E.-C. Aschenauer, T. Barton, R. Darienzo, A. Kiselev BNL, 06/05/2013

42
E.-C. Aschenauer, T. Barton, R. Darienzo, A. Kiselev BNL, 06/05/2013 Update on EIC detector Performance Simulations

description

Update on EIC detector Performance Simulations. E.-C. Aschenauer, T. Barton, R. Darienzo, A. Kiselev BNL, 06/05/2013. Contents. EicRoot framework development EIC detector solenoid modeling EIC smearing generator update TODO lists. EicRoot development. EIC in FairRoot framework. - PowerPoint PPT Presentation

Transcript of E.-C. Aschenauer, T. Barton, R. Darienzo, A. Kiselev BNL, 06/05/2013

Page 1: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

E.-C. Aschenauer, T. Barton, R. Darienzo, A. Kiselev

BNL, 06/05/2013

Update on EIC detector Performance Simulations

Page 2: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Contents EicRoot framework development EIC detector solenoid modeling EIC smearing generator update

TODO lists

Page 3: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

EicRoot development

06/05/2013 A.Kiselev

Page 4: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

EIC in FairRoot framework

ROOT VMC (GEANT3, GEANT4) VGM (ROOT, GEANT) …

FairRoot externalpackage bundle

FairBaseC++ classes

CbmRootR3BRoot

PandaRoot

eic-smear

EicRoot

-> Make best use of FairRoot development -> Utilize efficiently existing codes developed by EIC

taskforce

FairRoot is officially maintained by GSI; dedicated developers

O(10) active experiments; O(100) users

Page 5: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

End user view

-> MC points simulation

No executable (steering through ROOT macro scripts)

digitization “PID” Passreconstruction-> Hits -> “Short”

tracks-> Clusters

-> “Combined” tracks

-> Vertices @ IP

ROOT files for analysis available after each step

C++ class structure is well defined at each I/O stage

Page 6: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

EIC detector layout (phase 2)

Page 7: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

EIC detector layout (phase 1)

Page 8: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Detector view in EicRoot

EMC and tracking detectors implemented so far

CEMC

BEMCSOLENOID

FEMC

Page 9: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

Tracking in EicRoot

06/05/2013 A.Kiselev

Page 10: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

General Magnetic field interface exists Detector geometry is described in 0-th

approximation:

Digitization exists (simple yet useable) “Ideal” track reconstruction inherited from PandaRoot

codes

Silicon vertex tracker Silicon forward/backward tracker TPC GEM forward tracker

Page 11: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Vertex silicon tracker MAPS technology; ~20x20mm2 chips, ~20 m 2D

pixels STAR upgrade “building blocks” (cable assemblies)MAPS R&D for EIC within BNL LDRD

Page 12: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Vertex silicon tracker 6 layers at [30..160] mm radius 0.37% X0 in acceptance per layer simulated precisely; digitization: single discrete pixels, one-to-one from

MC points

Page 13: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Other tracking elements 2x7 disks with up to 280 mm radius N sectors per disk; 200 m silicon-equivalent thickness digitization: discrete ~20x20 m2 pixels

forward/backward silicon trackers:

TPC:

GEM trackers:

~2m long; gas volume radius [300..800] mm 1.2% X0 IFC, 4.0% X0 OFC; 15.0% X0 aluminum

endcaps digitization: idealized, assume 1x5 mm GEM pads

3 disks behind the TPC endcap STAR FGT design digitization: 100 m resolution in X&Y; gaussian

smearing

Page 14: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Tracker zoomed view

BGT

BST

FST

VST

TPC

FGT

Page 15: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013

Tracking scheme So-called ideal PandaRoot track “finding”:

PandaRoot track fitting code:

Monte-Carlo hits are digitized on a per-track basis

Effectively NO track finder

Kalman filter Steering in magnetic field Precise on-the-fly accounting of material

effects -> pretty much useable for acceptance and single-

track resolution studies;-> less suitable for radiation length scans;-> hardly useful for efficiency and occupancy

estimates;

A.Kiselev

MRS-B1 solenoiddesign used

Page 16: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Example plots from tracking code

1 GeV/ctracks at

32 GeV/ctracks at

<ndf> = 206

<ndf> = 9

-> look very reasonable from statistical point of view

Page 17: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Momentum resolution study (1)

track momentum resolution vs. pseudo-rapidity

-> expect 2% or better momentum resolution in the whole kinematic range

Page 18: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Momentum resolution study (2)

track momentum resolution at vs. Silicon thickness

-> ~flat over inspected momentum range because of very small Si pixel size

Page 19: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Momentum resolution study (3)

track momentum resolution at vs. Silicon pixel size

-> 20 micron pixel size is essential to maintain good momentum resolution

Page 20: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Tracking TODO list Perform geometry optimization

Implement more realistic digitization schemes

Think about track finder algorithms Implement vertex builder

Account for beam particle parameter “smearing”

Page 21: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

Calorimeters in EicRoot

06/05/2013 A.Kiselev

Page 22: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

General Written from scratch Unified interface (geometry definition,

digitization, clustering) for all EIC calorimeter types

Rather detailed digitization implemented

Page 23: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Backward EM Calorimeter (BEMC)

PWO-II, layout a la CMS & PANDA

-2500mm from the IP both projective and non-

projective geometry implemented

digitization based on PANDA R&D

10 GeV/c electron hitting one of the four BEMC quadrants Same event (details of shower development)

Page 24: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Forward EM Calorimeter (FEMC)

tungsten powder scintillating fiber sampling calorimeter technology

+2500mm from the IP; non-projective geometry sampling fraction for e/m showers ~2.6% “medium speed” simulation (up to energy deposit in fiber

cores) reasonably detailed digitization; “ideal” clustering code

tower (and fiber) geometrydescribed precisely

Page 25: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

FEMC energy resolution study

-> good agreement with original MC studies and measured data

“Realistic” digitization: 40MHz SiPM noise in 50ns gate; 4m attenuation length; 5 pixel single tower threshold; 70% light reflection on upstream fiber end;

3 degree track-to-tower-axis incident angle

Page 26: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

FEMC tower “optimization”

original mesh

optimized mesh -> optimized mesh design can probably decrease “constant term” in energy resolution

Page 27: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Barrel EM Calorimeter (CEMC)

same tungsten powder + fibers technology as FEMC, … … but towers are tapered non-projective; radial distance from beam line [815 ..

980]mm

-> barrel calorimeter collects less light, but response (at a fixed 3o angle) is perfectly linear

Page 28: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

CEMC energy resolution study

-> simulation does not show any noticeable difference in energy resolution between straight and tapered tower calorimeters

3 degree track-to-tower-axis incident angle

Page 29: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Calorimeter TODO list Tune geometry Perform systematic resolution studies Implement shower parameterization (fast

MC)

Implement realistic cluster split algorithm

Add hadronic calorimeters

Page 30: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

EicRoot overall TODO list Prepare documentation Take care about official release &

installation

Perform geometry optimization

Implement IR (material and fields) Implement PID algorithms (RICH, TPC dE/dx,

…)

Start physics simulations

Page 31: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

EIC solenoid modelingRichard E. Darienzo, SBU graduate student

06/05/2013 A.Kiselev

Page 32: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

EIC solenoid modeling Yield large enough bending for charged tracks at

large Keep field inside TPC volume as homogeneous as

possible Keep magnetic field inside RICH volume(s) small

main requirements:

Presently used design: MRS-B1

-> use OPERA-3D/2Dsoftware

Page 33: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

EIC solenoid modelingOther options investigated, like

4-th concept solenoid design

-> obviously helps to cancel “tails”

Page 34: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Solenoid modeling TODO list Optimize coil geometry and currents Check effects of adding iron shielding

Perform fine tuning of selected configuration

Come up with a consistent design matching all the experimental requirements

Page 35: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

eic-smear package

06/05/2013 A.Kiselev

Page 36: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

General architecture

Smearer:Smearer:Performs fast Performs fast

detector detector smearingsmearing

MC MC generator generator

outputoutput

MC tree MC tree code:code:

Builds ROOT Builds ROOT tree tree

containing containing eventsevents

eic-smear

• C++ code running in ROOT

• Builds with configure/Make

• Single libeicsmear.so to load in ROOT

gmc_tragmc_transnsMilouMilouRapgRapg

apap

PEPSIDPMjet

DjangoDjangohh

PYTHIAPYTHIA

Page 37: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Functionality built in

Function defining σ(X)

=f([E, p, θ, φ])

(single) quantity, X,

to smear:E, p, θ, φ

+ +Acceptance

for X inE, p, θ, φ, pT,

pZ

Easily configurable acceptance definitions Kinematic variable smearing declarations

either a priori knowledge of detector resolutions is needed or parameterization based on a full

GEANT simulation-> try out resolutions provided by EicRoot

fits …

Page 38: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Lepton-hadron separation via E/p

-> clearly separation becomes better in several

kinematic regions

all plots: 10GeV x 100GeV beams

Page 39: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Hadron identification with RICH

-> pion/kaon/proton identification should be possible up to momenta ~40 GeV/c

consider hadrons in pseudo-rapidity range ~[1.0 .. 3.0]

Page 40: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Migration in (x,Q2) bins10GeV x 100GeV

beams

-> “survival probability” is above ~80% in the region where tracking has superior resolution compared to

calorimetry

Page 41: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Smearing code TODO list Implement vertex position smearing Provide other (small) interface changes

required for EicRoot integration if needed

Keep physics resolution studies up to date using input provided by EicRoot

see https://wiki.bnl.gov/eic !

Page 42: E.-C. Aschenauer, T. Barton,  R. Darienzo,  A. Kiselev BNL, 06/05/2013

06/05/2013 A.Kiselev

Smearing code TODO list Implement vertex position smearing Provide other (small) interface changes

required for EicRoot integration if needed

Keep physics resolution studies up to date using input provided by EicRoot

Details on detector performance requirements are summarized here:

https://wiki.bnl.gov/eic/index.php/DIS:_What_is_important