E ssonne N anopole September 20, 2004ALTIS Semiconductor Device Engineering team USING TCAD TO...

20
ALTIS Semiconductor Device Engineering team Essonne Nanopole September 20, 2004 USING TCAD TO MINIMIZE PROCESS DISPERSIONS G. DUBOIS D. ANDRADE
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    216
  • download

    2

Transcript of E ssonne N anopole September 20, 2004ALTIS Semiconductor Device Engineering team USING TCAD TO...

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

USING TCAD TO MINIMIZE

PROCESS DISPERSIONS

G. DUBOIS

D. ANDRADE

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

INTRODUCTION

CALIBRATION RESULTS

DIM PC PROCESS WINDOW SIMULATION RESULTS

OTHER PROCESS CAUSES OF VARIATION

COMBINED EFFECT OF PROCESS VARIATIONS

CONCLUSION

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

A - INTRODUCTION

The goal is to demonstrate that TCAD could be very usefulin identifying the process root causes of transistor electrical parameters dispersion, mainly Ion , Vt and Ioff.The followingstudy was done on a 0.18µm designed gate length CMOSprocess .

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

CoSi

POLY P+

1.8 V P FET: 1.8 V N FET:

Substrate P- Boron : 5E15 / cm3

.18 CMOS FEOL : SUMMARY

B

As As In

CoSi

POLY N+

BBCoSi Sb

CoSi

POLY P+

AsAs BBCoSi Sb B B

CoSi

STI B

In

CoSi

POLY N+

P FET1.8 V

P FET3.3 V

N FET3.3 V

N FET1.8 V

3.3 V P FET : 3.3 V N FET:

In In CoSiCoSi

PhSTI

AsPh

CoSiPh AsPh

PhSTI

Ph

CoSiB B

STI STI

DEVICES MENU

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

B - CALIBRATION

PROCESS CALIBRATION:Impurity diffusion, activation models and dislocation calibration

variables were taken from INFINEON calibration work.

ELECTRICAL CALIBRATION : Mobility model has been shared with INFINEON simulation

group.

RESULTS :I-V Characteristics end up very close to measurements

performed on product.

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

C10 NFET S/D PROFILS

1,00E+12

1,00E+13

1,00E+14

1,00E+15

1,00E+16

1,00E+17

1,00E+18

1,00E+19

1,00E+20

1,00E+21

1,00E+22

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Y

CO

NC

EN

TR

AT

ION

ARSENIC

PHOPHORUS

INDIUM

BORON

NET DOPING

C10 NFET PWELL UNDERGATE PROFILS

1,00E+12

1,00E+13

1,00E+14

1,00E+15

1,00E+16

1,00E+17

1,00E+18

1,00E+19

1,00E+20

1,00E+21

1,00E+22

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Y

CO

NC

EN

TR

AT

ION

BORON

INDIUM

ARSENIC

PHOSPHORUS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

C10 NFET X SECTION AT SILICON SURFACE

1,00E+12

1,00E+13

1,00E+14

1,00E+15

1,00E+16

1,00E+17

1,00E+18

1,00E+19

1,00E+20

1,00E+21

1,00E+22

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2

X

CO

NC

EN

TR

AT

ION

NET DOPING

BORON

ARSENIC

PHOSPHORUS

INDIUMSOURCE DRAIN

FET CHANNEL LENGTH

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

C10 NFET 10 x .18

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0,0001

0,001

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2

VGS

IDS

MEASURE

SIMUL

SIMUL VT ADJ

Simulation properly matches product measurements.

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

C – PC DIM PROCESS WINDOW SIMULATION

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

C – PC DIM PROCESS WINDOW SIMULATION

The simulation shows a good matching with « the real world ».

Halo implant tailoring allows to reduce the Ion (or Vt) spread,

due to PC DIM variation, within +/- 5 %.

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

D - ANALYSIS OF OTHER CAUSES OF

ELECTRICAL VARIATION

1° VARIATION OF EXTENSION IMPLANT DUE TO SCREEN

OXIDE THICKNESS SPREAD.

The extension implant being low energy, it is strongly

influenced

by screen oxide thickness variation…

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

POLYSPACER 0

REMAINING Gox + SPACER 0 on Si

REMAINING GOX THICK SPACER 0 THICK SCREEN OX THICK

2nm 9,3nm 5,2nm

0nm 9,3nm 6,3nm

3nm 9,3nm 5,8nm

2nm 8,5nm 4,6nm

2nm 10nm 5,7nm

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

TCAD simulation shows that:

A huge variation of remaining gate oxide induces a small

variation of screen oxide.

Screen oxide thickness variation represents 50% of Spacer 0

(poly oxidation thickness) variation.

Consequently, the extension implant is not impacted

by gate oxide, nor Spacer 0 fluctuations.

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

2° VARIATION OF ANNEALS TEMPERATURE

Rapid Thermal Process single wafer tools, using infra red

heating systems, may present slight temperature variations inducing

wafer to

wafer, and within wafer, spread.

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

E – COMBINED EFFECTS OF PROCESS

VARIATIONS

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

ALTIS Semiconductor Device Engineering team

Essonne Nanopole

September 20, 2004

TCAD simulation consists in a very efficient support formanufacturing engineers. It indeed provides an accuratesizing of the different processes effect.

Only considering PC dim & T° anneal variations induces85% of the devices electrical parameters total spread. Thosetwo components are the first order root causes of the total device electrical variation.

F – CONCLUSION