) - njemački inženjer

Ispitna epruveta podvrgne se vlačnom dinamičkom naprezanju d1 koje je manje od vlačne čvrstoće materijala epruvete Rm zbog čega će nakon određenog broja promjena opterećenja (ciklusa ) N1 nastupiti zamorni lom.

Page 15: Elementi strojeva I

19.04.23 15

Pokus se ponavlja s novim epruvetama, ali sa sve manjim naprezanjima i sve većim brojem ciklusa:

d2 - N2 ciklusa

d3 – N3 ciklusa itd.

Broj ciklusa kod kojeg će doći do zamornog loma sve je veći dok konačno ne dođe do Ng i dovoljno malog naprezanja kada lom neće nastupiti. To se naprezanje naziva trajnom dinamičkom čvrstoćom Rd.

Trajna dinamička čvrstoća Rd najveće je dinamičko naprezanje koje materijal može podnijeti pri neograničenom broju ciklusa N, a da ne dođe do loma.

U Wőhlerovom dijagramu dva su područja:

Iznad krivulje – za određenu kombinaciju naprezanja i broja ciklusa nastupa lom

Ispod krivulje nema loma

Granični broj ciklusa Ng:

Za čelik 2.106...1.107

Za lake metale 5.107...1.108

Page 16: Elementi strojeva I

19.04.23 16

Wőhlerov dijagram s brojem ciklusa u logaritamskom mjerilu

Jednadžba Wőhlerove krivulje glasi:

.konstNRNR gmdx

mx ==

Rxm – vremenska dinamička čvrstoća za trajnost od Nx ciklusa

Rdm – trajna dinamička čvrstoća

m – eksponent Wőhlerove krivulje tj. nagib krivulje u logaritamskim koordinatama,

m = 4...10 ovisno o materijalu, obliku strojnog dijela ili spoja te vrsti naprezanja

Page 17: Elementi strojeva I

19.04.23 17

Oblici Wőhlerovih krivulja u ovisnosti o faktoru asimetrije

= -1 trajna izmjenična dinamička čvrstoća je Rd-1, - Ra = Rd-1

= 0 trajna ishodišna dinamička čvrstoća je Rd0 , Ra = Rd0/2 =m

Ra – amplituda dinamičke čvrstoće

Page 18: Elementi strojeva I

19.04.23 18

Oznake za trajnu dinamičku čvrstoću – prema vrsti dinamičkog naprezanja i faktoru asimetrije

Opterećenje Vlak/tlak Savijanje Torzija

Izmjenično dinamičko ( = -1) Rd-1 Rds-1 Rdt-1

Ishodišno dinamičko ( = 0) Rd0 Rds0 Rdt0

Page 19: Elementi strojeva I

19.04.23 19

Smithov dijagram – ovisnost dinamičke čvrstoće o srednjem naprezanju

Dijagrami koji sadrže podatke o dinamičkim čvrstoćama za različite m / m, razlite vrste dinamičkih naprezanja unutar jednog dijagrama za određeni materijal ili grupu materijala sličnih svojstava.

Na apscisi je srednje naprezanje m ili m

Na ordinati je vrijednost trajne dinamičke

čvrstoće

Za svako srednje naprezanje nanesene su vrijednosti gornje i donje granice trajne dinamičke čvrstoće RdG i RdD

Za = -1 RdG = +Rd-1 i RdD = - Rd-1

Za = 0 RdG = +Rd0 i RdD = - Rd0

Page 20: Elementi strojeva I

19.04.23 20

Modificirani Smithov dijagram

Odbacuje se dio dijagrama iznad granice tečenja Re (Rp0,2)

Granične se linije aproksimiraju pravcima

Ovakav modificirani dijagram moguće je nacrtati ako su poznati:

Rd-1

Rd0

Re (Rp0,2)

Page 21: Elementi strojeva I

19.04.23 21

Određivanje dinamičke čvrstoće Ra za proizvoljni

Ako je poznat faktor asimetrije :

( )e

ddG R

)b-2b-1

(κ-

RR ≤

+11

1

≈ 1

Ako je poznato srednje naprezanje m:

e1-dmdG RRσ

2

b-1

b-R ≤+

1≈

Amplituda dinamičke čvrstoće bit će:

( )κ-R

R dGa 1

2±≈

m

1-d

R

Rb = Tablica dinamičkih čvrstoća

Page 22: Elementi strojeva I

19.04.23 22

KONCENTRACIJA NAPREZANJA

Koncentracija naprezanja pri statičkom opterećenju

U štapu konstantnog poprečnog presjeka opterećenom aksijalnom vlačnom silom s svakom presjeku vlada isto naprezanje, koje nazivamo nazivnim ili nominalnim (a):

A

Fn

Zamislimo da se sila prenosi po zamišljenim linijama – silnicama (b).

Page 23: Elementi strojeva I

19.04.23 23

U slučaju da se oblik poprečnog presjeka mijenja, promjena oblika će prisiliti silnice da skrenu, pri čemu će na nekim mjestima doći do njihovog zgušnjavanja (c).

Tamo gdje su silnice gušće, naprezanje će biti veće – došlo je do koncentracije naprezanja.

Na slici d) vidi se da je na takvom mjestu naprezanje veće od nazivnog.

Omjer najvećeg lokalnog naprezanja max i nominalnog naprezanja n, naziva se geometrijskim faktorom koncentracije naprezanja ili jednostavno faktor oblika:

nk

max

Mjesta promjena oblika na konstrukcijskim elementima gdje dolazi do koncentracije naprezanja nazivaju se koncentratori naprezanja.

k – za vlačno naprezanje

ks – za savijanje

kt – za torziju

Page 24: Elementi strojeva I

19.04.23 24

Veličina maksimalnog lokalnog naprezanja u ovisnosti o vrsti opterećenja

Vlačno naprezanje:

A

Fknk max

Naprezanje na savijanje (a):

W

Mskssnkss max

Naprezanje na torziju (b):

pkttnktt W

T max

Koncentracija naprezanja kod smičnih naprezanja se ne pojavljuje jer je to naprezanje na rubu jednako 0.

Page 25: Elementi strojeva I

19.04.23 25

Utjecaj oblika zareza na koncentraciju naprezanja

Koncentracija naprezanja bit će veća što je promjena presjeka naglija, odnosno što je zarez oštriji.

Page 26: Elementi strojeva I

19.04.23 26

Geometrijski faktor koncentracije naprezanja pri savijanju osovina i vratila

Geometrijski faktor koncentracije naprezanja pri torziji vratila

Page 27: Elementi strojeva I

19.04.23 27

Prikaz utjecaja oblika diskontinuiteta na veličinu koncentracije naprezanja – fotoelastična ispitivanja

Page 28: Elementi strojeva I

19.04.23 28

Koncentracija naprezanja pri dinamičkom opterećenju

Pri dinamičkim opterećenjima na mjestima najveće koncentracije naprezanja dolazi do zamora materijala, stvaranja mikro pukotina koje same po sebi predstavljaju nove koncentratore.

Iz tog je razloga proračun koncentracije naprezanja osobito važan kod dinamički opterećenih konstrukcijskih elemenata.

Efektivni faktor koncentracije naprezanja – određuje se eksperimentalno uz pomoć glatke probne epruvete i epruvete s odgovarajućim koncentratorom naprezanja te različitim vrstama opterećenja (vlak/tlak, savijanje i torzija):

kd

dk R

R

1

1

kds

dsks R

R

1

1

kdt

dtkt R

R

1

1

Page 29: Elementi strojeva I

19.04.23 29

Veza između k i k

a) Prema Thumu

11 kkk

Faktor osjetljivosti materijala na koncentraciju naprezanja

32,01

81

1

m

p

k

R

R

- mm – polumjer zakrivljenosti na mjestu koncentratora naprezanja

b) Prema Siebelu

nk

k

Relativni gradijent naprezanja

max

max

dx

d

ovisi o geometriji zateza

n - faktor potpore - očita se iz tablica za određeni i vrstu materijala

Page 30: Elementi strojeva I

19.04.23 30

DOPUŠTENA NAPREZANJA

Dopuštena naprezanja pri statičkom opterećenju

a) Žilavi materijali – čelici, legirani čelici, aluminij i njegove legure, mjed, lake kovine itd.

Re

Page 31: Elementi strojeva I

19.04.23 31

Dopušteno naprezanje na vlačno opterećenje:

e

dop

R

2,0p

dop

R

= 1,2...2 – faktor sigurnosti

b) Krhki materijali – sivi lijev, neke vrste drveta, staklo itd.

Dopušteno naprezanje na vlačno opterećenje:

m

dop

R = 1,5...2,5 (...4) – faktor sigurnosti

Page 32: Elementi strojeva I

19.04.23 32

Materijal VlakTlak

tdop Savijanje

sdop Torzija

tdopSmicanje

sdop

Žilav

Čelik, čelični lijev, Cu-legure

dopRe/ ili

dopRp0,2

/ ili

dop dop 0,65 dop 0,8 dop

Al, Al-legure 1,2 dop dop 0,7 dop 0,8 dop

Krhak

Sivi lijev

dopRm/

2,5 dop dop - 1,2 dop

BTeL 1,5 dop dop

-1,2 dop

CTeL 2 dop dop

-1,2 dop

Dopuštena naprezanja za različite vrste statičkih opterećenja

Page 33: Elementi strojeva I

19.04.23 33

Dopuštena naprezanja pri dinamičkom opterećenju

U prethodnom, približnom proračunu dinamički opterećenih dijelova, kada se grubo određuju izmjere na temelju nedovoljno podataka, dopuštena naprezanja se određuju prema izrazu:

d

ddop

R

d

ddop

R

Rd – iz Smithovog dijagrama ili tablica

d = 3...4

Kada je poznat točan izgled elementa, izrađuje se konačan, kontrolni proračun s dopuštenim naprezanjima, koje se može odrediti temeljem izraza:

kd

ddop

bbbR

321

kd

ddop

bbbR

321

Faktor sigurnosti uzima se manji nego li u približnom proračunu, a određuje iz dijagrama ovisnosti faktora asimetrije i učestalosti pojave najvećih naprezanja tijekom pogona.

Page 34: Elementi strojeva I

19.04.23 34

a) Utjecaj površinske hrapavosti (b1)

Za vlak/tlak i savijanje

1

20loglog22,011

mz

RRb

Rm – N/mm2 – vlačna čvrstoća

Rz -m – srednja vrijednost parametra hrapavosti

Za torziju

425,0575,0 11 bb

b) Utjecaj veličine konstrukcijskog elementa (b2)

Elementi manjih izmjera općenito imaju veću dinamičku čvrstoću jer su homogenija i s relativno manje neispravnih mjesta (uključaka, šupljina itd.)

d /mm 60 20 30 50 60 70 80 90 100 120

b2

Čelik 1,0 0,94 0,88 0,85 0,82 0,79 0,77 0,76 0,73 0,72

Alumin. legure

0,8 0,74 0,70 0,68 0,65 0,63 0,61 0,59 0,56 0,53

Faktor veličine b2 za okrugli poprečni presjek

Page 35: Elementi strojeva I

19.04.23 35

c) Utjecaj režima rada (b3)

Ispitnom se epruvetom određuje trajna dinamička ćvrstoća pri stalnom maksimalnom opterećenju. Međutim konstrukcijski elementi mogu biti podvrguti raznim režimima rada.

Ako procjena režima rada nije moguća tada se b3 =1.

Režim radaBroj promjena opterećenja (ciklusa) N do loma

105 106 107 108 109

Teži 1,05...1,15 1,05...1,15 1,05...1,15 1 1

Srednji 1,15...1,25 1,2...1,3 1,2...1,3 1,05...1,15 1

Laki 1,3...1,4 1,3...1,5 1,3...1,5 1,2...1,3 1,05...1,15

Page 36: Elementi strojeva I

19.04.23 36

d) Utjecaj visokih i niskih temperatura

Utjecaj temperature na čvrstoću čelika ne uzima se u obzir do približno 350oC.

Za radne temperature više od 350...400oC koriste se čelici postojani pri višim temperaturama

Kod nižih temperatura čvrstoća čelika raste, međutim raste i krhkost i osjetljivost na koncentraciju naprezanja.

e) Kemijski utjecaji

Kemijski aktivna sredstva u kojima se nalaze konstrukcije, mogu izazvati koroziju. Korozija izaziva nepravilnosti na površini koje su izvor jake koncentracije naprezanja.

d) Tarna korozija

Pojavljuje se na steznim spojevima uslijed malih pomicanja, kod osovina i glavina.

g) Utjecaj pravca vlakana

Dijelovi oblikovani kovanjem, valjanjem ili vučenjem imaju vlaknastu, slojevitu strukturu. Ako se napregnu okomito na vlakna, imaju i do 20% manju dinamičku čvrstoću.

Page 37: Elementi strojeva I

19.04.23 37

ELEMENTI ZA SPAJANJE

Page 38: Elementi strojeva I

19.04.23 38

Zavareni spojevi

Page 39: Elementi strojeva I

19.04.23 39

Zavareni spojevi spadaju u nerastavljive spojeve i upotrebljavaju se prije svega za spajanje nosećih strojnih dijelova i konstrukcija.

Zavarivanje je spajanje metalnih, ili nemetalnih dijelova toplinskim postupkom taljenja ili omekšavanja na mjestu spoja, sa ili bez dodavanja materijala.

Spoj nastaje taljenjem osnovnih i dodatnih materijala, ili pritiskanjem omekšanih osnovnih materijala. Područje u kojem nastaje spoj naziva se zavar. Zavari i dijelovi koji se zavaruju predstavljaju zavareni spoj.

Dijelovi koji se zavaruju su obično iz istih ili srodnih materijala, koji imaju približno jednaku temperaturu taljenja, ali mogu biti i iz raznorodnih materijala.

Primjena zavarenih spojeva kod izrade strojnih dijelova i metalnih konstrukcija stalno raste, jer postupci zavarivanja postaju sve bolji i danas je već moguće postići da mehanička svojstva zavarenih spojeva budu jednaka onim osnovnog materijala, a ponekad čak i bolja.

Pored čelika, pod posebnim uvjetima mogu se zavarivati bakar i bakrene legure, aluminijeve legure, umjetne mase itd.

Page 40: Elementi strojeva I

19.04.23 40

Prednosti zavarenih spojeva:

Nosivost zavarenog spoja može biti približno jednaka nosivosti osnovnog materijala

Zavarene konstrukcije imaju i do 30% manju masu nego li lijevane, kovane i

zakovične konstrukcije

Za manji broj proizvoda zavareni spojevi su najekonomičniji

Nedostaci zavarenih spojeva

Mogu se spajati dijelovi koji imaju jednaku ili približnu kvalitetu i koji su dobro

zavarljivi

Zbog lokalnog zagrijavanja te neravnomjernog rastezanja i skupljanja prilikom

hlađenja, pojavljuju se zaostala naprezanja. To se uvelike može otkloniti pogodnim

smjerom i redoslijedom zavarivanja te naknadnim žarenjem (čelik na 500...700oC).

Mjesto zavarivanja potrebno je pripremiti, oblikovati i očistiti

Zavareni spojevi su skloni koroziji

Zbog visoke cijene nisu isplativi za velikoserijsku proizvodnju

Page 41: Elementi strojeva I

19.04.23 41

Nastanak zavarenog spoja

Zavareni spojevi općenito se temelje na kohezijskim silama u zavaru, tako da poslije zavarivanja zavareni spoj čini cjelinu koja se može razdvojiti jedino razaranjem materijala.

Obzirom na način nastanka kohezijskih sila u zavarenom spoju razlikuje se:• zavarivanje toplinskom energijom (zavarivanje taljenjem)• zavarivanje s mehaničkom energijom, toplo i hladno

Žljeb zavara – priprema spojnih dijelova Elementi zavara

Page 42: Elementi strojeva I

19.04.23 42

Zavarivanje toplinskom energijom

Spojni dijelovi iz istog ili srodnog materijal + dodatni materijal.

Zagrijavaju se na temperaturu višu od tališta materijala dijelova.

Stapaju se taline osnovnog i dodatnog materijal.

Page 43: Elementi strojeva I

19.04.23 43

Zavarivanje s mehaničkom energijom

Zavarivanje bez dodatnog materijala.

U području spoja materijal se izlaže velikim plastičnim deformacijama.

Zavar je tada dio materijala koji je omekšao i pri tome rekristalizirao.

Kod toplog zavarivanja dodirne površine dijelova se prije zavarivanja na različite načine zagrijavaju do tjestastog stanja tj. lokalno do tališta, čime se pospješuje proces difuzije atoma preko kontaktnih površina i rekristalizacije pod djelovanjem mehaničke sile pritiska.

Pri hladnom zavarivanju su za nastanak zavarenog spoja potrebne veće sile pritiska, jer su kontaktne površine na sobnoj temperaturi.

Page 44: Elementi strojeva I

19.04.23 44

Zavarivost materijala

Zavarljivost je svojstvo materijala da se spajanjem zavarivanjem njegovih dijelova dobije upotrebljiv spoj. Materijal je dobro zavarljiv ako je standardnom opremom i procedurom zavarivanja moguće ostvariti upotrebljiv spoj.

Materijal je slabo zavarljiv ako se spoj ostvaruje složenom opremom i procedurom zavarivanja.

Većina metala i umjetnih materijala je dobro zavarljiva, ako se izabere odgovarajući postupak zavarivanja.

Na zavarljivost utječe: sastav materijala kemijska i mehanička svojstva.

Za zavarivane strojne dijelove najvažniji materijal je čelik.

Page 45: Elementi strojeva I

19.04.23 45

Čelici

Zavarljivost čelika ovisna je o njegovom kemijskom sastavu, tj. o postotku osnovnihelemenata (C, Si, Mn, P, S) i legirnih dodataka (Cr, Ni, Mo, V, W, Ta, Nb, Al, Ti, Cu, Co), te o čistoći (razne primjese i plinovi kisika, dušika, vodika). Pored toga na zavarljivost velik utjecaj ima i debljina dijelova koji se zavaruju, jer o njoj ovisi brzina hlađenja zavara.

Konstrukcijski čelici, sa sadržajem do 0,23 % C imaju najbolju zavarljivost. Sadržaj sumpora i fosfora ne smije prelaziti 0,045% (ili 0,07% zajedno).Ostali legirni elementi, prije svega Si i Mn, slabe zavarljivost.

Najbolju zavarljivost imaju nelegirani i niskolegirani konstrukcijski čelici, koji se upotrebljavaju za gradnju mostova, rezervoara, vozila, strojeva, itd.

Visokolegirani čelici, koji sadrže ukupno više od 10% svih legiranih elemenata, zavaruju se samo uz posebne postupke.

Page 46: Elementi strojeva I

19.04.23 46

Za zavarene konstrukcije uglavnom se upotrebljavaju sljedeći čelici:

• konstrukcijski čelici: dobro zavarljivi čelici su Č0260, Č0360, Č0460 i Č0560, čelici za poboljšanje: za zavarivanje taljenjem sa najpogodniji čelici Č1330, Č4730, Č3139, te 28Cr4 (prema DIN-u); potrebno predgrijavanje i naknadna obrada.• čelici za cementaciju su svi dobro zavarljivi, ali u necementiranom stanju.

Čelični lijev ima dobru zavarljivost kao srodni čelici, iako je potrebno uzimati u obzir grublju i manje žilavu strukturu, te velike debljine dijelova koji se zavaruju, što utječe na brzinu hlađenja.Općenito su dobro zavarljivi čelični ljevovi ČL0300 i ČL0400.

Sivi lijev ima slabu žilavost i ne prenosi unutrašnja naprezanja. Zbog visokog postotka C u ZUT-u može doći do povećanja tvrdoće. Moguće je hladno zavarivanje. Kod toplog zavarivanja potrebno je dijelove zagrijati na 600...650°C i postupno hladiti nakon zavarivanja.

Nodularni i temper lijev se bolje zavaruju negoli sivi lijev zbog njihove veće rastezljivosti i žilavosti. Zavarivanje se provodi slično kao i kod sivog lijeva.

Page 47: Elementi strojeva I

19.04.23 47

Laki metaliAluminij (Al) i aluminijeve legure Magnezijeve (Mg) legure su teže zavarljive nego čelici, jer se brzo hlade i oksidiraju.

Teški metaliBakar (Cu), mjedi (CuZn legure) i bronce (CuSn legure) su dobro zavarljivi. Mjediimaju bolju zavarljivost pri manjem sadržaju cinka (Zn). Nikal (Ni) i njegove legure (NiFe, NiMn, NiCr, NiCu, NiMoCr) su zavarljivi pododređenim uvjetima. Titanove (Ti) legure dobro su zavarljive, a Ti u dodatnom materijalu poboljšava svojstva zavara.

Polimerni materijali su vrlo različiti s gledišta izvornih sirovina i načina proizvodnje. Duroplasti, koji se nakon proizvodnje ne daju toplinski oblikovati i zato su nezavarljivi.Termoplasti, koji se pri povišenoj temperaturi smekšaju ili tale, te su dobro zavarljivi.

Page 48: Elementi strojeva I

19.04.23 48

Vrste zavarenih spojeva i zavara

Zavareni spojevi dijele se obzirom na međusobni položaj dijelova koji se zavaruju.

Zavari se općenito dijele na:• sučeone zavare• kutne zavare• posebne zavare

Page 49: Elementi strojeva I

19.04.23 49

Vrste i oblici taljenih zavara (EN 22 553)

Page 50: Elementi strojeva I

19.04.23 50

Vrste i oblici mehanički spojenih zavara (EN 22553)

Page 51: Elementi strojeva I

19.04.23 51

Prema ISO 10721 i DIN 18800 zavareni spojevi se razvrstavaju u četiri razredakvalitete:

1. razred kvalitete – sve vrste sučeonih zavara imaju provareni korijen, a kutni i križni zavari provarene presjeke. Upotrebljeni osnovni i dodatni materijal moraju imati atest. Zavari moraju biti bez grešaka, izvodi se 100% kontrola (radiografska, ultrazvučna). Zavar izvode samo stručno osposobljeni zavarivači s atestom.

2. razred kvalitete – materijali su atestirani, manje su greške dopuštene, ali u zavaru ne smije biti pukotina. Obavezna je 50% kontrola. Zavaruju zavarivači s atestom.

3. razred kvalitete – sučeone zavare tog razreda moraju izraditi atestirani zavarivači. Zahtjeva se 10% kontrola zavara s ultrazvukom, te 100% vizualna i dimenzijska kontrola.

4. razred kvalitete – nema posebnih zahtjeva, vrijedi samo za jednostavne konstrukcije.

Page 52: Elementi strojeva I

19.04.23 52

Prema DIN EN 25817, za namjene proračuna zavari se razvrstavaju u tri skupine, kako slijedi:

B - zavari visoke kvalitete (1. i 2. razred kvalitete); izabire se pri visokim opterećenjima, gdje je lom zavara opasan po život, ili uzrokuje ispad (otkaz) glavne funkcije stroja ili naprave, zatim pri velikim dinamičkim opterećenjima (npr. vozila, radni strojevi, preše, dizalice, itd.), odnosno prema posebnim zahtjevima kod rezervoara i tlačnih posuda u strojogradnji i gradnji kotlova

C - zavari srednje kvalitete (3. razred kvalitete); izabire se pri srednjim iznosima opterećenja gdje lom zavara ne uzrokuje ispad glavne funkcije stroja ili naprave, i pri srednje velikim iznosima dinamičkih opterećenja (npr. potpore, određeni dijelovi kućišta, kućišta ležajeva, itd.)

D - zavari niske kvalitete (4. razred kvalitete); izabire se pri manjim opterećenjima, gdje lom zavara nema bitnih posljedica, i pri statičkim i manjim dinamičkim opterećenjima (npr. sanduci, ograde, itd.)

Page 53: Elementi strojeva I

19.04.23 53

Proračun čvrstoće zavarenih spojeva

Proračun čvrstoće zavarenih spojeva izvodi se prema osnovnim izrazima čvrstoće. Pri tome se uspoređuju radna naprezanja s dopuštenim naprezanjima u zavaru.

Kod proračuna je najvažnije pravilno određivanje:

Azv = Σa ⋅ lzv - ukupne nazivne nosive površine zavara

gdje je:a - računska debljina Lzv - nosiva dužina pojedinog zavara

Page 54: Elementi strojeva I

19.04.23 54

Računska dužina zavara lzv

a) sučeoni zavar, b) kutni zavar

Page 55: Elementi strojeva I

19.04.23 55

Kritični presjeci i naprezanja u zavaru

1n

2n

2p

2n

1p

1n

1p

2pp

p

n

p

n

1n = 2n

1n = 2n

1p =2p

n – normalno naprezanje, djeluje okomito na računsku ravninu zavara

p – normalno naprezanje, djeluje okomito na poprečni presjek zavara

n - smično naprezanje, djeluje u računskoj ravnini okomito na dužinu zavara

p - smično naprezanje, djeluje u računskoj ravnini uzduž zavara

Page 56: Elementi strojeva I

19.04.23 56

Vlačno, tlačno i smično opterećenje zavarenih spojeva

Vlačno opterećeni zavareni spojevi a) sučeoni, b) kutni

+n +n

+n

Smično opterećen zavareni spoj

sp

sp

sn

Page 57: Elementi strojeva I

19.04.23 57

Za vlačno, tlačno i smično (poprečno i uzdužno) opterećenje zavarenih spojeva silom F, određuju se naprezanja prema izrazima:

sp

sn

n

zvA

F

dopzv

dopzv

,

,

n – N/mm2 – vlačno/tlačno naprezanje okomito na računsku ravninu

sn – N/mm2 – smično naprezanje poprečno na dužinu zavara

sp – N/mm2 – smično naprezanje uzduž zavara

zv,dop – dopušteno naprezanje zavara na vlak/tlak

zv,dop – dopušteno naprezanje zavara na smik

Page 58: Elementi strojeva I

19.04.23 58

Opterećenje zavarenih spojeva na savijanje

Zavareni spojevi opterećeni na savijanje: a) sučeoni, b) kutni

dopzvszvzv

ss y

I

M,,

s

s

s

s

Ms - Nmm – moment savijanja zavara

Izv – mm4 – moment inercije poprečnog presjeka zavara

yzv – mm – udaljenost zavara od težišta zavara

s,zv,dop – N/mm2 – dopušteno naprezanje zavara na savijanjeOva naprezanja u pravilu ne treba proračunavati ,osim kod dizalica zbog proračuna ekvivalentnih naprezanja.

Page 59: Elementi strojeva I

19.04.23 59

Opterećenje zavarenih spojeva na torziju

t

t

dopzvtzvp

t W

T,,

,

t – N/mm2 - naprezanje zavara na torziju

T – Nmm – moment torzije

Wp,zv – mm3 – polarni moment otpora računske

površine zavara

t,zv,dop – N/mm2 – dopušteno naprezanje na

torziju u zavaru

43

, 21

16

2

ad

dadW zvp

Page 60: Elementi strojeva I

19.04.23 60

Primjeri zavarenih sklopova

Spremnici

Page 61: Elementi strojeva I

19.04.23 61

Brodski trup

Spremnici i cjevovodi chemical-tankera

Page 62: Elementi strojeva I

19.04.23 62

Čelična mosna konstrukcija

Page 63: Elementi strojeva I

19.04.23 63Cjevovodi

Šavne cijevi

Page 64: Elementi strojeva I

19.04.23 64

Učvršćenje hidrauličkog cilindra

Page 65: Elementi strojeva I

19.04.23 65

PITANJA ZA PONAVLJANJE GRADIVA

1. Kako se naziva opterećenje koje se mijenja s vremenom?

2. Kakva ona mogu biti po svom obliku?

3. Kako se dijele s obzirom na smjer djelovanja?

4. Nacrtajte vrste dinamičkih harmonijskih opterećenja i kako se koje naziva?

5. Napišite izraz za amplitudu dinamičkog opterećenja.

6. Napišite izraz za srednje opterećenje.

7. Čime se definira karakter dinamičkog opterećenja?

8. Kako počinje proces zamaranja materijala uslijed dinamičkog opterećenja?

9. Kako izgleda lom strojnog elementa uslijed zamora materijala?

10.Kakav je oblik probnih epruveti za ispitivanje dinamičke čvrstoće?

11.Nacrtajte Wőhlerov dijagram.

12.Što je trajna dinamička čvstoća?

13.Nacrtajte Wőhlerove dijagrame u ovisnosti o faktoru asimetrije.

14.Napišite oznake za trajnu dinamičku čvrstoću za vlak/tlak, savijanje i torziju.

Page 66: Elementi strojeva I

19.04.23 66

15. Nacrtajte modificirani Smithov dijagram. Što mora biti poznato da bi ga se nacrtalo?

16. Nacrtajte dijagram naprezanja za element opterećen statički na vlak ukoliko ima/nema zarez.

17. Kako glasi izraz za faktor oblika kod statički opterećenog štapa?

18. Kako se na konstrukcijskom elementu naziva mjesto gdje se pojavljuje koncentracija naprezanja?

19. Napišite izraze za efektivni faktor koncentracije naprezanja za dinamički opterećenu probnu epruvetu na vlak/tlak, savijanje i smicanje.

20. Napišite izraz za dopušteno naprezanje za statičko naprezanje žilavih i krhkih materijala. Koliki su faktori sigurnosti za ta dva slučaja?

21. Kako se u predhodnom proračunu na dinamičko opterećenje računa dopušteno naprezanje.

22. Koji se utjecaji uzimaju u obzir kod određivanja dopuštenih naprezanja u kontrolnom proračunu?

23. U kakve spojeve se svrstavaju zavareni spojevi?

24. Navedite prednosti i mane zavarenih spojeva.

Page 67: Elementi strojeva I

19.04.23 67

25. Kako nastaje zavareni spoj?

26. Koje su osnovne vrste zavarivačkih postupaka?

27. Kada se kaže da je materijal zavariv/slabo zavariv?

28. Koliki mora biti sadržaj ugljika u konstrukcijskom čeliku da bi bio zavariv?

29. Navedite metalne materijale koji se mogu zavariti?

30. Koji se polimerni materijali mogu zavariti, a koji ne?

31. Nacrtajte osnovne tipove zavarenih spojeva.

32. Napišite simbole nekoliko zavarenih spojeva prema EN 22 553.

33. Koliko ima razreda kvalitete zavarenih spojeva?

34. Koliko skupina zavarenih spojeva ima s obzirom na namjenu proračuna?

35. Skicirajte i napišite kako se određuje računska površina zavara?

36. Napišite kakva se naprezanja pojavljuju u sučeonom zavaru, općenito.

37. Navedite nekoliko primjera primjene zavarenih spojeva.