近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional...

19
近似ベイズ計算法を用いた 生物数理モデルの構築と展望 柴田達夫 Laboratory for Physical Biology, RIKEN Quantitative Biology Center (QBiC) & RIKEN Center for Developmental Biology (CDB) 謝辞 猪股秀彦, 笹井芳樹 RIKEN Center for Developmental Biology (CDB)

Transcript of 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional...

Page 1: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

Cont.

Venu

s/pS

mad

/DAP

I

近似ベイズ計算法を用いた 生物数理モデルの構築と展望

柴田達夫 Laboratory for Physical Biology, RIKEN Quantitative Biology Center (QBiC) &

RIKEN Center for Developmental Biology (CDB)

謝辞

猪股秀彦, 笹井芳樹

RIKEN Center for Developmental Biology (CDB)

Page 2: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

ライフサイエンスのチャレンジ

• 分子や相互作用の知識の蓄積

• 働きを理解するには不十分

• シミュレーションによる再構成 => 理解

• しかし、基礎方程式は不確実

• 数理モデル = 仮説の構築

• パラメータ値の不可知性

Page 3: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

からだの基本的な3つの軸

• Anterior-Posterior (AP axis、前後軸)

• Dorsal-Ventral (DV axis、背腹軸)

• Left-Right (左右軸)

from Essential Developmental Biology

Page 4: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

Hans Spemann

Page 5: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

背腹軸パタン形成のスケーリング性

• 胚のサイズの違いにもかかわらず、背腹軸のパタン形成はプロポーションが維持されている。 • 背腹軸のパターンを体のサイズに適応させる仕組みは何か? • 「スケーリング性のあるパタン形成」

Inomata, H., Shibata, T., Haraguchi, T., & Sasai, Y. (2013). Cell, 153(6), 1296–1311.

whole

Bisection

Xenopus laevis

実験結果については→

Page 6: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

濃度勾配が位置情報を与える

position

morphogen gradient

Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25, 1–47 (1969).

Wolpert’s “French flag” model

モルフォゲン

Page 7: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

拡散係数と分解レートが濃度勾配を決める

∂c∂t

= −λc +D ∂2c∂x 2

source of morphogen

position

morphogen gradient

C( x )= JDλ e

− xD λ

ℓ = D λ (µm)The diffusion distance

The morphogen gradient:

D∂c∂x x=0

= − JL

• 体のサイズは濃度勾配に影響しない!

Page 8: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

BMP の濃度勾配が背腹軸を決めている

Inomata, H., Shibata, T., Haraguchi, T., & Sasai, Y. (2013). Cell, 153(6), 1296–1311.

free BMPs

high

low

L L

Dorsal

Ventral

D

V

Cont.

Venus/pSmad/DAPI

The BMP activity is quantified by the nuclear phospho-Smad1 (pSmad1) signal.

Page 9: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

背腹軸に沿ったモルフォゲン濃度勾配

• 疑問:体のサイズに対して、いつも同じ割合で変化する濃度勾配は、どのように作られるか?

0 1800

0.5

1

1.5

2

Angle

pSmad1@

nucleus

900 10.5 相対座標

Page 10: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

BMP濃度勾配を調節する分子ネットワーク

activeinactive

ChdSzl

SzlChd

free BMPs

Chd

BMPs-Chd

Sizzled, a inhibitor for Chordin protease, stabilizing Chordin and

BMPs-Chd complexes

Dutko, J.A., and M.C. Mullins. 2011. Cell. 145: 636–636.e2.

Inomata, H., Shibata, T., Haraguchi, T., & Sasai, Y. (2013). Cell, 153(6), 1296–1311.

Page 11: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

背腹軸パタン形成の数理モデル

(1) BMP-dependent production

(2) Degradation (3) Association between

BMPs & Chordin (4) Sizzled-regulated

Chordins degradation (5) Diffusion (6) Chd production at

dorsal end

Inomata, H., Shibata, T., Haraguchi, T., & Sasai, Y. (2013). Cell, 153(6), 1296–1311.

(A)(C)(AC)(BC)(B)(S)

∂C∂t

=VCKC

hC

KChC +(A+B)hC

−λCC

1+ S Ki +(C+BC + AC) Km

−kchdbmpC ⋅B −kC ⋅A+DchdΔC

∂B∂t

=VB(A+B)hB

KBhB +(A+B)hB

−λBB +λCBC

1+ S Ki +(C+BC + AC) Km

−kchdbmpC ⋅B +DbmpΔB

∂A∂t

=VAKA

hA

KAhA +(A+B)hA

−λBA+λCAC

1+ S Ki +(C+BC + AC) Km

−kchdadmpC ⋅A+DadmpΔA

∂S∂t

=VS(A+B)hS

KShS +(A+B)hS

−λSS +DszlΔS

∂BC∂t

= −λCBC

1+ S Ki +(C+BC + AC) Km

+kchdbmpC ⋅B +DchdbmpΔBC

∂AC∂t

= −λCAC

1+ S Ki +(C+BC + AC) Km

+kchdadmpC ⋅A+DchdadmpΔAC

D∇C x=0 = − JCD∇B x=0 = D∇A x=0 = D∇S x=0 = D∇BC x=0 = D∇S x=0 = 0

D∇C x=L =D∇B x=L = D∇A x=L = D∇S x=L = D∇BC x=L = D∇S x=L = 0

ADMP Chordin ADMP-Chd BMP4-Chd BMP4 Sizzled

Page 12: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

パラメータVc ,Kc ,hcVB ,KB ,hBVA ,KA ,hAVs ,Ks ,hs

⎪⎪

⎪⎪

λB ,λSkBC

λC ,Km ,Ki

DC ,DB ,DA ,DS ,DCB ,DCAJcL

(1) BMP-dependent production rate, Hill coefficient, threshold

(2) Degradation(3) Association between BMPs & Chordin(4) Sizzled-regulated Chordins degradation(5) Diffusion(6) Chordin production at dorsal end(7) embryo size

• パラメータの数 >> 変数の数

Page 13: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

異なるサイズに対する モルフォゲン濃度勾配の数値計算

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

[BMP]

Position

500μm

1400μm

KB

KC

xV(1500) xV(500)xD(1500) xD(500) ‥‥

BMP profile

b = {xD(1500),…,xD(500),xV(1500),…,xV(500)}

• [BMP] = KC, 背領域の境界, xD

• [BMP] = KB, 腹領域の境界, xV

Page 14: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

実験結果を説明するパラメータの推定

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

[BMP]

Position

500μm

1400μm

KB

KC

BMP profile

b = {xD(1500),…,xD(500),xV(1500),…,xV(500)}

b* = {xD(1500)=1/5, …, xD(500)=1/5, xV(1500)=5/8,…,xV(500)=5/8}

simulation

observation Dorsal Lateral Ventral1/5 5/8

L=1500, 1000, 500 μm

0 1relative position

WT

Page 15: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

近似ベイズ法を用いたパラメータ推定

Liepe, Juliane, Liepe, Juliane, Paul Kirk, Paul Kirk, Sarah Filippi, Sarah Filippi, Tina Toni, Chris P Barnes & Michael P H Stumpf “A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation”. Nat Protoc 9, 439–456 (2014).

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8BMPs (free)

embryonic coordinate

Kb

Kctarget patterntarget pattern

x

Parameter 1

Par

amet

er 2

Simulate model

Compare simulation with target

Keep ifdistance below threshold?

x

Parameter 1

Par

amet

er 2

x xxx

xx x

xxx xxx

xx x

x

xx xxx

xx x

xxx xxx

xx x

x xx xxx

xx x

xxx xxx

xx x

xxx xxx

xx x

x

Derive approximation toposterior distribution

Sample parameters fromprior distribution

x xx xxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxx xxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxx

x xxxxxxx

xx xxxxxxxxxxx xxxxx

xxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx x

xxxxxxxxxxxxxxx xxxx xxxxxx xxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x

xx

xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxx xxxxx

xxxxxxxxxxxxxxxx xxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx xxx xxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxx xx xxxxxxxxxxxxxxxxxxxxx

Repeate

Page 16: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

Approximate Bayesian computation (ABC) with sequential Monte Carlo

(SMC) methodprior distribution of model parameters θ

Step 5: The posterior distribution is approximated with theaccepted parameter points. The posterior distribution should havea nonnegligible probability for parameter values in a regionaround the true value of h in the system, if the data are sufficientlyinformative. In this example, the posterior probability mass isevenly split between the values 0:08 and 0:43.

Figure 3 shows the posterior probabilities obtained by ABC anda large n using either the summary statistic combined with (e~0and e~2) or the full data sequence. These are compared with thetrue posterior, which can be computed exactly and efficiently usingthe Viterbi algorithm. The used summary statistic is not sufficient,and it is seen that even with e~0, the deviation from thetheoretical posterior is considerable. Of note, a much longerobserved data sequence would be required to obtain a posteriorthat is concentrated around the true value of h (h~0:25).

This example application of ABC used simplifications forillustrative purposes. A number of review articles provide pointersto more realistic applications of ABC [9–11,14].

Model Comparison with ABC

Besides parameter estimation, the ABC-framework can be usedto compute the posterior probabilities of different candidatemodels [15–17]. In such applications, one possibility is to use therejection-sampling in a hierarchical manner. First, a model issampled from the prior distribution for the models; then, given themodel sampled, the model parameters are sampled from the priordistribution assigned to that model. Finally, a simulation isperformed as in the single-model ABC. The relative acceptancefrequencies for the different models now approximate the posterior

Figure 1. Parameter estimation by Approximate Bayesian Computation: a conceptual overview.doi:10.1371/journal.pcbi.1002803.g001

PLOS Computational Biology | www.ploscompbiol.org 3 January 2013 | Volume 9 | Issue 1 | e1002803

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

✓ ❌ ✓❌

1. pick a parameter value from the prior distribution Pn-1(θ)

2. perform simulation

4. compute error from target, ρ(b,b*)

b = {xD(1500),…,xD(500),xV(1500),…,xV(500)}

5. accept ✓ parameter θ that errors ρ(b,b*) < ε

3. compute D, V positions

6. Approximate the posterior distribution Pn(θ).

Step 5: The posterior distribution is approximated with theaccepted parameter points. The posterior distribution should havea nonnegligible probability for parameter values in a regionaround the true value of h in the system, if the data are sufficientlyinformative. In this example, the posterior probability mass isevenly split between the values 0:08 and 0:43.

Figure 3 shows the posterior probabilities obtained by ABC anda large n using either the summary statistic combined with (e~0and e~2) or the full data sequence. These are compared with thetrue posterior, which can be computed exactly and efficiently usingthe Viterbi algorithm. The used summary statistic is not sufficient,and it is seen that even with e~0, the deviation from thetheoretical posterior is considerable. Of note, a much longerobserved data sequence would be required to obtain a posteriorthat is concentrated around the true value of h (h~0:25).

This example application of ABC used simplifications forillustrative purposes. A number of review articles provide pointersto more realistic applications of ABC [9–11,14].

Model Comparison with ABC

Besides parameter estimation, the ABC-framework can be usedto compute the posterior probabilities of different candidatemodels [15–17]. In such applications, one possibility is to use therejection-sampling in a hierarchical manner. First, a model issampled from the prior distribution for the models; then, given themodel sampled, the model parameters are sampled from the priordistribution assigned to that model. Finally, a simulation isperformed as in the single-model ABC. The relative acceptancefrequencies for the different models now approximate the posterior

Figure 1. Parameter estimation by Approximate Bayesian Computation: a conceptual overview.doi:10.1371/journal.pcbi.1002803.g001

PLOS Computational Biology | www.ploscompbiol.org 3 January 2013 | Volume 9 | Issue 1 | e1002803

Posterior distribution of model parameters θUse Pn(θ) as the prior distribution for the next iteration.

Repeat this procedure until the error ρ are sufficiently small

P0 (θ )

Pn (θ )

Page 17: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

背腹境界の分布の推移dorsal ventral

embryonic coordinate

initial distribution

500μm

1000μm

1500μm

embryonic coordinate

500μm

1000μm

1500μm

final distributiondorsal ventral

Page 18: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

モルフォゲン濃度勾配は 同じ割合で変化する

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

relative length

L=500 μm

L=1500 μm

モルフォゲン濃度勾配 [BMP]

相対座標

Page 19: 近似ベイズ計算法を用いた 生物数理モデルの構築と展望...Wolpert,L. Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25,

データ駆動で本質を見抜く∂C∂t

=VCKC

hC

KChC + (A+B)hC

−λCC

1+ S Ki + (C+BC + AC ) Km

− kC ⋅B− kC ⋅A+DΔC

∂B∂t

=VB(A+B)hB

KBhB + (A+B)hB

−λBB+λCBC

1+ S Ki + (C+BC + AC ) Km

− kC ⋅B+DΔB

∂A∂t

=VAKA

hA

KAhA + (A+B)hA

−λBA+λCAC

1+ S Ki + (C+BC + AC ) Km

− kC ⋅A+DΔA

∂S∂t

=VS(A+B)hS

KShS + (A+B)hS

−λSS+DΔS

∂BC∂t

= −λCBC

1+ S Ki + (C+BC + AC ) Km

+ kC ⋅B+DΔBC

∂AC∂t

= −λCAC

1+ S Ki + (C+BC + AC ) Km

+ kC ⋅A+DΔAC

• スケーリング性の数理構造を、データ解析から抽出する

データ駆動型の縮約