陽明大學附設醫院 內分泌暨新陳代謝科 林冠宏...

63
陽明大學附設醫院 內分泌暨新陳代謝科 林冠宏 醫師 1

Transcript of 陽明大學附設醫院 內分泌暨新陳代謝科 林冠宏...

  • 陽明大學附設醫院

    內分泌暨新陳代謝科

    林冠宏 醫師

    1

  • 2

  • Eyes (retinopathy,

    glaucoma, cataracts)

    Brain and Cerebral Circulation (stroke, TIA)

    Heart and Coronary Circulation (angina, MI, CHF)

    Kidneys (nephropathy,

    ESRD)

    Peripheral Nervous System

    (peripheral neuropathy)

    Peripheral Vascular Tree (peripheral vascular disease, gangrene, amputation)

    CHF=congestive heart failure; ESRD=end-stage renal disease; MI=myocardial infarction; TIA=transient ischemic attack; T2DM=type 2 diabetes mellitus. Adapted from International Diabetes Federation. Complications. Available at: http://www.eatlas.idf.org/complications. Accessed April 14, 2006. 3

    Serious long-term complications in T2DM

  • For every 1% reduction in mean HbA1c there was a reduction in risk (%) of complications

    Lowering HbA1c can reduce the risk of

    complications associated with T2DM

    -37%

    -14%

    -21%

    Microvascular complications

    Retinopathy, neuropathy, nephropathy

    Myocardial infarction

    Fatal and nonfatal MI

    Deaths related to diabetes

    MI = myocardial infarction Stratton IM, et al. BMJ. 2000;321:405-412.

    Benefits of lowering HbA1c

    4

  • Aggregate endpoint 1997 2007

    Any diabetes-related endpoint RRR =

    P =

    12%

    0.029

    9%

    0.040

    Microvascular disease RRR =

    P =

    25%

    0.0099

    24%

    0.001

    MI RRR =

    P =

    16%

    0.052

    15%

    0.014

    All-cause mortality RRR =

    P =

    6%

    0.44

    13%

    0.007

    After median 8.5 years’ post-trial follow-up

    MI=myocardial infarction; RRR=relative risk reduction; P=log rank. Diabetes Trials Unit. UKPDS Post Trial Monitoring. UKPDS 80 Slide Set. Available at: http://www.dtu.ox.ac.uk/index.php?maindoc=/ukpds/. Accessed 12 September, 2008; Holman RR, et al. N Engl J Med. 2008; 359: 1577–1589; UKPDS 33. Lancet. 1998; 352: 837–853.

    5

    Early glucose control not only reduces complications but has a long term legacy

    http://www.dtu.ox.ac.uk/index.php?maindoc=/ukpds/

  • Source: CODE-2 Study. Williams R et al. Diabetologia 2002; 45: S13-S17.

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    Microvascular & Macrovascular

    3.5x

    Macrovascular

    2.0x

    Microvascular

    1.7x

    No Complications

    1.0x

    Effect of Complications on Average Cost per Patient

    Co

    st I

    mp

    ac

    t Fa

    cto

    r

    Costs were assessed retrospectively for 6 months

    Incremental cost due to complications Base cost without complications

    6

    Micro- and macro-vascular complications are the key divers of the costs associated with T2DM

  • 7

  • Tahrani AA et al, Lancet 2011;378:182-197 8

  • Addressing impaired incretin action as a third core defect in

    T2DM has important clinical implications

    Impaired Incretin Action

    Insulin Resistance

    Beta cell dysfunction

    Type 2 diabetes mellitus

    Incretin action: Emerging as a core defect in T2DM

    Adapted from: Kendall DM. Am J Med. 2009;122:S37-S50. 9

  • (% R

    ela

    tiv

    e F

    un

    ctio

    n

    of

    no

    rma

    l)

    0

    50

    100 150

    200

    300

    -10 -5 0 5 10 15 20 25 30

    50

    100

    150

    200

    250

    300

    350

    Insulin Resistance

    Insulin Level

    Fasting BG

    Incretin action

    Postprandial BG

    Glu

    cose

    (m

    g/d

    L) Prediabetes Diabetes

    250

    Normal

    Normal BG Range

    Time (Years)

    Natural progression of T2DM

    BG = blood glucose Adapted from: Mazze R, et al. Part two: The treatment of diabetes. In: Mazze R, Strock ES,

    Simonson G, Bergenstal RM, eds. Staged Diabetes Management: A Systematic Approach.

    2nd ed. rev. 2006:78-154.. 10

  • ↑ Glucose

    Fewer -cells

    -cells Hypertrophy

    Insufficient Insulin

    Excessive Glucagon

    – +

    ↓ Glucose Uptake

    ↑ HGO

    +

    HGO=hepatic glucose output. Adapted from Ohneda A, et al. J Clin Endocrinol Metab. 1978; 46: 504–510; Gomis R, et al. Diabetes Res Clin Pract. 1989; 6: 191–198. 11

    Pancreatic islet dysfunction leads to hyperglycemia

  • Glucagon

    25

    30

    35

    40

    45

    pm

    ol/

    L

    Time (min) -60 0 60 120 180 240 300

    NGT

    IGT

    0

    Insulin

    200

    400

    600

    pm

    ol/

    L

    Glucose

    Glucose

    50

    100

    150

    200

    250

    mg

    /dL

    NGT

    IGT

    NGT

    IGT

    Elevated glucagon in T2DM and IGT (↓ insulin / glucagon ratio)

    IGT T2DM

    CHO=carbohydrate; NGT=normal glucose tolerance; T2DM=type 2 diabetes mellitus. Adapted from Müller WA, et al. N Engl J Med. 1970; 283: 109–115.

    IGT=impaired glucose tolerance; NGT=normal glucose tolerance. Adapted from Mitrakou A, et al. N Engl J Med. 1992; 326: 22–29.

    CHO meal

    0

    NGT

    T2DM

    -60

    Time (min)

    0 60 120 180 240

    Glucose 100

    200

    300

    400

    mg

    /dL

    0

    Insulin 50

    100

    150

    μU

    /mL

    NGT

    T2DM

    Glucagon

    75

    100

    125

    150

    pg

    /mL

    NGT

    T2DM

    12

  • 13

  • IV=intravenous. Adapted from Nauck MA, et al. J Clin Endocrinol Metab. 1986; 63: 492–498.

    Oral Glucose Tolerance Test and Matched IV Infusion

    Pla

    sma

    Glu

    co

    se (

    mg

    /dL

    )

    0

    50

    100

    150

    200

    –30 0 30 60 90 120 150 180 210

    Time (min)

    Pla

    sma

    In

    suli

    n (

    pm

    ol/

    L)

    0

    100

    200

    300

    400

    –30 0 30 60 90 120 150 180 210

    Time (min)

    Oral IV

    50 g Glucose

    N=6

    14

  • L-cell

    (ileum)

    Proglucagon

    GLP-1 [7–37]

    GLP-1 [7–36 NH2]

    K-cell

    ( jejunum)

    ProGIP

    GIP [1–42]

    GIP=glucose-dependent insulinotropic peptide; GLP-1=glucagon-like peptide-1. Adapted from Drucker DJ. Diabetes Care. 2003; 26: 2929–2940. 15

  • 16 Girard J. Diabetes Metab. 2008 34: 550–559.

  • 17 Girard J. Diabetes Metab. 2008 34: 550–559.

    GIP

    GLP-1

  • * * * * *

    * *

    20

    15

    10

    5

    0 0 60 120 180 240

    Time (min)

    Meal

    GL

    P-1

    † (

    pm

    ol/L

    )

    Mean ± SE; N=102; *p

  • Postprandial

    19

  • 20

  • GLP-1 inactive

    (>80% of pool)

    Active GLP-1

    Meal

    DPP-4

    Intestinal GLP-1 release

    GLP-1 t½=1–2 min

    DPP-4 inhibitor

    DPP-4=dipeptidyl peptidase-4; GLP-1=glucagon-like peptide-1. Adapted from Rothenberg P, et al. Diabetes. 2000; 49 (Suppl 1): A39. Abstract 160-OR. Adapted from Deacon CF, et al. Diabetes. 1995; 44: 1126–1131. 21

  • Meal

    *

    *

    *

    *

    *

    * * * *

    * *

    *

    Vildagliptin 100 mg (n=16)

    Placebo (n=16)

    GLP-1=glucagon-like peptide-1; T2DM=type 2 diabetes mellitus. *P

  • See accompanying Prescribing Information and safety information included in this presentation 23

  • Mean (SE); N=25. Fehse F, et al. J Clin Endocrinol Metab. 2005;90:5991-5997. Copyright 2005, The Endocrine Society.

    Healthy Subjects, Placebo

    Insu

    lin

    Se

    cre

    tio

    n

    (pm

    ol•

    kg

    -1•m

    in-1

    )

    Time (min)

    Exenatide versus Healthy

    Exenatide versus Placebo p=.0002 p=.0002

    p=.0029

    T2D, Placebo

    T2D, Exenatide

    24

  • Madsbad S, Lancet 2009;373:438-439 25

  • 26

  • 27

  • 28

  • D = duct Tourrel C, et al. Diabetes. 2002;51:1443-1452. Copyright © 2002 American Diabetes Association. From Diabetes, Vol 51, 2002; 1443-1452. Reprinted with permission from The American Diabetes Association.

    Untreated Diabetic Rats Diabetic Rats Treated With GLP-1

    Double immunostaining for BrdU and insulin (A and B) and indirect

    immunoperoxidase staining for insulin (C and D) in 7-day-old Rats

    29

  • Control GLP-1

    Day 1

    Day 3

    Day 5

    ♦ Pancreatic islets cultured in the absence of GLP-1 lost organisation after 5 days

    ♦ By Day 5, 45% of islets in control cultures had lost their 3-D structure

    ♦ Only 15% of GLP-1– treated islets lost their 3-D structure in 5 days (p

  • 0

    2

    4

    6

    8

    10

    165 180 190 210 240 260 270 290

    Time (min)

    C-p

    ep

    tid

    e (

    nm

    ol/

    L)

    4 weeks off-drug

    Pre-treatment 52 weeks on-drug

    0

    2

    4

    6

    8

    10

    165 180 190 210 240 260 270 290

    Time (min)

    C-p

    ep

    tid

    e (

    nm

    ol/

    L)

    C-Peptide Concentrations During Hyperglycemic Clamp: Exenatide vs. Glargine

    Exenatide Insulin Glargine

    Data represent mean ± SE

    Phase: 1st 2nd

    AIRarg Phase: 1st 2nd

    AIRarg

    Bunck et al. Diabetes Care 2009;32:762-8.

    31

  • Patients with T2D; Evaluable population, n=61 for both treatment groups; Geometric LS mean ± SE Standard meals administered at t = 0 min; Geometric mean baseline insulinogenic index2: 0.4 1. Adapted from DeFronzo RA, et al. Curr Med Res Opin. 2008;24:2943-2952.; 2. Data on file, Amylin Pharmaceuticals, Inc.

    Insu

    lin

    og

    en

    ic I

    nd

    ex1

    BYETTA Sitagliptin

    p=.02

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0.55

    0.82

    *Increment was defined as the post-meal minus the pre-meal levels at the time of peak glucose concentration

    Insulinogenic index = increment in plasma insulin*

    increment in plasma glucose*

    32

  • Patients with T2D; Evaluable population, n=61 for all treatment groups; Mean ± SE Adapted from DeFronzo RA, et al. Curr Med Res Opin. 2008;24:2943-2952.

    Pla

    sma

    Glu

    cag

    on

    (p

    g/m

    L)

    Time (min) Standard Meal

    -30 0 30 60 90 120 150 180 210 240 70

    80

    90

    100

    110

    120

    Baseline Exenatide Sitagliptin

    33

  • Exenatide Placebo

    ITT patient sample, LS Mean ± SE, *p

  • PP

    G (

    mm

    ol/

    L)

    Time (min) Standard Meal

    Patients with T2D; Evaluable population, n=61 for all treatment groups; Mean ± SE; * least square (LS) mean ± SE, p

  • -5 -4 -3 -2 -1 0 1 2 3 4 5 -30

    -25

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    10%

    68%

    6%

    16%

    HbA1c Change from Baseline (%)

    We

    igh

    t C

    ha

    ng

    e F

    rom

    Ba

    seli

    ne

    (k

    g)

    N=217 Adapted from Klonoff DC, et al. Curr Med Res Opin 2008;24:275-286.

    36

  • Placebo-controlled/Open-label Extension (Combined)1

    1. Klonoff DC, et al. Curr Med Res Opin. 2008;24:275-286. 2. Exenatide Clinical Data Analysis Shows No Increased Risk of Cardiovascular Events [press release]. San Diego, CA, Indianapolis, IN, and Cambridge, MA; March 26, 2009.

    Me

    an

    Ch

    an

    ge

    (%

    )

    N=151 *p

  • *In three 30-week placebo-controlled trials. Adapted from Byetta [prescribing information]. San Diego, CA: Amylin Pharmaceuticals Inc, 2005.

    18%

    4% 6%

    44%

    13% 13%

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    Nausea Vomiting Diarrhea

    Pro

    po

    rtio

    n o

    f P

    ati

    en

    ts (

    %) Placebo (n=483)

    Exenatide (n=963)

    38

  • 39 Drunker DJ et al. Dabetes Care. 2010; 33(2): 428-433.

  • 40

  • -glucosidase inhibitors Delay intestinal carbohydrate absorption

    Thiazolidinediones Decrease lipolysis in adipose tissue, increase glucose uptake in skeletal muscle and decrease glucose production in liver

    Sulfonylureas Glinides Increase insulin secretion from pancreatic -cells

    GLP-1 analogs Improve pancreatic islet glucose sensing, slow gastric emptying, improve satiety

    DDP-4=dipeptidyl peptidase-4; GLP-1=glucagon-like peptide-1; T2DM=type 2 diabetes mellitus. Adapted from Cheng AY, Fantus IG. CMAJ. 2005; 172: 213–226. Ahrén B, Foley JE. Int J Clin Pract. 2008; 62: 8–14.

    DPP-4 inhibitors Prolong GLP-1 action leading to improved pancreatic islet glucose sensing, increase glucose uptake

    41

    Biguanides Increased glucose uptake and decreases hepatic glucose production

  • 42

    Change from baseline in HbA1c

    McIntosh B et al. Open Medicine. 2011; 5(1): E35

  • 43

    Odds of at least 1 event of overall hypoglycemia

    McIntosh B et al. Open Medicine. 2011; 5(1): E35

  • Pancreatic cell

    Adapted from: Cheng AYY, et al CMAJ. 2005; 172: 213–216. * Levy AR et al. Health and Quality of Life Outcomes 2008, 6:73

    • Increased secretion of insulin independently of glucose level

    • Increased risk of hypoglycemia

    • Chronic effect: weight gain due to defensive eating*

    SU

    K+ X

    Release of insulin

    Pancreas Insulin

    44

    Sulphonylureas do not work in glucose-dependent manner increasing risk of hypoglycemia

  • 45

    Change from baseline in body weight

    McIntosh B et al. Open Medicine. 2011; 5(1): E35

  • 21.6

    13.0

    0

    5

    10

    15

    20

    25 3.6

    -0.4-1

    0

    1

    2

    3

    4

    % of Edema without HF Weight Gain (kg)

    Placebo

    Pioglitazone

  • CI=confidence interval; CV=cardiovascular. Adapted from Nissen SE, Wolski K. N Engl J Med. 2007; 356: 2457–2471.

    Myocardial infarction

    Small trials combined

    DREAM

    ADOPT

    Overall

    Death from CV causes

    Small trials combined

    DREAM

    ADOPT

    Overall

    2.0 4.0 1.0

    Log Odds Ratio (95% CI)

    0.5

    1.43 (1.03–1.98) P=0.03

    1.45; P=0.15

    1.65; P=0.22

    1.33; P=0.27

    2.40; P=0.02

    1.20; P=0.67

    0.80; P=0.78

    1.64 (0.98–2.74) P=0.06

    47

  • Aubert RE, et al. Diabetes Obes Metab. 2010;12(8):716-721 Colin R. Arch Intern Med. 2009;169(15):1395-1402.

    48

  • 49 Voelker R. JAMA. 2012; 307(24): 2577.

  • 50 Mamtani R et al. J Natl Cancer Intst. 2012; 104(18): 1411-21.

  • 51 Mamtani R et al. J Natl Cancer Intst. 2012; 104(18): 1411-21.

  • 52

  • 53

  • 54

  • Adapted from Inzucchi SE et al. Diabetologia. 2012; 55(6): 1577-1596. 55

  • 56

  • 57

  • 58 58

  • 59

  • 60

  • 61

  • 62

  • Lifestyle modification

    Drug of choice Efficacious

    Low risk for hypoglycemia

    Weight neutral/loss

    Less adverse effects (CV, osteoporosis, cancer, etc.)

    Good adherence (once daily)

    63

    Personalized/individualized care should be the

    cornerstone of modern diabetes management.