連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content ›...

200

Transcript of 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content ›...

Page 1: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共
Page 2: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

連続体力学の基礎れんぞくたいりきがくのきそ

古口日出男・永澤  茂

共  著

Fundamentals of Continuum Mechanics

Page 3: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

1.

, .

,

. , ,

.

.

2.

, , , ,

. , ,

.

, .

3. (keywords)

Internet ,

(tensile) (compressive) (shear)

(strain),

(elasticity) (plasticity),

(viscosity) (velocity),

, , ,

(vector) (tensor),

(basic vector),

(bound vector) (free vector),

- I -

本書の目的と使い方PrefaceContents

Page 4: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(differentiation of functions with several variables)

(integration),

( coordinate transformation),

(material coordinate)

(material derivative) = (substantial derivative),

(index), (summation convention),

(space) (time),

(deformation) , (field) (equilibrium),

(free body),

(divergence) (rotation),

(constitutive equation),

Leibniz (Leibniz integral rule)

Gau (Gauss ’divergence theorem),

(total differential) (increment),

(partial derivative) (ordinary differential),

(chain rule for partial derivative),

(multiplication of a matrix by a vector ),

(multiplication of matrices)

4.

,

.

.

,

.

. , , ,

. ,

.

- II -

連続体力学の基礎

Page 5: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

本書の目的と使い方 (How to use this book and purposes)  ............................................................. i

1. 本書の目的 ......................................................................................................................................... i

2. 達成したい目標 ................................................................................................................................. i

3. 核となる用語(keywords)  ............................................................................................................... i

4. 本書の内容および本書を使った学習の方法 ............................................................................... ii

1.連続体力学の考え方 (Defi nition of the continuum mechanics)  ...............................................1

1.1 連続体力学の歴史 (History of the continuum mechanics)  ...........................................................1

1.2 連続体の概念を理解するための取り組み方(Approach to philosophy)  ..................................2

1.3 力学とは ? (What is mechanics?)  ...................................................................................................2

1.4 連続体の性質(properties of a continuum body)  ..........................................................................4

1.5 空間内の物質の連続分布 : 密度と平滑化 (Distribution and smoothness)  .................................4

1.6 微小要素の大きさについて (Size of infi nitesimal elements)  ......................................................7

1.7 連続量(物理量)  ............................................................................................................................7

1,8 場の量 (時空間で定義される連続量)と表記法  .......................................................................9

1.9 連続体の分類  .................................................................................................................................10

1.10 連続体力学の学習で必要な考え方  ...........................................................................................12

1.11 例題 多質点系の平衡方程式  ......................................................................................................14

練習問題  ...............................................................................................................................................16

復習 基礎知識  .....................................................................................................................................17

練習問題  ...............................................................................................................................................21

2.ベクトルとテンソル (Vectors and tensors)  ............................................................................23

2.1 ベクトルの演算(積)と座標変換則

   (Vector product and the transformation rule of coordinates)   ..................................................25

 2.1.1 位置ベクトルと束縛ベクトル  ..............................................................................................25

 2.1.2 ベクトルの等価性 (Equality of vectors)  ..............................................................................26

 2.1.3 ベクトル場 (Vector fi eld)  ......................................................................................................27

目    次

- III -

目  次PrefaceContents

Page 6: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

 2.1.4 ベクトルの演算 (Operation rules in vector space)  ...............................................................29

  (1) スカラー積,内積 (inner product)  .....................................................................................29

    例題 2.1  ...................................................................................................................................29

    例題 2.2  ...................................................................................................................................29

    例題 2.3  ...................................................................................................................................30

  (2) ベクトル積 , 外積(outer product)  .....................................................................................31

    例題 2.4  ...................................................................................................................................31

  (3) 基底ベクトルの外積演算 ....................................................................................................32

  (4) 座標変換則 (Rules of translation and rotation of coordinates)  ...........................................33

    例題 2.5  ...................................................................................................................................34

  (5) 演算規則に慣れよう ............................................................................................................35

 2.1.5 まとめ ......................................................................................................................................36

練習問題 ...............................................................................................................................................37

2.2 テンソルの演算(積)と座標変換則

  (Tensor product and the transformation rule of coordinates)  ......................................................39

 2.2.1 ベクトルの演算(積)再考 ..................................................................................................39

 2.2.2 テンソル積 (dyadic, tensor product) と基底 (diad)  ............................................................40

 2.2.3 テンソル積によって表現される物理量 ..............................................................................43

 2.2.4 テンソル積の座標変換則 ......................................................................................................45

 2.2.5 関数としてのベクトル量 [ 復習 ]  ........................................................................................47

練習問題 ...............................................................................................................................................48

3.応力 (Stress)  ..................................................................................................................................51

3.1 応力ベクトル (stress vector)  ........................................................................................................51

3.2 応力テンソル(stress tensor)  .......................................................................................................52

3.3 法線応力とせん断応力(normal and shear stress)  .....................................................................55

3.4 せん断応力の対称性 (symmetry of shear stress components )  ...................................................55

3.5 表面力の釣り合い .........................................................................................................................56

 例題 3.1 .............................................................................................................................................59

 例題 3.2 .............................................................................................................................................63

 例題 3.3 .............................................................................................................................................65

3.6 Mohr の応力円(Mohr's stress circle)  ..........................................................................................66

- IV -

連続体力学の基礎

Page 7: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

 例題 3.4 .............................................................................................................................................68

 例題 3.5 .............................................................................................................................................69

練習問題 ...............................................................................................................................................70

4.ひずみ(Strain)  .............................................................................................................................73

4.1 1 次元の伸長変形  .........................................................................................................................73

4.2 運動記述のための座標系の選択  ................................................................................................74

4.3 3 次元変形への導入  .....................................................................................................................76

4.4 変形勾配  ........................................................................................................................................76

4.5 変形計量とひずみ  ........................................................................................................................78

4.6 変位場を用いたひずみの表現  .....................................................................................................79

 例題 4.1  .............................................................................................................................................80

 例題 4.2  ............................................................................................................................................ 81

4.7 体積ひずみ(dilatation)  ...............................................................................................................82

4.8 相対変位の分解(並進と剛体回転)(Linear motion and rigid rotation)  .................................82

練習問題  ...............................................................................................................................................84

5.構成方程式 , 固体弾・塑性の基礎 (Plasticity and elasticity on metal)  ...........................87

5.1 固体の機械的性質  ........................................................................................................................87

5.2 1次元材料引張試験  ................................................................................................................... 87

5.3 金属の結晶と塑性変形 (結晶のすべりによる変形)  ............................................................... 90

5.4 真応力と対数ひずみの構成近似モデル  .................................................................................... 93

5.5 弾性変形における実用弾性率  .....................................................................................................95

練習問題  ...............................................................................................................................................96

6.固体・流体の構成方程式 (Constitutive equations on solid and fl uid)  .................................99

6.1 流体および固体の力学的特性の記述  .........................................................................................99

6.2 完全流体 (perfect fl uid)  ...............................................................................................................99

 6.2.1 理想気体 (ideal gas)  ..............................................................................................................99

 6.2.2 非圧縮性流体 (Incompressible fl uid)  ..................................................................................100

6.3 Newton 流体(Newtonian fl uid)  ................................................................................................100

6.4 Stokes 流体(Stokes fl uid)  .........................................................................................................100

- V -

目  次PrefaceContents

Page 8: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

6.5 現実挙動の流体の状態方程式  ...................................................................................................101

6.6 Hooke 弾性固体(Hookean elastic solid)  ..................................................................................102

 6.6.1 等方性弾性体 (Isotropic elasticity)  .....................................................................................103

 6.6.2 体積弾性係数K  .....................................................................................................................104

  例題 6.1  ......................................................................................................................................105

 6.6.3 ポアソン比  ............................................................................................................................106

 6.6.4 横弾性係数  ............................................................................................................................107

 6.6.5 温度効果(Effect of temperature)  .......................................................................................108

6.7 線形粘弾性体(Linear viscoelastic bodies)  ...............................................................................108

 6.7.1 Maxwell 模型  ........................................................................................................................109

 6.7.2 Voigt 模型  ..............................................................................................................................110

 6.7.3 Maxwell 模型のクリープ関数(creep function)  .............................................................. 111

 6.7.4 Maxwell 模型の緩和関数 (relaxation function)  .................................................................111

練習問題  ............................................................................................................................................ 112

7.保存則と場の方程式 (Field equation and laws of conservation)

7.1 各種保存法則の復習  .................................................................................................................. 112

 7.1.1 エネルギー保存則  ................................................................................................................113

  (a) 現実世界の事象と変形過程の重要な性質  ......................................................................113

  (b) 熱の性質  ..............................................................................................................................114

 7.1.2 物体の運動の性質  ................................................................................................................114

 7.1.3 線形(並進) 運動量保存則  .................................................................................................115

 7.1.4 角運動量保存則  ................................................................................................................... 116

7.2 連続体力学から見たエネルギー保存則 (Balance of energy) .................................................117

7.3 Gauss の定理  ................................................................................................................................119

 7.3.1 関数の定積分の公式  ............................................................................................................119

 7.3.2 経路に沿った線積分による誘導  ........................................................................................120

 7.3.3 Gauss 定理の応用  ................................................................................................................ 123

  (a) 物理量 A が速度(uj) の場合 ............................................................................................123

  (b) 物理量 A がポテンシャル関数Ψの場合  ........................................................................ 124

  (c) 物理量 A が速度(uj) の場合(再び)  ............................................................................. 124

  (d) 物理量 A が 2 階テンソル Cij である場合  ...................................................................... 125

- VI -

連続体力学の基礎

Page 9: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

7.4 物質導関数 (Material derivative)  .............................................................................................. 125

7.5 体積積分の物質導関数 (Material derivative of volume integral)  ............................................129

7.6 補足 , Leibniz の積分公式 (Essential rules of Leibniz integration)  ..........................................131

7.7 連続と運動の方程式 (Equations of continuity and motion )  ....................................................132

 7.7.1 質量保存則と連続の方程式  ................................................................................................133

 7.7.2 運動量保存則と運動方程式  ................................................................................................133

7.8 エネルギー保存則の展開 (Description of energy balance) ......................................................135

練習問題  .............................................................................................................................................139

8.固体の弾性理論と応力関数 (Theory of elasticity and stress function)  .............................141

8.1 変位場解法の序  ..........................................................................................................................141

8.2 平面応力状態 (Plain stress state)  ..............................................................................................144

8.3 平面ひずみ状態 (Plain strain state)  ..........................................................................................145

8.4 Airy の応力関数 (Airy stress function)  .....................................................................................146

 例題 8.1 調和関数φと重調和関数Φの関係  .............................................................................150

 例題 8.2 応力関数Φから変位場の解析  .....................................................................................151

 例題 8.3 応力場と平衡方程式の関係  .........................................................................................154

 例題 8.4 3 次元丸棒の変形  ..........................................................................................................157

 例題 8.5 応力場から適合条件の照合  .........................................................................................160

8.5 サンブナンの原理 (Principle of Saint-Venant)  ........................................................................161

練習問題  .............................................................................................................................................163

9.流体の場の方程式と境界条件 (Field equation of fl uid and boundary condition)

9.1 Navier-Stokes 方程式  ..................................................................................................................165

9.2 境界条件について  ......................................................................................................................166

9.3 Reynolds 数と相似則  .................................................................................................................169

練習問題 (1),(2)  ...........................................................................................................................170

9.4 水平な水路あるいは管内の流れ  ...............................................................................................171

 例題 9.1  ...........................................................................................................................................172

 例題 9.2  ...........................................................................................................................................177

 例題 9.3  ...........................................................................................................................................178

練習問題 (3), (4)  ............................................................................................................................179

- VII -

目  次PrefaceContents

Page 10: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

9.5 完全流体  .......................................................................................................................................179

9.6 渦度と循環  ...................................................................................................................................181

9.7 渦無し流れ  ...................................................................................................................................183

 例題 9.4  ...........................................................................................................................................184

練習問題(5),(6),(7).......................................................................................................................186

- VIII -

連続体力学の基礎

Page 11: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

1.

1. 1

. ( , ), ( ,

), ( , ) ,

. ,

( ) .

, , 2

. , . ,

, .

, (velocity) .

, ,

(displacement) .

, 17 19 .

, . (17 , ), (18 ,

, , , ; 19 , , ),

(19 , ), (19

, ).

.

. (1653 , ), (1687, ),

( , ),

(1826, ), (1847, ).

1

Page 12: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

1. 2

2 .

(1) ,

.

(2) ,

, .

(1) , , .

, (2) ,

,

. (1) (2) ,

,

, (2) . (

) , . ,

, .

. ,

,

.

1. 3

, .

2

Page 13: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

, .

, .

, , , . , (

) (material body, object, body)

. , , .

.

.

, ( ) ,

,

. ,

. ,

, .

, ,

.

,

.

, .

. , (

) , ,

. ,

.

, .

, ,

, (rigid body)

.

. ,

, .

, .

(material) (atom)(material body, body)

3

Page 14: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

, .

, .

, ,

.

1. 4

a, b a <b [a, b]

( [a, b])

(continuum body)

, [1, 2] 1. 5

. ,

, .

1. 5 1. 5 .

[1, 2] [1. 5, 1. 512345]

[1. 500000000000001, 1. 512000000000000009] . . . . . .

3

, ( ) , 3 (x, y, z) .

, (

) . ( )

[ ] .

.

.

1. 5

,

4

Page 15: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

P (x, y, z) dV= dxdydz , dx, dy, dz

. ( ) , 3 dxdy,

dydz, dzdx 1 dV , ,

.

(mass density)

j=0 4

j ,

Vj Mj

1.

V0V1

V2V4dV4

V3

x

y P

5

Page 16: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

j 0, 1, 2, 3, 4

2 2 dV

dV . j=0, 1 ,

,

= (M0+M1)/(V0+V1) (1.1)

. j=0 ,

= M0/V0 (1.2)

. j=0, 1 ,

.

, ( )

. ,

.

j P (x, y, z) j (x, y, z) , (1.

3) dMj dVj dMj/dVj . 1

j=4 . (x, y, z) , Vj P

dMj dVj , dVj

( ). ,

.

P :

j

j

0d dd

limP,,j V

Mzyx

V(1. 3)

j j . dVj

(index)

,

6

Page 17: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

, (1. 3)

. ( ) Q , j

.

P (x, y, z) , , (P) ,

.

.

1. 6

,

. dV

, P(x. y, z) .

dV , ,

. , ,

.

.

, 1

= 5×10-6 cm

, .

1. 7 ( )

.

, (linear momentum) , (angular

momentum), (energy) .

.

P(x, y, z) . dV=dxdydz ,

7

Page 18: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

v=(vx, vy, vz) 3*,

dp =(dpx, dpy, dpz) O dh =(dhx, dhy, dhz) (1. 4), (1. 5) 4*. OP=r= (x, y, z) O

P (position vector) . (1. 5)

, (outer product) . ,

.

Vdd vp (1. 4)

Vdd vrh (1. 5)

(1. 4) , P v (1. 6)

.

dVd

VVMomentumzyx

VV

pv0d0d

limd

dinlim,, (1. 6)

(1. 4) dV , v .

. ,

, .

,

dV , dp , dV

. dV +0 ,

.

dV

. ,

.

v 3 3(bold) v

v dV

8

3

4

Page 19: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

1. 8

, t (1 ) 3 r=(x, y, z) (3

) r

x 4

(r, t) .

, .

u(r, t), v(r, t), (r, t), p(r, t), T(r, t)

, (vector quantity) (bold) ,

, , (scalar quantity) .

, u ( )

.

(index)5* ,

.

: r = (x, y, z) = (x1, x2, x3) = (xk) = xk , ( k=1, 2, 3)

: u = (u1, u2, u3) = (uk) = uk, ( k=1, 2, 3) (1.7)

: v = (v1, v2, v3) = (vk) = vk, ( k=1, 2, 3)

k , (free index)

, u

. k, j .

: uk (xj, t) ( k=1, 2, 3, j=1, 2, 3) (1.8)

, .

, .

: u = [ u1 (x1, x2, x3, t), u2 (x1, x2, x3, t),

u3 (x1, x2, x3, t) ] (1.9)

0,1,2,3,…

9

5

Page 20: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

, .

, ,

. ,

, . 6*.

1. 9

1.1 ,

. , .

, (solid) (fluid) .

, (displacement) .

(strain) .

, (velocity) . ,

(rate of strain) . ,

.

, , . ,

.

1 1 , 0

.

: , : =f( ) (1.10)

: .

: =E (E: ) (1.11)

.

( , ductile material), (plastics), (clay soils)

.

.

(component)(base vector)

10

6

Page 21: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

( , ) ( )

.

. d /dt ( =

d /dt , : ) .

(glacier), , (glue, adhesives),

(Mayonnaise) . ( ) (

)

(Rheology) 7*.

( )

(normal strain) , ( )

(shear strain) 2 ( ,

)

( )

N/m2 = Pa N/mm2 = MPa .

(normal stress) ,

(shear stress) .

(force, structural load) (1 )

(elasticity)

(viscosity)

3

11

7

Page 22: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

1. 10

,

. ,

.

(dynamics of multiple material points):

. ( ) ,

,

( ) , ,

.

(free body): ( ) .

(free body diagram) .

.

.

. 1.2(a) , m, ,

, ( )

1.2(b) ,

W=mg F, P

, . 3 W, F, P 0

1.2

mW=mg

FP

(a) (b)

F

PW

12

Page 23: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

,

(constitutive equation):

. , .

: Hooke’s law ( =C C ) .

, d dt t

.

(equilibrium equation): .

,

. . ,

, , ,

, . , (

) .

.

( ) 0 D’Alembert (Lagrange-d’Alembert principle):

( ) –dp/dt

.

, –dp/dt .

. p: , t:

(moment of force): . (torque)

. , × ,

. ,

r F r F .

: Newton . ,

.

13

Page 24: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

: Newton . ,

.

( ) .

: Newton 3 . ,

.

,

. , ,

.

1.11

( )

K

0 I

, ( ) )(eIF , J I ( )

IJF (1.12)

KIK

JIJ

eI ,,2,10

1

)( FF (1.12)

I 0

(1.12) I=1,2,3,…, K (1.13), (1.14)

1.3 I, J

P(x,y,z)

QI

rI

rJQJ

rJ rIFIJFJI

,

,

,

14

Page 25: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

01 11

)(K

I

K

JIJ

K

I

eI FF (1.13)

01

)(K

I

eIF (1.14)

JIIJ FF(1.14)

3 , P

I QI IPQ Ir (1.12)

Ir ( ) 0 ( ) Ir

Ir ( )

(1.15)

0

,,2,10

1

)(

1

)(

K

JIJI

eII

K

JIJ

eII KI

FrFr

FFr

(1.15)

I =1,2,3…K (1.15) (1.16) .

01 11

)(K

I

K

JIJI

K

I

eII FrFr (1.16)

2 JIIJ FF I=J

0FIJ

JI rr IJF ( )

2

0Frr IJJI (1.17)

I, J =1,2,3...K

01 11 1

K

I

K

JIJJ

K

I

K

JIJI FrFr

15

Page 26: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

JIIJ FF

01 1

K

I

K

JIJI Fr (1.18)

(1.18) (1.16) (1.19)

01

)(K

I

eII Fr (1.19)

I Ir

, F D

2 , (Couple)

FD

(1) 1.4 O

. , F =(-5N, 10N, 2N) P

0.6 cos 45 m,0.6sin 45 m, 0.75m

(2)

(3)

1.4 1.5 F

x

y

z

0.1m

0.4m

PF1m

4

O LL-aa

Fx

F

R1 R2

S

-S-M

M

,

,

16

Page 27: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(4) ( )

(5) 1.5 a F L

x

, S

M ,

x S

M F a, L

R1, R2

(6) , 1.5

1) f(x, t) .

,

. ,

t x

(x0, t0)

: ft

x0 , t0

limt 0

f x0 , t0 t f x0 , t0

t (1.18)

ft

x,t limt 0

f x,t t f x,tt

(1.19)

,

,

17

Page 28: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

n ft n x,t lim

t 0

1t

n 1 f x,t tt n 1

n 1 f x,tt n 1 (1.20)

2 ft x

x,t limt 0

1t

f x, t tx

f x,tx

limx 0

1x

f x x,tt

f x, tt

2 fx t

(1.21)

2)

3 .

1, 2, 3

)3,2,1(,,,, 321 kxxxxxzyx kkxr (1.22)

A 1, 2, 3

)3,2,1(,,,, 321 kAAAAAAAA kkzyxA (1.23)

A, B (inner product, scalar product) A, B

iii

iik

kk BABABABBB

AAA3

1

3

13

2

1

321BA

(1.24)

, 1 2

, . (1.24)

i, k (dummy index) , i, k

. ,

18

Page 29: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(summation convention) . .

3)

, alpha , beta , gamma

, delta , epsilon , eta , phi ,

psi , xi zeta lambda mu

nu pi theta , rho sigma

omega , a, b, g, d, e, h, f, y, x, z, l, m, n, p, q, r, s, w

. , .

,

A, B, G, D, E, H, F, Y, X, Z, L, M, N, P, Q, R, S, W .

,

.

http://e-words. jp/p/r-greek. html

, d, D, . x,t y=f(x,t)

df Df f (differential), (total differential)

. (increment) dx

Dx x x . ,

.

x,t f ,

.

x f x [ x f

] , df/dx . f

x1, x2, x3, … , xk (k=1, 2, 3, …)

, df/dxk (k=1, 2, 3, …) , kxf / .

. xk

df .

19

Page 30: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

, , ,

. , df, Df, f f .

( ) .

4)

, x1, x2, x3, … , x

. xk (k=1, 2, 3…)

. k , (free

index) .

1 10 k ,

, (dummy index) . ,

. (1.24) k, i

102110

1.... xxxx

k k (1.25)

,

. , (stress)

. .

, ,

.

, ( ) . x 2 k, j

,

xkj (1.26)

. k j ,

, .

k , j X (1.26)

20

Page 31: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(7) , .

(8) x,y,z P(0,0,0) 10kg F (1N, -2N,

2N)

(9)

yxxeye

xyx

yx cossin)ii(

)sin()i(

2

: (i) x+y=z . (ii) y x

(10) f(x,y) df P (x,y)

f x, y yfxf /,/ Q(x+dx, y+dy)

df (11) z= f(x,y) x,y u,v

)()(

)()(

yz

xz

uz

)()(

)()(

yz

xz

vz

(12) z =f(x,y) z=f(y/x)

yzy

xzx

(13) z=f(x,y) x= r cos( ), y= r sin( )

/,/ zrz

22

yz

xz

(14) A, B, C 332211 eeeA aaa , 332211 eeeB bbb ,

21

Page 32: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

332211 eeeC ccc BAC

(15) A i k a ik

(index, subscript)

15.1 3 (matrix) B b12, b31, b33

982153764

B

15.2 b11+b22+b33 3

1i

i

ikikb .

15.3 3

12

kkb

(16) A, B , .

zyx

ihgfedcba

BA :3,:3

16.1 A B AB 16.2

amn : A m n , bh : B h

3

1kkikba

16.3 A, B BT, AT BTAT

(17) A A-1

213301421

A

22

Page 33: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

2.

÷

3

2 2

1 (vector) 0 (scalar)

0,1,2 , 3,4,5

. n

. , 2

4

23

Page 34: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

÷ 3

,

24

Page 35: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

2.1

(magnitude) (direction), (sense)

) , ( ) , , ,

(magnitude)

) ,

2.1.1

O P(x1,x2 ,x3) .

(2.1) ek (k=1,2,3)

, 1**

jjj

j jj

xx

xxxx

er

eeeerOP 3

1332211 (2.1)

2 ,

1** ( ) 1

2.1 OP P a(P)

O

P (x1, x2, x3)

x1 (x)x2 (y)

x3 (z)

r

x1

x2

x3

OP (x1, x2, x3)

x1 (x)x2 (y)

x3 (z)

r

x1

x2

x3

RQ

a(P)

a(R)a(Q)

,

,

,

,

,

25

1

Page 36: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

O . , O (bound vector) .

, .

P , . P . Q, R

, ( ) . (vector

field) .

jjj aa ea . (free

vector) . , .

, P a

.

2.1.2

2 a, b , , , a=b

. a, b a=b

. 2 a, b

, . ,

, 2, .

2.2

A

B

FFM

L

L/2

G

,

,

,

,

,

26

,

Page 37: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

,

2.2 2L A F , G

M = F L/2 (2.2)

G F , .

a Fa , Fa

b , b

Fa Fb . ,

Fa Fb . , .

, .

2.1.3

. P

.

: P , ( ) .

, , P

. , .

, ,

. , .

,

,

,

,

,

,

,

,

27

Page 38: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

. ,

. ,

.

( ),

, .

, , . ,

. , . ,

2.3

2.4

,

,

,

,

28

Page 39: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

r O

.

2.1.4

(1) (inner product) 2 a, b (2.3) .

cos|||| baba (2.3)

a b b a ( )

.

2.1

a=1e1 + 0e2= e1 , a b = b1e1 + b2e2

(2.4) .

, 2.5 ,

cos e1

b e1 x1

e1 b = b1 = |b |cos (2.4)

, , .

2.2

a b = a1b1+ a2b2+a3b3 (2.5)

.

a= a i e i , b= bk ek .

i ,k . ,

2.5 a b

ab

,

29

Page 40: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

,

,

2** ,

, (2.6) .

a b = a i e i bk ek = a i bk e i ek (2.6)

, i=k

e i ek= 12 cos0 = 1 (2.7)

. i k

e i ek= 12 cos90 = 0 (2.8)

. (2.7), (2.8) ,

ik , (2.9)

e i ek= ik (2.9)

a b = a i bk i k = ak bk

a b = a1 b1+ a2 b2+ a3 b3 .

2.3

. .

F ( ) dx

WAB: xA xB , (2.10)

.

2**

c

30

2

2

c

Page 41: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

c

xB

xA

xB

xAAB dxFdxFdxFdW 332211xF (2.10)

(2) (outer product)

2 a, b ,

(2.11) c . a, b

.

|c | = |a | |b | sin (2.11)

|c| ,

. ,

(2.12)

.

122131331223321

21

213

31

312

32

321

321

321

321

bababababababbaa

bbaa

bbaa

bbbaaa

eee

eee

eeeba

(2.12)

2.4 .

m r,

v (i) ( , ) M:

2.6 a, b

b

a

c=a b

|a| sina

bS = |a| |b| sin

c

31

Page 42: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

,

,

,

M = r × F ( ) (2.13)

(ii) L: L= r × (mv) ( ) (2.14)

( , )

,

(iii) ( ) : v = × r ( ) (2.15)

(3)

O-x1x2x3 x1 , x2 , x3

ek (k=1,2,3) , ( ) . , 3 .

e i × e j (= ek ) (2.16)

i,j 1,2,3

i j , |e i | = |e j | =1, sin =sin90°=1 |ek |=1 . 3

, i j 3

, k . , i, j , k 33** ,

. i=j , sin = sin0 = 0 e i × e j= 0 (

0 ). , , e i × e j = e j × e i

.

1(permulation symbol) i jk

( ) , 3 (i,j,k) ,

3** 3 1, 2, 3 , (1, 2, 3)

.

32

3

Page 43: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共
Page 44: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

2 5

x3 (counter-clockwise)

2.7 , 321O xxx x3

321O xxx . x3 (2.23),

(2.24)

3333 , eexx (2.23)

p13=p23=0, p33=1 (2.24)

),( 21 ee ),( 21 ee

.

e1 ),( 21 ee,

.

211 eee

e1 1e

cos

cos01121111 eeeeee

e1 2e cos(90°+ )

sin)2/cos()2/cos(

)2/cos(10222121 eeeeee

.

2.7

x2

e1

e2

x1O

34

Page 45: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

211 )sin(cos eee (2.25)

p11= cos , p21= sin , p31=0 (2.26)

e2 .

, .

212 cossin eee (2.27)

p12= sin , p22= cos , p32=0 (2.28)

, (2.22) p i j , (2.29)

1000cossin0sincos

321321 eeeeee (2.29)

(5)

(2.29) , P

.

,

.

, kjkj pee ,

k .

. (2 .30) (2.29)

3

2

1

3

2

1

1000cossin0sincos

eee

eee

(2.30)

(6)

v (entity)

,

,

35

Page 46: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

,

,

ek vk

(2.31)

kkjj vv eev (2.31)

(2.21): kjkj pee ,

.

kkkjkj vpv eev kkjj vpv (2.32)

(2.33)

3

2

1

3

2

1

1000cossin0sincos

vvv

vvv

(2.33)

(2.33) , P , . ,

. P , P

tP

. .

2.1.5

, O

P .

, (a)

, (b)

. ,

(b) ,

36

Page 47: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(a)

,

. P .

P 1

,

. 1 ,

.

. ,

.

, (Bold)

, .

, .

,

. , ,

,

.

(1) (E.2.1) .

,

.

62

ijkijk

illjkijk

jlimjmillmkijk

(E.2.1)

(2) a=(1, 2, 3), b=(0, -1, 1) , .

(i) a×b (ii) a b

,

37

Page 48: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

E2.1

,

(iii) 3a 2b (3) .

30° , 9.

8N 3m .

(4) 980 N .

. (5) P=[p i j ] tP P

(6) e1, e2 2 O-x1x2

30° 21 xxO

21 xxO 21 , ee e1, e2

(7) 2 321O xxx 321O xxx a, kkjj aa eea (j,k:1,2,3)

, ka ja , (E.2.2) 4**.

kjjkjjk apaa ee (E.2.2)

(8) 1,1,0a , 1,,2 xxr , a rx

(9) e1, e2, e3 . u

= e1 2e2+3e3 u

.

(10) E2.1 O-x1x2

O 60

O-x '1x '2

BAA , B OB=(2,1), OA=(0.5, 2) [

4** P pk j , k j .

O

B

A

x1

x2

x’2

x’1

=60E.2.1

38

4

4

Page 49: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

2.2

2.2.1

2 a, b a b

. 2 1 . 2 a=akek ,

b= b je j (k,j:1,2,3 ) ab

a b =(akek) (b je j)= akb j eke j (2.34)

= a1b1 e1e1+ a1b2 e1e2+a1b3 e1e3

+a2b1 e2e1+ a2b2 e2e2+a2b3 e2e3

+a3b1 e3e1+ a3b2 e3e2+a3b3 e3e3

(a1e1, a1e2…)

332313

322212

312111

321

3

2

1

bababababababababa

bbbaaa

ab (2.35)

2 eke j (k,j: 1,2,3 )

, (k j )

.

( ) eke j ,

k,j

k=j , eke j = 0.

k j, k,j : eke j = e jek

39

Page 50: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共
Page 51: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

2 , (2.16)

(2.34)

a b = a1b2 e1e2+a1b3 e1e3+a2b1 e2e1+ a2b3 e2e3

+a3b1 e3e1+ a3b2 e3e2

= (a1b2 a2b1)e1e2+(a2b3 a3b2)e2e3+(a3b1 a1b3)e3e1 (2.36)

(2.36) ,

e1e2 e3, e2e3 e1, e3e1 e2

. (2.16) ( )

“ “ ,

e1 e2 = e3, e2 e3 = e1, e3 e1 = e2

.

k,j

k=j , eke j = 1. ek e j = 1

k j , eke j = . ek e j = 0

ab = a1b1 +a2b2 + a3b3 (2.37)

(2.34) (2.35)

2.2.2 (dyadic, tensor product) (diad)

2 a=akek ,b=b je j (k,j:1,2,3 )

40

Page 52: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(dyadic) a b b a 5**.

332313

322212

312111

)(bababababababababa

ba jkba

(2.38)

332313

322212

312111

)(ababababababababab

ab jkab (2.39)

a b b a ,

(2.38),(2.39) ,

,

333323231313

323222221212

313121211111

33221133

3322112233221111

332211332211

332211332211

)()()(

)()(,

eeeeeeeeeeee

eeeeeeeeee

eeeeeeeeeeeeeeba

eeebeeea

babababababa

babababbba

bbbabbbabbbaaa

bbbaaa

(2.40)

.

( ) ,

mkmkmmkk baba eeeeba )()( (2.41)

k,m = 1,2,3

ak bm

(diad) ek em 5** , a, b ab

41

5

5

Page 53: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

6**

a=akek (k=1,2,3 : ) ,

2 ( ) ek em

(diadic) (diad)

(diad) ( )

( )

(i) a ei e j (i,j=1,2,3: )

aaa jijiji eeeeee (2.42)

(ii) a, b, c,

d, f (i,j,k=1,2,3: )

, .

jkijii

jkiijkijii

fcbdafdcbaeeeeee

eeeeeeeeee)()(

(2.43)

(iii) (diad) z

(i,j,k=1,2,3: )

kjjikjji

kjjikjji

babababa

eezeezeeeezzeezeezeeee

)()()(

)()()( (2.44)1 ,2

kjjikjji

kjjikjji

babababa

eezeezeeeezzeezeezeeee

)()()(

)()()(

(2.45) 1 ,2

(2.44),(2.45) 6** 2

( ) , 2 (x,y) (ax+bx , y)=a (x,y)+b (x,y), (x,ay+by)=a (x,y)+b (x,y)

42

6

6

Page 54: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(dyadic) (diad)

2.2.3

(dyadic) a b (diad) e i e j , 2

1

a b e i e j

. 2 a,b

2 (tensor of the second rank)

2 (the

second rank) 2 a,b

, n (=0,1,2,3,4…)

n n=1

, 1

(diadic) a b , 2 ( ).

(diad) e i e j , 2 e i , e j .

(diadic) a b z

(dyadic) a b z (dyadic)

a b = a ib j e i e j (2 )

T = T i j e i e j … e i e j : T i j (2.46)

T : 2 , T i j : 2

2.2.3

(diadic) a b

( )

43

Page 55: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

2.8

(

) 3

3

F

F

, (F1, F2,

F3)

3 A3

1 1 2 2

3 3 3

3

333

3

232

3

131 ,,

AF

AF

AF

(2.47)

(2.47) (2.48)

3

333

3

232

3

131 ,,

AF

AF

AF

(2.48)

k Ak j

F j : k j

: kk Aa /)( b j=F j .

k

jj

kjk A

FF

Aba )(

(2.49)

(2.49) ( )

2.8 3

x3

x1

x2

A3

A1

A2

x1: 1

x3: 3

x2: 2

F

F1

F3

F2

44

2.8

Page 56: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

2.82.8

. (2.49) , ak b j

(dyadic) 7**

,

,

(dyadic) ,

. 2

2

3 4

(2.44)

(2.45)

,

2.2.4

2.1 2

T

2 321 xxxO 321 xxxO

),,( 321 eee , ),,( 321 eee 2 T

kjkj TT , (k,j=1,2,3: )

jkkjjkkj TT eeeeT (k,j=1,2,3: ) (2.50)

7** akb j= kj AF / b jak= kj AF /)(

45

7

7

Page 57: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

kjkj TT , , (2.44)

jkkjjkkj TT eTeeTe , (2.51)

2 :

jkjk p ee

(2.52)

):,;:,(

)()(

jkmwwmjmkw

mwjmkw

mjmwkwjkkj

Tpppp

ppTeTe

eTeeTe

(2.52)

2

(2.52) 2

2 P 1

, tP 1 , 2

(2.52) , (2.53)

332313

322212

312111

333231

232221

131211

333231

232221

131211

333231

232221

131211

ppppppppp

TTTTTTTTT

ppppppppp

TTTTTTTTT

(2.53)

(1 ) 1 (magnitude) 1

(direction) (sense) , 2 , 1

2

2

n n

46

Page 58: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

n P

2.2.5

A t

A

A (t)= Ak(t) ek = ( Ak(t) ) (2.54)

t

t Ak(t) t

dAk/dt Ak

dA (t)/dt = dAk(t)/dt ek = ( dAk(t)/dt ) (2.55)

A t

dttAdtt kk )()( eA (2.56)

a(t) , b(t) t da/dt , db/dt

(2.57)

: a+b , a b ,

c a : ca

: a b

: a b

(2.57)

47

Page 59: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

dtdbab

dtda

dtbad

dtd

dtd

dtd

dtdbab

dtda

dtbad

dtd

dtd

dtd

dtdaca

dtdc

dtcad

dtdc

dtdc

dtcd

dtdb

dtda

dtbad

dtd

dtd

dtd

kjijkk

jijk

kjijk

kkk

kkk

kk

k

kkkk

)()(

)()(

)()(

)()(

bababa

bababa

aaa

baba

(2.57)1 ,2 ,3 ,4

(11) (2.44) (2.51)

(12)

ek(t) v vk

dv/dt

(13) i jk

2 jk 2jk =

(14) =(1,0,0), = (0, 1,0) , =(( 1, 0,2),

(1,2,3), (0, 2, 1)) t .

120321201

120321201

.

(15) ek (k=1,2,3) a= e1,

b= -e2 2 T= e1 e1 +2e1 e3 +e2 e1 +2e2 e2

+3e2 e3 2e3 e2 +e3 e3 T a b T .

48

Page 60: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(16) 2,1,1,,,1,1,2, 22 cba yyxx

(i) ba (ii) bac cba

(17) .

1~3 .

jm

k

k

jjjk

k

ii z

tx

tx

xadXXxdx (c)(b)(a) 3

(18)

a)

3332231133

3322221122

3312211111

,,

nnntnnntnnnt

b) 333332323131232322222121131312121111 bababababababababa

c) x1y1+ x2y2+ x3y3

d)

3

1

3

1

3

1i j kkjiijk xxxc

e)

2

1kkk xau

f) 2221212

2121111

xaxayxaxay

(19) (mechanical work) , F

( ) dr

rF d . F , ek (k=1,2,3: )

. F= 3312

22121 )()( eee xxxxx

49

Page 61: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共
Page 62: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

E.2

3. (Stress)

1 1.2

(1) , 2 2

,

[ ] 2

(1) ( )

. , ( , )

(2) ( , )

. : = ÷

(2) , ,( ) .

, 1.11

( ) ,

3.1 (stress vector)

3.11*** P(x1 ,x2 ,x3)

S ( : ) f

,

1*** (bold)

E.2

51

1

1

Page 63: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

| S|= S S

+0

P(x1,x2 ,x3)

kk

S

t

dSd

S

e

t

ff0

lim

(3.1)

(3.1) t , f = f j e j

(e j) S = S f S

2 (2.48)

, S

3 3

.

3.2

,

P

, 3.2

dA3 ( x3 3=(0,0,1) , dA3=

dx1dx2 ) d f 3 3dA3 3= 3k ek

(k= 1,2, 3: )

3332313

3

3.1 S f

S= S

Sf

P

3.2 dA3

d f 3= 3dA3

3331 32

dx1

dx2

32 dx1dx2

33 dx1dx2

df3

31dx1dx2

T

T

52

tT

T

Page 64: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

tT

T

t

321332213212131

21333232131

213333

eee

eee

f

dxdxdxdxdxdx

dxdx

dxdxdAd

(3.2)

3 dA1, dA2, dA3 3

d f 1, d f 2, d f 3

i = i j e j (i: , j: ) (3.3)

i j i j 3

i (i=1,2,3) T

333231

232221

131211

333231

232221

131211

3

2

1

T (3.4)

, (dyadic)

(3.5) 2***

T = k k= e k kj e j = kj e k e j (k,j: ) (3.5)

P

3.3

k=1,2,3 k

k = e k k

(dyadic) , k j kj

2*** 3

ek e j

53

Page 65: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(3.5) . T P

T ( )

2 : (dyadic)

2 T . T

(3.4), (3.5) 2

: (2.52)

, , 2

3.5

,

3.3 ( )

Stress component

x1 x2 x3x1 11 12 13

x2 21 22 23

x3 31 32 33x1

x2x3 Symbol of

each component

• Stress [ ij] , 2nd rank tensor• 11, 22, 33 ( ii): normal stress• 13 ( ij): shear stress

11

22

33

31

32

21

23

12

13

EX. 1-plane, 2-component 12

)( ji

54

Page 66: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

1

, (

) (3 2 = 6 )

3 1

. ( ) ,

,

,

. ( )

, 3.3

3.3

3.3

(normal stress)

(shear stress) . 3.1 S t

3.4

,

3.4 ,

ABCD

( 3

3.4

dx2 dx1

dx1 21

dx1 21

dx2 12 dx2 12

B C

A D

55

Page 67: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

) ( ) ,

, 2

.

ABCD

AB, CD : dx2 12 , .

AD, CB : dx1 21 , .

AB-CD 2 , dx1 : dx1 (dx2 12) . , AD-CB 2 , dx2 : dx2 (dx1 21)

. , 2

0 .

dx2 (dx1 21) dx1 (dx2 12) = 0 (3.6)

12= 21 1 , 2

, 13= 31, 32= 23 , (3.7)

i j= j i (i,j=1,2,3: ) (3.7)

3.5

3.5

( ) P( )

. ,

, ,

. 3.5

SP

SftS

S

S

56

Page 68: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

0 S

(1.13)

( ) = 0 (3.8)

2 3***3

3.6 ( ) 2 OAB

( ) OAB ( ) AB

( )AO ( )BO

, ( :1).

AB

= ( 1, 2) = (cos , sin ) (3.9)

( : , : )

AB: t = (t1, t2) (3.10)

3*** 3 33, 31, 32 0

(plane stress)

3.6 OAB

x1

x2

12

A

BO

t

11

1 2221

2

t1

t2

57

Page 69: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

. AO+BO:

1= (- 11, - 12), 2= (- 1, - 22) (3.11)

.

AO, BO . , + 1, 2

( )

x1 :

AB: t1dS, AO: - 11dS1, BO: - 21dS2 … 0

12

211

111221111 tdSdS

dSdSdStdSdS (3.12)

x2 : AB: t2dS, AO: - 12dS1, BO: - 22dS2 … 0 .

22

221

122222112 tdSdS

dSdSdStdSdS (3.13)

(3.14)

AB: dS , AO: dS1=dS cos , BO: dS2=dS sin

.

dSdSdSdS

dtt

2

1

2

1

2

1

2212

2111

sincos

,sincos

S (3.14)

, k j AB t j

, (3.9) ,

(3.14) , (3.15), (3.16) .

58

Page 70: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

, , (3.17) .

Cauchy

2

1

2212

2111

2

1

tt

(3.15)

(3.15) , (3.16) .

2221

12112121 tt (3.16)

kkjjt (k=1,2: , j=1,2: ) (3.17)

, (3.18) .

Tt (3.18)

T 2 (3.5) ,

k j= jk (3.15),(3.16)

3.1

AB t AB ( x 1 )

( x 2 ) ,

3.2

,

3.7

t O-x1x2

2

1

12

11

cossinsincos

tt

x1

x2

11

2221

12A

BO

t

t1

t211

x1

x2

12

59

Page 71: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

, AB 2 ,

x 1 AB 11, 12 . 3.7 t , 2 O-x1x2 O- 21xx

2121 , eeee ,

12

1121

2

121 eeeet

tt

(3.19)

(2.29) 2

.

kjkj pee

eeee ,cossinsincos

2121

t (3.19)

jkjk tptt

12

1

12

11 ,cossinsincos

(3.20)

Cauchy (3.15)

sincos

cossinsincos

2212

2111

12

11 (3.21)

x 2 21, 22

x 2 Cauchy

+ /2 2

O-x1x2 O- 21xx 2121 , eeee

60

Page 72: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

)

2sin(

)2

cos(

cossinsincos

2212

2111

22

21 (3.22)

cos)2

sin(,sin)2

cos(

cossinsincos

cossinsincos

2212

2111

2212

2111 (3.23)

O-x1x2 O- 21xx

P 2

(2.53) .

2

2

, 2,

.

cossinsincos

cossinsincos

2221

1211

2221

1211 (3.24)

[ ]

2

2 (3.23) ,

.

(3.23) , ,

( ) 2.

61

Page 73: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

2 ( )

Cauchy

3.7 ABO AB t

tk

, 11, 12

, t tk 2 1k

2 ,

3

, 3.8

( ) PABC

O-x1x2xO x1x2

O x1x2x1

cossinsincos

cossinsincos

2212

2111

2212

2111

sincos

cossinsincos

2212

2111

12

11

x2

O-x1x2x

Cauchy

3.8

Ax1

x2

x3

C

BP

t1

3

2

62

t

Page 74: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

t

t

. 2 dS: ABC

dS1: PBC, dS2:

PCA, dS3: PAB , PABC

, , .

t dS = 1dS1 + 2dS2 + 3dS3 (3.25)

dSk dS .

dSk = kdS (k=1,2,3: ) (3.26)

k , dS:ABC

(3.4) T (3.27),(3.28)

.

t = 1 1 + 2 2 + 3 3 = T3

2

1

321 (3.27)

,

kkjkjkjt (j=1,2,3: , k=1,2,3: ) (3.28)

, (3.17) Cauchy , 3

3.2

O O-x1x2x3 x3 O- 321 xxx 2 (3.24)

O- 321 xxx O-x1x2x3

cos c, sin s

63

Page 75: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

3 , x3= x 3, e3= e 3 . (3.24) 3

3 (3.29)

: 12= 21, 13= 31, 23= 32

3332313231

2322212221

1312111211

333231

232221

131211

333231

232221

131211

10000

10000

10000

cssccssccssc

cssc

cssc

cssc

(3.29)

,

3333

23323132

13323131

231323

122

222

112221121122

122221121121

231313

221211222221121112

122

222

112221121111

2

2

cs

sc

cs

sccscsccss

sccscs

sc

sccscsscsc

scscscsscc

(3.30)1-9

(3.30) 33= 31= 32=0 . 0313233 .

(3.24)

, (3.31)

. (3.31) , Mohr

64

Page 76: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

2cos2sin2

,2sin2cos22

2sin2

2cos12

2cos1

,2sin2cos22

2sin2

2cos12

2cos1

122211

2112

1222112211

12221122

1222112211

12221111

(3.31)1 ,2 , 3

3.3

3.9 x1 W , OB

W A x1 =

W/A 0 O-x1x2

(3.32)

22122111 000000

eeeeeeeeT (3.32)

OB

(3.24) 11, 12 , (3.33)

3.9 x1

A WWO

AB

x1x2

65

Page 77: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

cossincos

sincos

000

cossinsincos 2

(3.33)

= sin cos = ( /2)sin2 OB

3.9 =45°(= /4 rad.)

/2

3.6 (Mohr's stress circle)

, 3.2 3.3

, 2

2 , 3

, 3.2 3

, 2 (3.31)

(3.24) (3.31)

3.7

OAB OA ( ) (= 11)

( ) - (=- 12) ( )

OA

AB ( )=( 11, 12)

2

(3.31) cos2 , sin2

( 11, 12) ( 11, 12)

66

Page 78: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

( 22, 21) ( 22, 21)

(3.31)

2cos2sin2

,2sin2cos22

,2sin2cos22

122211

2112

1222112211

22

1222112211

11

(3.34)1,2 ,3

(3.34)1 ,3 2 , (3.35)1 (3.34)2 , 3

2 , (3.35)2

212

222112

12

22211

22

212

222112

12

22211

11

22

,22

(3.35)1,2

( ) , 2

P 1211 , Q 2122 , (3.35)

R, ( ave ,0) 4*** AB , (3.35)

R (3.36)

2

,2

2211

212

22211

ave

R (3.36)1,2

4*** P, Q

2 ( 2 =180°)

( ) P 1211 , ,Q 2122 ,

67

Page 79: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

, O-x1x2 11, 22, 12 . 3.10 (3.35)

O-x1x2 A* O- 21xx

P Mohr

, 11> 22 . 11< 22

, A* G

3.4

3.10 , 2

(3.34) P,Q A*,G (i) =0 22221111 , 1212 . (ii) =90° , cos(2×90°) = 1, sin(2×90°) = 0 ,

11222211 , . 1212 . P=G

(iii) =45° cos(2×45°) = , sin(2×45°) = 1 , :

12221211 , aveave : 2/221112

3.10 Mohr

Q

F

E

B*

D*

ave

C*

max = R

ave R

( 11 ave )2 + 122 = R2

O-x1x2 :P( 11, 12 )

P

A*

2

O-x1x2:A*: ( 11 , 12 )

G

G:( 22 , + 12 )

3.11

68

3.11

Page 80: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

3.11

=0,45,90° ,

3.11(a) 2

3.5 3.6 1 2 1p, 2p p1 p2

. max s1

( )

0

3.11(b) =0 B* 1 ( )

D* 2

( )

A*C*B* = 2 p1

A*C*D*=2 p2=2 p1+90°

1p= ave + R

2p= ave R

(a) =0,45,90° (b)

3.11 Mohr

F

E

B*

D*

C*

P

A*

2

O x1x2

A*: ( 11 , - 12 )

ave

12

P( 11, 12 )

11

22

12

12 ( 22- 11)/2

= 0

= 90= 45

F

E

B*

D*

GQ

ave

12

12

A*

C*

P

2

1p

2p

max = R

A*C* = R

A*C*B* = 2 p1

p1

A*C*D* = 2 p2 = 2 p1 +

2 s1

A*C*E = 2 s1

= ave+R

ave R11

22

69

Page 81: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

R (3.36)1 . , max = R

A*C*E= 2 s1

A*C*F=2 s1+90°

(1) 3.12

( : j k jk ).

(2) ( ) P (x1,x2)

T

MPa PP (x1,x2)

( ) : x1+ 3x2 = 1 ( 0 )

3.13 ( ) ( )

Cauchy ( )

(3) 3.14

3.12

( )

3.13

x1

x2

0 1

31

a= (1,3)x1+ 3x2=1

2110

T

70

P

Page 82: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

PP

7 AB, BC, CD, DE, EF, FG, GA

AB BC, CD, DE,

EF, FG, GA tAB, tBC, tCD, tDE, tEF, tFG, tGA

3.14 2

3

MPa cm

(4) 3.15

.

2

1

2221

1211

00

AB

.

(5) (3.34)

.

1222

1211 2,2 (3.37)

(6) (3.34) 012

3.14 ABCDEFG

DE

EF

A B

CD

E

FG

3.03.8

1.5

1.5 2.8

3.6

AB

FG

GACD

BC

x1

x2

22012001911910

333231

232221

131211

3.15 2

O

A

B

x1x2

71

Page 83: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

2211

1222tan (3.38)

, (3.38) 0

(principal direction) .

(7) (3.34)3 , 12 ,

.

12

2211

22tan (3.39)

(8) (3.39) , (3.38)

45 °

(9) O-x1x2 ,

11 = 80 MPa, 22 = 50 MPa, 12 = 25 MPa

30° O-x1’x2’

4.1

72

4.1

Page 84: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

4.1

4. (Strain)

4.1 1

( )

( ) 2 2

( )

4.1 ( )

X

x

u = x- X

u ( ) ,

(displacement) ( ) u= 0,

( ) u= u

(4.1) F

.

XxEF x1 (4.1)

Xu

XXxEx x

ux

Xxx (4.2)1,2

4.1 1 ( )

X

x

FxFx

A A0

A0

A

u= x X

73

Page 85: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(4.2)1 Ex X Green

, x

x Euler u

x X Ex x 2

x Fx ( ) A0, A

(true stress) x (nominal stress) x0

2

00

0 AF

AAF

AF x

xxx

x (4.3)

4.2

, ( )

(configuration)

(motion)

.

t0 : X

t > t0 X : x

x X t , ( )

.

x=x(X,t) (4.4)1

xk= xk (X j, t) (k,j=1,2,3: ) (4.4)2

, ,

. x , 1 1 ( )

74

Page 86: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

X=X(x,t) (4.5)1

Xa = Xa(xb, t) (a,b=1,2,3: ) (4.5)2

X , , (material

coordinate) . , x

(spatial coordinate)

4.1

Xk

(Lagrangian description)

(material description)

, X t v X

t x

XX

XxXvt

tt ,),( (4.6)

,

(4.5) x v(x,t)

(Eulerian description)

(spatial description)

( )

(material time derivative)

v(X,t)

75

Page 87: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

v(x,t)

7

4.3 3

3 3

(stretching)

(simple shear) (twisting)

(bending)

,

, 0 ( ) ,

, 3 ,

3 2 9 (

6 ) 4.1 1

3

3 2 dX, dx

3

2

2

4.4

3 P Q

76

Page 88: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

P X = ( Xk ) , P' x = ( xk )

u = ( uk )

X + u = x (4.7)

Q 4.2

2 P, Q dX= dXmem dx =dxmem u= x X , X x :

x = x(X) dX dx (4.9)

j

kkj X

xFF (4.8)

(deformation gradient) .

XFx ddXXxx

dXdXdX

Xx

Xx

Xx

Xx

Xx

Xx

Xx

Xx

Xx

dxdxdx

jj

kk ,dd

,

3

2

1

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

3

2

1

(4.9)

4.2 P,Q PP', QQ'

x1 x2

x3

PQ

P’Q’u

u+du

uk = xk Xk: P P’

O

OP:X = Xm em dX

OQ:X+dX

x= xmemdx

x+dx

dX = dXmem

77

Page 89: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

: x X ( X = (x) ) F -1

xFX ddxxXX j

j

kk

1,dd (4.10)

4.5

2 PQ

( ) 2 ds2-dS2 PQ: dX=dXkek 2 : dS2 P'Q': dx=dXkek

2 : ds2 , (4.11)1,2

jiijmm

jkkjkk

dxdxdxdxddds

dXdXdXdXdddS

xx

XX2

2

(4.11)1,2

F F -1

hmh

k

m

k

hh

jm

m

kkjjkkj

hmh

k

m

k

hh

jm

m

kkjjkkj

dXdXXx

Xx

dXXx

dXXxdxdxds

dxdxxX

xX

dxxX

dxxXdXdXdS

2

2

(4.12)1,2

2 ds2 dS2 , (4.12) (4.13),(4.14)

2

dX, dx dXkdX j (dyadic) dX dX

2

78

Page 90: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

kj

j

s

k

ttskj

jkkj

Xx

XxEwhere

dXdXEdSds

21

,222

(4.13)1,2

j

s

k

ttskjkj

jkkj

xX

xXewhere

dxdxedSds

21

,222

(4.14)1,2

(dyadic) dXkdX j Ekj

2 ekj 21

Ekj Green's

(Lagrangian) strain tensor ekj

Almansi's (Eulerian) strain tensor

F 2

kjj

s

k

s

j

s

k

tis

kjj

s

k

s

j

s

k

iis

cxX

xX

xX

xX

CXx

Xx

Xx

Xx

(4.15)1,2

,

4.6

u= x-X

j

iij

j

i

Xu

Xx,

)(

XuIF

IFIXxXx

XXu

(4.16)

1

79

1

Page 91: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

j

k

k

j

k

i

j

ijk

ikj

i

k

iij

k

i

j

iikij

k

iik

j

iij

k

i

j

i

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xx

Xx

j

m

k

m

j

k

k

jkj

j

m

k

m

j

k

k

jkj

xu

xu

xu

xu

e

Xu

Xu

Xu

Xu

E

21

,21

(4.17)1,2

1k

m

Xu 2

j

m

k

m

j

m

k

m

xu

xu

Xu

Xu ,

kjkj

jk

j

jk

jj

jk

j

k xxxXX

xXuX

xXx

X)(

j

k

k

j

j

k

k

jkjkj x

uxu

Xu

Xu

eE21

21

(4.18)

, Green Ekj Euler

ekj Green Euler

2

4.1

80

Page 92: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

4.3 x1 du1

(du1 dX1)

1

111

1111

2111

21

111

2111

22

222

22

xue

dxedxdxe

dSdsdxedudSds

dxedxdxedSds jkkj

(4.19)1,2,3

E11 = e11 = u1/ X1 1

(4.2) Ex = u/ X

4.2

4.4

2112

2

1

1

21212 2

xu

xue (4.20)

2 : 2e12 x1-O-x2

4.3

dX1x1

x2

u1 u1+du1

dx2=dx3=0

ds=dx1=dX1+du1dS = dX1

4.4

x1

x2

21212

1 tanxu

12121

2 tanxu

O

81

Page 93: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

4.7 dilatation

e

e= e11+e22+e33 = ekk (k=1,2,3: ) (4.21)

e i j=0 (i j) 1

V , (4.22)

V = (1+e11)(1+e22)(1+e33) (4.22)

, V=V 1 e= e11+e22+e33 .

4.8 ( )

4.2 , u+du , X+dX u

. u(X+dX) = u(X) +du (4.23)

du , dX ,

j

j

kkkk dX

Xuududu

ddd

XXX

XXuXuXXuu

(4.24)1,2

(4.8) F , (4.24) jk Xu // XuL (2 )

,

82

Page 94: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

jk

j

j

kj

k

j

j

kjkjk dX

Xu

XudX

Xu

XudXLdu

21

21 (4.25)

XWEXLu

XE

XW

ddd

ddXedXXu

Xu

ddXwdXXu

Xu

jkjjk

j

j

k

jkjjk

j

j

k

,21

,21

(4.26)1,2 ,3

(4.25),(4.26) kj Xu / +/

, du (4.24)2

(4.25) 1 ekj , (4.18)

, 1 ekj k,j (symmetric part)

, 2 wk j

, k,j

(antisymmetric part)

XW d (4.27) .

, (4.28) (nabla)

(4.29): u , (4.30)

3

2

1

2

3

3

2

1

3

3

1

2

3

3

2

1

2

2

1

1

3

3

1

1

2

2

1

021

21

210

21

21

210

dXdXdX

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xu

Xu

(4.27)

kk X

e (4.28)

83

Page 95: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

2

1

1

23

1

3

3

12

3

2

2

31 X

uXu

Xu

Xu

Xu

Xu

Xu

Xuu

X iij

kijki

j

kkjkk

jj

eee

eeeeeeu

(4.29)

3

2

1

12

13

23

312212311312332

021

21

210

21

21

210

21

21

21

21

21

21

dXdXdX

dXdXdXdXdXdX

dXdXd ikjijkkkjj

eee

eeeXu

(4.30)

(4.30) , (4.27) u

( ) ,

XXW dd2

, 2/

(1) P X x(X) xk X j

33122211 ,2,23 XxXXxXXx

(E.4.1)

F ( )

, j

kkj X

xFF

F

84

F

F

Page 96: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

F

F

F

(2) xk X j

33222

11 ,,3

XxXxXXx (E.4.2)

F , 1

(3) ( ) P (x1, x2) (u1, u2)

eij (i,j=1,2: ) (u1, u2)

(u1, u2) 2 (4) u u i) (i=1,2,3)

(a) 3211321 5,2,3,, axaxaxaxuuu (E.4.3)

(b) 212

22

22

1321 cossin,,,, 333 xxexexxeuuu xxx (E.4.4)

(5) , (E.4.5)

(4.18)

,

,,

2

31

1

23

3

12

321

332

1

23

3

12

2

31

213

222

3

12

2

31

1

23

132

112

xe

xe

xe

xxxe

xe

xe

xe

xxxe

xe

xe

xe

xxxe

X1

X2

O 1

1

x1

x2

O

85

Page 97: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共
Page 98: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

5.

5.1

4.3 ()

, ( )

2

(a) (elasticity):

(Hooke's

law) .

(b) (plasticity):

( )

5.2

87

Page 99: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

,

, ,

, ,

5.1(a) 5.1(b) ,

, (

) 2

(i) ( )

(ii) .

.

, .

(normal stress):

AF ( )

(normal strain):

0Lue ( ),

L

LdLu

0

e

L0 e=u/L0

(a) (b)

5.1

u

F

88

Page 100: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(nominal strain, engineering strain)

L dL/L

(logarithmic

strain) ,

N

L

L

L

LN

LL

LdL

LL

LdLe

1lnln

1)(

0

00

0

0

(5.1),(5.2)

(5.1), (5.2) , e

5.2 ,

: E, ( )

( ): E

( ): Y

0.2% : 0.2 ( Y )

5.2

e

B

0.2%

H’

E

Y

89

Page 101: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

, ,

, ,

, ,

,

,

: H’ ( )

( ): B

( ): eB

( )

( )

(engineering strain, nominal strain) Green

(logarithmic strain) Euler

5.3

( )1

1 (dislocation) , (lattice defacts) .

5.3

90

Page 102: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

45°

,

( )5.4 5.5

5.4

1 ( 5.5

5.4

5.5

b : =

91

Page 103: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

5.6

( )

5.7 , , 5.8 ,

5.6

5.7

92

Page 104: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(work hardening)

5.4

- ( )

(5.3)

n Ludwik [1909]: =C n (0 n<1) (5.4)

n: , : = n

)('

)(

00

0

EH

EE

YY

Y

5.8

( )( )

93

Page 105: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

n : = 0 + K n (5.5)

n Swift[1952]: =C ( 0+ )n (5.6)

Voce [1948]: = C(1 m -ne ) (5.7)

C(1-m)= Y0 ,

Ramberg and Osgood[1946]: = ( /E) {1+ ( /B)n} (5.8)

/

Chakrabarty [1987]: ( Ludwik )

(5.9)

)/()/(

)/( 0

01

0 EE

EEE

Y

Yn

Y

5.9 (a)~(e)

n=0

n=1

n

n

E

H’

Y0

:H’=0, 0<E<+:H’ >0 0<E<+

E Y0

E

n (Ludwik,Ramberg Osgood)

Y0

(Ludwik, Swift )

94

5.9

Page 106: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

5.9

5.9

Hart[1967]: (5.10)

Backofen[1964]: (5.11)

(Newton ): (5.12)

( ) .

dtd

m

5.6

(1) ( ) e Hooke's law

5.10(a)

uL

AF

eE ( 0

0

LLdLuL

L) (5.13)

( Young's modulus) .

(compliance with stretch)… J= E 1

.

5.5

(1) ( )

5.10(a) ,

e Hooke’s law

E (Young’s modulus) .

,

5.10

L 0

L

A 0=

1b 0

F

u

(a)

Au F

h

A=1

b (b)

FKC

m

mn

95

Page 107: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

L

L

LLdLuuL

AF

eE

0

0 (5.13)

(2) ( )

5.10(b) F

(shear) 2et

Hooke's law

AF

AF

uh

AF

eG

t tan1

2 (5.14)

(rigidity), (shear modulus)

, x2 , x1

= 21, e t= e21=h

uxu

221

2

1 (5.15)1,2

(3)

5.10(a) , e

ec

eec (5.16)

(Poisson's ratio) , m

= 1/

(1) 5.3 2

1 , 2

1 =45

5.3

96

5.3

Page 108: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

5.3

( ) 2 (E.5.1) =45°

,

cossinsincos

000

cossinsincos 1

2221

1211 (E.5.1)

(2)

(3) 5.10(b) e12 (5.15)2

(4) 5.10(a) b, b0, F, L, L0

L>L0, b<b0

(5) 5.10(a) , F

E (E.5.2)

22

22 EeEE (E.5.2)

( ) U = AL E = L

LFdL

0

5.3

O

A

B

x1x2

97

Page 109: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

00

LLdLuL

L du= dL

(6) O-x1x2x3 P (x1 , x2 ,0)

0000000

QP

kj (E.5.3)

O-x1x2x3 x3

O-x'1x'2 x'3

[ ' kj] ( ) cos( )= c, sin( )= s 3 3.2

(3.24), ' kj= ' jk

10000

0000000

10000

'''''''''

333231

232221

131211

cssc

QP

cssc

(E.5.4)

(7) ( ) ( )

3

(8)

98

Page 110: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

6.

(Constitutive equation)

5

6 ,

3

1

6.2

,

( ) (

) ij

ijij p ij (6.1)

pp

p

ij

000000

p

6.2.1 (ideal gas)

p, T,

,

99

Page 111: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

, ,

,

p RT ( ) (6.2)

=1/v: (v: ) T : R :

6.2.2 (Incompressible fluid)

p T

= constant ( (6.3)

6.3 Newton

(6.4)

klijklijij VDp (6.4)

ij : Vkl12

uk

xl

ul

xk

Dijkl uk :

Newton , Dijkl ,

3 4 34= 81

2

jkiljlikklijijklD

(6.5)

100

Page 112: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

ijkkijij

kljkiljlikklijij

klijklijij

VVpVp

VDp

2

(6.6)

, (6.7)

kkkk Vp 233 (6.7)

(Contraction) ,

6.4 Stokes

Stokes Vkk

3 2 0

23

(6.8)

(6.9)

ijkkijijij VVp322 (6.9)

Stokes3kk p

6.2.2

Vkk=0 ijijij Vp 2 (6.10)

0 , , (6.1)

6.5

,

ijijkkij ee 2

eij Lame ,

101

Page 113: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

2 ,

,

, ,

, ,

, ,

, ,

,

,

(6.2) ,

f (p, , T) = 0 (6.11)

2

(6.2) van der

Waals (6.12)

, V 2 1

p

V 2 V RT (6.12)

(6.3)

,

( ) ,

,

( )

2 .

Newton

.

Newton

.

6.6 Hooke Hookean elastic solid)

3 ,

1 , Y.C.Fung: A first course in continuum mechanics, third edition (1994), page 182 (Prentice Hall) .

102

Page 114: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

klijklij eC (6.13)

ij: , ekl: , Cijkl

(4 ) , 34=81 .

(4.18) ,

jiij Cijkl C jikl (6.14)

ekl elk Cijkl C jikl Cijlk

, , 6

Cijkl , 62=36

Isotropic elastic materials)

6.6.1

2 .

Cijkl ij kl ik jl il jk ik jl il jk (6.15)

ik jl il jk =0

Cijkl ij kl ik jl il jk (6.16)

ijkkij

jiijkkij

kljkiljlikklij

klijklij

eeeee

eeC

2

(6.17)

(6.17) , x1, x2, x3 ( x,y,z ) ( G ), (6.18), (6.19)

2 Lame .

103

Page 115: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

31313333221133

23232233221122

12121133221111

2,22,2

2,2

eeeeeeeeee

eeeee (6.18)1~6

zxzxzzzzyyxxzz

yzyzyyzzyyxxyy

xyxyxxzzyyxxxx

eeeeeeeeeeeeeee

2,2

2,22,2

(6.19)1~6

i = j

kkiikkii eee 2323 (6.20)

ii= 11+ 22+ 33, eii=e11+ e 22+ e 33, ekk= e 11+ e 22+ e 33

23kk

kke (6.18) eij

kkijijije2322

1 (6.21)

Lame EE

1 1 2E 2 1

3 3 2 1

ijkkij

kkijijij

EE

e

112

1

(6.22)

6.6.2 K

3 (10) .

104

Page 116: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

dx1, dx2, dx3

dx1(1+e11), dx2(1+e22), dx3(1+e33)

V

V= dx1(1+e11) dx2(1+e22) dx3(1+e33) - dx1 dx2 dx3

= dx1dx2dx3(1+e11+ e22+ e33+ e11 e22+ e22 e33+ e11 e33 +e11 e22 e33) - dx1dx2 dx3

dx1dx2dx3(e11+ e22+ e33) ….. ( )

,

V/V = (e11+ e22+ e33) = ekk (6.23)

(6.21) ,

pkk 3332211 (6.24)

i=j)

233

2323

21

233233

21

23313

21

323

3321

23221

pp

pp

ppe kkiiiiii

(6.25)

ii 11 22 33 3 , (6.26)

pekk

23

K (6.26)

6.1

ekk

e e=e11+e22+e33

105

Page 117: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

V0 dx1dx2dx3

V 1 e11 dx1 1 e22 dx2 1 e33 dx3

, (6.27) .

332211113333222211332211

332211113333222211332211

321

321332211

321

321333222111

0

0

11

1111

111

eeeeeeeeeeeeeeeeeeeeeeee

dxdxdxdxdxdxeee

dxdxdxdxdxdxdxedxedxe

VVVe

(6.27)

, 2

, 1

ekk = e11+e22+e33

6.6.3

S

x3 33 (6.18)

, 03231122211

313333221133

2322332211

1211332211

20,220,2020,20

eeeeeeeeeeeeeee

2 e11 e22 2 e33 0 ,

e11 e22 e33 (6.28)

3 33=…

106

Page 118: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

33

333333

23

221

e

ee

3333 23e (6.29)

(6.28) 11332211 20 eeee

e33 1 2 e11 0 e33 2e11e11

e33 2 (6.30)1

(6.28) 22332211 20 eeee ,

e22

e33 2 (6.30)2

, ,

e11

e33

e22

e33 2 (6.31)

( ) E 33 e33

, (6.29) (6.32) .

23

33

33

eE

(6.32)

, E, Lame

.

6.6.4

2

107

Page 119: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

12 0

.

0, 312333221112 (6.33)

(6.18)

3133332211

2322332211

1211332211

20,2020,202,20

eeeeeeeeeeeeeee

e12 2 2e12

(6.34)

G G (Modulus of Rigidity)

6.6.5

Hooke Duhamel-NeumannCijkl ekl

T0 , T(6.35)

0TTeC ijklijklij (6.35)

ijijijkkij TTee 02 (6.36)

, ,

= (3 +2 ) = 21

E (6.37)

.

6.7

108

Page 120: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

, (linear spring)

(dashpot) , 2 ( : Maxwell model, Voigt model) 3 , 4 ,

6.7.1 Maxwell

6.1 Maxwell .

s d

, ,

= s + d (6.38)

. ,

s E s (6.39)

dd d

dt (6.40)

E ,

t s d (6.38)

, (6.41) .

ddt

d s

dtd d

dt (6.41)

(6.39)d s

dt1E

d s

dt(6.40)

d d

dtd (6.41)

(6.42) .

6.1 Maxwell model (2 )

109

Page 121: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

ddt

1E

d s

dtd (6.42)

s d ( ).

E

ddt

ddt

(6.43)

E (6.44)

6.7.2 Voigt

, 6.2

Voigt

: S

: d

2

: = S + d (6.45)

, (6.39), (6.40) 2

= S = d

E ddt

(6.46)

Maxwell Voigt

3 (Maxwell )

(6.47)

dtdE

dtd

dRe (6.47)

6.2 Voigt model (2 )

110

Page 122: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

e, d 2 , ER

6.7.3 Maxwell

(t) u(t) (t)

(creep function) c(t)

. Creep ,

, Maxwell (6.42)4

ssss

sssss

1 (6.48)

(t)=u(t) 1/s , (6.48) s ,

sEssssss 11111111

222 (6.49)

tctu

Ett 11

(t>0) (6.50)

(creep) c(t)= (t/ +1/E)u(t)

6.7.4 Maxwell

Maxwell (t)=u(t) (t)

(relaxation function) k(t)

(6.48) (s) 1/s

(s)

4 t f(t) Laplace f (s) s

, 0

)()( dtetfsf st

111

Page 123: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

111

11

11 sE

ssssss

sss (6.51)

/tEet (t>0) (6.52)

( ) k t Eet

(1) Voigt c(t), k(t)

. (t) u(t) ,

)()()(

)(11)( /

tEuttk

tueE

tc t

(E.6.1)1,2

(2)

(3) Newton

(4) Newton

(5)

(6) ( )

(7) zz=0( ) (O-xy)

(8) Maxwell Voigt .

( )E

(9) (6.17) ,

ijjiijkljkiljlik eeee 2 (E.6.2)

(10) (6.31), (6.32) , .

)1(2E ,

)1)(21(E (E.6.3)1,2

112

Page 124: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

7.

7.1

1.10

7.1.1

(a)

,

,

113

Page 125: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(b)

7.1.2

NEWTON

114

Page 126: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

1. ( ).

2.

= × ( ) 3. (

).

7.1.3 ( )

N j p j , (7.1) .

mj : j , v j : j ( ) .

v j ,

.

p j mj v j (7.1)

p (7.2) .

N

jj

N

jj m

11vpp (7.2)

N ( )

,

, ( 3 )

N

3 , v3 , v3

, d p = m3 v 3

, 3

115

Page 127: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

, d p

1 ,

7.1.4

3 ( ) ,

1 1.11 I F I , F I t

. F IJ p IJ=F IJ t

t , I J .

, .

1.11 , F IJ p IJ=F IJ t

01

tIJ

N

I

N

JI Fr (7.3)

(torque)

(moment of inertia)

( )

116

Page 128: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

7.1

V

S

T

,

7.2

7.1 V, S Ss

T F V ,

Sh h

dV ,

, dV

V S

3

:

K

G

E

V

Vjj dVvvK

21

(j: ) (7.4)

117

Page 129: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

vj dV

V

G x dVV

(7.5)

xx gz

V

E dVV

(7.6)

V (7.4),(7.5),(7.6) K+G+E

K+G+E

(7.7)

Q, W (.)

D( )/Dt 4.2

WQEGKDtD

(7.7)

QW

(7.7)

, 2 vjvj

( )

( ) 2

dV

118

Page 130: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

, V dV

(7.7) , dV

V (7.7)

Gauss

7.3 Gauss

7.3.1

Gauss

( )

(7.8)

Gauss

,

.

y= y(xk) y/ xk

y= y(x) y(xk) (k=1,2,3) (7.9)

y x=(x1, x2, x3)

y/ xk L

dy= ( y/ xk)dxk

LL

dxxydx

xydx

xydyyy 3

32

21

112 x (7.10)

(nabla)

y = ek ( y/ xk )

y , (7.11)

119

Page 131: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

y = f(x) (7.11)

dy/dx = f ' (x)

2

1

)('12

x

x

dxxfyy (7.12)

1

y ( ) y x [ x1 ,

x2] y x1, x2

, y2 y1

,

(7.10) y(x) , F= y

, ( y2 y1

)

7.3.2

,

Gauss

A(xk) (k=1,2,3) F= A/ xk ,

dA

33

22

11

dxxAdx

xAdx

xAdx

xAdA k

k

(7.13)

, x2, x3 x1 dA1 , L: [a,b]

, (7.14) .

b

aab

A

Adx

xAAAdAb

a1

1111

1

1

(7.14)

120

Page 132: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

7.2 V , L

dx2dx3

(7.14) dx2dx3

3211

3211 dxdxdxxAdxdxAA

b

aab (7.15)

x2x3 V

V

b

aVab dxdxdx

xAdxdxAA 321

13211 (7.16)

L V

, ( A/ x1) dx1dx2dx3 V

L (x1=a, b)

A dx2dx3 V

A 1b A1a 1 L

x 1 x1

7.2 V L a,b

x1

x2

x3x1=x1

dx2dx3

x1=bx1=a

L

V x2x3

() V

bdSb

adSa

nb

na

P(x1,x2,x3)

: V: S

e1

121

Page 133: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

A L , 1

(7.16) (7.17)

VVab dxdxdx

xAdxdxAA 321

132 (7.17)

7.2 , L a, b

, dSa, dSb n a, n b

, ( ) a,b ,

d S e 1

a,b n1= dx2dx3/dS ,

d S e 1 = dx2dx3 = n e 1dS = n1 dS (7.18)

a,b n x 1 1 x1=b n1>0 x1=a n1<0

a,b (7.17)

(Ab Aa) dx2dx3 = Abn1b dSb + Aan1a dSa (7.19)

a,b V :

(7.17) V S d S

, A d S e 1 =An1 dS S

(7.17) (7.20)

VS

dxdxdxxAdSAn 321

11 (7.20)

V A

1 , e1 n n1 , n1

. V S

122

Page 134: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(7.20) , x1

V S .

, k=1 k=2,3

(7.20) , , k=1,2,3 (7.21)

dV= dx1dx2dx3

V kSk dV

xAdSAn (k=1,2,3) (7.20)

Vk

S k dVxAdSAn (k=1,2,3) (7.21)

(7.20), (7.21) Gauss 2 . Gauss

A F F = A/ xk ,

J =V

FdV (7.22)

J

, (7.4)~(7.6)

7.3.3 Gauss

(a) A (uj)

A , u= (uj) ,

(7.21) A= uj (j=1,2,3) .

Vk

j

S kj dVxu

dSnu (7.23)

j=k , (7.24) , Gauss

2 Green , Stokes , Gauss

(7.21)

123

Page 135: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

.

dVxu

xu

xudS

dVxudSnu

VS

Vk

kS kk

3

3

2

2

1

1nu (7.24)

(7.24) V S

S V

,

0

uk/ xk (= div u) . V

div u >0

(b) A

A= , ek (7.25) .

Vk

kS kk dVx

dSn ee (7.25)

(gradient) , grad (= )

(7.10) 3

(c) A (uj) ( )

(7.23) , j, k , ei ijk uk/ xj

(2.20) ei ijk uk/ xj = u (= rot u) rot u

, u

VSS

Vj

kijkiS jkiijk

dVdSdS

dVxudSnu

unuun

ee (7.26)

124

Page 136: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(7.26)

rot u

( )

u , 2 = rot u

.

,

(d) A 2 Cij

Vk

ij

S kij dVxC

dSnC (7.27)

i=k

7.4

O-X1X2X3

t=t0 P

X1=a1, X2=a2. X3=a3

(a1,a2,a3)

P

(7.28) P’

xi xi a1,a2,a3,t i 1,2,3 (7.28)

7.3

X3, x3

X2, x2

X1, x1

t=0

t=t

P(a1, a2, a3)

P’(x1, x2, x3)

D

D’

xk=xk (a1, a2, a3, t), k=1,2,3

Xk=ak

125

Page 137: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(7.28) D (a1,a2,a3) D' (x1,x2,x3)

1 1 . D

D'

xi (a1,a2,a3,t) 1 . ,

, dt=t t0 , 1

(

) , D

(Jacobian determinant) (7.29) 0

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

ax

ax

ax

ax

ax

ax

ax

ax

ax

ax

(7.29)

(7.28) (material description) Lagrange

a1,a2,a3 vi

i (7.30), (7.31) .

vi a1,a2 ,a3,txi

t a1 ,a2 a3

(7.30)

i a1,a2 ,a3,tvi

t a1 ,a2a3

2xi

t 2a1 ,a2 a3

(7.31)

x=(x1,x2,x3) t (spatial

description) [Euler ]

t x

vi (x1,x2,x3,t)

(7.32) .

txvvt

tvt

dtdvt

k

ik

iii ,,,, xxxx (7.32)

126

Page 138: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

t x=(xi) t+dt xi+vidt

. x=(xk) , vk dxk=vkdt

Taylor , t+dt ( )

, .

txvdtvx

txvdtt

txvtxv

txvdttdtvxvdtdt

tdvtdv

kikk

kikiki

kikkii

i

,,,,

,,,, xx (7.33)

(7.33) (7.32) . (7.32)

( ) ( )

. (7.32)

f(x1,x2,x3,t)

t f(x,t)

(Material derivative) , Df/Dt (7.32)

(7.33) d( )/dt , D( )/Dt

f(x,t) (7.34)

Df x1, x2 , x3, tDt

ft x fixed

fx1

x1

tfx2

x2

tfx3

x3

t

ft x fixed

fx1

v1fx2

v2fx3

v3

ft x fixed

fxk

vk (7.34)

,

. ,

(7.28) xk , t : vk =

dxk/dt = dak/dt , t0 ak

127

Page 139: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

Euler f , xk t

, f xk t . f f ,

.

f = ( f/ t) t + ( f/ xk) xk (7.35)

xk xk xk+ xk

t xk/ t ,

f/ t ( t +0)

f/ t , xk/ t xk

vk .

f = ( f/ t) t + ( f/ xk) vk t (7.36)

t, xk t t+ t , vk t

xk/ t = vk

, t ,

xk+vk t t t

, Euler

,

xk/ t = vk Lagrange

Euler , xk/ t = vk

f/ t ,

. ,

. Lagrange (

) D( )/Dt

.

Df/Dt = ( f/ t) + vk ( f/ xk) (7.37)1

Df/Dt = ( f/ t) +v f (7.37)2

? ,

,

128

Page 140: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

dV , A

V :

VAdVtJ )(

, , .

( ) ,

,

, (FEM)

(FDM)

7.5

A J(t)

J(t)

V V

dVtAdxdxdxtxxxAtJ ),(),,,()( 321321 x (7.38)

),,,( 321 txxxA xk , t (k=1,2,3)

t dt t+dt J(t)

t , V , t+dt V+ V

dt

(7.39)

VV Vdt

dVtAdVdttAdtd

DtDJ ),(),(lim

0xx (7.39)

V 7.4

V V (7.40) (7.40)

V A

(7.40) 7.4

V .

129

Page 141: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

VV Vdt

V V Vdt

dVdttAdtddVtAdVdttA

dtd

dVtAdVdttAdVdttAdtd

DtDJ

),(),(),(lim

),(),(),(lim

0

0

xxx

xxx

(7.40)

(7.40)

dV=vjnjdSdt (i=1,2,3) (7.41)

. dxi=vj dt dS

nj dS vj

. (7.40) (7.42)

V Sjj

V Vjjdt

dSnvtAdVtA

dSdtnvtAdtddV

tA

DtDJ

),(

),(lim0

x

x(7.42)1,2

Sjj

Sjj dSdtnvdSdxnV

7.4 vj V

130

Page 142: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(7.42) Leibniz

(7.42) . Avj Gauss

(7.43)

DDt

AdVV

At

dVV xi

VAvi dV (7.43)

(7.44), (7.45)

V j

jj

jV

dVxv

AvxA

tAAdV

DtD

DtDJ

(7.44)

VV j

j

V

dVADtDAdV

xv

ADtDAAdV

DtD vdiv

(7.45)

(7.45) A J

v

7.6 , Leibniz

Gauss , 7.3.1

Leibniz ,

. (7.42) (3 )

1

tattaF

tbttbFdx

tF

dxtxFxt

xdxtFdxtxF

ttb

ta

tb

ta

tb

ta

tb

ta

)),(()),((

),(),(

)(

)(

)(

)(

)(

)(

)(

)(

(7.46)

3 http://en.wikipedia.org/wiki/Leibniz_integral_rule .

131

Page 143: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(7.46) x t F(x,t) x=[a,b]

t Leibniz . a, b

t (7.46) (7.42)

FS

jdSAn (7.47)

a, b

F vj V (7.47) V 7.4

dt +0

, (7.46) (7.42) ,

.

(7.46)

, x = [a(t),b(t)] , t

.

tFF

tx

tFF

xtx

tFF

tF

t

(7.48)

(7.48) Leibniz (

) (7.42)

(7.42)

,

7.7

132

Page 144: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

7.7.1

t V m , V

(7.49) .

m dVV

(7.49)

x,t t x

m 0

DmDt

0 (7.50)

(7.42)

tdV

VvinidS

S0 (7.51)

(7.43) .

0dVxv

tV i

i (7.52)

V 0

.

0i

i

xv

t (7.53)

(7.51) (7.53) , (equations of continuity)

133

Page 145: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

7.7.2

Newton

Pi Fi (7.54)

DPi

DtFi (i=1,2,3) (7.54)

, dVvPV

ii (7.55)

, V

iS

ii dVXdSTF (7.56)

vi Xi

Ti dS

nj , ji Cauchy

jjii nT (j=1,2,3: , i=1,2,3: ) (7.57)

(7.54) (7.55),(7.56)

Vi

Si

Vi dVXdSTdVv

DtD

i=1,2,3) (7.58)

vi (7.45) .

(7.57) (7.27)

dVXx

dVvvxt

v

Vi

j

ji

Vji

j

i (7.59)

(7.60) (7.60)

0 0 4 (3.17) 3 .

134

Page 146: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(7.61) (j=1,2,3: , i=1,2,3: ) .

0dVXx

vvxt

v

Vi

j

jiji

j

i (7.60)

ij

jiji

j

i Xx

vvxt

v(7.61)

(7.61)

ij

ji

j

ij

i

j

ji X

xxvv

tv

xv

tv (7.62)

(7.62) , (7.53) 0 . ,

Euler (Eulerian equation of motion) (7.63) .

ij

jii

j

ij

i XxDt

Dvxvv

tv

(7.63)

O-x1,x2,x3 (7.64)

33

33

2

23

1

133

23

32

2

22

1

122

13

31

2

21

1

111

XxxxDt

Dv

XxxxDt

Dv

XxxxDt

Dv

(7.64)

(7.64) 0 . (7.59)~(7.64) , : ij= ji i, j

(7.64)

.

7.8

135

Page 147: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

7.2 (7.7) ,

7.1 h=(hi)

ni dS nihidS

(7.65)

V i

i

Sii dV

xhdSnhQ (7.65)

7.1 ,

vi , (7.66) .

dVvx

dVvF

dSvndVvFdSvTdVvFW

Viji

jVii

Sijji

Vii

Sii

Vii

(7.66)

Fi ( ), iT ni

dS , (.) (7.4)~(7.6) (7.66) (7.7) ,

dVvx

dVvFdVxhdVdVdVvv

DtD

Viji

jVii

V i

i

V VVii2

1

(7.67)

dVvx

vFxhdVvv

DtD

Viji

jii

i

i

Vii2

1

(7.67)

136

Page 148: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

K, G, E

dVDt

Dxv

DtD

dVxv

DtD

DtD

DtDE

dVDtD

xv

DtD

dVxv

DtD

DtD

DtDG

dVDt

vvDvvxv

DtD

dVxvvv

DtvvDvv

DtD

DtDK

V k

k

V k

k

V k

k

V k

k

V

iiii

k

k

V k

kii

iiii

21

21

21

21

21

(7.53) , 0 (7.67)

dVvx

vFxhdV

DtD

DtDvv

DtD

Viji

jii

i

i

Vii2

1

(7.68)

j

iji

j

jiiii

i

iii x

vx

vvFxh

DtD

DtDvv

DtD

21

(7.69)

(7.63)

j

ijiii

ii

i

iii x

vFXDtDvv

xh

DtD

DtDvv

DtD

21

(7.70)

Xi

(7.71) (7.72) .

137

Page 149: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

iii x

FX (7.71)

j

ijii

i

i

iii x

vvDtDv

xh

DtD

tvv

DtD

21

(7.72)

12

Dvi2

DtDvi

Dtvi t

0

j

iji

i

i

xv

xh

DtD

(7.73)

ji i,j ,

Vij , (7.75)

i

j

j

ijiij x

vxvVV

21

(7.74)

jijii

i Vxh

DtD

(7.75)

(7.75) ,

(7.7)

( )

138

Page 150: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(1) .

(2) ( )

.

(3) V

dVtxAJ ),(

DtDJ

.

3.1 Leibniz , A t

V t .

3.2 Gauss ,

DJ/Dt .

(4) , 3.1, 3.2 .

(5) F = (2x1)e1+(3x1x2 + x3x22) e3 , V S

J

V : P(0,0,0) Q(1,1,1) 1

S: V 6

SS

dxdxFdxdxFdxdxFdJ 213132321SF (E.7.1)

J .

(6) (5) , Gauss J .

(7) V S .

S

kkS

dSnxdJ Sx (E.7.2)

x=(x1, x2, x3) nk dS

(8) (7.52)

0k

k

xv

DtD

(E.7.3)

(9) (7.63) 0 ,

139

Page 151: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

Gauss Cauchy ,

( )

(2

)

140

Page 152: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

8.

8.1

,

.

.

, uj

vj (j=1,2,3)

, .

Euler Hooke .

.

.

Almansi (Euler ) , . , (4.17)2

eij12

u j

xi

uix j

ukxi

ukx j

(8.1)

2

eij12

u j

xi

uix j

(8.2)

. vi ui ,

vi=Dui t, x j

Dtuit

x j

tuix j

uit

v juix j

(8.3)

vj ui/ xj , 2

141

Page 153: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

, (8.4) .

viuit

(8.4)

i vi . ,

i=Dvi t, x j

Dtvit

x j

tvix j

vit

v jvix j

(8.5)

vj vi/ xj , 2

, (8.6) .

ivit

(8.6)

Euler

ij

iji X

x (8.7)

Hooke

i

j

j

iij

k

kijijkkij x

uxu

Gxu

Gee 2 (8.8)

ijj

i

ik

k

iji

j

jj

iij

jk

k

ii

j

j

iij

k

k

ji

Xxx

uG

xxu

G

Xxx

uxx

uGxx

u

Xxu

xu

Gxu

x

22

222

(8.9)

142

Page 154: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

e = uk/ xk

ijj

i

i

i Xxx

uG

xeG

tu 2

2

2

(8.10)

. Navier . (8.10)

(nabula) (8.11) .

G 2ui1

1 2exi

Xi

2uit2 (i=1,2,3) (8.11)

, (E.6.3) ( +G) .

(8.11) tui ,x 2 .

,

ui x = (x1,x2,x3) t

2 .

* : . ( )

( =0) , .

* : . ( )

, , .

2 .

(8.11) .

.

1. ( , ).

2. , .

3. ( 3 = 0 ) , ( 3

= 0) . 2 1 ,

.

4. ( ).

143

Page 155: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

8.2

0323133 .

.

x3 x1-x2 .

Hooke 3 Hooke

.

313122113333

232311332222

121233221111

21,1

21,1

21,1

Ge

Ee

Ge

Ee

Ge

Ee

(8.12)1~6

0323133 , (8.13) .

0,

0,121,1

31221133

23112222

1212221111

eE

e

eE

eG

eE

e

(8.13)1~6

(8.13) , .

1212

1122222

2211211

1

1

1

eE

eeE

eeE

(8.14)1~3

2 Euler (8.15) .

(8.16)

144

Page 156: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

22

2

22

22

1

12

21

2

12

21

1

11

tuX

xx

tuX

xx (8.15)1,2

2

1

1

212

2

222

1

111 2

1,,xu

xue

xue

xue (8.16)

u1,u2 Navier (8.17) [

] .

22

2

22

2

1

1

222

22

21

22

21

2

12

2

1

1

122

12

21

12

11

11

tuX

xu

xu

xG

xu

xuG

tuX

xu

xu

xG

xu

xuG

(8.17)

8.3

, 3

0,0 33

2

3

1 uxu

xu

(8.18)

u1,u2 x1,x2 .

0323133 eee (8.19)

. 3 3

. 3

3 (x1x2 ) .

Hooke . (8.12)

, (8.19) e33 =0

221133 (8.20)

145

Page 157: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

.

112222112

112222

221122112

221111

111

111

EEe

EEe

(8.21)

(8.21)

221122

221111

1121

1121

eeE

eeE

(8.22)

. 2 Euler (8.15) (8.22) ,

(8.16) u1,u2 Navier (8.23)

.

22

2

22

2

1

1

222

22

21

22

21

2

12

2

1

1

122

12

21

12

211

211

tuX

xu

xu

xG

xu

xuG

tuX

xu

xu

xG

xu

xuG

(8.23)

(8.23) (8.17) , 2

,

8.4 Airy

2 (8.17), (8.23)

( ) ,

. , .

146

Page 158: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

, ,

(8.14),(8.21) .

.

(stress

function)

,

, 2 ( ,

) Airy

, (8.15)

0 ,

, (8.24)

0j

ji

x (8.24)

. , 2

x1=x, x2=y .

, u1=u, u2=v

0

0

2

22

1

12

2

21

1

11

xx

xx (8.25)

0

0

yx

yx

yyxy

yxxx

(8.25)’

(x,y) , (8.26)

. x y .

147

Page 159: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

yxxy xyyyxx

2

2

2

2

2

,, (8.26)

(8.25)’

x

2

y2 y

2

x y

3

x y2

3

x y2 0 (8.27)1

x

2

x y y

2

x2

3

x2 y

3

y x2 0 (8.27)2

(8.26)

x,y

(8.26) ,

(8.13), (8.21)

, 1*

. 3

2 ,

:

. (8.16) u, v , (8.28)

u,v

(8.29) .

yu

xve

yve

xue xyyyxx 2

1,, (8.28)

2exy

x y12

2

x yuy

2

x yvx

12

2

y2

ux

2

x2

vy

12

2exx

y2

2eyy

x2

(8.29)

1* (E.4.5) 3 .

148

Page 160: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(8.29) Hooke (8.13) .

ExEyGyxxxyyyyxxxy

2

2

2

22

22

2G=E/(1+ ) ,

2

2

2

2

2

2

2

22

2

2

2

22

12

12

xxyyyx

xyyx

xxyyyyxxxy

xxyyyyxxxy

(8.30)

. , (8.25)’

000

222

2

2

2

22

2

2

2

2

yxxxyy

yxxyyxxy

xyxxxyyy

xyxxyyxyyyxx

(8.31)

(8.32) .

022

2

2

2

2

yxxyxyyyxx (8.32)

(8.26) ,

4

y4

4

x4 24

x2 y2 0 (8.33)

, (8.33) (8.34)

.

02

,

2

x2

2

y2 (8.34)

149

Page 161: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(8.34) (bi-harmonic function)

. (8.26)

, Airy .

u, v

,

(harmonic function)

1 (8.35)

0 (8.35)

8.1

8.1

(x,y)

.

x y

x , (8.36) .

2

x2

2

y2 x

2 xx2

2 xy2 x

xx y

xy

xx

xx

y y

2x

x2

x2 x2

y2

(8.36)

150

Page 162: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

0004

24

222

2222

22

2

22

2

2

2

2

2

2

2

2

2

2

2

2

2

4

4

22

4

4

4

2

2

2

2

2

2

2

2

4

4

22

4

4

4

2

2

2

2

2

3

3

3

4

4

22

4

4

4

2

2

2

2

4

4

22

4

22

4

2

3

2

3

4

4

3

3

2

2

2

2

3

3

2

3

2

3

2

2

3

3

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

yxx

yxyxx

x

yxyxx

yxx

yxxyxyxx

yxx

yxxyxyxx

xyx

yx

xyx

yxx

yxyxxx

xxyx

yx

yxyx

y

yxx

yxxx

xxxyx

yx

xx

xyyx

xx

xx

yx

xx

xyx

(8.37)

, , 0

, x

y

8.2

a22

x2 b2xy c22

y2

(8.38)

Airy . ,

. 0 .

151

Page 163: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

22

222

222

222

222

2

2

222

222

2

2

2

2222

22

ca

ycxybxay

ycxybxax

ycxybxayx

, 2 =0

. , .

(8.38) (8.26) ,

222 ,, bac xyyyxx (8.39)

.

,

2211 acEEx

ue yyxxxx (8.40)

2211 caEEy

ve xxyyyy (8.41)

22 caEE

e yyxxzz (8.42)

G

bGx

vyue xy

xy 2221 2 (8.43)

u , (8.40) x

u x, y xE

c2 a2 c1 y (8.44)

v , (8.41) y

v x, y yE

a2 c2 c3 x (8.45)

c1(y), c3(x) , (8.44), (8.45)

(8.43) , (8.46) .

152

Page 164: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

12

uy

vx

12

dc1dy

dc3dx

b22G

(8.46)

(8.46) 1 , c1(y) y 1 c3(x) x

1 . .

c1 c4y c5c3 c6x c7

(8.47)

c4~c7 (8.46) .

c4 c6b2G

(8.48)

( ) , 0 .

c5 c7 0 (8.49)

. (8.48) ,

u x, yxE

c2 a2 c4y

v x, yyE

a2 c2 c4b2G

x (8.50)

2 0 .

, (8.51) .

z12

vx

uy

(8.51)

(8.51) (8.50)

vx

uy

c4b2

Gc4 0 (8.52)

c4 .

153

Page 165: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

c4b2

2G (8.53)

, u, v (8.54) .

u x, yxE

c2 a2b22G

y

v x, yyE

a2 c2b22G

x (8.54)

8.3

, 2

. , x=y=0 u=v=0

.

AxyAyAxb

AxyyAyyxAa

xyyyxx

xyyyxx

2,,)(

,3

,32)(

22

2332

(8.55)1,2

.

(8.25)’ .

(a)

03

0

022320

223

2

232

AyAyyy

Axyx

Ayx

AxyAxyxyy

Ayyxx

Ayx

yyxy

yxxx

(b)

02220

42220

2

2

AyAyyy

Axyx

Ayx

AxAxAxxyy

Axx

Ayx

yyxy

yxxx

154

Page 166: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(a) (b)

.

(a) . 2 Hooke

(a) ,

2

323

332

122

1

32

311

31

321

AxyEGx

vyue

yyxyEA

Eyve

yyyxEA

Exue

xyxy

xxyyyy

yyxxxx

(8.56)1~3

. u (8.56)1 x .

ycxyxyyxEA

dxyyyxEAdx

xuu

1333

332

332

31

332

(8.57)

v (8.56)2 y

xcyyxyEA

dyyyxyEAdy

yvv

24

224

323

122

2121

32

31

(8.58)

(8.57) (8.58) c1 c2 .

(8.56)3 0 0 .

(8.56)3 (8.57), (8.58) ,

xcdxdyyxy

xEA

ycdydxyxyyx

yEA

xv

yu

24

224

1333

122

2121

332

31

155

Page 167: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

2

2123

12

1231

AxyE

xcdxdyc

dydxyx

EA

xv

yu

3

3

21x

EAxc

dxdyc

dyd (8.59)

, (8.60)

xv

yu

(8.60)

0 xv

yu , .

xcdxdxy

EAyc

dydxyxyx

EA

22

1223 2

31

2321 2

31 xyx

EAxc

dxdyc

dyd (8.61)

(8.59), (8.61) , c1, c2

.

231 3

1 xyxEAyc

dyd (8.62)

(8.63) . c3

333

1 3cxyyx

EAc (8.63)

156

Page 168: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

c2

22 xy

EAxc

dxd (8.64)

x , (8.65) . c4

422

2 2cyx

EAc (8.65)

u, v (8.57), (8.58) c1, c2

33

333333

13

32

3

cxyEA

cxyyxEAxyxyyx

EAu

(8.66)

422

4

4224224

16

212

262

61

2

cyxyEA

cyxEAyyxy

EAv

(8.67)

c3, c4 ,

: x=y=0 u=v=0 , c3=c4=0

. u, v .

8.4 3

L a z=0~L .

(1) (u,v,w) . c

u= czy, v= czx, w=0 (8.68)

(2) .

(3) .

157

Page 169: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(4) z=L ( ) .

1) (8.68) , .

20

21

21,

20

21

21

,021

21,00

,0,0

cycyzu

xwecxcx

yw

zve

czczxv

yue

zzwe

czxyy

veczyxx

ue

zxyz

xyzz

yyxx

Hooke (8.12) 0 .

yz, zx .

GcyGcxGe zxxzyzyzzy

yxxyzzyyxx

,2

,0,0

2) (7.64)

00

,000

,000

zGcx

yGcy

xzyx

Gcxzyxzyx

Gcyzyxzyx

zzyzxz

zyyyxy

zxyxxx

,

3) : z=L n (0,0,1) , z=0

(0.0,-1)

Cauchy

z=L : 00

0000

100 GcxGcyGcxGcy

GcxGcy

, z=0 z=L

, r=(x, y) 90°

158

Page 170: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(r=a) n ,

(8.69) .

0,sin,cos0,,ay

axn (8.69)

a , x , x=a

cos , y=a sin Cauchy

0cossincossinsincos

,000

0000

0sincos

GcaxyGct

tGaxGcy

GcxGcy

z

z

(8.70)

, 0

4) z=L .

t = (-Gcy, Gcx, 0) dS=dxdy

0

0

,00

22

22

22

22

xa

xa

a

aAA

zy

xa

xa

a

aAA

zx

AAzz

dyxdxGcdxdyGcxdxdy

ydydxGcdxdyGcydxdy

dxdydxdy

(8.71)1~3

(x, y, L) , dS dM ,

r = (x, y, 0)

32222

3

321

00 eeeee

trM

dSyxGcdSGcyGcxdSGcxGcy

yx

dSd

(8.72)

159

Page 171: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

dS dM , M =(0, 0, Mz)

442

00

3

22

22

4aGcaGcddrrGc

dxdyyxGcdMM

aAA

zz

(8.73)

8.5

,

0,, 22zzxyyzxzyyxx xy

0000

,000

,000

2

2

zyxzyx

zx

yxzyx

zyy

xzyx

zzyzxz

zyyyxy

zxyxxx

, ,

(8.74) .

021,1

021,11

021,11

313122

232322

121222

Gexy

EEe

Geyx

EEe

Gexy

EEe

yyxxzzzz

xxzzyyyy

zzyyxxxx

(8.74)1~6

(8.74) , (E.4.5) .

,

160

Page 172: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

00,0

00,0

00,0

yye

xe

ze

zyxe

yxe

ze

ye

yxze

xze

ye

xe

xzye

zxxyzxyzz

yzxyzxyy

xyzxyzxx

EEze

xe

xze

EEye

ze

zye

EEExe

ye

yxe

xxzzzx

zzyyyz

yyxxxy

202,02

220,02

422,02

2

2

2

2

2

2

2

2

2

2

2

2

. , .

, .

,

.

8.5 (Principle of Saint-Venant)

A

A’ A A’

,

2

.

.

161

Page 173: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(a)

(b)

8.1

A

A

p0

F=p0A

p0

p0F

p0

A

A

M=FdL

F

F

dLdLF

FMM h

h

8.1 (a) (b)

(a) 2

( ) ( )

(b) 2

162

Page 174: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

2

(1) Airy (x,y) xx, yy, xy

1. = A y2 + B x2

2. = ex sin(y)

3. = x ex cos(y)

(2) =Ay3+Cx3 Airy

xx, yy, xy .

exx, eyy, exy .

(3) Airy 4

.

(4) (Saint-Venant)

(5) (E.8.1) ,

.

Vijij dVeE

21

(E.8.1)

(6.18), (6.19) .

(6) u

a, b, c , E

u u1,u2,u3

ax by,by cz,cz ax (E.8.2)

(7) Airy .

163

Page 175: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

)cosh()sin( kykx (E.8.3)

, 2

)cosh(kyky eeky , k

(8) O (0,0,0) x3

RR

xA

Rxx

AR

xxAuuu 43,,,, 3

23

332

331

321 , (E.8.4)

A , 23

22

21 xxxR

: ,)3,2,1,:(, 21 kn

Rnx

xRnRR

xRx

xR

nk

k

nn

k

k

k

52

21

32

5121

323

21

1

33 RxxRxRxxxRxRxx

x

(9) Airy ( 11, 22, 12) (u1,u2)

21

222

1

22xpxp

(E.8.5)

(x1, x2)= (0,0) (u1,u2)= (0,0) , x1=x,

x2=y

164

Page 176: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

9.

9. 1

6

Newton Newton1*

ij p ij Vkk ij 2 Vij p ijvk

xkij

vi

x j

vj

xi

(9.1)

Euler (7.63)

Dvi

DtXi

pxi xi

vk

xk xk

vk

xi xk

vi

xk

(9.2)

Xi

( : ) (7.53)

t

vk

xk

0 vk

xk

0 (9.3)

(9.2)

Dvi

DtXi

pxi

2vi

xk xk

(9.4)

3 /

/ 3 Laplace

ij (6.6)

165

1

Page 177: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

*2 vi (i=1,2,3), p 4

(9.3) (9.4) 4

9. 2

vn s

vn fvt f

vt s0

0

it̂

ijiji tt ˆ (9.5)

Newton (9.1) (9.5)

Laplace2

x12

2

x22

2

x32

2

xk xk

166

Page 178: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

jiji

ji

j

j

ijij

k

kjiji

npn

nxv

xvn

xvnpt

'

ˆ (9.6)

ij'

0 ii pnt̂

9.1(a) 9.1(b)

9.1(c) 9.1(d)

167

Page 179: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

[ ( )2 ] = [ ]

p1 p2

9.1(a) dx dy

9.1(b)

x-z y-z

x-z 9.1(c) dy

9.1(d) dyd

R1 dx R1d d dx/R1

dyd dydx/R1 y-z

dydx/R2 dxdy

dydx/R1+ dydx/R2 dxdy

1R1

1R2

p1 p2 (9.7)

Laplace

R1 R2 p1- p 2>0

R1= R2= p1= p 2

nk ik2

ik1 0

Laplace

168

Page 180: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

nk ik2

ik1 1

R1

1R2

ni (9.8)

p1 p2 ni ik2 ' ik

1 ' nk1R1

1R2

ni (9.9)

ij ' 0 (9.7)

9. 3 Reynolds

V L L V

(9.4)

LVttVppVvuLxx iiii /',/',/',/' 2 (9.10)

''

'''

'' 2

kk

i

i

i

xxu

VLxp

DtDu

(9.11)

2

Reynolds Re

Re VL VL

vi

169

Page 181: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

ui 'xi '

0 (9.12)

(9.11) (9.12)

Reynolds

Reynolds

(9.11)

Reynolds

Reynolds

u2

u y V2

V/L

V 2

V LVL

(9.13)

Reynolds

(1) 10 2mm/sec

Reynolds m 1.4

(1.4 10 2 g / cm sec )

(2)

Reynolds 50km/h 6m

Reynolds 20 1.808 10 4

g/cm sec) = 0.150st (cm2/sec)

170

Page 182: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

9. 4

Navier-Stokes Reynolds

Navier-Stokes

pxi

2vi

xk xk

0 (9.14)

2h

9.2

x 0

v1=v(x2), v2=v3=0, v1(h)=0, v1(-h)=0

Navier-Stokes

px1

2v1

x22 0 (9.15)

px2

0 (9.16)

px3

0 (9.17)

171

Page 183: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(9.16) (9.17) p x1 (9.15)

x12 p x1

2 0 p x1

(9.15)

d2v1

dx22

1 dpdx1

const (9.18)

x2

v1 A Bx2x2

2

2dpdx1

(9.19)

A B A h2 2 dp dx1 , B 0

v11

2dpdx1

h2 x22 (9.20)

Navier-Stokes

Dvi

DtXi

ij

x j

(E9.1)

r, ,z x,y,z

x r cosy r sinz z

rx

xr

cos ,ry

yr

sin

xyr2

sinr

,y

xr2

cosr

(E9.2)

172

Page 184: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

x, y r,

xrx r x

cosr

sinr

yry r y

sinr

cos(E9.3)

vx vr cos v sinvy vr sin v cosvz vz

(E9.4)

rr xx cos2yy sin2

xy sin 2

xx sin2yy cos2

xy sin 2

r yy xx cos sin xy cos 2 (E9.5)

zr zx cos zy sin

z zx sin zy cos

zz zz

xxvx

x, yy

vy

y, zz

vz

z,

xy12

vx

yvy

x, yz

12

vy

zvz

y, zx

12

vz

xvx

z

(E9.6)

(E9.3) (E9.4) (E9.6)

173

Page 185: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

xx cosr

sinr

vr cos v sin

cos2 vr

rsin2 vr

r1r

vcos sin

vr

1r

vr vr

,

yy sin2 ur

rcos2 vr

r1r

vcos sin

vr

1r

vr vr

,

xysin 2

2vr

r1r

v vr

rcos 2

rvr

1r

vr vr

(E9.7)

zz, zy, zx

rrvr

r,

vr

r1r

v, zz

vz

z

r12

1r

vr vr

vr

, zr12

vr

zvz

r,

z12

1r

vz vz

(E9.8)

Dvi

Dtai x

axvx

tvx

vx

xvy

vx

yvz

vx

z(E9.9)

(E9.4) (E9.5) (E9.9)

174

Page 186: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

ax tvr cos v sin

vr cos v sin cosr

sinr

vr cos v sin

vr sin v cos sinr

cosr

vr cos v sin

vz zvr cos v sin

cosvr

tvr

vr

rvr

vr v2

rvz

vr

z

sinvt

vrvr

vr

v vrvr

vzvz

(E9.10)

ax ar cos a sin (E9.11)

arvr

tvr

vr

rvr

vr v2

rvz

vr

z

arvt

vrvr

vr

v vrvr

vzvz

(E9.12)

azvz

tvr

vz

rvr

vz vzvz

z(E9.13)

ij

x j

(E9.3) (E9.5)

xx

xxy

yxz

z

175

Page 187: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

rr

r1r

r rr

rrz

zcos

1r

r

r2 r

rz

zsin

(E9.14)

vr

tvr

vr

rvr

vr v2

rvz

vr

zXr

rr

r1r

r rr

rrz

zvt

vrvr

vr

v vrvr

vzvz

X1r

r

r2 r

rz

z

vz

tvr

vz

rvr

vz vzvz

zXz

zr

r1r

z zz

zrz

r

(E9.15)

rr p 2 err p 2vr

r

p 2 e p 2vr

r1r

v

zz p 2 ezz p 2vz

z

r 2 er1r

vr vr

vr

z 2 e z1r

vz vz

zr 2 ezrvr

zvz

r

(E9.16)

(E9.15) Navier-Stokes

176

Page 188: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

vr

tvr

vr

rvr

vr v2

rvz

vr

zXr

pr

2vrvr

r2

2r2

v

vt

vrvr

vr

v vrvr

vzvz

X1r

p 2v2r2

vr vr2

vz

tvr

vz

rvr

vz vzvz

zXz

pz

2vz

(E9.17)

22

r2

1r r

1r2

2

2

2

z2 (E9.18)

R

U

vz = vr , vr r = vr z

2vr

z2

pr

,pz

0 (E9.21)

1r

rvr

rvz

z0 (E9.22)

z 0 vr vz 0,z h vr 0, vz U,r R p p0

(E9.23)

177

Page 189: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

h p0 (1)

vr1

2pr

z z h (E9.24)

(2) z

U1r

ddr

rvr dz0

h h3

12 rddr

ddpdr

(E9.25)

p p03 Uh3 R2 r2 (E9.26)

F3 UR4

2h3 (E9.27)

h

x-y x z

9.3

178

Page 190: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

vx=v(z) Navier-Stokes

d 2vdz2 g sin 0,

dpdz

g cos 0 (E9.31)

zx= dv/dz=0 zz=-p=-p0 p0

z=0 v=0

p p0 g h z cos , vgsin2

z 2h z (E9.32)

y

Q vdz0

h gh2 sin3

(E9.33)

(3) Couette

9.4

rad/sec

T

R1

R2

(4) Navier-Stokes

a b

9. 5

9.4 Couette

179

Page 191: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

ij p ij (9.21)

Dvi

DtXi

pxi

(9.22)

p vi Xi

v1

x1

v2

x2

v3

x3

0vi

xi

0 (9.23)

(9.23)

v3=0 v1 v2 x1 x2

(9.23)

u1

x1

v2

x2

0 (9.24)

x1, x2 v1,v2

v1 x2

, v2 x1

(9.25)

(9.24) x1, x2

9.25) (9.22)

180

Page 192: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

2

t x2 x2

2

x1 x2 x1

2

x22 X1

1 px1

2

t x1 x2

2

x12 x1

2

x1 x2

X21 p

x2

(9.26)

0 p

t2

x2

2

x1 x1

2

x2

0 (9.27)

22

x12

2

x22 (9.28)

dx1

v1

dx2

v2

(9.29)

v2dx1 v1dx2 0 (9.25)

x1

dx1 x2

dx2 d 0 (9.30)

x1, x2

9. 6

181

Page 193: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

I C v dlC

viCdxi (9.31)

C v dl

Stokes C

I C v n dSS

curlv i ni dSS (9.32)

S C ni

curlv i eijkv j ,k curlv

C

DDt

v dlc

(9.33)

C

DDt

vi dxiC

DDtC

vidxiDvi

Dtdxi vi

Ddxi

DtC(9.34)

Ddxi Dt dxi dvi

(9.22) Dvi/Dt (9.34)

DDt

vi dxiC

1 pxi

Xi dxi vidviC

dpC

Xi dxiC

12

dv2

C

(9.35)

182

Page 194: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

3 v2

0 2 0

DDt

vi dxiC

dpC

(9.36)

(barotropic) (9.36) 0

DDt

vi dxiC0 (9.37)

Helmholtz

0 0

0

(9.32) 0

9. 7

0

v curlv 0 (9.38)

eijkvj ,k 0 (9.39)

2

3

183

Page 195: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

v1

x2

v2

x1

0 (9.40)

(9.25) (9.40)

2

x12

2

x22 0 (9.41)

Laplace

3

0,0,03

1

1

3

2

3

3

2

1

2

2

1

xv

xv

xv

xv

xv

xv

(9.42)

v grad

(9.42)

2

x12

2

x22

2

x32 0 (9.43)

Laplace

Euler

184

Page 196: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

0

9.4 O

xy x,y,z 2

ax by cz Ax2 By2 Cz2 Dxy Eyz Fzx

=0

z=0 vz z 0 x y z 0 x y 0a = b = c = 0, C = - A - B, E = F = 0

Dxy x y

Ax2 By2 A B z2

z A=B

A x2 y2 2z2

vx 2Ax, vy 2Ay, vz 4Az

dxvx

dyvy

dzvz

dx2Ax

dy2Ay

dz4Az

x2z=c1 y2z=c2 3

y B=0

A x2 y2

xz=const

185

Page 197: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

(5) z

(a) 1

4log x2 y2 1

2log r r2 x2 y2

(b) x

(c) Arn cos n tan 1 yx

(d) cos

r

ur r, u

1r

(6) 2

v1 y, v2 x

, v3 0

9.4

186

Page 198: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

=

(a) c

(b) y

(c) Arn sin n

(d) sin

r

(7) (5)

(a) 0

(b)

187

Page 199: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

本書は 2011 年 4 月 1日、長岡技術科学大学より UD Project の一冊として刊行

されたものの復刊です。

連続体力学の基礎

れんぞくたいりきがくのきそ

Fundamentals of Continuum Mechanics

2015 年 6 月 19 日 初版発行©

著 者 古 口 日出男

永 澤 茂

発行者 福 田 雅 夫

発行所 GIGAKU Press

(長岡技術科学大学出版会)

〒940-2188 新潟県長岡市上富岡町 1603-1

長岡技術科学大学内

電話 0258-47-9266

[email protected]

Printted in Japan

ISBN978-4-907996-09-3

Page 200: 連続体力学の基礎 - nagaokaut.ac.jp › gigaku-press › wp-content › ...連続体力学の基礎 れんぞくたいりきがくのきそ 古口日出男・永澤 茂 共

ISBN:978-4-907996-3