Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus...

191
Created by XMLmind XSL-FO Converter. Fémtan Dr. Gácsi, Zoltán Dr. Mertinger, Valéria

Transcript of Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus...

Page 1: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

Created by XMLmind XSL-FO Converter.

Fémtan

Dr. Gácsi, Zoltán

Dr. Mertinger, Valéria

Page 2: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

Created by XMLmind XSL-FO Converter.

Fémtan Dr. Gácsi, Zoltán Dr. Mertinger, Valéria

Készült a TÁMOP-4.2.5.B-11/1-2011-0001 számú projekt keretében, a korábban nyomtatásban is megjelent Fémtan c. kiadvány alapján.

Azonossági szám: 59280

ISBN 963-16-1680-0

Műszaki Könyvkiadó Kft., Budapest

Page 3: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

iii Created by XMLmind XSL-FO Converter.

Tartalom

1. BEVEZETÉS .................................................................................................................................. 1 2. KRISTÁLYTAN ............................................................................................................................ 2

1. 2.1. A szilárdtestek szerkezete. Amorf és kristályos anyagok ............................................... 2 2. 2.2. A kristályrendszerek ....................................................................................................... 3 3. 2.3. Pontok, irányok és síkok a rácsban ................................................................................ 6 4. 2.4. Allotrópia ..................................................................................................................... 10 5. 2.5. A reális kristály. Kristályhibák ..................................................................................... 10

5.1. 2.5.1. Nulladimenziós hibák (ponthibák) ................................................................ 11 5.2. 2.5.2. Egydimenziós hibák (diszlokációk) .............................................................. 11 5.3. 2.5.3. Két- és háromdimenziós hibák (felületek, szemcsék és szemcsehatárok) .... 13

6. 2.6. A fémek és ötvözetek három legfontosabb rácsa ......................................................... 15 7. Kérdések, feladatok ............................................................................................................. 17

3. FÉMKRISTÁLYOK ALAKVÁLTOZÁSA ................................................................................. 18 1. 3.1. Rugalmas alakváltozás ................................................................................................. 18 2. 3.2. Maradó alakváltozás ..................................................................................................... 19 3. 3.3. A diszlokációk szerepe a képlékeny alakváltozásban .................................................. 24 4. 3.4. Sokkristályos fémek alakváltozása ............................................................................... 26 5. Kérdések, feladatok ............................................................................................................. 27

4. ÖTVÖZETEK .............................................................................................................................. 28 1. 4.1. Az ötvözet fogalma ...................................................................................................... 28 2. 4.2. A fázisegyensúlyi diagram és olvasásának szabályai ................................................... 28 3. 4.3. Az ötvözetek szövetelemei ........................................................................................... 32 4. 4.4. Ideális fázisegyensúlyi diagramok ............................................................................... 33 5. Kérdések, feladatok ............................................................................................................. 47

5. FÉMÖTVÖZETEK KRISTÁLYOSODÁSA ÉS ÁTALAKULÁSA ........................................... 48 1. 5.1. A kristályosodás folyamata .......................................................................................... 48

1.1. 5.1.1. A homogén és a heterogén csíraképződés .................................................... 48 1.2. 5.1.2. A szilárd oldatok kristályosodása ................................................................. 52 1.3. 5.1.3. Az eutektikum kialakulása ............................................................................ 58 1.4. 5.1.4. A fogyási üreg és a porozitás keletkezése ..................................................... 59

2. 5.2. A fémötvözetek átalakulásai szilárd állapotban ........................................................... 61 2.1. 5.2.1. Az átalakulások csoportosítása ..................................................................... 61 2.2. 5.2.2. A kristálycsírák képződésével és növekedésével zajló folyamatok .............. 62 2.3. 5.2.3. Martenzites jellegű átalakulások ................................................................... 70 2.4. 5.2.4. Bénites átalakulás ......................................................................................... 71

3. Kérdések, feladatok ............................................................................................................. 71 6. GYAKORLATI ÖTVÖZETEK ................................................................................................... 73

1. 6.1. A vas-szén ötvözetrendszer .......................................................................................... 73 1.1. 6.1.1. A metastabilis ( - ) ötvözetek diagramja ............................................ 75 1.2. 6.1.2. A stabilis (Fe-grafit) ötvözetek diagramja .................................................... 76 1.3. 6.1.3. A vas-szén ötvözetekben előforduló szövetelemek ...................................... 76 1.4. 6.1.4. Nem egyensúlyi szövetelemek kialakulása ................................................... 84 1.5. 6.1.5. Átalakulási diagramok .................................................................................. 87

2. 6.2. Gyakorlati vasötvözetek ............................................................................................... 90 2.1. 6.2.1. Színfémminőségek ........................................................................................ 90 2.2. 6.2.2. Szilárd oldatos vasötvözetek ......................................................................... 90 2.3. 6.2.3. Szilárd oldat + karbid jellegű vasötvözetek .................................................. 90 2.4. 6.2.4. Szilárd oldat + karbid + egyéb fázis szövetszerkezetű vasötvözetek ............ 91

3. 6.3. Rézalapú ötvözetek ...................................................................................................... 91 4. 6.4. Az alumínium ötvözetei ............................................................................................... 93 5. 6.5. Kompozitok (olvasmány) ........................................................................................... 107 6. Kérdések, feladatok ........................................................................................................... 109

7. HŐKEZELÉSI ELJÁRÁSOK .................................................................................................... 110 1. 7.1. Alapfogalmak ............................................................................................................. 110 2. 7.2. Lágyítás ...................................................................................................................... 111 3. 7.3. Normalizálás .............................................................................................................. 112

Page 4: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

Fémtan

iv Created by XMLmind XSL-FO Converter.

4. 7.4. Szemcsedurvító izzítás ............................................................................................... 113 5. 7.5. Diffúziós (homogenizál) izzítás ................................................................................. 114 6. 7.6. Újrakristályosító izzítás .............................................................................................. 114 7. 7.7. Stabilizáló izzítás ....................................................................................................... 114 8. 7.8. Feszültségcsökkentő izzítás ........................................................................................ 114 9. 7.9. A célok nemesítése ..................................................................................................... 114 10. 7.10. A réz- és az alumíniumötvözetek nemesítése ......................................................... 119 11. 7.11. Felületi edzés .......................................................................................................... 120 12. 7.12. Termokémiai kezelések .......................................................................................... 120 13. 7.13. Termomechanikus kezelések .................................................................................. 121 14. 7.14. Patentozás ............................................................................................................... 121 15. 7.15. Heterogenizáló izzítás ............................................................................................ 121 16. Kérdések, feladatok ......................................................................................................... 121

8. A FÉMÖTVÖZETEK SZERKEZETÉNEK VIZSGÁLATA .................................................... 122 1. 8.1. Alapfogalmak ............................................................................................................. 122 2. 8.2. A próbavétel. A vizsgálandó próbatestek beágyazása ................................................ 122 3. 8.3. A próbatestek csiszolása, polírozása és maratása ....................................................... 124 4. 8.4. A fénymikroszkóp felépítése ...................................................................................... 130 5. 8.5. Az elektronmikroszkópia alapjai ................................................................................ 134 6. 8.6. A kristályszerkezet vizsgálata röntgensugárral .......................................................... 140 7. 8.7. Mikroszkópos mérések ............................................................................................... 146 8. Kérdések, feladatok ........................................................................................................... 151

9. ANYAGVIZSGÁLAT ............................................................................................................... 153 1. 9.1. Alapfogalmak ............................................................................................................. 153 2. 9.2. Statikus mechanikai vizsgálatok ................................................................................ 153 3. 9.3. Dinamikus szilárdsági vizsgálatok ............................................................................. 161 4. 9.4. Ismétlődő terheléssel végzett vizsgálatok .................................................................. 163 5. 9.5. Kúszásvizsgálat .......................................................................................................... 166 6. 9.6. Technológiai vizsgálatok ............................................................................................ 167 7. 9.7. Radiográfia ................................................................................................................. 170 8. 9.8. Anyagvizsgálat ultrahanggal ...................................................................................... 171 9. 9.9. Mágneses és elektroinduktív eljárások ....................................................................... 176 10. 9.10. Festékpenetrációs eljárás ........................................................................................ 177 11. Kérdések, feladatok ......................................................................................................... 177

A LEGFONTOSABB FÉMTANI FOGALMAK ÉS MEGHATÁROZÁSAIK ........................ clxxix Irodalomjegyzék ............................................................................................................................. 187

Page 5: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

1 Created by XMLmind XSL-FO Converter.

1. fejezet - BEVEZETÉS

A bennünket körülvevő tárgyak anyagai között különféle fémeket találunk. Gondoljunk a szemüvegkeretre,

amely eloxálható, polírozható alumíniumötvözetből készül, az óra hátlapjára, amelynek anyag savalló acél, az

ónnal borított lágyacél lemezből készült konzervdobozra, a réz villamos vezetékre, az öntöttvas fürdőkádra vagy

a krómozott acélból készült csaptelepre.

A fémek széles körű alkalmazásának és használatának oka az, hogy ötvözeteiknek igen sok előnyös

tulajdonsága van. Ezek a következők:

– Többségük nagyon jól alakítható hengerléssel, kovácsolással, sajtolással, húzással, hidegfolyatással, így

belőlük változatos alakú, méretű használati eszközök készíthetők.

– Nagy szilárdságúak és szívósak. Más anyagok – pl. az üveg és a különféle kerámiák – a fémeknél szilárdabbak

és keményebbek, de nem kellően szívósak, emiatt ridegek, könnyen elrepednek, eltörnek. A fémötvözetekből

viszont megfelelő hőkezeléssel nagy szilárdságú, egyúttal kellően szívós használati eszközök készíthetők.

– Villamos és mágneses tulajdonságaik kedvezők. Jól vezető villamos huzalok, továbbá ellenállásanyagok és

különböző mágneses anyagok készíthetők belőlük.

– Felületük polírozással, eloxálással, felületkezeléssel tovább javítható, így tetszetős használati cikkek

készíthetők belőlük.

– Egy részük környezetbarát, mert az elhasználódott fémtermékek viszonylag könnyen feldolgozhatók újra (pl.

egyszerű olvasztással), vagy a természetben korrózió révén lebomlanak.

A fémes anyagok tulajdonságai attól függenek, hogy az atomok milyen kristályos rendbe szerveződnek, milyen

a különböző kristályos fázisok mérete, méreteloszlása, ill. elhelyezkedése. A fémötvözetek szerkezetét a gyártás

során módosítani lehet, így az olvasztás, öntés, képlékenyalakítás, ill. hőkezelés során alakul ki a fémes

anyagnak az a végső szerkezete, amely a termék tulajdonságait meghatározza.

A fémtan tudománya viszonylag fiatal, mintegy 120-150 éves múltra tekint vissza. A fémötvözetek

szerkezetének leírásával foglalkozó metallográfia tudományából fejlődött ki, majd felhasználta a fizikai –

különösen szilárdtestfizikai – kutatások új eredményeit, és mára a fémek előállításának, gyártásának,

hőkezelésének egyik alaptudományává vált.

Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani

Tanszékének alapító tanszékvezetője volt. Az általa elkezdett úton haladt tovább Káldor Mihály. Az általuk

készített Fémtan c. könyv (1975) számos generáció alaptankönyvévé vált.

Az elsősorban a középiskolásoknak szánt tankönyvünk elkészítésével az volt a célunk, hogy a hagyományokra

támaszkodva beépítsük a tankönyvünkbe a tudományos kutatás legújabb eredményeit.

A szerzők ezúton mondanak köszönetet azoknak, akik a tankönyv elkészítésében segítségükre voltak:

elsősorban Dr. Roósz András, Dr. Roósz Andrásné, Sólyom Jenő, Dr. Tranta Ferenc és Dr. Bárczy Pál

kollégáknak, akikkel a témakörben konzultációkat folytattunk. Nélkülözhetetlen segítséget nyújtottak továbbá

Gáthiné Solczi Ágnes a kézirat egy részének gépelésében, Kovács Árpád a scanning elektronmikroszkópos

felvételek elkészítésében, Kovács Tamásné és Nagy Lászlóné a csiszolási-polírozási munkában, valamint

Bendász Ernő a kézirat bizonyos ábráinak elkészítésében, valamint Kovács Jenő a kézirat szerkesztésben.

Page 6: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

2 Created by XMLmind XSL-FO Converter.

2. fejezet - KRISTÁLYTAN

1. 2.1. A szilárdtestek szerkezete. Amorf és kristályos anyagok

A természetben található szilárd anyagokat megvizsgálva azt tapasztaljuk, hogy ezek egy részének szabályos

alakja van. Gondoljunk az ásványok igen változatos alakjára, például a kvarc hatszöges szimmetriájára, a

hópelyhek mintázatára, vagy a konyhasó kis kockáira. Számos anyag külső megjelenése nem mutat szabályos

szerkezetet, de mikroszkóppal megvizsgálva, összenőtt, apró, szabályos kristályok halmazát látjuk. Ilyen

szerkezetük van pl. a fémeknek. Ezeket a szilárd anyagokat kristályos anyagoknak hívjuk. A szilárd anyagok

másik csoportjának nincs ilyen szabályos belső vagy külső rendje. Ezeket amorf szerkezetűeknek nevezzük.

Ilyenek pl. az üvegek.

Hogy ezeknek az anyagoknak a szerkezetét jobban megértsük, vizsgáljuk meg, hogy hol helyezkednek el a

térben egy tetszőlegesen kiválasztott anyag építőelemei, atomjai. Tekintsünk el az atom kiterjedésétől, vegyünk

minden atomot egyetlen pontnak. Hagyjuk számításon kívül azt is, hogy az atomok mozognak, rezegnek, a

vizsgálatunk idejére minden atom mozdulatlanul álljon egyetlen helyen. Tegyünk az atom köré sugarú

gömböt. Számoljuk meg, a gömb felületegységére hány atom jut. Legyen az így kapott atomsűrűség . Most

változtassuk nagyságát, és végezzük el a fenti vizsgálatot újra és újra, majd ábrázoljuk az így nyert különböző

értékeket az függvényében. A vizsgált anyagtól függően négy különböző görbét kaphatunk (1 [2]. ábra).

Ha értéke állandó, akkor az azt jelenti, hogy az atomok térbeli eloszlása egyenletes. Nincsenek az atomok

által kitüntetett helyek, nincs semmilyen szabály, ami az atomok elhelyezkedését befolyásolná. Ilyen anyagok a

gázok (1 [2]a ábra).

1. ábra.

Atomi

rend és

rendezetl

enség a

különböz

ő

anyagok

ban

Page 7: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

KRISTÁLYTAN

3 Created by XMLmind XSL-FO Converter.

Ha a térbe egyre több atomot helyezünk, akkor kialakulnak az átlagostól eltérő kisebb, ill. nagyobb sűrűségű

helyek is. A vizsgált atom első szomszédjának a helye biztos, de egyre távolabb menve, egyre kevésbé vannak

megkülönböztetett helyek, azt mondjuk, hogy az anyagban rövid távú rend uralkodik. Ilyen eloszlás jellemzi a

folyadékokat, sőt a szilárd állapotú amorf anyagokat (pl. üvegeket). Ezért az amorf anyagok túlhűtött

folyadékoknak is nevezhetők (1 [2]b ábra).

A legtöbb szilárd anyag függvénye nem folyamatos, ami azt jelenti, hogy bizonyos helyeken biztosan van,

míg más helyeken biztosan nincs atom. Ez nagymértékű térbeli rendet jelent, ezért ezt a fajta elrendeződést

hosszú távú rendezettségnek hívjuk. Az ilyen anyagban minden atomnak rögzített helye van, bármilyen messze

megyünk is a kiválasztott atomtól. Az ilyen atomi elrendezésű anyagok a kristályos anyagok, amelyekben az

atomok rácspontokban ülnek (1 [2]c ábra).

A valóságos kristályokban azonban ez a kép kicsit bonyolultabb. A rácspontokon ülő atomok nem

mozdulatlanok, meghatározott amplitúdóval rezegnek a rácspont körül. A rend soha sem tökéletes, mindig

vannak nem a helyükön ülő vagy idegen atomok. Ezért a reális kristály görbéje mindig az 1 [2]d ábra

szerint alakul, ami azt mutatja, hogy az egyes atomok az adott helyük körül szétszóródnak.

Röviden: a kristályos és az amorf anyagok a bennük lévő rend mértékében különböznek egymástól.

Az, hogy az atomok, atomcsoportok elhelyezkedése mennyire rendezett, könnyen meghatározható. Kiválasztunk

egy atomcsoportot, majd ezt az alakzatot egyetlen vektornyi értékkel eltoljuk, s ezt az eltolást többször

megismételjük (transzláció). Ha a szerkezetazonosság csak néhány eltolásnyi távolságon belül áll fenn, akkor

rövid távú rendről, ha több, elviekben végtelen számú eltolás után is, akkor hosszú távú rendről beszélünk.

Az eltolás végezhető egy vonal mentén, síkban vagy a térben. Ennek megfelelően beszélhetünk egy-, két- ill.

háromdimenziós periodicitásról. A két, ill. három dimenzióban való mozgás leírására már nem elegendő

egyetlen vektor. Ha egy síkot kívánunk feltérképezni, akkor az eltolás két irányát és vektorokkal, míg a

térbeni mozgást , , vektorokkal tudjuk megadni. Periodicitást mutat egy dimenzióban pl. a gyöngysor,

két dimenzióban a tapétaminta, három dimenzióban a méhkas.

2. 2.2. A kristályrendszerek

A következő lépésben a tér geometriájával foglalkozunk, és eltekintünk az anyagot alkotó atomoktól. Ehhez a

teret egymással hézag nélkül érintkező, egybevágó térelemekre, ún. paralelepipedonokra osztjuk. A térelemet

hat sík lap határolja, a csúcsok száma 6, az éleké 12, amelyek közül négy-négy egymással párhuzamos. Az adott

térelem könnyen elképzelhető, ha a transzlációnál említett eltolási vektorokat a térelem éleinek tekintjük. Ezért a

térelem egyértelműen megadható a három élvektorral (ami tulajdonképpen a három transzlációs vektor), és a

vektorok (élek) által bezárt három szöggel. Az egy pontból kiinduló három élvektor meghatározza a kristálytani

tengelyeket. Egy egyszerű térelem pl. a téglatest (2 [3]. ábra).

2. ábra.

Térelem

megadás

a a

transzlác

iós

vektorok

kal és a

szögekke

l

Page 8: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

KRISTÁLYTAN

4 Created by XMLmind XSL-FO Converter.

A transzlációs vektorok jellege alapján a rács, ill. a kristályrendszerek száma hét. Ha az atomokat

visszahelyezzük a térbe, akkor azt tapasztaljuk, hogy azok nemcsak az adott térelem csúcsain, hanem

lapközepén vagy térközepén is ülhetnek. Ha ezt a megkülönböztetést is figyelembe vesszük, akkor a

kristályrácsok Bravais-féle osztályozásához jutunk, amely 14 csoportot sorol fel (1 [4]. táblázat).

1.

táblázat.

A rács

Bravais-

féle

osztályoz

ása

Page 9: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

KRISTÁLYTAN

5 Created by XMLmind XSL-FO Converter.

Bravais francia krisztallográfus 1848-ban publikálta munkáját. Meg kell jegyezni, hogy

az ásványtanban, ahol a kristályok külső szimmetriájának is szerepe van (mint a fejezet

elején említett kvarc vagy kősó esetében), 32 csoporttal számolhatunk. Szerencsére a

fémek vagy ötvözetek esetében a külső szimmetriának nincs – vagy csak nagyon különleges

esetben van – jelentősége. Ha azt is figyelembe vesszük, hogy az atomok a térelem

belsejében bárhol helyet foglalhatnak, akkor a változatok száma 230 lesz!

A térelembe az atomokat a megfelelő pozícióba berajzolva kapjuk a rácselemet. Ha a rácselemben csak egyetlen

atom van, akkor azt primitív rácsnak hívjuk.

Page 10: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

KRISTÁLYTAN

6 Created by XMLmind XSL-FO Converter.

A rácselemben szereplő minden atomnak transzlációs tulajdonsága van, vagyis a megfelelő értékkel eltolva az

adott atomot, a szomszédos rácselem ugyanolyan pozícióban lévő atomjához jutunk. A rácselemek összessége

így leírja a teljes kristályrácsot. Ha térelem egy sarkát a kristály egy atomjára tesszük, és a térelembe berajzoljuk

az összes atomot, ami a csúcsokra, lapokra, élekre vagy a térelem belsejébe esik, akkor elemi cellát kapnak. Ez

az ábrázolásmód rendkívül elterjedt, mert megkönnyíti a rács egészének elképzelését.

Természetesen az elemi cellának transzlációs tulajdonságai nincsenek, mert bizonyos atomok a szomszédos

térelemhez vagy térelemekhez is tartozhatnak. A 3 [6]. ábra a térben középpontos kockarács ábrázolási módját

szemlélteti.

3. ábra.

A térben

középpo

ntos

kockarác

s

téreleme,

rácselem

e és elemi

cellája

Általában az elemi cellát mindig könnyebben el tudjuk képzelni, mint a rácselemet a benne ülő atomokkal. Az

elemi cellában lévő atomok számából könnyen kiszámíthatjuk a rácselemben ülő atomok mennyiségét, ha

ismerjük a rácselemben található atomok számát és elhelyezkedését. A csúcsokon lévő atomok számát osztjuk

nyolccal (mivel nyolc szomszédos térelem osztozik azon az egy atomon), az éleken lévőket néggyel (mivel négy

szomszédos térelemhez tartozik), a lapokon lévőkét kettővel (mivel két térelem határolja), és ehhez hozzáadjuk

a térelem belsejében lévő atomok számát. Ennek megfelelően a térben középpontos kockarács esetében a

rácselemben az atomok száma:

A fémtani folyamatok nagy részében a közvetlen atomi kölcsönhatások játsszák a főbb szerepet. Ezért mindig

fontos, hogy az illető atom milyen viszonyban van a szomszédaival. Leginkább az a fő kérdés, hogy a

kiválasztott atomunkat hány másik atom veszi körül. Ezért a rács leírására használjuk az ún. koordinációs

számot, amely az illető atom közvetlen szomszédainak a száma, vagyis arra utal, hogy milyen sűrű térkitöltésű

az illető rács. Ha azonos átmérőjű gömböket próbálunk egymás köré helyezni, akkor könnyen belátható, hogy a

legnagyobb koordinációs szám 12 lehet, ami úgy adódik, hogy az illető atomot saját síkjában legfeljebb 6 atom

veheti körül, a felette ill. az alatta levő síkban három-három.

3. 2.3. Pontok, irányok és síkok a rácsban

A rácsban egy pontnak, s így egy atomnak is a helyét három, a kristálytani tengelyekkel párhuzamosan mért

koordinátával ( ) lehet megadni. Mivel a rácsot szimmetria jellemzi, kezdőpontnak bármilyen atom

választható, így a koordináták között lehet negatív szám is (4 [7]. ábra).

Page 11: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

KRISTÁLYTAN

7 Created by XMLmind XSL-FO Converter.

4. ábra.

Pontok

megadás

a

koordiná

tákkal

A kristálytani irányt az pontot és a kezdőpontot összekötő vektor adja meg:

,

ahol , , a kristálytani rendszer jellegéből eredő transzlációs vektor.

A kristálytani irány jele: [ ], amely egyben az irányt és az vektort is jelöli. Például az 5 [8]. ábra

vektorára felírhatjuk:

.

Ennek megfelelően a vektort és az általa kijelölt irányt az [112] számhármassal adjuk meg. A kristálytanban,

éppen erős szimmetriája folytán előfordulhatnak kristálytanilag egyenértékű irányok, ezeket így jelöljük: .

Page 12: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

KRISTÁLYTAN

8 Created by XMLmind XSL-FO Converter.

5. ábra.

Az irány

megadás

a

koordiná

tákkal

A síkot olyan gömbölyű zárójelbe tett számhármas, az ún. Miller-féle index jellemzi, amelynek egy-egy tagja a

megfelelő kristálytani tengelyből levágott szakasz rácsparaméterben mért hosszának reciproka. A ( ) Miller-

féle indexszel jelzett sík tehát olyan sík, amely az , , vektorral meghatározott kristálytani tengelyekből

rendre:

szakaszokat vág le.

6. ábra.

Page 13: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

KRISTÁLYTAN

9 Created by XMLmind XSL-FO Converter.

Sík

megadás

a Miller-

féle

indexekk

el

Határozzuk meg a 6 [8]. ábra szerinti sík Miller-indexeit: a sík a tengelyekből rendre

szakaszokat vág le. A 2/3 1 és 1/3 számhármast 3-mal szorozva (231) alakban adódik a Miller-féle index. Most

fordítsuk meg a feladatot, és ábrázoljuk azt a síkot, amelynek (231) az indexe. A fentieknek megfelelően, ez az

sík az tengelyt helyen, az tengelyt , míg a tengelyt helyen fogja metszeni. A 6 [8].

ábrán ezt a síkot jelöli. Figyeljük meg, az ily módon kapott és síkok egymással párhuzamosak! A sík

számhármas tetszőleges számmal szorozható vagy osztható, ezért legtöbbször egész számok használatosak a

legnagyobb közös osztóval osztott alakban. Az ( , , ) sík párhuzamos a ( ) síkkal, ugyanolyan jellegű,

csak a kezdőponthoz közelebb helyezkedik el. Tehát a (231) sík egyenértékű a (462) síkkal stb.

Page 14: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

KRISTÁLYTAN

10 Created by XMLmind XSL-FO Converter.

Az (110), (101), (011), (110), (101), (011) index hat síkot jelent (ahol 1 negatív érték) mindegyike egymással

párhuzamos. Az így kapott síksorozatot az kapcsos zárójeles alak fejezi ki. Néhány jellegzetes síkot mutat

a 7 [10]. ábra.

7. ábra.

A sík

Miller-

indexei

Ezzel a szemlélettel természetesen a hexagonális rács is leírható. Használjuk a kicsit szemléletesebb

ábrázolásmódot is, amikor a szabályos hatszög három koordinátával ( ), a rácselem magassága pedig egy

koordinátával ( ), így a rács összességében négy koordinátával adható meg. Elemi geometriai összefüggés

alapján a összefüggésnek teljesülnie kell.

4. 2.4. Allotrópia

Bizonyos anyagok több kristályos szerkezetet is felvehetnek. Ha ezt a tulajdonságot a kémiai elemek mutatják,

akkor allotrópiáról, más esetben polimorfizmusról beszélünk. Gondoljunk csak a grafitra és a gyémántra, az

oxigénre és az ózonra, vagy a kvarcra, amely amorf állapotban és négyféle kristályos állapotban is ismert. Az

egyes módosulatok alakulását a hőmérséklet és/vagy a nyomás határozza meg. Az átalakulásokat rejtett (latens)

hő formájában megtestesülő reakcióhő felszabadulása vagy felvétele kíséri.

Érdekes vonzata van az ón -on, bekövetkező allotróp átalakulásának. A kisebb hőmérsékletű -Sn (ún.

szürkeón) gyémántrácsa a hőmérséklet növelésével tetragonális rácsú -Sn-ná (ún. fehérónná) alakul. Az

átalakulás közben fellépő feszültségek az ónpestisnek nevezett jelenséget, az anyag törését, repedését, sőt

elporladását okozzák. Ezek a feszültségek hanghatás kíséretében is felszabadulhatnak. Ilyen jelenséget

tapasztalunk akkor, ha az ónlemezt a fülünkhöz közel téve, a lemezt hajtogatva recsegő hangot hallunk. Ebben

az esetben az átalakulás a hajtogatás, vagyis nyomás hatására megy végbe.

A fémek közül a vas allotróp módosulatainak van fontos gyakorlati következménye. Erre a későbbiekben még

kitérünk.

5. 2.5. A reális kristály. Kristályhibák

Page 15: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

KRISTÁLYTAN

11 Created by XMLmind XSL-FO Converter.

A kristályrácsok tárgyalása során mindig tökéletes rendet feltételeztünk az anyagban, azt mondtuk, hogy adott

alakzat (rácselem) végtelen szám ismétlésével (transzlációjával) tudjuk leírni a rácsot. Ha azonban valódi rácsot

vizsgálunk, akkor azt tapasztaljuk, hogy ez csak idealizált kép, mert a transzláció bizony igen gyakran sérül, a

valóságos vagy más néven reális rács hibákkal terhelt. Ezeket a hibákat a kiterjedésüktől függően

csoportosíthatjuk: így léteznek nulla-, egy-, két- és háromdimenziós hibák. A későbbi fejezetekből majd kitűnik,

hogy ezek a hibák néha igen megnehezítik az életünket, de vannak olyan jelenségek, amelyekben nagyon fontos,

sőt hasznos a jelenlétük. Azt is mondhatnánk, hogy a fémtan rendszerint nem a rács tökéletes részével, hanem a

hibáival foglalkozik.

5.1. 2.5.1. Nulladimenziós hibák (ponthibák)

A legegyszerűbb ponthiba a vakancia, amely egy atom hiányát jelenti a rácsban. Az ábrákon gyakran négyzettel

jelölik. A hőmozgás miatt vakanciák mindig előfordulnak a rácsban. Fémekben az olvadáspont környezetében

0,1 atom% sűrűségben. Keletkezésüktől, ill. a rács jellegétől függően különbözők lehetnek (8 [11]. ábra).

8. ábra.

Ponthibá

k

Ha a kristály belsejében lévő egyik atom a kristály felületén lévő rácshelyre távozik, és egy üres helyet hagy

maga után, akkor ezt a vakanciát Schottky-hibának hívjuk. Ha egy atom a helyét elhagyja, és rácsközi helyre

megy, akkor Frenkel-féle hibapárról beszélünk.

A ponthibák sajátos példája, amikor az ionrácsból egy negatív ion hiányzik, és a töltéskiegyenlítés miatt annak

helyére egy elektron kerül. Az ilyen ponthibát színcentrumnak nevezzük, mert az anyag elszíneződéséhez vezet.

Ponthibának számít, és igen nagy jelentőségű a rácsban az oldott idegen atom. Ha a szennyező atom az

alapanyag rácspontjában ül, és helyettesít egy atomot, akkor szubsztitúciós oldódásról, ha pedig az idegen atom

rácsközi helyen van, akkor intersztíciós oldódásról beszélünk.

Ha a szilárd anyagban a szennyező atomok vagy a vakanciák sűrűsége a hely függvényében változik, akkor

szennyező atomok, ill. vakanciák áramlani kezdenek. Ezt a folyamatot diffúziónak hívjuk. Mivel a fémtani

folyamatok nagy része diffúzióval megy végbe, ezért a vakanciáknak a folyamatok lezajlásában igen nagy

szerepe van.

5.2. 2.5.2. Egydimenziós hibák (diszlokációk)

A diszlokációk a kristályokban leggyakrabban előforduló egyenes vagy görbült vonalak, amelyek mentén a

kristályrács sérült. A diszlokációknak két fajtája van: az éldiszlokáció és a csavardiszlokációk. A 9 [11]a ábra

egy éldiszlokációt szemléltet, amelyet úgy a legegyszerűbb elképzelni, mint extra félsíkot, amelyet a felülettől

betoltunk a rácsba. A sík éle a diszlokáció vonala.

A csavardiszlokációt (9 [11]b ábra) úgy képzelhetjük el, hogy a kristályt felvágjuk, majd a vágóél irányába

deformáljuk. A diszlokáció megjelenésével létrejött rácsdeformációt a Burgers-vektorral (jele: ) jellemezzük.

9. ábra.

Page 16: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

KRISTÁLYTAN

12 Created by XMLmind XSL-FO Converter.

Diszloká

ciók

A Burgers-vektor könnyen meghatározhatja, ha azonos számú lépéssel jobbra, lefelé, balra és felfelé körbejárjuk

a diszlokációt. A megérkezési és elindulási pontunk közti távolság adja a Burgers-vektor értékét. Ha az indulási

és az érkezési pont azonos, akkor a körbejárt terület diszlokációmentes, vagy két, ellenkező előjelű diszlokációt

tartalmaz (10 [12]. ábra).

A diszlokáció külső erő hatására vagy atomi átrendeződés esetén elmozdul a kristályban, ezért alakváltozáskor

igen nagy szerepe van. A külső feszültség hatására való elmozdulást diszlokációcsúszásnak nevezzük. Ha egy

vakancia épül be a diszlokáció vonalába, az olyan, mint ha a félsík egy atomtávolságnyit elmozdulna.

10. ábra.

Burgers-

vektor

Page 17: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

KRISTÁLYTAN

13 Created by XMLmind XSL-FO Converter.

Ezt a mozgást diszlokációmászásnak nevezzük. Csak nagy hőmérsékleten ér el számottevő sebességet.

Diszlokáció képződhet képlékenyalakítás és kristályosodás során is.

5.3. 2.5.3. Két- és háromdimenziós hibák (felületek, szemcsék és szemcsehatárok)

Ha az anyag a felületen középpontos kockarácsú, akkor a diszlokáció csúszósíkja az (111) sík lesz. Ekkor a

diszlokáció szétválik részdiszlokációkra, amelyeknek a Burgers-vektora nem rácsponttól rácspontig mutat,

hanem annál rövidebb. Ezért a két részdiszlokáció közötti tartományban az atomok nem a rácspontokon ülnek.

Ezt a hibát rétegződési hibának nevezzük. A hiba nagysága szabja meg, hogy az anyag könnyen vagy nehezen

alakítható-e. Ha ennek a hibának az energiája nagy, akkor a részdiszlokációk távol kerülnek egymástól,

szalagokká szélesednek. Ilyenkor az anyag, mint pl. a sárgaréz, nehezen alakítható. Ezzel szemben az

alumíniumban, ahol a rétegződési hiba energiája kicsi, a részdiszlokációk közel vannak egymáshoz, szinte

vonalak. Az alumínium ezért könnyen alakítható.

A diszlokációk mozgásuk során másfajta hiba kialakulásában is szerepet játszanak. Ha a rácsot pl. kétféle (A, B)

atom alkotja, és nem közömbös az, hogy melyik atomnak milyen a szomszédja, akkor a diszlokációk mozgásuk

során az eredeti ABABAB rétegződések helyett AA vagy BB szomszédságokat is kialakíthatnak. Az így

kialakult hibák az ún. antifázishatárok (11 [14]. ábra).

Page 18: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

KRISTÁLYTAN

14 Created by XMLmind XSL-FO Converter.

11. ábra.

Antifázis

határ

A leggyakoribb és a legfontosabb kétdimenziós hiba a szemcsehatár. A diszlokációk energetikai okok miatt

gyakran falakba sorakoznak. Ilyenkor a fal két oldalán lévő kristályfelek között szögeltérés alakul ki. Ha a

szögeltérés , akkor kisszögű határról beszélünk. Ha a diszlokációk száma nagyon megszaporodik, akkor kb.

0,5 nm szélességű rendezetlen (amorf) tartomány alakul ki, ezt nagyszögű szemcsehatárnak hívjuk. Ha ennek az

ellenkezője áll fenn, és a határon lévő atomok tökéletesen kapcsolódnak mindkét kristályfélhez, akkor

koincidenciáról, más néven koherens határról beszélünk (12 [14]. ábra).

12. ábra.

Szemcse

határok

Page 19: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

KRISTÁLYTAN

15 Created by XMLmind XSL-FO Converter.

Ha a kristályhibák összefüggő térfogatrészeket alkotnak, akkor azokat háromdimenziós rácshibáknak nevezzük.

6. 2.6. A fémek és ötvözetek három legfontosabb rácsa

A fémes kötés jellegéből adódóan (pozitív atomtörzsek között a közös vegyértékelektronok) a fémek és

ötvözetek a tér sűrű kitöltésére törekszenek. Nem fordul elő, hogy a rács építésekor azonos síkok fedésbe

kerülnének, más szóval atom fölött közvetlenül nem találunk atomot.

13. ábra.

Tetraéde

res és

oktaéder

es lyukak

a térben

középpo

ntos

kockarác

sban

Page 20: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

KRISTÁLYTAN

16 Created by XMLmind XSL-FO Converter.

A fémekre jellemző legfontosabb rácsok a térben középpontos kockarács, a felületen középpontos kockarács és a

hexagonális, sűrű illeszkedésű rács.

A térben középpontos kockarács (tkk) térkitöltése az ideálisnál kisebb. A legsűrűbb irány a térátló [111] iránya,

ahol is az atomok összeérnek. A rácsközi lyukak oktaéderes és tetraéderes helyzetben vannak. Oktaéderes

lyukak vannak minden lapközépen és élközépen (13 [15]a ábra), tetraéderes lyukak a lapokon (13 [15]b ábra).

Ha a rácsot felépítő atomok sugara, akkor tetraéderhelyzetben sugarú, oktaéderhelyzetben

sugarú gömb helyezhető el a rács torzítása nélkül, a tetraéderhelyzetű üres hely tehát a nagyobb.

Legfontosabb ötvözetünk alapféme a vas, amelynek kis hőmérsékletű, allotróp módosulata a ferrit ( -Fe)

kockarácsú. A ferrit mindig tartalmaz intersztíciósan oldott szenet és nitrogént. Érdekes, hogy ezek az atomok a

ferritben oktaéder helyzetben vannak, bár itt kisebb hely áll a rendelkezésükre, s így nagyobb mértékben

torzítják a rácsot. A tetraéderhelyzet mérete 36 pm, az oktaéderhelyzeté pedig 19 pm. A szénatom sugara 80 pm,

a nitrogéné pedig 70 pm. Ennek az elhelyezkedésnek nyilván energetikai okai vannak. Az oldott atomok az

oktaéderhelyzetet elfoglalva enyhén tetragonálissá torzítják a térben középpontos kockarácsot. A torzulásnak

van kitüntetett iránya, ez az ún. anizotróp torzulás. Ekkor csupán két vasion egymástól való távolsága növekszik

meg. A tetraéderhelyzetben a torzulás izotróp lenne, a négy vasion helyzete megváltozna.

Abból a tényből, hogy a szén- és a nitrogénatom úgy oldódik, hogy a helyigénye nagyobb, mint amennyi a

rendelkezésére áll, közvetlenül adódik, hogy az oldott atomok a diszlokációs frontokban helyezkednek el,

ezáltal gátolják a diszlokációk mozgását. Ezzel függ össze a folyás jelensége. Külső feszültség hatására, ha a

diszlokációkat el tudjuk szakítani az intersztíciós atomoktól, akkor az alakváltozás kisebb feszültség hatására is

végbemegy, a szakítódiagram ,,megugrik” (l. a 9. fejezetet).

A rácselem adatai:

, .

Atomszám: 2.

Atompozíció: (000), ( ).

Koordinációs szám: 8.

A felületen középpontos kockarács (ffk) a legsűrűbb térkitöltésű szerkezet. Az ideális gömbök – pl. egy dobozba

bedobált csapágygolyók – ily módon töltik ki a teret.

Az atomok az [110] irányokban összeérnek. A rácsközi lyukak itt is oktaéder- és tetraéderhelyzetben vannak. A

legnagyobb üres helyen sugarú idegen atom férhet el a rács torzítása nélkül. Így a vas felületen

Page 21: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

KRISTÁLYTAN

17 Created by XMLmind XSL-FO Converter.

középpontos kockarácsú módosulatában az ausztenitben ( -Fe) oldódó szén- és nitrogénatom jelentősen torzítja

a rácsot.

Ilyen rácsuk van a legjobb elektromos és hővezető tulajdonságú és egyben a legképlékenyebb, ún. ideális

fémeknek (Au, Ag, Ni, Pt, Al, Pb, Fe).

A rácselem adatai:

, .

Atomszám: 4.

Atompozíció: (000), ( 0),

( 0 ), (0 ).

Koordinációs szám: 12.

Hexagonális, szoros illeszkedésű rács (hex) térkitöltése az ideálistól kisebb. Üres hely csak a négy atom alkotta

elemi tetraéder középpontjában van, mérete kicsi, sugarú idegen atom fér el benne.

A rácselem adatai:

, .

Atomszám: 4.

Atompozíció: (000), ( ).

Koordinációs szám: 8.

7. Kérdések, feladatok

1. Mekkora szöget zár be az [111] és a [001] irány kockarácsban?

2. Milyen egyenértékű síkokat tartalmaz a síkrendszer kockarácsban?

3. Egy sík a következő pontokat tartalmazza: 000, 0, és 0 . Mi a sík Miller-indexe?

4. Melyik ónmódosulat sűrűsége a nagyobb, és miért?

5. Jellemezzen egy reális kristályt!

6. Milyen szemcsehatár-szerkezetet ismer?

7. Milyen amorf anyagokat ismer?

8. Rajzolja fel reális kristályban az atomok előfordulási valószínűségét!

9. Rajzolja fel a felületen középpontos kockarács térelemét, rácselemét és elemi celláját!

10. Az iránycsalád milyen egyedi irányokat tartalmaz kockarácsban és tetragonális rácsban?

Page 22: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

18 Created by XMLmind XSL-FO Converter.

3. fejezet - FÉMKRISTÁLYOK ALAKVÁLTOZÁSA

1. 3.1. Rugalmas alakváltozás

A fémek képlékeny viselkedésének megértése érdekében bemutatjuk a kristályos szerkezetű fémes anyagok

alakváltozásának kristálytani magyarázatát.

A kérdés az, hogy a kristályos szerkezetben kötött helyen lévő atomok hogyan képesek ilyen alakváltozásra? A

jelenség magyarázatát a 14 [18]. ábra szemlélteti.

14. ábra.

Fémkrist

ály

rugalmas

alakválto

zása

a)

nyugalmi

állapot, b)

húzó

igénybev

étel, c)

nyomó

igénybev

étel

esetén

Page 23: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMKRISTÁLYOK

ALAKVÁLTOZÁSA

19 Created by XMLmind XSL-FO Converter.

A terhelőerő hatására a kristályrács eltorzul: húzott irányban megnyúlik, nyomott irányban pedig megrövidül. A

húzóerővel párhuzamosan az atomsíkok távolsága megnő, míg arra merőlegesen csökken. A kockarácsú

kristályos anyagok téreleme tetragonálissá torzul. Az egymástól eltávolított atomok között vonzóerő ébred, az

egymáshoz közel lévő atomok között pedig taszítóerő jön létre. A külső húzóerővel szemben ezek az atomi erők

tartanak egyensúlyt. A terhelés megszüntetése után a rács visszanyeri eredeti alakját. A rugalmas alakváltozás

során érvényes a Hook-törvény, vagyis a létrejövő alakváltozás és a mechanikai feszültség között egyenes

arányosság van, s az anyagra jellemző arányossági tényező az rugalmassági modulus (Young-modulus).

. Minél nagyobbak az atomok közötti vonzóerők, annál nagyobb az adott ötvözet rugalmassági

modulusza.

2. 3.2. Maradó alakváltozás

A fémek maradó alakváltozása akkor következik be, amikor a külső mechanikai feszültség nagyobb, mint a

rugalmassági határ. A szigorú geometriai rendben lévő atomok alakváltozása csak úgy mehet végbe, hogy az

atomsíkok képesek egymáson elcsúszni. Ezt a jelenséget csúszásnak nevezzük.

A maradó alakváltozásra jellemző, hogy az atomok eredeti rácshelyzetükből kilépnek, s a terhelés megszűnése

után oda már nem térnek vissza. Az atomsíkok elcsúszását a 15 [19]. ábra szemlélteti.

15. ábra.

Az

atomsíko

k

elcsúszás

a

a)

nyugalmi

állapot; b)

csúszás

megindul

ása; c)

egy

rácspara

méternyi

elcsúszás

Rugalmasnak nevezzük, az olyan – általában kismértékű – alakváltozást, amelyik a külső terhelés befejeződése

után megszűnik.

Page 24: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMKRISTÁLYOK

ALAKVÁLTOZÁSA

20 Created by XMLmind XSL-FO Converter.

A 16 [20]. ábrán az egykristályból készült hengeres próbatesten látható, hogyan váltja fel az atomsíkok

rugalmas alakváltozását a síkok maradandó elcsúszása, amely a próbatest méretének megnövekedését (a maradó

alakváltozását) okozza. Azt is megfigyelhetjük, hogy a síkok egyre jobban az alakváltozás irányába fordulnak.

16. ábra.

Egykrist

ály

rugalmas

és a

maradó

alakválto

zása

Az atomok elcsúszása azokon a síkokon következik be, ahol a legsűrűbben helyezkednek el, vagyis ahol

felületegységenként a legtöbb atom található. Például a felületen középpontos kockarács (110) síkjában négy

Page 25: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMKRISTÁLYOK

ALAKVÁLTOZÁSA

21 Created by XMLmind XSL-FO Converter.

atom van, az (100) síkjában öt, míg az (111) síkon hat atom található. Ez utóbbi tehát a felületen középpontos

kockarács legsűrűbben kitöltött síkja, s egyben csúszási síkja is. A hexagonális kristályrácsú (17 [21]a ábra), a

felületen középpontos kockarácsú (17 [21]b ábra) jellegzetes csúszási síkjai és irányai különböznek. Az

atomsíkok elmozdulásához, vagyis a csúszás megindításához a csúsztatófeszültség adott értékére (ún. kritikus

értékre) van szükség, amelynek nagysága fémenként változik.

17. ábra.

A

különböz

ő

kristályr

ácsú

fémek

csúszási

síkjai és

csúszási

irányai

Néhány fém kritikus csúsztatófeszültségét, valamint a csúszási síkot és irányt a 2 [21]. táblázat tartalmazza. Az

oldott ötvözők és a szennyezők jelentősen növelik a kritikus csúsztatófeszültséget. Például a cink

kritikus csúsztatófeszültségét már 0,04% szennyező az ötszörösére, -re növeli.

2.

táblázat.

A

legfontos

abb

fémek

csúszásá

nak

adatai

Page 26: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMKRISTÁLYOK

ALAKVÁLTOZÁSA

22 Created by XMLmind XSL-FO Converter.

Az atomsíkok elcsúszása mellett a képlékeny alakváltozás másik lehetséges módja az ikerképződés. Míg a

csúszási mechanizmus során a csúszási sík alatt és fölött elhelyezkedő kristályrészek orientációja nem változik

(18 [22]a ábra), addig az ikerképződés folyamán az elmozduló kristályrészek irányultsága átformálódik (18

[22]b ábra). Ez a csúszási mechanizmushoz hasonlóan a kristály megnyúlását eredményezi. Az ikerképződésre

akkor kerülhet sor, amikor a csúsztatófeszültség egy meghatározott értéket elér.

18. ábra.

A

csúszási

(a) és az

ikerképz

ődéses

(b)

mechaniz

mus

összehas

onlítása

Page 27: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMKRISTÁLYOK

ALAKVÁLTOZÁSA

23 Created by XMLmind XSL-FO Converter.

Az alakítási ikerképződés rendkívül gyorsan ( s) megy végbe. Egyes kristályok – elsősorban a kevés

csúszási síkú hexagonális rendszerbeli fémek kristályainak – csúszási síkja a képlékeny alakváltozás számára

kedvező helyzetbe éppen ikerképződéssel kerül.

Az atomsíkok elmozduláshoz jelentős mechanikai feszültségre van szükség, különösen azért, mert az egy-egy

síkban lévő nagyon sok atom ezt a mozgást egyszerre végzi el. Sokkal kisebb külső feszültségre van szükség

akkor, ha az atomok egyenként mozdulnak el, pl. egy vakancia segítségével (19 [23]. ábra). Az atomsíkok

elcsúszása akár néhány ezer rácsparaméternyi is lehet, anélkül, hogy a fémes anyag elrepedne. Ezzel a

nagyméretű csúszással érthetővé válik a fémek jelentős mértékű alakváltozó képessége.

19. ábra.

Az

atomsíko

k

csúszása

vakancia

segítségé

vel

Page 28: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMKRISTÁLYOK

ALAKVÁLTOZÁSA

24 Created by XMLmind XSL-FO Converter.

3. 3.3. A diszlokációk szerepe a képlékeny alakváltozásban

A reális kristályokban az atomsíkok elmozdulása mindig diszlokációk közvetítésével megy végbe. A diszlokáció

(20 [24]. ábra) a nyíróerő hatására jobbról balra halad, és létrehoz egy-egy rácsparaméternyi elmozdulást.

20. ábra.

Az

atomsíko

k

elmozdul

ása

diszlokác

iók révén

a) a

csúszás

megindul

ása; b)

közbenső

állapot; c)

egy

rácspara

méternyi

elmozdul

ás

Ehhez lényegesen kisebb erőre van szükség, mint a teljes atomsík elmozdításához, hiszen itt egyszerre csak egy

rácsparaméternyi változás következik be. Ezt szemlélteti a 21 [25]. ábra. A 21 [25]a ábrán hibátlan rácsú,

Page 29: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMKRISTÁLYOK

ALAKVÁLTOZÁSA

25 Created by XMLmind XSL-FO Converter.

diszlokáció nélküli, kocka alakú kristályrész látható. Ha az csúszási sík fölé eső részt el akarjuk

mozdítani, akkor a teljes síkban működtetni kell a kritikus csúsztatófeszültséget, s így a maradó alakváltozást

megindító erő az felülettek ( ) arányos. Ezzel szemben szélességű ( ) diszlokáció

esetén (21 [25]b ábra) csak lényegesen kisebb felületen ( ) érvényesül a terhelőerő.

21. ábra.

A

diszlokác

iók

szerepe a

maradó

alakválto

zásban

Ily módon a diszlokációk a reális fémkristályokban a kritikus csúsztatófeszültséget és ezzel a rugalmassági

határt több nagyságrenddel csökkentik a hibátlan rácsú fémkristályok rugalmassági határához képest (22 [25].

ábra). A reális kristályokban kb. diszlokációsűrűség esetén a legkisebb a rugalmassági határ.

22. ábra.

A

rugalmas

sági

határ és

a

diszlokác

iósűrűség

kapcsolat

a

Page 30: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMKRISTÁLYOK

ALAKVÁLTOZÁSA

26 Created by XMLmind XSL-FO Converter.

A képlékeny alakváltozás diszlokációk mozgásával megy végbe, és viszonylag nagyszámú új diszlokáció

keletkezésével jár, azaz az alakított fémben a diszlokációsűrűség erőteljesen növekszik. A diszlokációk

számának növekedésével – a diszlokáció környezetében lévő mechanikai feszültség miatt – a diszlokációk

egymás mozgását akadályozzák. Ezenkívül a diszlokációk szemcsehatárokon, rideg kiválásokon is feltorlódnak.

Mindezek együttes hatására a diszlokációk további mozgása, azaz a képlékeny alakváltozás csak folyamatosan

növekvő mechanikai feszültséggel lehetséges, s így a rugalmassági határ emelkedni kezd, azt mondjuk: a

fémötvözetek keményednek. Ezt a jelenséget a fémek és az ötvözetek alakítási keményedésének nevezzük.

4. 3.4. Sokkristályos fémek alakváltozása

A sokkristályos fémek képlékeny alakváltozása az egykristályokhoz hasonlóan játszódik le. A lényegi

különbség az, hogy míg az egykristályokban a csúszási síkok meghatározott helyzetet foglalnak el a külső

terheléshez viszonyítva, addig a sokkristályos fémek nagyszámú kristályában ezek a síkok staisztikusan

rendezetlenül helyezkednek el. Vagyis vannak olyan kristályok, amelyeknek a csúszósíkjai a terhelőerőhöz

viszonyítva kedvező helyzetűek, és vannak olyanok, amelyek kedvezőtlen irányúak. A kedvezőtlen irányú

kristályok környezetében olyan mechanikai feszültségek jöhetnek létre, amelyek még bennük is megindíthatják

a képlékeny alakváltozást. Így a képlékeny alakváltozás folyamatában többé-kevésbé valamennyi kristály részt

vesz, bár irányuktól függően az alakváltozásban jelentős helyi különbségek mutatkoznak. Az alakváltozás

következtében a rendezetlenül elhelyezkedő kristályok rendezettséget vesznek fel, amelyet anizotrópiának

nevezünk. Az alakítás hatására a kristályok alakja is megváltozik, az eredeti szemcsék erősen nyújtottá válnak

(23 [27]a ábra). Bármelyik helyzetű kristály egy-egy részének elcsúszását a szomszédai megnehezítik, s a

Page 31: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMKRISTÁLYOK

ALAKVÁLTOZÁSA

27 Created by XMLmind XSL-FO Converter.

tényleges elmozdulás csak a kristályok egymásba nyomódása révén lehetséges (23 [27]b ábra). A

kristályhatárok a diszlokációk mozgását is akadályozzák, ily módon a sokkristályos anyagok képlékeny

alakváltozásához szükséges mechanikai feszültség a szemcsenagyságtól függ, annak négyzetgyökével

fordítottan arányos. Ezt fejezi ki a Hall–Petch-egyenlet:

,

ahol a rugalmassági határ, ; az ötvözetre jellemző állandó; az ötvözet típusától függő

arányossági tényező; a szemcseátmérő, .

23. ábra.

A

sokkristá

lyos

anyag

alakválto

zása

5. Kérdések, feladatok

1. Mit nevezünk rugalmas alakváltozásnak? Hogyan megy végbe a kristályos anyagok rugalmas alakváltozása?

2. Mutassa be a Hook-törvényt. Mikor érvényes?

3. Ismertesse a rugalmassági határ és a maradó alakváltozás definícióját!

4. Mi a csúszás lényege?

5. Ábrázolja a felületen középpontos kockarácsú, a térben középpontos kockarácsú, valamint a hexagonális

rendszerű fémek csúszási síkjait! Adja meg Miller-indexüket!

6. Hasonlítsa össze ábra segítségével a csúszási és az ikerképződéses mechanizmust!

7. Ismertesse a diszlokációk szerepét a képlékeny alakváltozásban!

8. Mutassa be a sokkrsitályos anyagok képlékeny alakváltozásának jellegzetességeit!

9. Mit nevezünk alakítási keményedésnek?

10. Mutassa be a Hall–Petch-egyenletet! Mit gondol milyen gyakorlati következményei vannak az egyenletnek?

Page 32: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

28 Created by XMLmind XSL-FO Converter.

4. fejezet - ÖTVÖZETEK

1. 4.1. Az ötvözet fogalma

Az ötvözetek fém természetűek, tehát elsőrendű elektromos vezetők, fémfényűek, szerkezetük kristályos.

Ötvözetet elsősorban fémek alkotnak egymással, de lehetséges fémnek metalloid elemmel (pl. réz-antimon, vas-

szilícium) vagy fémnek nemfémes elemmel (pl. vas-nitrogén, nikkel-oxigén) alkotott ötvözete is.

Két vagy több fémből, metalloid elemből készíthető ötvözetek összességét ötvözetrendszernek nevezzük. Két

adott fémből készíthető ötvözetek összessége kétalkotós, (binér) ötvözőrendszer. Három alkotó esetén ternér,

négy alkotó esetén kvaternér ötvözőrendszerről beszélünk.

Az ötvözetek kristályosodásának és egyéb átalakulásának törvényszerűségei elsősorban a termikus analízisnek

nevezett kísérleti módszerrel vizsgálhatók. A termikus analízis során megolvasztjuk az adott mennyiségű

alkotókat, majd az olvadékot lehűtve, annak hőmérsékletét, ill. a kristályosodást, ill. az átalakulásokat kísérő

hőhatásokat mérjük. A hőmérséklet-változást az idő függvényében ábrázolva kapjuk meg az illető ötvözet

lehűlési görbéjét. Ha ezt a kísérletet egy ötvözőrendszer kellően sokszámú ötvözetére elvégezzük, és a lehűlési

görbék jellemző adatait egyetlen diagramban ábrázoljuk, akkor, az illető ötvözőrendszer fázisegyensúlyi

diagramját kapjuk.

Ma már számtalan ötvözőrendszer két-, három-, sőt sokalkotós diagramja ismert, így a gyakorlati életbe nem

egy bizonyos diagram meghatározása, hanem a kész diagramok helyes olvasása lesz a feladatunk.

2. 4.2. A fázisegyensúlyi diagram és olvasásának szabályai

A diagramok értelmezését megkönnyítő, általánosan érvényes törvényszerűségek érvényesek bármilyen alakú és

bonyolult diagram olvasása esetén is. A továbbiakban példáinkat kétalkotós diagramok esetére mutatjuk be.

A fázisegyensúlyi diagram vízszintes tengelyén a koncentráció tömeg- vagy atomszázalékban olvasható le,

függőleges tengelyén pedig a hőmérséklet -ban vagy K-ben. A diagramban szereplő vonalak homogén

(egyfázisú), illetve heterogén (kétfázisú) területeket választanak el egymástól.

Egyszerű heterogén (kétfázisú) rendszer az olvadó jég. A két fázis (víz+jég) kémiai összetétele megegyezik, de

halmazállapota, rácsszerkezete és sok más tulajdonsága különbözik.

Vagyis a diagram vonalai az illető fázisok érvényességi területeit jelölik ki. Más szóval megmutatják, hogy az

adott fázis mely koncentráció, ill. hőmérséklet-tartományban van jelen. Más megközelítésből, a diagram

megmutatja, hogy pl. adott hőmérsékleten mely fázisok tartanak egyensúlyt (pl. -on a víz a jéggel van

egyensúlyban).

Egyes vonalakat, görbéket külön névvel jelölünk, amely a végbemenő folyamat jellegére utal (24 [29]. ábra):

– A likvidusz az adott ötvözet kristályosodásának kezdeti hőmérsékletét jelöli. A homogén olvadékterületet

választja el a heterogén olvadék+szilárd fázis területtől. A likvidusz ágainak a száma azt mutatja, hogy hányfajta

fázis kristályosodik primeren az ötvözőrendszerben.

– A szolidusz az adott ötvözet kristályosodásának befejező hőmérsékletét jelöli.

Page 33: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

29 Created by XMLmind XSL-FO Converter.

– A szolvusz a szilárd oldat oldhatósági határa. (A következő fejezetben részletesen lesz róla szó.)

Találunk még görbéket, amelyek az allotrop átalakulás kezdetét és végét mutatják. Ezeknek a vonalaknak nincs

külön megnevezésük.

24. ábra.

Az

egyensúl

yi

diagram

olvasásá

nak

szabályai

A diagramban találunk vízszintes és attól különböző vonalakat. A vízszintestől eltérő görbék mindig olyan

folyamatokra utalnak, amelyekben két fázis tart egyensúlyt. Ezekre a folyamatokra az is jellemző, hogy a

hőmérséklet csökkenésével és a jelen lévő egyik vagy mindkét fázis koncentrációjának folyamatos változása

közben mennek végbe. Gyakran találkozunk viszont olyan folyamattal is, amelynek három szereplője van.

Ezeket az eseményeket a kétalkotós egyensúlyi diagramban mindig vízszintes vonalak jelölik.

Ennek a magyarázatát a Gibbs-féle fázistörvény adja meg kondenzált (nem gázállapotú) rendszerekre:

,

ahol a reakcióban részt vevő fázisok száma, a szabadsági fokok száma, az alkotók (komponensek)

száma. Az alkotók száma 2, ha kétalkotós, és 3, ha háromalkotós ötvözőrendszerről van szó stb.

A szabadsági fok azt mutatja meg, hogy az adott folyamatban hány állapothatározót

változtathatunk meg szabadon. A fémtani folyamatokban a nyomást állandónak tekintjük

ezért. Ha szabadsági fokok száma 1, akkor monovariáns folyamatról van szó, vagyis a folyamat a hőmérséklet csökkenése közben megy végbe. Ezzel szemben, ha a szabadsági

fokok száma 0, akkor a folyamat nonvariáns , vagyis állandó hőmérsékleten zajlik.

Ilyen eset például a színfémek olvadása:

Page 34: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

30 Created by XMLmind XSL-FO Converter.

(olvadék fázis, szilárd fázis)

Ezzel magyarázható az, hogy a színfémek állandó hőmérsékleten olvadnak meg, amit

olvadáspontnak nevezünk. Ha felvesszük egy színfém lehűlési görbéjét, akkor az

olvadáspontig csökkenő görbét, az olvadásponton pedig vízszintes egyenest kapunk. Ez azt

jelenti, hogy a rendszer addig marad az olvadáspont hőmérsékletén, amíg az összes

olvadék meg nem szilárdul, vagyis amíg a fázisok száma le nem csökken eggyel. Ezt

követően a hőmérséklet újra csökkenni fog.

Nézzük, hogyan alakul egy kétalkotós ötvözet kristályosodása:

Vagyis a kristályosodás a hőmérséklet csökkenése közben megy végbe.

Ötvözetrendszerekben leggyakrabban a következő négyfajta folyamat megy végbe állandó hőmérsékleten,

(nonvariáns) folyamatok (25 [30]. ábra):

Eutektikus reakció: az összetételű egyszerre két szilárd fázis kristályosodik, a összetételű

és a összetételű .

, ,

Eutektoidos átalakulás: az eutektikus reakcióval hasonló, csak szilárd állapotban zajló folyamat. Egy

homogén, összetételű SZILÁRD kiinduló fázis két különböző, összetételű és a összetételű

fázisokká alakul át:

, (kiinduló , keletkezett , ),

Peritektikus reakció: valamely korábban primeren kristályosodott összetételű fázis reakcióba lép

a összetételű és egy új, összetételű fázis keletkezik. A kiinduló koncentrációnak

megfelelően a reakciónak három lehetséges kimenetele lehet:

(megmarad)

(megmarad)

, ,

Monotektikus reakció: a kezdeti homogén olvadék szétválik két, egymást nem oldó olvadékrészre. Ilyen

heterogén olvadékrendzsertkönnyen elképzelhetünk, ha víz és az olaj elegyére gondolunk. Ha közben egy

kristályosodó fázis is megjelenik, akkor a fázisok száma három lesz. Az összetételű

összetételű és összetételű fázis keletkezik:

25. ábra.

A

fázisegye

Page 35: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

31 Created by XMLmind XSL-FO Converter.

nsúlyi

diagram

ban

leggyakr

abban

előfordul

ó,

állandó

hőmérsé

kleten

zajló

folyamat

ok, SZ

szilárd,

O

olvadék

fázis

Az eddigi ismereteken kívül további információkat is kaphatunk azegyensúlyi diagramból. Ha a vizsgált ötvözet

valamely hőmérsékleten heterogén tartományba esik, akkor a meghúzott konóda kijelöli az egymással

egyensúlyban lévő fázisok összetételét és mennyiségét is.

Page 36: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

32 Created by XMLmind XSL-FO Converter.

A határoló görbék és a konóda metszéspontjainál leolvashatjuk a keresett összetételeket. A 24 [29]. ábra

szerint, az kiinduló koncentrációjú ötvözetben, a hőmérsékleten, az koncentrációjú fázis tart

egyensúlyt, az koncentrációjú olvadék fázissal. A fázisok mennyiségét az ún. emelőszabály segítségével

határozhatjuk meg: a konóda végpontjaiba sűrítve képzeljük az egyensúlyt tartó egy-egy fázis tömegét, magát a

konódát pedig kétkarú emelőnek tekintjük, amely a jellemző pontban van alátámasztva. A két fázis tömegének

összege megegyezik az ötvözet egész tömegével. Az egyik fázis viszonylagos mennyiségét a másik fázishoz

tartozó karnak és a két kar összegének hányadosa adja meg (l. a 24 [29]. ábrát). Így az fázis tömegszázaléka:

.

3. 4.3. Az ötvözetek szövetelemei

A szövetelem lehet egyfázisú, ez esetben vagy színfém, vagy szilárd oldat, vagy vegyület. Kétalkotós ötvözet

szöveteleme lehet kétfázisú, akkor eutektikum vagy eutektoid, annak megfelelően, hogy eutektikus

kristályosodással vagy eutektoidos átalakulással keletkezett-e.

Színfémek kristályaival ötvözetekben voltaképpen nem találkozhatunk, mert egymásban teljesen oldhatatlan

anyagok nincsenek. Az ötvözetekben színfémnek tekintjük azt a kristályos fázist, amely csak kicsiny

mennyiségű ötvözőelemet tartalmaz oldva, és ha ennek az oldódásnak figyelembe veendő következménye nincs.

Meg kell jegyezni, hogy néha a csekély mértékű oldódásnak is jelentős következménye lehet!

A szilárd oldat – mint a neve is elárulja – oldat jellegű kristályos fázis. Legalább két alkotó része van, a

nagyobb mennyiségben előforduló oldószer vagy alapfém és az oldott fém. A vizes oldatokhoz hasonlóan a

szilárd oldalt koncentrációja is bizonyos határok között változik. Az egyik határ a 0 mértékű oldhatóság, vagyis

a színfém. Ezért a szilárd oldat az egyensúlyi diagram egyik szélén helyezkedik el. Ha korlátlan az oldhatóság,

akkor a szilárd oldat területének másik határa a másik színfém. Ha korlátozott az oldhatóság, akkor az

érvényességi területet a szolvuszvonal jelöli ki.

A szilárd oldatokat görög betűkkel jelöljük .

A szilárd oldat rácsszerkezete mindig az oldófém szerkezetével egyezik meg. Az ötvözőelem atomjai vagy

helyettesítik az oldófém atomjait a rácspontokon (szubsztitúciós oldódás), vagy rácsközi helyekre ékelődnek be

(intersztíciós oldódás) (l. a 2.5.1 pontot). Az intersztíciósan oldódó atomfajta csak kis sugarú, azaz kis

rendszámú elem lehet. Intersztíciósan oldódik a vasban a szén és a nitrogén. A fémek általában szubsztitúciósan

oldódnak egymásban. A szilárd oldat rácsszerkezetében az ötvöző atomfajta elvileg statisztikailag

véletlenszerűen helyezkedik el, de ha energetikailag kedvező, akkor rövid, sőt hosszú távú rend is kialakulhat. A

rendezett rácsú szilárd oldatok akkor alakulhatnak ki, ha az alkotó atomok mennyisége egyszerű egész

számokkal kifejezhető (1:3 vagy 1:1).

Annak, hogy két fém szilárd állapotban minden arányban oldhassa egymást három feltétele van

– a két fém rácsának ugyanolyan alakúnak kell lennie;

– a két fém mérete csak kismértékben különbözhet;

– a két fémnek egyforma vegyértékűnek kell lennie.

Fémvegyületnek olyan két- vagy többalkotós kristályos fázist nevezünk, amelynek rácsszerkezete független az

alkotó fémétől. A vegyület fázis koncentrációjának határai mindig az egyensúlyi diagram belsejébe esnek.

Page 37: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

33 Created by XMLmind XSL-FO Converter.

A vegyület összetétele lehet állandó, ekkor a diagramban egy függőleges vonal jelöli. Lehetnek viszont olyan

esetek is, amikor azt mondjuk, hogy a vegyület oldja az alkotóit, s ilyenkor szélesebb koncentrációtartomány

jelöli ki az érvényességi határokat, de ez soha sem eshet egybe a koncentrációtengely egyik végpontjával sem.

Az eutektikum olvadékból a Gibbs-féle fázisszabály értelmében állandó hőmérsékleten kristályosodó, legalább

kétfázisú, tehát heterogén szövetelem. Eutektikumot bármelyik kristályos fázis képezhet bármelyik fajta

kristályos fázissal. Szerkezetét tekintve az eutektikum lehet lemezes, szálas, tűs vagy szemcsés elrendezésű (l. a

43 [58]. ábrát). A sajátos szerkezetből adódóan igen fontos gyakorlati jelentősége van. Az eutektikum szó

görögül könnyen olvadót jelent, ami arra utal, hogy az ötvözőrendszerben a tisztán eutektikus összetételű

ötvözetnek a legkisebb az olvadáspontja.

Az eutektoid szintén többfázisú heterogén szövetelem. Mindig szilárd állapotú átalakulás során jön létre.

Fázisai szintén bármilyenek lehetnek. Szövetképe gyakran lemezes vagy szemcsés.

4. 4.4. Ideális fázisegyensúlyi diagramok

A gyakorlati ötvözetek egyensúlyi diagramja néha nagyon bonyolultnak tűnik. Ezek a diagramok is jól

érthetőkké válnak, ha az ún. ideális diagramokat megértjük, ugyanis a reális diagramok több ideális diagramból

állnak.

A következő fázisegyensúlyi diagramok alatt megrajzoltuk a szövetdiagramokat, amelyekben a szövetelem-

mennyiségeket tüntettük fel a koncentráció függvényében. Ezek a diagramok a szövetvizsgálatot segítik. Szintén

megrajzoltuk az egyensúlyi diagram valamely állandó hőmérsékletre érvényes metszetét, a fázismennyiség-

diagramot, amely az adott hőmérsékleten egyensúlyban lévő fázisokat tünteti fel. A fázismennyiség-diagramban

soha nincs heterogén terület, így az egyensúlyban lévő fázisok mennyisége egy lépésben (szemben a

mérlegszabállyal) meghatározható.

Két színfém eutektikus rendszere. A két fém olvadékállapotban minden arányban, szilárd állapotban

egyáltalán nem oldódik egymásban, vegyület nem keletkezik.

26. ábra.

Két

színfém

eutektiku

s

rendszer

e

a)

fázisegye

nsúly

diagram;

b)

fázismen

nyiség

diagram

hőmérsék

leten c)

szövetdia

gram

Page 38: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

34 Created by XMLmind XSL-FO Converter.

A diagram a 26 [33]. ábrán látható. A likvidusz kétágú, ennek megfelelően az A és B színfém kristályosodik

primeren. Vizsgáljuk meg az összetételű ötvözet kristályosodásnak menetét homogén, hőmérsékletű

olvadékállapotból kiindulva. Ha a rendszer hőmérséklete eléri a -nek megfelelő likvidusz-hőmérsékletet, akkor

az A színfém elkezd kristályosodni. A hőmérséklet csökkenése közben a szilárd kristályok mennyisége egyre

nő. Ahogy egyre több A kristály válik ki az olvadékból, annak összetétele egyre inkább feldúsul B-ben. Az

olvadék mindenkori összetételét a likvidusz mutatja, pl. hőmérsékleten az összetételű olvadék tart

egyensúlyt a szilárd színfém fázissal. Amikorra a rendszer eléri a hőmérsékletet, az olvadék koncentrációja

pedig az értéket, akkorra az olvadék oly erősen telítődik a B alkotóra nézve, hogy a B színfém kristálycsírái

is megjelennek a rendszerben. Mivel kétalkotós rendszerben egyidejűleg három fázis van jelen (olvadék, A

színfém, B színfém), nonvariáns lesz a folyamat. A két fázis (A színfém, B színfém) egyidejűleg csak állandó

hőmérsékleten kristályosodhat, ezt nevezzük eutektikus kristályosodásnak. Ezt jelöli a vízszintes egyenes. Az

eutektikum kristályosodása során az olvadék összetétele már tovább nem változik, csak mennyisége fogy.

Amikor az utolsó olvadékrészek is megszilárdultak, már csak a két szilárd fázis van jelen a rendszerben, akkor

újra csökkenni kezd a hőmérséklet.

Az eutektikus kristályosodás tartományát jelölő vízszintes vonal a teljes koncentrációtartományon végigfut,

ezért a kristályosodás mindig eutektikum kristályosodásával fejeződik be – bármilyen is a kiindulási összetétel.

Ha az eutektikus ponttól jobbra van a kiindulási ötvözetünket jelző pont ( ), akkor először B színfém kezd

kristályosodni az előzőknek megfelelő módon, majd azt követi az eutektikum kristályosodása. Ha a kiindulási

összetétel , akkor annyiban különbözik a kapott szövet az összetételű próbáétól, hogy az utóbbiban

Page 39: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

35 Created by XMLmind XSL-FO Converter.

kevesebb színfém és több eutektikus szövetelem lesz a kristályosodás végén. Ez a mérlegszabály segítségével

számítható a hőmérsékleten, ahol . Pl.:

, , ;

a B színfém mennyisége

ha a kiindulási koncentráció :

,

ha a kiindulási koncentráció :

.

Egyáltalán nem kristályosodik színfém, ha a kiindulási koncentráció . Ebben az esetben csak eutektikum

kristályosodik állandó hőmérsékleten. Ennek megfelelően a szövet is 100% eutektikumot tartalmaz, mint ahogy

azt a szövetdiagramban is feltüntettük. Az eutektikus ponttól balra az eutektikum mellett egyre több A

színfémet, az eutektikus ponttól jobbra pedig egyre több B színfémet találunk.

Szerkesszük meg a izotermán érvényes fázismennyiség-diagramot! A hőmérsékletet kijelölő egyenes

mentén végighaladva, levetítjük azokat a pontokat, ahol elmetszettük a diagram vonalait. Balról jobbra indulva

az első két metszéspont között kétfázisú tartomány van, ezt egy egyfázisú követi, majd ismét egy kétfázisú. Az

első tartomány bal szélén 100% A színfém van, a tartomány jobb szélén pedig 0%. Ennek megfelelően a

fázismennyiség-diagramba behúzzuk ezt a két pontot összekötő ferde egyenest. A második tartomány homogén,

ezért a fázismennyiség-diagram belsejébe nem húzunk vonalat. A harmadik tartomány ismét heterogén, ezért

megint ferde egyenest húzunk a tartományt határoló pontok között. Ezután már könnyen meghatározható, hogy

pl. az ötvözet esetében 60% olvadék tart egyensúlyt 40% szilárd fázissal.

Vegyület kristályosodása nyílt maximummal. A két fém vegyületet alkot, amely meghatározott

hőmérsékleten egynemű olvadékká olvad.

Az ilyen esetre érvényes diagram a 27 [35]. ábrán látható. Ebben az ötvözetrendzserben a két színfémen (A-n

és B-n) kívül vegyület is kristályosodik, amelynek általános képlete . Így a likvidusz három ágú. A

vegyülethez tartozó likvidusz maximuma a vegyület olvadáspontja. Ezen a hőmérsékleten a vegyület

színfémhez hasonlóan állandó hőmérsékleten olvad. Ha a kiindulási koncentráció megegyezik a vegyület

koncentrációjával, akkor csak vegyületet találunk a szövetben. A vegyület nemcsak ebben a tekintetben

viselkedik színfém módjára, hanem abban is, hogy a diagramot két részre osztja, ami megegyezik az előzőekben

említett eutektikus diagram alakjával, ill. az ott ismertetett folyamatokkal.

27. ábra.

Vegyület

kristályo

sodása

nyílt

maximu

mmal

a)

fázisegye

nsúlyi

diagram;

b)

fázismen

nyiség

diagram

Page 40: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

36 Created by XMLmind XSL-FO Converter.

hőmérsék

leten; c)

szövetdia

gram

Ennek megfelelően két, különböző összetételű eutektikum kristályosodik a rendszerben. A 0%-

koncentráció tartományban az eutektikum, amelynek fázisai az A színfém és a vegyület. Az ponttól balra

A színfém, míg jobbra a vegyület kristályosodik az eutektikumot megelőzően. Az -100% koncentráció

közben, az eutektikus ponttól balra a vegyület, míg a ponttól jobbra a B színfém előzi meg az eutektikum

kristályosodását. Ennek megfelelően az eutektikum fázisait a vegyület és a B színfém alkotja.

Az eddig elmondottak alapján tehát vegyületet az és koncentrációtartományban találunk, maximális

mennyiséget (100%-ot) az koncentrációértéknél.

Ha a vegyület az alkotórészeit szilárd állapotban oldja, akkor a vegyület helyét a koncentrációtengelyen az

állandó érték helyett koncentrációtartomány, a diagramban pedig a függőleges vonal helyett sáv jelenti (28 [36].

ábra). A sávon belül lévő bármely ötvözet szövete ugyanolyan, mint a vegyületé.

28. ábra.

Vegyület

Page 41: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

37 Created by XMLmind XSL-FO Converter.

kristályo

sodása

nyílt

maximu

mmal, ha

a

vegyület

az

alkotóit

oldja

a)

fázisegye

nsúlyi

diagram;

b)

fázismen

nyiségi

diagram

hőmérsék

leten; c)

szövetdia

gram

Page 42: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

38 Created by XMLmind XSL-FO Converter.

Vegyület peritektikus képződése. Két fém olvadékállapotban minden arányban, szilárd állapotban egyáltalán

nem oldódik, vegyület keletkezik, amely nem olvad állandó hőmérsékleten (zárt maximumos vegyület).

Ilyen vegyületet olyan fémek alkotnak egymással, amelyeknek olvadáspontja között nagy a különbség. Az ilyen

egyensúlyi diagramban a likvidusznak szintén három ága van (29 [38]. ábra): A és B színfém, valamint a

vegyület kristályosodásának kezdetét mutató görbék. Két nonvariáns folyamatot jelző vízszintes egyenes van: az

eutektikus kristályosodás és a peritektikus átalakulás folyamata.

29. ábra.

Vegyület

peritekti

kus

képzőséd

es

a)

fázisegye

nsúlyi

diagram;

Page 43: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

39 Created by XMLmind XSL-FO Converter.

b)

fázismen

nyiségi

diagram

t1

hőmérsék

leten; c)

szövetdia

gram

Az koncentrációtartományban lévő ötvözetek az eddig már megismert módon kristályosodnak. Az

eutektikus ponttól balra A színfém, az eutektikus pont és a pont között pedig a vegyület kristályosodik

primeren, majd mindkét esetben az eutektikummal fejeződik be a kristályosodás. A ponttól jobbra eső

ötvözetek esetében a kristályosodás a B színfém kristálycsíráinak megjelenésével kezdődik, miközben a

hőmérséklet folyamatosan csökken, az olvadék koncentrációja pedig a likvidusznak megfelelően változik. Ha a

hőmérséklet eléri a értéket, az olvadék koncentrációja pedig a pontot, akkor végbemegy a peritektikus

reakció: a primeren kristályodott B színfém reakcióba lép a még meglévő olvadékkal, és a reakció termékeként

vegyület keletkezik.

Ha a kiindulási koncentráció a koncentrációtartományba esett, akkor a peritektikus reakció addig tart,

amíg elfogy az összes primeren keletkezett B színfém kristály. Ebből következik, hogy ezeknek az ötvözeteknek

Page 44: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

40 Created by XMLmind XSL-FO Converter.

a szobahőmérsékletre lehűlt szövetében nem találunk B színfémet. A B színfém elfogyása után ( ), még

mindig van olvadék, amelyből a hőmérséklet csökkenése közben vegyület kristályosodik az likvidusznak

megfeleően, majd a kristályosodást az eutektikum megjelenése fejezi be.

Ha a kiindulási koncentráció a koncentrációtartományba esik, akkor a folyamat itt is B színfém

kristályosodásával indul, majd az előbb említett módon végbemegy a peritektikus reakció, amely szintén

vegyületkeletkezéssel jár. Ezzel szemben – eltérően az előbb említett esettől – a reakciópárból az olvadék fogy

el, és a reakció végén B színfém kristályok maradnak a keletkezett vegyület mellett.

A peritektikus reakció lehetséges harmadik kimenetele akkor fordul elő, ha a kiindulási koncentráció pontosan

. Ekkor a B színfém primer kristályosodását követő peritektikus reakcióban részt vevő mindkét fázis

(olvadék, B színfém) elfogy. A szövetben csak vegyületet találunk.

A szövetdiagramban megkülönböztetjük azt a vegyületet, amely a peritektikus reakció termékeként jött létre, ill.

azt, ami olvadékból való kristályosodással keletkezett.

Szilárd oldat kristályosodása. A két alkotó mind olvadék-, mind szilárd állapotban korlátlanul oldja egymást.

Az ilyen fémek egymással csak szilárd oldatot alkotnak, egyéb szövetelem az ötvözeteikben nem jelentkezik. A

homogén olvadék a hőmérséklet-tartományban kristályosodik, és a keletkezett szilárd fázis összetétele eltér az

olvadékától. A szilárd fázis koncentrációjának változását a szolidusz mutatja (30 [40]. ábra).

30. ábra.

Szilárd

oldat

kristályo

sodása

a)

fázisegye

nsúlyi

diagram;

b)

fázismen

nyiségi

diagram

hőmérsék

leten; c)

szövetdia

gram

Page 45: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

41 Created by XMLmind XSL-FO Converter.

A likvidusz és a szolidusz a diagram két területét három részre osztja. A likvidusz feletti rész a homogén

olvadék, a szolidusz alatti a homogén szilárd fázis, a kettő között található diagram egyetlen heterogén területe,

ahol a szilárd és az olvadékfázis együtt.

A diagram alapján bármelyik ötvözet a következőképpen szilárdul meg. Amint hűlés közben az ötvözet a

likvidusz jelezte hőmérsékletet elérte, a homogén összetételű olvadékból összetételű kristályos fázis

válik ki. Ez a fázis szilárd oldat, tehát sok A fémet és kevesebb B atomot tartalmaz. Ezután a hőmérséklet

csökkenése közben a szilárd fázis mennyisége növekedni kezd, miközben összetétele folyamatosan változik, és

változik a vele egyensúlyban lévő olvadék összetétele is. Így pl. hőmérsékleten az olvadék összetétele , míg

a szilárd fázisé a pontnak megfelelő érték. Ha szilárd fázis összetétele elérte az értéket, akkor befejeződik a

kristályosodás.

A valóságban a szilárd oldat kristályosodása általában nem követi az egyensúlynak

megfelelő értéket, mert a szilárd fázis koncentrációjának folyamatos változására – amely

diffúzió útján megy végbe – nem áll rendelkezésre elegendő idő. Ekkor a darabban a

kristályokon belül dúsulások alakulnak ki.

Ha a likvidusznak maximuma vagy minimuma van, akkor a szolidusz ebben a pontban érinti a

likviduszt. Ebben az ötvözetben a kristályosodás a színfémhez hasonlóan a koncentráció

változása nélkül megy végbe. Az érintési pontot kivéve, a kristályosodás a fent

leírtaknak megfelelően alakul.

Page 46: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

42 Created by XMLmind XSL-FO Converter.

Két szilárd oldat eutektikus rendszere. A két fém olvadékállapotban minden arányban, szilárd állapotban nem

minden arányban oldja egymást. A két fém olvadáspontja nagyon hasonló.

Ezekben az ötvözetekben kétfajta szilárd oldat kristályosodik primeren (31 [42]. ábra), és ez a két szilárd oldat

alkotja az eutektikum fázisait ( ). Az eutektikus reakciót jelző vízszintes egyenes végpontjai kijelölik az

eutektikumot alkotó szilárd oldatok összetételét. A diagramból látható, hogy a szilárd oldatok az eutektikus

hőméréskleten képesek a legtöbbet oldani a másik atomból. Az eutektikus hőmérséklet alatt az szilárd oldat

oldékonyságának megfeleő szolvusz. a hőmérséklet csökkenésével egyre kisebb oldott ötvözőtartalmat mutat.

Ezzel szemben a szilárd oldat oldhatósága a hőmérséklet csökkenésével nem változik.

31. ábra.

Szilárd

oldat

eutektiku

s

rendszer

e

a)

fázisegye

nsúlyi

diagram;

b)

fázismen

nyiségi

diagram

hőmérsék

leten; c)

szövetdia

gram

Page 47: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

43 Created by XMLmind XSL-FO Converter.

Hasonlítsuk össze az és az ötvözetek kristályosodását!

Az esetében a kristályosodás a szilárd oldatok kristályosodásának megfelelően az fázis megjelenésével

kezdődik. A szilárd fázis mennyisége a hőmérséklet csökkenésével nő, míg az olvadék összetétele a likvidusz, a

szilárd fázis összetétele a szolidusznak megfelelően változik. Amikor a hőmérséklet eléri a -nek, az olvadék

összetétele az pontnak megfelelő értéket, akkor a rendszerben a összetételű és a összetételű szilárd

oldat kristályosodik egyszerre (eutektikus kristályosodás). Amikor az olvadék elfogy, a rendszer elkezd hűlni. A

hőmérséklet csökkenésével az szilárd oldat oldékonysága csökken.

Az esetében a kristályosodás szintén a szilárd oldat kristályosodásával kezdődik, mielőtt viszont az olvadék

összetétele elérte volna az eutektikus pontot, a szilárd fázis összetétele elérte az összetételt, ami a

kristályosodás befejezését jelenti. Vagyis azokban az ötvözetekben, amelyeknek a koncentrációja az eutektikus

reakciót jelző egyenes tartományán kívül esik, nem kristályosodik eutektikum, csak szilárd oldat. Ha a

kristályosodás után átlépjük az oldhatósági görbét, akkor a túltelített szilárd oldatból kiválik a szilárd oldat.

Két szilárd oldat peritektikus rendszere. A két fém olvadékállapotban minden arányban, szilárd állapotban

nem minden arányban oldja egymást. A fémek olvadáspontja nagyon különböző.

Az ilyen ötvözetekben a likvidusz két ága a két fém olvadáspontja közé eső területen metszi egymást (32 [44].

ábra). A peritektikus reakciót jelző vízszintes egyenes tartományán kívül eső ötvözetek a szilárd oldatoknak

megfelelően kristályosodnak. A két végponton belül ( ) lévő koncentrációjú ötvözetek esetében mindig

szilárd oldat kristályosodásával indul a folyamat. A hőmérsékletet elérve, végbemegy a peritektikus reakció:

Page 48: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

44 Created by XMLmind XSL-FO Converter.

az összetételű szilárd oldat reakcióba lép a összetételű olvadékkal, és a reakció termékeként összetételű

szilárd oldat keletkezik. Ha a koncentrációtartományban van a kiiindulási összetétel (pl. ), akkor a

reakció végén olvadék marad, a szilárd oldat pedig teljesen elfogy. A maradék olvadékból ezt követően

szilárd oldat kristályosodik a hőmérséklet csökkenése közben, egészen addig, míg a szilárd fázis összetétele el

nem éri a kiindulási értékét, -et. Ekkor befejeződik a kristályosodás.

32. ábra.

Szilárd

oldat

peritekti

kus

rendszer

e

a)

fázisegye

nsúlyi

diagram;

b)

fázismen

nyiségi

diagram

hőmérsék

leten; c)

szövetdia

gram

Page 49: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

45 Created by XMLmind XSL-FO Converter.

A ponttal egyező ötvözet esetében is csak tisztán szilárd oldatot találunk a próba szövetében, de ez a szilárd

oldat tisztán a peritektikus reakció során keletkezett – szemben az előző esettel, ahol a reakció termékeként, ill.

primer kristályosodással jött létre.

A koncentrációtartományban a kristályosodás a peritektikus reakcióval fejeződik be, és , valamint

szilárd oldatot találunk a próba szövetében.

Monotektikus ötvözetrendszer. A két fém olvadt állapotban nem minden arányban, szilárd állapotban pedig

egyáltalán nem oldja egymást.

Ha ilyen fémolvadékot összekeverünk, akkor az egyik folyadék a másikban csepp alakjában oszlik el. Az esetre

érvényes egyensúlyi diagram általános alakja a 33 [45]. ábrán látható. Ha az olvadék összetétele az

koncentrációtartományba, ill. a hőmérséklet-tartományba kerül, akkor a nagyobb hőmérsékleten

homogén olvadék a fent említett módon szeparálódik, két önálló fázisként jelenik meg. Ha e folyamat mellett

még kristályosodás is zajlik (harmadik fázis megjelenése), akkor a rendszer nonvariáns állapotba kerül. Ezt jelzi

a hőmérsékleten lévő vízszintes egyenes. Az egyenes végpontjától balra eső ötvözetek a már megismert

színfémek eutektikus kristályosodása szerint kristályosodnak.

33. ábra.

Monotek

Page 50: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

46 Created by XMLmind XSL-FO Converter.

tikus

ötvözetre

ndszer

a)

fázisegye

nsúlyi

diagram;

b)

fázismen

nyiségi

diagram

hőmérsék

leten; c)

szövetdia

gram

Nézzük, mi történik, ha a kiindulási koncentráció ennél nagyobb ötvözőfém-tartalmú (pl. )!

Page 51: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ÖTVÖZETEK

47 Created by XMLmind XSL-FO Converter.

A kristályosodás a B színfém megjelenésével kezdődik. Amikor az olvadék összetétele eléri az értéket a

hőmérsékleten, akkor a kezdeti homogén olvadékból cseppek formájában új olvadékfázis válik ki, miközben a B

színfém kristályosodása tovább folytatódik. A három fázis jelenléte miatt ezek a folyamatok állandó

hőmérsékleten zajlanak. A kezdeti olvadék összetétele az ponttól az a pont felé vándorol az egyenes mentén,

és A alkotóban egyre dúsabbá válik. Amikor az olvadék koncentrációja eléri az a pontot, akkor az eredeti

olvadékfázis elfogy, vagyis a B színfém kristályosodása újra a hőmérséklet csökkenése közben zajlik tovább.

Amikor az olvadék koncentrációja megegyezik az e pont koncentrációjával, a maradék olvadékból az A és B

színfém egyszerre, eutektikum keletkezése közben kristályosodik.

Így a B színfémfázis keletkezhet primer kristályosodás során az likvidusz szerint, monotektikus reakció

során az egyenes szerint, újra primer kristályosodással az likvidusz szerint, és az eutektikum egyik

fázisaként.

5. Kérdések, feladatok

1. A szolidum-hőmérséklet ismerete nagyon fontos a melegalakítási technológiáknál. Miért?

2. Határozzon meg három nonvariáns reakciót!

3. Mondjon egy kétfázisú rendszert!

4. Mi történik hűlés közben, ha keresztezzük az egyensúlyi diagram szolvuszát?

5. Írja fel a Gibbs-féle fázisszabályt tiszta víz forrására!

6. Írja le a 26 [33]. ábra ötvözetének kristályosodását!

7. Határozza meg a 27 [35]. ábra összetételű ötvözetében a hőmérsékleten lévő fázisok mennyiségét!

8. Írja le a 27 [35]. ábra összetételű ötvözetének lehűlése során lezajló folyamatokat!

9. Válasszon ki egy összetételt a 29 [38]. ábra koncentrációtartományából, és írja le az ötvözet

kristályosodásának menetét!

10. Határozza meg a 30 [40]. ábra összetételű ötvözetének fázismennyiségét a hőmérsékleten!

11. A 31 [42]. ábra alapján mondja meg, hogy milyen fázisok vannak egyensúlyban a hőmérsékleten az

ötvözetben!

12. Számolja ki a 32 [44]. ábra ötvözetében a hőmérsékleten egyensúlyban lévő fázisok mennyiségét!

13. Mennyi a nonvariáns folyamatok száma a 33 [45]. ábra szerinti diagramban?

Page 52: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

48 Created by XMLmind XSL-FO Converter.

5. fejezet - FÉMÖTVÖZETEK KRISTÁLYOSODÁSA ÉS ÁTALAKULÁSA

1. 5.1. A kristályosodás folyamata

1.1. 5.1.1. A homogén és a heterogén csíraképződés

A kristályosodás az anyagok folyékony halmazállapotból szilárd halmazállapotba való fázisátalakulása. Két

részfolyamatra bontható: az első folyamat a stabil kristálycsírák keletkezése, a második pedig ezek növekedése

(34 [48]. ábra). A kristálycsírák keletkezése lehet homogén, ill. heterogén.

34. ábra.

Kristályc

sírák

kialakulá

sa és

növekedé

se

a) az

olvadék

szerkezet;

b) a

sötétebb

atomok

csoportos

ulása;

c)

kialakul a

kristálycs

íra; d) és

e) a csíra

növekedn

i kezd

Page 53: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

49 Created by XMLmind XSL-FO Converter.

Ahhoz, hogy a kristályosodás ténylegesen elkezdődjön, az olvadékot az olvadásponthoz (fagyásponthoz) képest

túl kell hűteni (35 [49]. ábra). Az ekkor keletkező és növekedésre képes csírát kritikus méretűnek nevezzük.

35. ábra.

A

túlhűtés

értelmez

ése

a)

kristályos

odás a

fagyáspo

nton; b)

kristályos

odás

túlhűlésse

l

Page 54: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

50 Created by XMLmind XSL-FO Converter.

Nagysága a következő összefüggéssel becsülhető.

ahol a kritikus méretű csíra sugara, ; a szilárd-olvadék határfelületi energia, ; a fém

olvadás-dermedés-pontja, ; ( ) a hőmérsékleten a rendszerből elvont hőmennyiség, ;

a dermedésponthoz képest jelentkező túlhűlés, , .

Ha a véletlenszerűen összetapadó atomcsoport mérete a számítottnál kisebb, akkor az atomcsoport az

olvadékban feloldódik, vagyis a kristálycsíra eltűnik. Ha a keletkezett csíra mérete a kritikus méretnél nagyobb,

akkor az atomcsoport stabil, és növekedésre képes.

Nagy csíraképződési sebesség esetén viszonylag kicsi a kristályosodás végére kialakuló szemcsenagyság (36

[50]. ábra), ha viszont a növekedési sebesség nagy a csíraképződési sebességhez képest, akkor

végeredményként nagyméretű szemcsék jönnek létre.

36. ábra.

A

szemcsen

agyság,

valamint

a

csíraképz

ődés és a

növekedé

s

kapcsolat

a

a)

finomsze

mcsés

szerkezet;

b) durva

szemcsék

Page 55: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

51 Created by XMLmind XSL-FO Converter.

A heterogén csíraképződés növeli a csíraképződési sebességet, mert az olvadékba juttatott idegen atomok

csökkentik a felületi feszültséget, ennélfogva kisebb lesz a kritikus csíraméret is. Így lényegesen kisebb túlhűlés

is elegendő a növekedésre képes kristálycsírák létrejöttéhez. Ezt a hatást érhetjük el, ha az alumíniumolvadékba

szemcsefinomítót adagolunk (37 [51]. ábra), amelynek eredményeként finom szemcsék fejlődnek ki.

37. ábra.

A

keresked

elmi

tisztaság

ú

alumíniu

m

szemcsen

agysága

(100x-os

nagyítás)

a) nincs

-

adagolás;

b) öntés

előtt

-t

adagoltak

Page 56: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

52 Created by XMLmind XSL-FO Converter.

1.2. 5.1.2. A szilárd oldatok kristályosodása

Az ötvözetek kristályosodásakor igen nagy jelentősége van az olvadék-szilárd határfelület alakjának. Amikor az

olvadt fémet valamilyen formába öntjük, s az a hideg fallal érintkezik, a hőelvonás hatására elkezdődik az

olvadék hőmérsékletének csökkenése. Ha a hőmérséklet az olvadáspont alá esik, megindul a kristályosodás (38

[52]. ábra).

38. ábra.

Az öntött

szerkezet

kialakulá

sa

a)

kristálycs

írák

képződés

e;

b), c), d),

e)

oszlopkri

stályok

növekedé

se

Page 57: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

53 Created by XMLmind XSL-FO Converter.

Kristályosodás közben a szilárd-olvadék határfelület alakja lehet síkszerű, cellás, ill. dendrites (39 [53]. ábra).

A kristályosodási folyamat egyik fontos jellemzője a hőmérséklet-változás (gradiens, jele: ), nagysága az

olvadék-szilárd határfelületen:

,

ahol hőmérséklet az pontban ; hőmérséklet a 2 pontban, ; az 1 pont távolsága a kristályosító

falától, mm; a 2 pont távolsága a kristályosító falától, mm.

39. ábra.

Az

olvadék-

szilárd

határfelü

let

különböz

ő alakjai

Page 58: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

54 Created by XMLmind XSL-FO Converter.

a) sík; b)

cellás; c)

dendrites

Másik jellemző adat a szilárd-olvadék határfelület mozgási sebessége ( , mm/s). Ha a határfelület mozgása elég

lassú, és a hőmérséklet-változás erőteljes, a határfelület alakja sík.

A síkfrontos kristályosodás feltételét a következőképpen fejezhetjük ki:

,

ahol a hőmérséklet-gradiens, ; a határfelület mozgási sebessége, mm/s; az egyensúlyi diagram

likviduszának meredeksége, ; az egyensúlyi diagramból számítható likviduszösszetétel, %; az

egyensúlyi diagramból számítható szoliduszösszetétel, %; diffúziós állandó, .

40. ábra.

A

dendrit

Page 59: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

55 Created by XMLmind XSL-FO Converter.

kialakulá

sa (az

összetétel

i túlhűlés

magyará

zata)

a)

koncentrá

cióeloszlá

s a

szilárd-

olvadék

határfelül

eten;

b)

hőmérsék

let-

változás a

szilárd-

olvadék

határfelül

et

közelében

;

c) a cella

kialakulás

a; d)

egyensúly

i diagram

Page 60: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

56 Created by XMLmind XSL-FO Converter.

Az összefüggés szerint, ha a szilárd-olvadék határfelület előtt az olvadékban mérhető tényleges hőmérséklet

nagyobb, mint az olvadék összetételéből számított likvidusz-hőmérséklet (39 [53]a ábra), akkor a kristályosodás

határfelülete sík. Amennyiben az olvadékban a diffúzió nem elég gyors, és az ötvözőtartalom a mozgó olvadék-

szilárd határfelület előtt megnő (40 [54]a ábra), akkor az olvadék összetételéből számítható likvidusz-

hőmérséklet a tényleges hőmérsékletnél nagyobb. Miután a tényleges hőmérséklet így a likvidusz alatt van, a

jelenséget összetételi túlhűlésnek nevezzük. A sík határfelület felborulását, a cellás szerkezet kialakulását (39

[53]b ábra) éppen ez az összetételi túlhűlés okozza. Erősebb túlhűlés esetén a cellákon oldal irányú elágazás is

létrejön, kialakul a dendrites szerkezet (39 [53]c ábra és 40 [54]. ábra). (A dendrit elnevezés a dendros görög

szóból származik, amelynek jelentése: fa. A dendrit fa alakú kristály.)

41. ábra.

Nem

egyensúl

yi

kristályo

sodás

hatása a

szolidusz

helyzetér

e

Page 61: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

57 Created by XMLmind XSL-FO Converter.

A szilárd oldatok kristályosodásának gyakori következménye a mikrodúsulások kialakulása, mert a szilárd

fázisban lassú a diffúzió. Ekkor az olvadék a 41 [56]. ábra szerint kristályosodik. Amikor az olvadék eléri a

hőmérsékletet, belőle összetételű szilárd fázis válik ki, eközben az összetétele lesz. Miután a hőmérséklet

tovább csökken, és eléri a értéket, az egyensúlyi diagram szerint a és a összetételű szilárd és folyékony

fázis tart egymással egyensúlyt. A valóságos kristályosodás során viszont a szilárd fázis összetétele nem

egyenlítődik ki teljesen, hiszen a szilárd fázison keresztül nem tud elég B ötvözőatom diffundálni. Így a

tényleges átlagos összetétel és között lesz, amit a -vel jelölünk. Ennek következtében az olvadék B

ötvözőben dúsul. A hőmérséklet további csökkenésével ez a jelenség folytatódik, s a már megszilárdult

dendrites vázra újabb réteg kristályosodik. A szilárd fázis átlagos összetétele ekkor . Az olvadék tovább

dúsul B ötvözőben, megközelíti, esetleg eléri az eutektikus összetételt, így a kristályosodás az eutektikum

megszilárdulásával fejeződik be. A kristályosodás során kialakult szerkezet összetétele nem egyenletes, a

koncentráció a dendrit közepétől a széle felé haladva fokozatosan nő, és rendszerint megtalálható az eutektikum

is (42 [57]. ábra). Ez a jelenség a mikrodúsulás. Természetesen, ha az ötvözetet megfelelő hőmérsékleten,

hosszabb ideig hőkezeljük, az eutektikum feloldódik, és a koncentrációkülönbség eltűnik: az egyensúlyi

diagramnak megfelelő szövetszerkezet jön létre.

42. ábra.

Szilárd

oldatok

kristályo

sodása

a)

egyensúly

i diagram

szerinti

kristályos

odás; b)

nem

egyensúly

i

szerkezet

Page 62: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

58 Created by XMLmind XSL-FO Converter.

kifejlődés

e

1.3. 5.1.3. Az eutektikum kialakulása

Jó néhány ötvözet kristályosodása során a színfém vagy a szilárd oldat kiválása olyan összetételű olvadékhoz

vezet, amelyik mindkét fázisra nézve telítetté válik. Ekkor az olvadékból állandó hőmérsékleten, két fázisból

álló szövetelem, eutektikum kristályosodik. A 43 [58]. ábra az eutektikus egyensúlyi diagramot és a különféle

jellegű eutektikumokat szemlélteti.

43. ábra.

Az

eutektiku

s

kristályo

sodás

a) az

eutektiku

s

ötvözetre

ndszer

egyensúly

i

diagramja

; b)

szemcsés

eutektiku

m;

c) tűs

eutektiku

m; d)

szálas

eutektiku

m; e)

lemezes

eutektiku

m

Page 63: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

59 Created by XMLmind XSL-FO Converter.

Az egyensúlyi diagram jelölései alapján az eutektikus reakció a következő, a összetételű olvadékból és

összetételű és szilárd oldat keletkezik:

.

Az eutektikum két fázisa az és a szilárd oldat. Kettőjük közül az egyik túlhűlésre kevésbé hajlamos,

korábban jelenik meg az olvadékban, és csíraképzőként szerepel. Kiválását követi a második fázis megjelenése.

A kristályosodás során létrejövő eutektikum szerkezetét a csíraképződés és a határfelületi energia viszonya

határozza meg. Amennyiben valamelyik fázisnak nagy a csíraképződési hajlama, és a két fázis közötti

határfelületi energia is viszonylag nagy, akkor a kialakuló szerkezet finomszemcsés (globulitos) lesz. Ha a

határfelületi energiának nincs szerepe, a finom részecskék tűszerűen fejlődnek. Ha a csíraképződési sebesség

kicsi, és határfelületi energia elég nagy, akkor nagyobb térfogatrészekből álló, rúd alakú eutektikum fejlődik.

Amennyiben a csíraképződési sebesség és a határfelületi energia egyaránt kicsi, lemezes eutektikum jön létre.

Ekkor a határfelületi energia hatására a lemezek abban az irányban fejlődnek, amelyik kristálytani irányban a

két fázis között a határfelületi energia a legkisebb.

1.4. 5.1.4. A fogyási üreg és a porozitás keletkezése

A kristályosodás fontos kísérő jelensége a fajtérfogat 2–6%-os csökkenése, az ún. fogyás. Ez a jelenség mind a

színfém, mind a szilárd oldat, mind az eutektikum megszilárdulása közben lezajlik. Oka, hogy az olvadékban

viszonylag rendezetlenül elhelyezkedő fématomok szilárd állapotban szigorú geometriai rendet alkotva, a

legsűrűbb térkitöltésre törekedve hozzák létre a kristályos szerkezetet. A fogyás eredményeként a formában lévő

fémtömeg a kristályosodás végén kisebb térfogatot tölt ki, mint amekkorát olvadt állapotban.

Erős hűtőhatású, hideg fémformában a kristályosodás a forma fala mellett vékony kéreg képződésével indul

meg (44 [59]. ábra). A kéreg kristályosodása csökkenti a fémtömeg térfogatát, ennek folytán a folyékony fém

szintje kissé süllyed. Erre a kéregre kristályosodik a következő réteg, amely az olvadékszint további süllyedését

okozza. A folyamat végeredményeként az önt6vényben kúp alakú összefüggő fogyási üreg (lunker) képződik.

44. ábra.

Fogyási

üreg

képződés

e

Page 64: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

60 Created by XMLmind XSL-FO Converter.

Nagyon lassú hűtéskor, vastag falú homokformába öntve a fémolvadékot, mindig azonos hőmérsékletű lesz az

egész keresztmetszet. Ennek következtében az öntvény teljes térfogatában nagyjából egyszerre kezdődik meg a

kristályosodás, és azonos ütemben folytatódik. A fémötvözetek rendszerint dendritesen kristályosodnak, s a

keletkező kristályok nagyon hamar átszövik az öntvény egész keresztmetszetét. Szilárd vázat képeznek már

akkor is, amikor az öntvény nagyobbrészt még folyékony. Ez a folyékony rész kristályosodik rá a dendritekre a

fajtérfogat csökkenése közben. Tekintve, hogy a kristályosodás a dendritek közötti térfogatrészben fejeződik be,

a kisméretű fogyási üregek is itt keletkeznek (45 [60]. ábra). Ezeket az apró fogyási üregeket pórusoknak vagy

porozitásnak nevezzük. Az ily módon megszilárdult öntvény porozitásának összes térfogata megegyezik az

öntvény teljes tömegének fogyásával.

45. ábra.

A

porozitás

kialakulá

sa a

lassan

hűlő

olvadékb

an

Page 65: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

61 Created by XMLmind XSL-FO Converter.

A gyakorlatban a fogyási üreg és a porozitás együtt fordul elő, a lassúbb hűlés a porozitás, míg a gyors hűtés a

fogyási üreg kialakulásának kedvez.

2. 5.2. A fémötvözetek átalakulásai szilárd állapotban

A meghatározásból következik, hogy nemcsak a fázisátalakulásokról lesz szó, hanem olyan folyamatokról is,

amelyek a képlékeny alakváltozás miatt megnövekedett energia hatására, vagy a felületi feszültség, esetleg

külső mechanikai erő hatására következnek be. Ezek a folyamatok (újrakristályosodás, szemcsedurvulás,

ikerkristály képződése mechanikai terhelés hatására) hasonlóan mennek végbe, mint a fázisátalakulások, így

ezeket együttesen tárgyalhatjuk.

A szilárd állapotban végbemenő átalakulások hajtóereje az, hogy az anyagok mindig a legkisebb energiaállapot

elérésére törekednek (46 [61]. ábra). Ha az anyag metastabil (pl. hidegalakítás hatására nagy

diszlokációsűrűségű), akkor az átalakulás csak magasabb energiaállapoton keresztül következhet be, ezért kell

az anyagokat hevíteni (hőkezelni), hogy az átalakulás elindulhasson. Ha az anyag instabil, akkor bármilyen

atomi átrendeződés alacsonyabb energiájú állapotot eredményez, energiagát nincs. Éppen ezért instabil fázis, ill.

instabil állapot csak ideiglenesen létezhet.

46. ábra.

A stabil,

a

metastab

il és az

instabil

állapot

mechani

kai

szemlélte

tése

2.1. 5.2.1. Az átalakulások csoportosítása

Mivel az átalakulás az atomokból álló kristályszerkezet átrendeződése, kézenfekvő, hogy ez az átrendeződés

legyen csoportosításuk alapja.

Page 66: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

62 Created by XMLmind XSL-FO Converter.

A legtöbb gyakorlati jelentőségű átalakulás heterogénnek tekinthető. Ekkor az átalakulás közben az anyagban

együtt figyelhetők meg az átalakult és az át nem alakult térfogatrészek (47 [62]. ábra). A homogén átalakulás

során az anyag teljes térfogatában egyszerre zajlik a változás. Ilyen homogén átalakulás a szilárd oldatok

rendeződése. Tekintve, hogy ennek gyakorlati jelentősége kisebb, részletesebben nem foglalkozunk vele.

47. ábra.

A szilárd

állapotba

n lezajló

átalakulá

sok

csoportos

ítása

A heterogén átalakulásokat további két csoportra oszthatjuk, mégpedig aszerint, hogy az átalakult térfogatarány

hogyan függ a hőmérséklettől és az időtől. A két csoport a martenzites, ill. a csíraképződéssel és növekedéssel

zajló folyamat.

A martenzites átalakulás alkalmával a kiindulási fázis atomjai összehangolt mozgással hozzák létre az új

fázist. A két fázisban a legtöbb atomnak azonos a legközelebbi szomszédja, az atomok keveredése nem

következik be. Azt is mondhatjuk, hogy az ilyen reakció diffúzió nélkül megy végbe.

A csíraképződéssel és növekedéssel végbemenő átalakulásokban az új fázis a régi rovására nő oly módon,

hogy az inkoherens fázishatár vándorol. A növekedés annak a következménye, hogy az atomok egyedi

atommozgással átlépik ezt a határt, természetesen a hőmérséklettől függő sebességgel.

A bénites átalakulás a két fő átalakulás között helyezkedik el. Létrejöttekor az atomok összehangolt mozgása

mellett a diffúziónak is van szerepe.

2.2. 5.2.2. A kristálycsírák képződésével és növekedésével zajló folyamatok

Az átalakulás stabil kristálycsírák képződésével, s növekedésével megy végbe. Az újonnan létrejövő fázis

térfogataránya – adott hőmérsékleten – az idő függvényében fokozatosan nő. Ha elég időt hagyunk, az

átalakulás teljesen végbemegy. Mivel az atomok egymástól függetlenül mozognak, és nincs hasonlóság a

kiindulási és a végső állapot között, az átalakulás nem megfordítható (irreverzibilis). A képlékeny alakítás

gyorsítja a folyamatokat, mert az alakított kristályban könnyebben képződik csíra, és az alakítás a

Page 67: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

63 Created by XMLmind XSL-FO Converter.

vakanciaszámot növelve a diffúzió sebességét is változtatja. A reakciótermékek és a kiindulási fázis összetétele

között nincs kapcsolat. Ugyancsak nem fedezhető fel orientációs összefüggés a kiindulási fázis és az új fázisok

között.

Tekintve, hogy az atomok egyenként lépnek át az egyik fázisból a másikba, és ez csak az inkoherens

fázishatáron lehetséges, ezért az ilyen átalakulások fázishatárai általában inkoherensek.

Az újrakristályosodás a csíraképződéssel és növekedéssel zajló átalakulások közül a legjellegzetesebb.

Az újra kristályosodás az olvadékból való kristályosodáshoz hasonlóan megy végbe, a folyamatot az

csíraképződési és a növekedési sebesség jellemzi. A folyamatot a 48 [63]. ábra figyelhetjük meg.

48. ábra.

Az

újrakrist

ályosodá

s

folyamat

a

a) a

kristálycs

írák

megjelen

ése; b) c)

d) e) az új

kristályok

növekedé

se;

f) az

újrakristál

yosodott

szövet

szemcsed

urvulása

Page 68: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

64 Created by XMLmind XSL-FO Converter.

Az újrakristályosodott térfogatarány adott hőmérsékleten az idő függvényében S alakú görbének megfelelően

változik (49 [64]. ábra). Időben állandó csíraképződési és a növekedési sebesség esetén az átalakult

térfogatarány változása az Avrami-egyenlettel írható le:

,

ahol az átalakult fázis által elfoglalt térfogat aránya; a hőkezelés ideje.

49. ábra.

Az

újrakrist

ályosodot

t

térfogata

rány

időbeni

változása

Page 69: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

65 Created by XMLmind XSL-FO Converter.

Az újrakristályosodás végén kialakuló szemcsenagyság az csíraképződési sebesség és a növekedési

sebesség arányától függ a következő módon:

, mm;

ahol az újrakristályosodott szemcsék átlagos átmérője.

A hidegalakítás mértékének fokozása – növelve a diszlokációsűrűséget – a csíraképződési sebesség

növekedéséhez vezet, s így finom szemcséket eredményez. Ezzel szemben a hőmérséklet növekedése elsősorban

a diffúziós sebességet – ezzel együtt a növekedési sebességet – fokozza, ezáltal durvább szemcseszerkezetet hoz

létre. A hőmérséklet és az alakítás mértékének hatását az újrakristályosodás végén kialakuló szemcsenagyságra

az újrakristályosodási diagram szemléltet (50 [65]. ábra).

50. ábra.

Az

újrakrist

ályosodá

s végén

kialakuló

szemcsen

agyság

Page 70: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

66 Created by XMLmind XSL-FO Converter.

Az újrakristályosodási küszöb azt a legkisebb alakítást jelenti, amely alatt újrakristályosodás egyáltalán nem

következik be. Csak az újrakristályosodási küszöbnél nagyobb alakítás növeli meg annyira a kristályos anyag

energiatartalmát, amely kellő hőmérsékleten az előzőkben ismertetett folyamatokhoz vezet. Természetesen az

újrakristályosodásnak határhőmérséklete is van, amely felett a diffúzió már olyan sebességgel zajlik, ami az új

csírák megjelenéséhez és növekedéséhez szükséges. A szövetszerkezetben megfigyelhető újrakristályosodás

eredményeként mechanikai lágyulás is bekövetkezik (51 [66]. ábra).

51. ábra.

A

megújulá

s (a

diszlokác

iós

szerkezet

megválto

zása), az

újrakrist

ályosodá

s

(csírakép

ződéssel

és

növekedé

ssel járó

átalakulá

s) és a

szemcsed

urvulás

folyamat

a

Page 71: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

67 Created by XMLmind XSL-FO Converter.

Kisebb hőmérsékleten az újrakristályosodást megelőzően már módosul a diszlokációs szerkezet, csökken a

diszlokációsűrűség, a diszlokációk rendeződnek, és kis szögű szemcsehatárokat hoznak létre (52 [67]. ábra).

Ennek következtében a keménység, ill. szilárdság kisebb mértékben csökken. A folyamat összefoglaló neve:

megújulás. A kis diszlokációsűrűségű, lágy kristályok megjelenésének és növekedésének, az

újrakristályosodásnak a hatására a keménység jelentősen csökken. A teljesen újrakristályosodott anyagban

további változások figyelhetők meg. Az új szemcsék durvulnak, fajlagos felületük kisebb lesz. Ezt a folyamatot

szemcsedurvulásnak nevezzük, amelynek következtében a keménység is tovább csökken.

52. ábra.

A kis

szögű

szemcseh

atárok

kialakulá

sa

a)

nagymért

ékben

Page 72: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

68 Created by XMLmind XSL-FO Converter.

alakított

szerkezet;

b) kis

szögű

szemcseh

atárok

kialakulás

a;

c) a b)

ábra

nagyított

részlete; a

diszlokáci

ók

sorokba

rendeződ

ése

Az eutektoidos reakciókiindulási állapota homogén szilárd oldat ( ). Az állandó hőmérsékleten végbemenő

reakció során két új fázisból (ötvözőben szegényebb: és ötvözőben dúsabb: ) álló szövetelem (ún. eutektoid)

keletkezik. A keletkező fázisok rácsa különbözik a kiindulási kristályos szerkezettől. Eutektoidos átalakulás

csak olyan ötvözetben fordulhat elő, ahol az alapfémnek allotrop átalakulása is van. A folyamat lényege, hogy

az allotrop átalakulás és az ötvözőben dús (vegyület) fázis kiválása egyszerre zajlik. A keletkező két fázis között

orientációs kapcsolat van, határuk félkoherens. A folyamat csíraképződéssel és a stabil csírák növekedésével

megy végbe. A csíraképződés alkalmával először az ötvözőben dúsabb fázis térfogatrészei jönnek létre, majd

erre kristályosodik az ötvözőben szegényebb fázis. A folyamat előrehaladásához az ötvöző fém atomjainak az

határról a fázis határára kell diffundálniuk (53 [68]. ábra). Az átalakulás sebessége két részfolyamattól

függ.

53. ábra.

Az

eutektoid

os

szövetele

m

kialakulá

sa

ötvözőbe

n

szegénye

bb fázis;

Page 73: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

69 Created by XMLmind XSL-FO Converter.

ötvözőbe

n dúsabb

fázis;

kiindulási

homogén

fázis

1. A csíraképződési sebesség – amely az allotrop átalakulással van kapcsolatban – a túlhűtés függvényében

növekvő értéket mutat. Ez azt jelenti, hogy minél nagyobb a túlhűlés, annál kisebb a növekedésre képes

csírák mérete, így a csíraképződés időszükséglete csökken. Amennyiben az egyensúlyi hőmérséklethez

közelítünk, a a nullához tart, a kritikus csíra mérete egyre nő, ezzel a kialakulásához szükséges idő is

növekszik.

2. A stabil csírák növekedése, amelyet a diffúzió befolyásol. A kiindulási homogén szilárd oldatból ugyanis egy

ötvözőben dús és egy ötvözőben szegény fázisokból álló szövetelem létrejöttéhez diffúzióra van szükség. A

hosszú távú diffúzió biztosítja az ötvözőfém ilyen értelmű szétválását. A diffúzió sebessége a hőmérséklet

emelkedésével nő, ebből a szempontból a folyamat nagyobb hőmérsékleten egyre gyorsabbá válik. A két hatás

eredményeként az eredő (csíraképződésből és azok növekedéséből álló) folyamat sebessége a hőmérséklet

függvényében szélső értéket mutat (54 [69]. ábra). Az így kialakuló görbét C görbének nevezzük. Ezek a

görbék alkalmasak az eutektoidos átalakulások időszükségletének meghatározására. Az eutektoidos átalakulások

legismertebb példája az Fe-C rendszer perlitjének kialakulása.

54. ábra.

Az

eutektoid

os

reakció

sebessége

Page 74: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

70 Created by XMLmind XSL-FO Converter.

2.3. 5.2.3. Martenzites jellegű átalakulások

A martenzites jellegű átalakulás csak szilárd állapotban fordul elő. Fő jellegzetessége, hogy nincs diffúzió. Több

ezer atom nagy sebességgel, összehangolt mozgást végezve hozza létre az új fázist. Az új fázis és az eredeti

fázis összetétele megegyezik. Az átalakult térfogatarány a hőmérséklettől függ. Hűtéskor az átalakulás adott

hőmérsékleten kezdődik, és az hőmérsékleten fejeződik be, bizonyos esetekben előfordul, hogy egyáltalán

nem fejeződik be.

A martenzites reakciók visszafordíthatóak (reverzibilisek), abban az értelemben is, hogy a kiindulási atomi

elrendeződést ismételten elő lehet állítani. A martenzites átalakulás során minden egyes kristály változatlan

összetételű új kristálláy alakul. A martenzites kristályok síkmetszetei tű alakúak, a térben viszont vékonyodó

lemez keresztmetszetűnek tekinthetőek. Ezek a lemezek az eredeti rácshoz képest orientáltak, s a rácsnak azt a

síkját, amelyen létrejöttek, habitussíknak nevezzük. A martenzites reakció mindig alakváltozással jár.

Martenzites átalakulás esetén mindig határozott összefüggés van az eredeti és az új fázis orientációja között.

Ebből következik, hogy a martenzittűk vagy –lemezek határa koherens vagy félkoherens. A martenzites

átalakulás egyik legegyszerűbben érthető formája a külső mechanikai feszültség hatására bekövetkező ikresedés.

Az atomok nem egyedileg, hanem szomszédaikkal együtt, összehangolt mozgás eredményeként hozzák létre az

ikerkristályt (55 [70]. ábra). A határ szigorúan koherens. A fémtani szövetben ezeket az ikerkristályokat

egymással párhuzamos vonalak, kristályhatárok jelzik. A gyakorlat számára a legfontosabb az Fe-C

ötvözetrendszer martenzites átalakulása.

55. ábra.

A

mechani

kai

ikerképz

ődés

Page 75: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

71 Created by XMLmind XSL-FO Converter.

2.4. 5.2.4. Bénites átalakulás

A bénites átalakulás a martenzites és a csíraképződéses növekedéses átalakulás közé esik. Tulajdonképpen olyan

martenzites reakció, amelynek előrehaladását diffúzió teszi lehetővé. Ekkor a túlhűtés nem elég nagy a

martenzites átalakuláshoz, de a fázishatár két oldala közötti energiakülönbséget a diffúziós folyamat megnöveli

olyan mértékben, hogy kevés martenzit jön létre. A felső bénit létrejöttekor a diffúzió főként a kiindulási

fázisban megy végbe, azaz a kiválás megelőzi a martenzites átalakulást. Alsó bénit képződése esetén a diffúzió a

már kialakult fázisban, a martenzitben megy végbe. Ez a folyamat a martenzit megeresztődéséhez hasonlítható.

A bénites reakció eredményeként mindig kétfázisú szerkezet jön létre.

3. Kérdések, feladatok

1. Mikor beszélhetünk homogén csíraképződésről? Mit nevezünk heterogén csíraképződési mechanizmusnak?

2. Hogyan lehet kiszámítani a kritikus csíra méretét?

3. Mi a csíraképződési és a növekedési sebesség mértékegysége?

4. Milyen feltételek esetén alakul ki finom szemcsenagyság?

5. Milyen alakú lehet az olvadék-szilárd határfelület?

6. Milyen körülmények között jön létre kristályosodás közben a dendrit? Milyen matematikai összefüggéssel

lehet leírni a viszonyokat?

7. rajzolja fel az összetételi túlhűlés elvi ábráját! Magyarázza meg a síkfront felbomlását!

8. Mit értünk nem egyensúlyi kristályosodás alatt?

9. Milyen szerkezetű eutektikumokat ismer? Milyen feltételek között keletkeznek?

10. Mi a különbség a fogyási üreg és a porozitás között? Hogyan jönnek létre?

11. Hogyan lehet csoportosítani a szilárd állapotban végbemenő átalakulásokat?

12. Milyen típusai vannak a heterogén átalakulásnak?

Page 76: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

FÉMÖTVÖZETEK

KRISTÁLYOSODÁSA ÉS

ÁTALAKULÁSA

72 Created by XMLmind XSL-FO Converter.

13. Mi az újrakristályosodás lényege? Hogyan változik az átalakult térfogatarány az idő függvényében?

14. Rajzolja fel az újrakristályosodási diagramot! Mitől függ az újrakristályosodás végén kialakuló

szemcsenagyság?

15. Mutassa be az eutektoidos reakciót!

16. Milyen folyamatokban van jelentősége az atomok összehangolt mozgásának? Rajzoljon ilyen jellegű

átalakulást!

17. Milyen szerepe van a diffúziónak a bénites átalakulásban?

Page 77: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

73 Created by XMLmind XSL-FO Converter.

6. fejezet - GYAKORLATI ÖTVÖZETEK

1. 6.1. A vas-szén ötvözetrendszer

Az ipari vasötvözetekben a vas legfontosabb ötvözője a szén. A gyakorlati vasötvözetek a szén mellett mindig

tartalmaznak – néha csak századszázalék mennyiségben – egyéb ötvözőelemet is, ennek ellenére a legnagyobb

mennyiségben használt vasötvözetek vas-szén (Fe-C) ötvözeteknek tekinthetők.

A fémtanban, a metallográfiában, a kohászati gyakorlatban az elemi szén neve: karbon . De használják a szén megjelölést is.

56. ábra.

A vas-

szén

ötvözetek

Heyn–

Charpy-

féle

ikerdiagr

amja

A Fe-C ötvözetek egyensúlyi diagramjában, közös koordináta-rendszerben két diagramot ábrázolunk, ezért ezt a

diagramot Heyn–Charpy-féle ikerdiagramnak is nevezzük (56 [73]. ábra). Az ábrán a nevezetes pontokat

egyezményes betűkkel jelöljük. A pontok hőmérséklet- és koncentráció-adatait a 3 [73]. táblázat, az egyes

hőmérsékletek, szövetelemek megnevezését pedig a 4 [74]. táblázat tartalmazza. A diagram az egész

ötvözőrendszert csupán 6,67% széntartalomig ábrázolja. A nagyobb széntartalmú ötvözetekre nincs elég

megbízható adat, de ezeknek a vasötvözeteknek nincs is gyakorlati jelentőségük.

3.

Page 78: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

74 Created by XMLmind XSL-FO Converter.

táblázat.

Az Fe-C

diagram

nevezetes

pontjai

Ikerdiagramra azért van szükség, mert a szén a vasötvözetekben kétféle alakban jelenhet meg: mint elemi szén

grafit alakjában, vagy megkötött szén, vas-karbid ( , ún. cementit) alakjában. A két diagram közül az

egyensúlyi feltételeknek a grafitos rendszer felel meg, ezért ezt stabilis rendszernek hívjuk, szemben a

metastabilis karbidos rendszerrel. A diagramban folytonos vonal ábrázolja a karbidos állapotokra érvényes

részeket. A grafitos (stabilis) rendszer vonalai sok helyen megegyeznek a karbidos rendszer megfelelő

vonalaival. Ahol a két diagram között eltérés van ott a grafitos rendszerre érvényes vonalak szaggatottak. Ez

utóbbiak mindig nagyobb hőmérsékleten (felette) futnak, mint a megfelelő metastabilis vonalak. A szaggatott

vonalakhoz tartozó betűjeleket vessző (pl. E') jelöli.

4.

táblázat.

Az Fe-C

diagram

ban

használat

os

megneve

zések

Page 79: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

75 Created by XMLmind XSL-FO Converter.

A kisebb széntartalmú vasötvözetek mindig karbidosan kristályosodnak. A nagyobb széntartalmú ötvözetek is

inkább kristályosodnak metastabilisan, mint stabilisan. Ennek oka az, hogy a grafit kristálycsírái nagy késéssel

(túlhűléssel) kezdenek képződni az olvadékban, és még a grafit kristálycsírák megjelenése előtt az olvadék

annyira túlhűl, hogy megkezdődik a vas-karbid kristályosodása. Ezek után a grafit már nem jelenhet meg, mert a

karbid rohamos képződése és növekedése érvényesül.

1.1. 6.1.1. A metastabilis ( - ) ötvözetek diagramja

A diagram a 4 fejezetben megismert korlátozott oldékonyság esetére érvényes ideális eutektikus diagramra

hasonlít. Jelen esetben az eutektikum fázisait egy szilárd oldat és egy vegyület alkotja.

A vasnak a hőmérséklet változásával három allotróp módosulata van: a térben középpontos kockarácsú -vas

ún. ferrit, a magasabb hőmérséklet-tartományban érvényes, felületen középpontos kockarácsú -vas az ún.

ausztenit, és a legmagasabb hőmérsékletű módosulata, a szintén térben középpontos kockarácsú -vas.

Mindhárom módosulat szilárd oldat. Ennek megfelelően a diagramban az eutektikus diagramra jellemző vonalak

(B-C, C-D, J-E, E-S), az allotrop átalakulás kezdő, ill. befejező hőmérsékletét jelző vonalakkal (N-H, N-J, G-S,

G-P) egészülnek ki. Mivel a szén mint ötvözőelem a módosulatot stabilizálja, a növelésével az ausztenit

területe bővül, ezért a G pontból az átalakulást jelző görbék lefelé, míg az N pontból felfelé indulnak el.

Amikor az allotrop átalakulást jelző görbék metszik a diagram kristályosodást (J-E), ill. túltelített szilárd

oldatból való kiválást (E-S) jelző vonalait, akkor a három különböző fázis jelenléte miatt nonvariáns folyamatok

játszódnak le a H-J-B és a P-S-K egyenesek mentén. A következőkben ezeket a folyamatokat vizsgáljuk meg

részletesen.

A likvidusz három ágú, ennek megfelelően a 0,51%-nál kisebb széntartalmú ötvözetekben az A-B ág szerinti

hőmérsékleten a szilárd oldat kezd kristályosodni a szolidusz A-H ágának megfelelő összetétellel. A likvidusz

B-C ágának megfelelő széntartalom esetén az olvadékból szilárd oldat kristályosodik primeren. A likvidusz C-

D ága a vas-karbid bizonytalanul ismert kezdeti kristályosodási hőmérsékleteit köti össze.

A diagramban három állandó hőmérsékleten zajló (nonvariáns) folyamat van:

Peritektikus reakció (H-3-B egyenes) 1493 -on: 0,1...0,51% C-tartalmú ötvözetekben, 1493 -on, a

korábban primeren kristályosodott C-tartalmú -vas reakcióba lép a C-tartalmú

olvadékkal, és a reakció termékeként C-tartalmú szilárd oldat keletkezik.

Ha a kiindulási összetétel a (0,1%C) és (0,16%C) pontok közé esik, akkor a peritektikus reakció végén a -

fázis mellett -fázis marad. Ha a kezdeti ötvözet C-tartalma pontosan a pont szerinti (0,16%), akkor csak

szilárd oldatot találunk a reakció végén. Ha az összetétel az (0,16% C) és B (0,51% C) pontok közé esik,

akkor a mellett olvadék marad:

Page 80: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

76 Created by XMLmind XSL-FO Converter.

(megmarad)

(megmarad)

Eutektikus kristályosodás (E-C-F egyenes) 1147 -on: Az olvadékból C-tartalmú szilárd

oldat és C-tartalmú vegyület egyszerre kristályosodik. Az így létrejött kétfázisú eutektikum

neve lédeburit.

Eutektoidos átalakulás (P-S-K egyenes) -on: Az C-tartalmú szilárd oldatból

C-tartalmú ferrit ( ) és C-tartalmú cementit ( ) válik ki. Az így képződött

szövetelemet perlitnek nevezzük.

Jellemző vonalak még a diagramban a szilárd oldatok oldhatósági határát jelölő görbék: így az ausztenit

oldhatósági határát jelölő vagy , illetve a ferrit szénoldó képességét mutató P-Q vonalak. A

diagramnak megfelelően a túltelített ausztenitből vegyület, más néven – megkülönböztetve a primeren

kristályosodott fázistól –, szekunder cementit válik ki. A ferrit oldottszén-tartalma szintén az vegyület

kiválásával csökken, ezt a fázist tercier cementitnek hívjuk.

Az M-O egyenes jelzi a Curie-hőmérsékletet, a ferromágneses átalakulás hőmérsékletét.

1.2. 6.1.2. A stabilis (Fe-grafit) ötvözetek diagramja

Mindazok a vonalak, amelyek a vas módosulatainak és azok széntartalmú szilárd oldatainak képződésére

vonatkoznak, mindkét diagramban közösek. Az eutektikusnál nagyobb széntartalmú ötvözetekben a primer

cementit helyett primer grafit kristályosodik. A lédeburit helyett a stabilis rendszerben grafitos eutektikum

szilárdul meg. A túltelített ausztenitből az S'–E' vonalnak megfelelően szekunder, a túltelített ferritből tercier

grafit válik ki. Az eutektoidos átalakulás során az ausztenit ferritnek és grafitnak az eutektoidjává alakul át.

A grafit túlhűlésre hajlamos kristályosodása miatt stabilis módon csak akkor szilárdul meg az ötvözet, ha

széntartalma nagyobb, mint 2%, a lehűlés kellően lassú, és a cementit stabilitását csökkentő ötvözőelem is jelen

van. Ilyen hatása elsősorban szilíciumnak van. Ha a vasötvözet szilíciumot nem tartalmaz, és a cementit

stabilitását növelő ötvözőfém (pl. króm vagy mangán) van az ötvözetben, akkor még a 4...6% széntartalmú

ötvözetek is metastabilisan kristályosodnak.

A vasötvözetekről a töretük alapján mikroszkópos vizsgálat nélkül is megállapíthatjuk, hogy miként

krsitályosodtak. A grafitos vasötvözetek ugyanis mindig a grafitkristályok mentén törnek, a törésfelületen tehát

sötétszürke grafitkristályok vannak. A grafitos vasötvözet szürke színű, míg a karbidos vasötvözetek törete

világosabb, ezüstös színű.

A grafitos vasötvözeteket ennek megfelelően szürkének, míg a karbidosokat fehérnek is nevezzük.

1.3. 6.1.3. A vas-szén ötvözetekben előforduló szövetelemek

A gyakorlati vasötvözeteket széntartalmuk szerint két csoportra osztjuk: a 2%-nál kevesebb szenet tartalmazó

ötvözeteket acéloknak, az ennél nagyobb széntartalmú ötvözeteket öntöttvasaknak hívjuk. Az S pontnak

megfelelő összetételű acélt eutektoidos acélnak nevezzük. Ha a széntartalom az eutektoidosnál kevesebb, akkor

hipoeutektoidos acélról, ha több, akkor hipereutektoidos acélról beszélünk. Ennek megfelelően használjuk az

eutektikus, hipoeutektikus és hipereutektikus összetételű öntöttvas fogalmát is.

Vizsgáljunk meg néhány konkrét ötvözetben lezajló kristályosodási, ill. átalakulási folyamatot.

Acélok:

.

Page 81: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

77 Created by XMLmind XSL-FO Converter.

A kristályosodás szilárd oldat megjelenésével kezdődik az A-B likvidusznak megfelelő hőmérsékleten, és az

A-H szolidusz szerinti összetétellel. Az 1493 -on végbemegy a peritektikus reakció, amelynek végén az

összes olvadék elfogy, a reakció termékeként létrejött ausztenitet és a megmaradt szilárd oldatot találjuk a

szövetben. Ezt követően, a hőmérséklet csökkenése közben, allotrop átalakulás során, a maradék szilárd oldat

ausztenitté alakul. Amikor a hőmérséklet eléri a G-S görbe szerinti értéket, a felületen középpontos ausztenit,

G-P görbe szerinti összetételű, térben középpontos ferritté alakul át, a hőmérséklet csökkenése közben. A

folyamat csíraképződéses növekedéssel zajlik. A ferritcsírák az ausztenit-szemcsehatárokon jelennek meg

először. A ferrit kiválása az ausztenit széntartalmát (a G-S vonal szerint) növeli. Az hőmérsékleten az

ausztenit széntartalma eléri az S pontnak megfelelő értéket, ekkor a maradék ausztenit eutektoidos átalakulás

közben perlitté alakul. Ekkor a kialakult szövet a volt ausztenit-szemcsehatárokon elhelyezkedő proeutektoidos

ferritből, ill. (az eutektoidos átalakulás előtt keletkezett) perlitkolóniákból áll. Perlitkolóniának nevezzük az egy

csírából növekedett perlitet, amelyet egymással párhuzamosan elhelyezkedő ferrit- és cementitlemezek alkotnak

(57 [77]. ábra). Egy kolónián belül a perlitlemezek távolsága állandó.

57. ábra.

Proeutek

toidos

ferrit- és

perlitkol

óniák

(200x-os

nagyítás)

Page 82: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

78 Created by XMLmind XSL-FO Converter.

A darab szobahőmérsékletre való lehűlése közben a ferritfázisból (mind a proeutektoidos ferritből, mind a perlit

ferritjéből) tercier cementit válik ki.

A keletkezett szövetelemek (ferrit+perlit) mennyiségét a kiindulási összetétel határozza meg. Ha a széntartalom

kisebb, akkor a perlit keletkezését több proeutektoidos ferrit kialakulása előzi meg, így kevesebb perlitet

találunk a szövetben. Ha a kiindulási összetétel az S ponttal egyezik, akkor a 100% perlit alkotja a próba

szövetét (58 [78]. ábra ).

.

58. ábra.

Perlit (N

= 960x-os

nagyítás)

Page 83: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

79 Created by XMLmind XSL-FO Converter.

A homogén olvadékból a B-C likvidusznak megfelelő hőmérsékleten ausztenit kezd kristályosodni az I-E

szolidusznak megfelelő összetétellel. A megszilárdulás a hőmérséklet csökkenése közben, az olvadék és a

szilárd fázis koncentrációjának folyamatos változásával következik be. Amikor a szilárd fázis összetétele eléri

az kiindulási összetétel értékét, befejeződik a kristályosodás. Ezt követően a 100%-ban szilárd oldatot

tartalmazó darab hűl egészen az E-S görbének megfelelő hőméréskletig. A görbét átlépve, a túltelítetté vált

szilárd oldatból a szintén proeutektoidés szövetelem, a szekunder cementit válik ki a szemcsehatárokon

csíraképződéssel. A cementit kiválása az ausztenit széntartalmának csökkenését vonja maga után. Amikor – az

előző pontban említett módon – a széntartalom eléri az S pontnak megfelelő értéket, végbemegy az eutektoidos

átalakulás. A lehűlt próba szövetét, a volt ausztenit-kristályhatárokon elhelyezkedő szekunder cementit és perlit

alkotja (59 [79]. ábra).

59. ábra.

Szekund

er

cementit

és perlit

(200x-os

nagyítás)

Page 84: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

80 Created by XMLmind XSL-FO Converter.

.

Ezekben az acélokban szilárd oldat kristályosodik primeren, amely a H-N, H-I görbék szerint átalakul

ausztenitté, az ausztenit pedig G-S, G-P görbék szerint ferritté. Ezt követően a ferritből tercier cementit válik ki,

részben a ferrit kristályhatárokon, részben a kristályok belsejében. Ezekben az ötvözetekben nincs nonvariáns

folyamat.

Fehér öntöttvasak

.

A kristályosodás a szilárd oldat megjelenésével kezdődik a B-C görbe szerinti hőmérsékleten a szolidusz

szerinti összetétellel. Az ausztenit folyamatos megszilárdulásával az olvadék széntartalma egyre nő. Amikor

eléri a C pontnak megfelelő értéket, akkor nonvariáns folyamat során a maradék olvadék ausztenitből és

cementitből álló eutektikummá szilárdul. Ennek az eutektikumnak igen jellegzetes morfológiája van, ezért külön

elnevezéssel lédeburitnak hívjuk. Ezt követően a hőmérséklet csökkenése közben a primeren kristályosodott

(proeutektikus) ausztenitből és a lédeburit ausztenitjéből is az görbének megfelelően szekunder cementit

válik ki. Amikor az ausztenitfázisok összetétele eléri az S pontnak megfelelő értéket, akkor végbemegy az

eutektoidos átalakulás. Természetesen a lédeburit ausztenitje is átalakul perlitté, viszont az átalakulás után is

megmarad az eutektikus kristályosodáskor kialakult morfológia, ezért az átalakulás után kialakult szövetet is

lédeburitnak hívjuk (60 [81]. ábra).

Page 85: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

81 Created by XMLmind XSL-FO Converter.

.

60. ábra.

Hipoeute

ktikus

fehér

öntöttvas

(primér

ausztenit

és

lédeburit

), (50x-es

nagyítás)

A kristályosodás primer nagyméretű cementitlapok megjelenésével kezdődik. A cementitkiválás miatt a

széntartalom egészen a C pontnak megfelelő értékéig csökken az olvadékban. Ekkor a már ismert módon

végbemegy az eutektikus reakció, azt követően a szekunder cementit kiválása, majd az eutektoidos átalakulás

(61 [82]. ábra).

Page 86: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

82 Created by XMLmind XSL-FO Converter.

61. ábra.

Hipereut

ektikus

fehér

öntöttvas

(primer

cementit

és

lédeburit

) (200x-

os

nagyítás)

Szürke öntöttvasak

.

A primer ausztenit megjelenését követő eutektikus kristályosodás során az eutektikum fázisait ausztenit és grafit

alkotja. Ezt a szövetelemet grafitos eutektikumnak hívjuk. Ezt követően a túltelített szilárd oldatból grafit válik

ki, és az eutektoidos átalakulás során a ferrit mellett grafit alkotja az eutektoid fázisait.

Page 87: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

83 Created by XMLmind XSL-FO Converter.

Előfordulhat, hogy a kristályosodás grafitosan – vagyis stabilis módon – az átalakulás pedig karbidosan

(metastabilis módon) megy végbe. Ez esetben az eutektikum ausztenitből és grafitból, az átalakulás során

létrejött eutektoid pedig ferritből és cementitből áll (62 [83]. ábra).

62. ábra.

Grafit és

perlit

(200x-es

nagyítás)

.

A kristályosodás primer grafit lemezek megjelenésével kezdődik bizonytalan hőmérsékleten, majd azt grafitos

eutektikum megjelenése követi. A túltelített szilárd oldatból való kiválás után az átalakulás lehet grafitos vagy

karbidos.

Az eutektikumot tartalmazó, kereken 2%-nál nagyobb széntartalmú vasötvözetekben kialakuló szövet ezek

szerint háromféle lehet:

Page 88: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

84 Created by XMLmind XSL-FO Converter.

– Az ötvözet karbidosan kristályosodik és karbidosan alakul át; szövetelemei ekkor lédeburit és perlit. A

kristályosodás grafitosan az ausztenit átalakulása pedig karbidosan megy végbe. Az ilyen vasötvözet szövetében

grafiton kívül perlit van. Ekkor a vasötvözetet szürke töretű perlitesnek nevezzük.

– A kristályosodás és az átalakulás is grafitos, a szövetben a grafiton kívül csak ferrit van. Ekkor szürke töretű

ferrites vasötvözetről beszélünk.

1.4. 6.1.4. Nem egyensúlyi szövetelemek kialakulása

A Fe-C egyensúlyi diagramból látható, hogy a szobahőmérsékletre hűlt próbadarabok szövetének kialakulását

döntően az ausztenit átalakulása határozza meg. A diagram alapján megismertük, hogy milyen az ausztenit

egyensúlyi körülmények közötti eutektoidos átalakulása. A perlit a kialakulását a széndiffúziónak, ill. az

ausztenitnek az átalakulási hőmérséklet alá való túlhűtésének köszönheti, vagyis csíraképződéses, növekedéses

folyamatnak. A csíra mindig cementit, amely rendszerint az ausztenit kristályhatárán jelenik meg, növekedni

pedig úgy tud, hogy az ausztenitből megfelelő mennyiségű szénatom diffundál a lemezhez. Ennek megfelelően

a csíra környezete szénben elszegényedik, és ekkor megjelenik a ferritcsíra, majd újra cementitcsíra stb. A

továbbiakban mindkét lemezke növekedik. A perlitkolóniában a ferritkristályok kristálytani orientációja

megegyezik. Ugyanez vonatkozik a cementitlemezekre is. A kialakult lemezes szerkezetben a lemezek közti

távolság, vagyis a perlit finomsága függ az átalakulási hőmérséklettől.

Ötvözetlen acélokban – ha az ausztenitet sikerül megfelelően gyors hűtéssel -ra lehűteni – a

nagymértékű túlhűlés miatt igen nagy lesz a hajtóerő, amely igyekszik az ausztenitet ferritté átalakítani. A rács

ezért átalakul, a felületen középpontos rács térben középpontossá válik. A ferrit azonban sokkal kevesebb szenet

képes oldani, mint az ausztenit,. s mivel kisebb hőmérsékleten a diffúzió jóval lassúbb, ezért a túltelítetté vált

ferritből a szén nem tud kiválni, oldatban marad, tetragonálissá torzítva a térben középpontos rácsot. Ilyen

esetben az ausztenit átalakulása diffúzió nélkül a rács átbillenésével, az atomok együttes elmozdulásával megy

végbe. Ezt a fajta átalakulást (l. az 5.2.3. pontot) martenzites átalakulásnak, a keletkezett tűs jellegű

szövetelemet pedig martenzitnek hívjuk (63 [84]. ábra). A martenzites átalakulás során tehát nem változik meg

az atomok egymáshoz képesti helyzete, csak a távolsága. Ebből következik, hogy a martenzit az ausztenit

meghatározott kristálytani síkjai mentén keletkezik. A kristálytani síkok és irányok között a következő

orientációs kapcsolatot figyelték meg a két fázisban:

63. ábra.

Martenzi

t (200x-es

nagyítás)

Page 89: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

85 Created by XMLmind XSL-FO Converter.

Az ún. habitussíkon az atomok a helyükön maradnak. Kis széntartalom esetén az ausztenit , nagyobb

esetén a indexű síkjait találták ilyennek.

Az átalakulást kísérő erős torzulás a felületen domborzati rajzot hoz létre. A rács torzulása elsősorban az oldott

szénatomoknak köszönhető. A torzulás, tetragonalitás mértékét a

összefüggés fejezi ki ahol , a kristálytani tengely adatai, C a szénkoncentráció tömegszázalékban.

A martenzites átalakulás csak a hőmérséklet függvénye. Meghatározott hőmérsékleten, az hőmérsékleten

kezdődik, ezt a martenzites átalakulás kezdő hőmérsékletének nevezzük. Az ötvözőfém-tartalom függvényében

tapasztalati képlet segítségével az hőmérséklet meghatározható:

,

ahol a betűjelek az illető kémiai elem mennyiségét jelentik tömegszázalékban. További átalakulás a hőmérséklet

csökkenésével érhető el. Az -hez képest -nyi túlhűlés után az átalakulás megáll, anélkül, hogy az

ausztenit teljes mennyisége elfogyott volna. Ezért a martenzitesen átalakult acélokban mindig találunk maradék

ausztenitet. Az átalakulás befejező hőmérsékletét (ahol a folyamat megáll) -fel jelöljük.

Page 90: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

86 Created by XMLmind XSL-FO Converter.

A maradék ausztenit az acélban általában káros, mert csökkenti annak keménységét és utólagos átalakulása

káros feszültségeket okoz.

Ha az ausztenit túlhűtése a martenzites átalakuláshoz szükségesnél kisebb, de az eutektoidos átalakulásénál

nagyobb, akkor bénites lesz az átalakulás. Ebben az esetben a túlhűlés miatt a ferrit megjelenésének kényzsere

nagy, ezért először ferritcsíra jelenik meg az ausztenit szemcsehatárán. A ferritcsíra tű alakú, növekedése során

mintegy maga előtt hajtja a szénatomokat az ausztenitben. Amikor az ausztenitben diffundáló szénatomok

hatására a helyi koncentráció kellően megnő, akkor cementitlemezke jelenik meg a ferrittű mellett. Az így

kialakult, gyakran tűs jellegű szövetet felső bénitnek hívjuk (64 [86]. ábra). Ha a túlhűlés mértéke ennél

nagyobb, de még mindig kisebb, mint a martenzites esetben, akkor a ferrit a martenzites átalakulás szerint

jelenik meg. A keletkezett tű összetétele megegyezik az ausztenit összetételével, amelyből létrejött. Nem sokkal

ezután azonban a ferritben felesleges szén a határokra diffundál, és ott kiválik. Ezt a szövetelemet alsó bénitnek

hívjuk.

64. ábra.

Felső

bénit

(200x-os

nagyítás)

Page 91: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

87 Created by XMLmind XSL-FO Converter.

A bénit tehát elég változatos alakban megjelenő szövetelem. A mintegy között megjelenő felső

bénit fázisai a ferrit és a cementit, míg a -nál kisebb hőmérsékleten megjelenő alsó bénit fázisai szénnel

túltelített ferrit és karbidja az karbid, amelynek összetétele vagy .

A bénites átalakulás tehát mechanizmusát tekintve inkább az eutektoidosra, kristánytanilag inkább a

martenzitesre hasonlít.

1.5. 6.1.5. Átalakulási diagramok

Az ausztenit kialakulhat kristályosodás során, ill. a már lehűlt próbadarab , ill. hőmérséklet fölé való

felhevítése, ausztenitesítése következtében: A gyakorlatban használatos acélokból a készterméket nem

közvetlenül kristályosodással állítják elő. A kristályosodást követő lehűtés után az acélt felhevítéssel ausztenites

állapotba hozzák, majd szabályozott, a kívánt szövet elérésének megfelelő hűtési sebességgel lehűtik. Az így

keletkezett szövet szerkezetét nagyban befolyásolja annak az ausztenitnek a szerkezete (szemcsenagysága,

koncentrációeloszlása), amelyből létrejött. Ezért fontos, hogy a hevítés során kialakuló ausztenit szerkezete

megfelelő legyen. A folyamat kézben tartására használjuk az ún. ausztenitesítési diagramokat.

Ausztenitesíteni lehet folyamatos hevítés közben, ill. izotermásan, amikor is nagy sebességgel, a széntartalomtól

függően hőmérséklet fölé hevítjük a munkadarabot, majd a szövet teljesen ausztenitté való alakulásáig a

hőmérsékleten tartjuk (65 [87]. ábra). Az ausztenitesedés folyamata szintén csíraképződéssel, diffúziósan megy

végbe. A csírák a ferrit és cementit érintkezési felületén alakulnak ki. Ausztenitesíteni a homogén ausztenit

tartományában szoktak, hipoeutektoidos acél esetében A3 hőmérséklet felett és az ötvözetrendszer eutektikus

hőmérséklete alatt.

65. ábra.

A

hipoeute

ktoidos

acél elvi

izotermá

s

ausztenit

esítési

diagramj

a

Page 92: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

88 Created by XMLmind XSL-FO Converter.

Az ausztenit átalakulhat folyamatos hűtés közben vagy izotermásan. Az átalakulási diagramokat a formájuk

miatt gyakran C görbéknek hívjuk. A 6 [88]. ábra izotermás elméleti C görbét szemléltet. Egy-egy fajta

átalakuláshoz (a martenziteset kivéve), egy-egy görbepár tartozik, az adott hőmérsékletre érvényes átalakulás

kezdetéhez, ill. befejezéséhez szükséges időt jelezve. A görbék �orrához” tartozó hőmérsékleten a leggyorsabb

az adott folyamat.

66. ábra.

A

hipoeute

ktoidos

ötvözetle

n acél

elvi

izotermá

s

átalakulá

si

diagramj

a

Page 93: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

89 Created by XMLmind XSL-FO Converter.

A

ausztenit;

B bénit; P

perlit; F

ferrit; M

martenzit

Ezt, ill. a görbék alakját is az átalakulások mechanizmusa magyarázza. A csíraképződéses növekedéses

folyamatok akkor zajlanak le rövid idő alatt, ha sok csíra képződik, ami kellően nagy túlhűlés esetén valósul

meg, ill., ha a csírák gyorsan nőnek, ami viszont gyors diffúziót, vagyis nagy hőmérsékletet igényel. A két

követelmény egymással ellentétes, ezért a folyamat egy köztes hőmérsékleten a leggyorsabb, ahol is kellő

számú csíra létrejötte mellett még a diffúzió is elég gyors.

Az izotermás diagramokat természetesen csak adott hőmérséklet mentén, a folyamatos hűlésre érvényeseket

pedig adott hűtési sebesség mentén szabad olvasni. Ebből következik, hogy a folyamatos lehűlésre érvényes

diagramokban a C görbék alsó szára elmarad. Az ötvözők a diagramok alakját jelentősen befolyásolják, a

görbék akár össze is csúszhatnak. A szabványos acélok átalakulási diagramjait jól ismerjük, ezek katalógusokba,

atlaszokba foglalva megtalálhatók.

Az átalakulási folyamatok vizsgálhatók szövetvizsgálattal, mágneses méréssel és tágulásméréssel is.

Page 94: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

90 Created by XMLmind XSL-FO Converter.

2. 6.2. Gyakorlati vasötvözetek

Mint említettük a vas legfontosabb és leggyakrabban használt ötvözője a szén. A szén mellett – vagy esetenként

helyette – azonban más fontos, az ipari felhasználás szempontjából előforduló vasötvözetek is vannak. Az

ötvözők, ill. az ötvözetek több szempont szerint csoportosíthatók. Leggyakoribb, ha az ötvözőket aszerint

csoportosítjuk, hogy a vas mely allotrop módosulatát stabilizálják. Eszerint megkülönböztetünk ausztenitképző

(Co, Ni, Mn, Zn, Au és a C), ill. ferritképző (Cr, V, Al, Mo, W, Si, Ti, P, Nb, S) ötvözőket. A tulajdonságok

szempontjából nagy jelentőségük van, ezért külön csoportba soroljuk az ún. karbidképző elemeket (Mo, W, V,

Cr, Zr, Nb, B, Ta, Ti).

Az ötvözetek csoportosíthatók:

– az ötvözés mértéke szerint (ötvözetlen, mikroötvözött, ötvözött, erősen ötvözött acélok),

– a felhasználás jellege szerint (automata-, betétben edzhető, rugó- stb. acélok),

– a gyártástechnológia szerint (kovácsolt, hidegen alakított, hengerelt stb. acélok),

– a szerkezetük szerint (színfémek, szilárd oldatok, ferrit + karbid, szilárd oldat + karbid, szilárd oldat + karbid

+ egyéb fázis).

2.1. 6.2.1. Színfémminőségek

A lehető legkevesebb szenet ( ) és néhány tized százalék mangánt, ként, foszfort, szilíciumot

tartalmaznak. Elektrotechnikai célokra használják, elsősorban lemez alakban.

2.2. 6.2.2. Szilárd oldatos vasötvözetek

Hidegszívós acélok (FeNi). Ezekben az acélokban a Ni az -vas rácsába szubsztitúciósan épül be, és

könnyebbé teszi a diszlokációk keresztcsúszását. Ezáltal az átmeneti hőmérséklet (l. a 9. fejezetet) lecsökken,

és között is szívós marad az acél.

Hőálló acélok. Lehetnek ausztenitesek és ferritesek is; vagy azonosak a korrózióálló acélokkal, vagy a Si-, Ni-

és a Cr-tartalmuk nagyobb. Az acélok felett is megőrzik eredeti szerkezetüket.

2.3. 6.2.3. Szilárd oldat + karbid jellegű vasötvözetek

Nemesíthető acélok. Ezeknél az acéloknál a szilárd oldat-mátrix kis kiválásokkal van tele, amely a Mn, Mn +

Cr, Cr + Mo, Cr + V, Ni + Cr ötvözésnek köszönhető. A széntartalom 0,3...0,6%. A fokozott igénybevételű

gépalkatrészek közül a tengelyek, turbinák, hajtórudak stb. készülnek ilyen ötvözéssel.

Rugóacélok. 0,1...0,24% szénen kívül 1...2% Si-mal vagy 1...2% Cr-mal, vagy Mn-nal ötvözik.

Betétben edzhető acélok. Kis (0,1...0,24%) széntartalmú jól edzhető acélok, amelyeknek a felületi rétegében

hőkezeléssel megnövelik a szenet, ezáltal jó kopásállóságú felület jön létre. Az edzhetőséget Mn, Co, Ni és Mo

ötvözéssel érik el.

Golyóscsapágy acélok. Legfontosabb tulajdonságuk a keménység és a kopásállóság, amelyet a ferritmátrixba

ágyazott kemény ötvözőfémkarbidok jelenléte biztosít. Ezért a 0,8...1,2% szén mellett 1...1,6% krómot és

0,5...1,5% mangánt tartalmaznak. A legnagyobb gondot a karbidok soros elhelyezkedése okozza. A csapágy a

karbidrészecskék kipattogzása miatt megy tönkre.

Szerszámacélok. Kiemelkedően fontos acélfajtát alkotnak. A nagy szilárdság, a kopásállóság, a szívósság, a

hosszú élettartam és korrózióállóság mellett a jó alakíthatóság is megkövetelt tulajdonságuk. Minél több bennük

a szén, és kevesebb az ötvöző, a szívósságuk és a megeresztésállóságuk annál gyengébb. A 12%-nál több

karbidképzővel ötvözött szerszámacélok szekunder keménységet mutatnak. Ezek közül a nagy széntartalmú,

gyengén ötvözött acélok és az ún. gyorsacélok különböztethetők meg. A gyorsacélokat elsősorban

forgácsolószerszámokhoz használják.

Page 95: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

91 Created by XMLmind XSL-FO Converter.

2.4. 6.2.4. Szilárd oldat + karbid + egyéb fázis szövetszerkezetű vasötvözetek

Automataacélok. Velük szemben támasztott követelmény a jó forgácsolhatóság, ami könnyen leválasztható és

törékeny forgácsot jelent. Ez 0,1...0,4% kénnel, esetleg ólommal vagy bizmuttal való ötvözéssel érhető el. A kén

önálló szulfidfázisként helyezkedi el az acélban, főleg a szemcsehatárokon, ezáltal könnyen törékennyé teszi a

forgácsot. Automataacélból készül a legtöbb alátét, csavar stb.

3. 6.3. Rézalapú ötvözetek

A réz felületen középpontos kockarácsú fém, allotrop módosulatai nincsenek. Laboratóriumi körülmények

között 99,9999%, míg ipari feltételek mellett, elektrolízissel 99,99% tisztaságú rezet lehet előállítani. Jó

korrózióállósága, villamos és hővezető képessége miatt villamos vezetékek gyártására használják. Ezen a

területen a mai napig pótolhatatlan. Mivel a rétegződési hiba energiája kicsi, ezért a diszlokációk

részdiszlokációkra bomlanak, szobahőmérsékleten nehéz a keresztcsúszás, nagy az alakítási keményedése, sok

az ikerhelyzetben lévő kristály.

A tiszta rezen kívül számos igen fontos rézötvözet is forgalomban van. Az ötvözőket csoportosíthatjuk a rézben

való oldódási hajlamuk szerint.

A szilárd állapotban egyáltalán nem oldódó ötvözők (szennyezők) közül az oxigén érdemel külön figyelmet. Az

olvadt állapotban feloldódott oxigén szilárd állapotban eutektikum alakjában a kristályhatárokon

dermed meg, ezáltal nagymértékben rontja az alakíthatóságot. A hidrogénatmoszférával való érintkezés esetén

létrejövő vízgőz szemcsehatár menti repedések kialakulásához vezet. A nagy tisztaságú rezet (CuOF) ezért

oxigénatmoszférától elzárt metallurgiai folyamattal állítják elő.

A szilárd állapotban mérsékelten oldódó ( ) ötvözők eutektikusan (Cr, Zr, P, Ti, Mg, Ag), vagy

peritektikusan (Be, Fe, Co, Si) kristályosodnak. A hőmérséklet csökkenésével az -réz oldóképessége csökken

(67 [91]. ábra). Ezért a körüli koncentrációjú ötvözetek nemesíthetőek (l. a 7.10. alfejezetet). Az eutektikum

egyik fázisa az szilárd oldat, a másik vagy színfém (Cr), vagy szilárd oldat (Ag), vagy vegyület (Zr, Ti, Mg).

A peritektikus rendszerek mindig a 67 [91]. ábra szerint alakulnak. A peritektikum fázisa gyakran olyan

szilárd oldat, amely a hőmérséklet alatt eutektoidosan elbomlik.

67. ábra.

A

mérsékel

ten

oldódó

ötvözők

jellegzete

s

eutektiku

s és

peritekti

kus

egyensúl

yi

diagramj

ának

részletei

Page 96: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

92 Created by XMLmind XSL-FO Converter.

A nagymértékben oldódó ötvözők közül a cinknek, az ónnak és az alumíniumnak van gyakorlati jelentősége.

Közös jellemzőjük, hogy az eutektikus (Al) vagy peritektikus (Zn, Sn) kristályosodással (68 [92]. ábra) az -

réz mellett dermedő második ( ) fázis szilárd oldat, amely csak hőmérséklet felett stabil. Az -réz

oldóképessége ezen a hőmérsékleten a legnagyobb, és a csökkenő hőmérséklettel az oldóképesség nő, ezért ezek

az ötvözetek nem nemesíthetők. Ha az ötvözet alá hűl, a -fázis vagy rendeződik, vagy eutektoidosan bomlik

-rézre és az ötvözőben dúsabb -fázisra, amely lehet a szobahőmérsékletig stabil, vagy további bomlásokkal

egyre nagyobb ötvözőfém-tartalmú fázisok alakulnak ki. A gyakorlati ötvözetekre jellemző, hogy az ötvözőfém

növekedésével a szerkezet homogén majd heterogén végül homogén szerkezetűek. A Cu-Zn

ötvözeteket -on hőkezelve, majd lassan lehűtve 39% Zn-tartalomig homogén -sárgarezet kapnak. A 39

és 46,5% közötti Zn-tartalom esetén heterogén sárgarezet kapunk.

68. ábra.

Nagymér

tékben

oldódó

ötvözők

jellegzete

s

eutektiku

s és

peritekti

kus

egyensúl

yi

diagramj

ának

részletei

Page 97: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

93 Created by XMLmind XSL-FO Converter.

A gyakorlatban használatos rézötvözetek a következők:

Sárgarezek: Cu-Zn ötvözetek. A homogén sárgarezek melegen és hidegen is kitűnően alakíthatók, így lemez,

szalag, cső, rúd készül belőlük. Még keményebb és korrózióállóbb ötvözeteket készítenek 1...5% alumínium, ón,

szilícium vagy mangánötvözéssel.

A heterogén sárgarezek hidegen nem alakíthatók, öntési és forgácsolási tulajdonságaik viszont jók.

Keménységük és szilárdságuk meghaladja a homogén sárgarezekét. Elsősorban öntvényeket (pl. vízcsap)

készítenek belőlük.

Ónbronzok. Legfeljebb 8% óntartalmú homogén szerkezetű ötvözetek. Kitűnően önthetők.

Alumíniumbronzok. 5...8% ötvözőfémet tartalmaznak, jól alakíthatóak, lemez, rúd és cső készül belőlük.

Réz-nikkel ötvözetek. Ellenállásanyagok, de 20% Mn ötvözéssel kemény, szikramentes anyagot lehet

előállítani, főleg olaj- és gázbányászati alkalmazásokhoz.

Alpakkák. Nikkel- és cinkötvözéssel készülnek a homogén alpakkák, amelyekből rugókat, evőeszközöket,

dísztárgyakat és műszereket gyártanak.

Réz-arany ötvözetek. Főleg ékszer, dísztárgy készül belőlük, leggyakoribb a 14 és a 8 karátos ötvözet.

Berilliumbronzok. 1,6...2,2% berillium és néhány tized százalék Ni- vagy Co-ötvözéssel készülnek a

legnagyobb szilárdságú, nemesíthető rézötvözetek, amelyekből rugókat, kopásálló alkatrészeket gyártanak.

Ólomtartalmú ötvözetek. Mivel az ólom nem oldódik, mindig önálló fázisként jelenik meg a rézötvözetekben.

Egyrészt javítja a forgácsolhatóságot, másrészt kenő hatása révén csökkenti a súrlódási tényezőt. Ezt

kihasználva kitűnő siklócsapágyak készíthetők.

4. 6.4. Az alumínium ötvözetei

Az alumínium fehér fényű, kis sűrűségű fém. Olvadáspontja kicsi ( ). Felületen középpontos kockarácsa

van, allotrop módosulata nincs. Az alumíniumatomok között viszonylag kicsi a kötőerő, így a rugalmassági

modulusa kicsi ( ). Fajlagos villamos ellenállása kicsi, csak a réz és az ezüst jobb vezető az

alumíniumnál. Ezzel szemben a hőtágulási együtthatója nagy. Az alumínium jó korrózióálló, mert felületén

nagyon rövid idő alatt összefüggő, vékony oxidréteg jön létre, amely megakadályozza a további oxidálódást. Az

oxidhártya a villamos vezetőképességet nem rontja, hegesztéskor azonban nehézséget okoz, ezért az alumínium

csak védőgáz alatt hegeszthető. Az alumíniumötvözetek hidegen és melegen egyaránt jól alakíthatók, így a

gyakorlatban sokféle célra használják. A nagyon jó hidegalakíthatóság 5...10 vastagságú fólia hengerlésére

is alkalmassá teszi. Kis villamos ellenállása, jó korrózióállósága miatt villamos vezetékek, kábelek gyártására is

Page 98: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

94 Created by XMLmind XSL-FO Converter.

használják. Az alumínium alkatrészek könnyűek és korrózióállók, ezért a repülőgépiparban, s az autógyártásban

alkalmazzák.

Mivel az alumínium szilárdsága nagyon kicsi, ezért a gyakorlatban különféle ötvözeteit használják. Az

alumínium ötvözőit a következőképpen osztályozhatjuk:

– szilárdságot növelő ötvözők: Cu, Mg, Si;

– szemcsenagyságot csökkentő ötvözők: Ti, Cr;

– korrózióállóságot javító ötvözők: Mn, Sb;

– hőmérséklettel szembeni ellenálló képességet fokozó ötvöző: Ni;

– forgácsolást megkönnyítő ötvözők: Co, Fe, Bi.

A kohóalumínium két legfontosabb szennyezője a vas (Fe) és a szilícium (Si). A vas felső határát 0,7%-ban jelöli

a magyar szabvány, a szilíciumra ugyanez az érték 0,20%. Gyakori szennyezőként jelenik meg az alumínium-

oxidban jelen lévő oxigén és az olvadékban feloldódott hidrogén. A szilícium, a bizmut, a kadmium és a cink

kivételével az alumínium a többi ötvözőjével kemény és rideg fémes vegyületet alkot.

Ezek közül a legfontosabbak: , , , , , . Az alumíniumötvözetek

jellegzetes egyensúlyi diagramja a 69 [94]. ábrán látható. Az alumínium különféle fémes vegyületekkel

rendszerint eutektikus ötvözőrendszert alkot. Szobahőmérsékleten az ilyen ötvözetek szövetszerkezete lágy,

viszonylag jól alakítható alumínium szilárd oldatból ( ) és abba ágyazott rideg fémes vegyületből áll. Az

alumínium sok ötvözőjével (Cu, Mg, Si, Fe, Mn, Ag) a 69 [94]. ábrán látható eutektikus egyensúlyi diagramot

hozza létre.

69. ábra.

Az

alumíniu

m

eutektiku

s

egyensúl

yi

diagramj

a

-

alumíniu

m szilárd

oldat; -

alumíniu

mvegyüle

t ( )

Page 99: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

95 Created by XMLmind XSL-FO Converter.

Az alumínium az eutektikus (70 [95]a ábra) mellett peritektikus (70 [95]b ábra) és monotektikus (70 [95]c

ábra) egyensúlyi diagramot is létesít ötvözőivel (70 [95]. ábra). Krómmal, cirkőniummal, vanádiummal és

titánnal peritektikus, a kadmiummal és ólommal pedig monotektikus ötvözőrendszert hoz létre.

70. ábra.

Az

alumíniu

m

különféle

egyensúl

yi

diagramj

ai

-

alumíniu

m szilárd

oldat; X

második

fázis:

alumíniu

mvegyüle

t vagy

színfém

Page 100: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

96 Created by XMLmind XSL-FO Converter.

Az ipari alumíniumötvözetek osztályozásának egyik alapja az eutektikus ötvözőrendszer egyensúlyi diagramja

(71 [96]. ábra). A szilárd oldat maximális összetételénél kisebb ötvözőmennyiséget tartalmazó ötvözetek

képlékenyen jól alakíthatók (I–II. tartomány). Ennél nagyobb ötvözőtartalom esetén heterogén öntészeti

alumíniumötvözetekről beszélünk (III. tartomány). Az alakítható ötvözetek egyik csoportja (I. tartomány)

szobahőmérsékleten is teljesen homogén szilárd oldatot tartalmaz. Éppen ezért ezek nem nemesíthetőek. A

hőmérséklettől függően különböző mennyiségű ötvözót oldani képes ötvözetek (II. tartomány) alakíthatóak és

nemesíthetőek is.

71. ábra.

Az

alumíniu

mötvözet

ek

típusai

Page 101: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

97 Created by XMLmind XSL-FO Converter.

Alakítható alumíniumötvözetek. A tömegtermelésben ma a legelterjedtebb az ötvözetlen kohóalumínium. A

99,5% alumíniumtartalmú ötvözeteket széles körben alkalmazzák, jó alakíthatóságuk miatt. Az ilyen ötvözőt a

fóliagyártás alapja. Az alumíniumból nagymértékű hidegalakítással 6...10 vastagságú alumíniumfólia

gyártható. A jó alakíthatóságvégett a fólia alapanyagában az Fe/Si arány legalább 2,5 legyen, így érhető el,

hogy az alakíthatóságot jelentősen rontó szilícium ne maradjon oldott állapotban az alumíniumban, hanem

váljon ki a kevésbé káros vegyület alakjában. Ötvözetlen alumíniumból melegen, valamint

hideghengerléssel, kovácsolással, hidegfolyatással, sajtolással, húzással készíthetők más termékek is: különféle

lemezek, rudak, csövek, alakos szelvények, huzal, kovácsolt termékek. Mivel az alumínium szilárdsága kicsi,

hidegalakítással növelik a keménységét. A hidegen alakított termékek a nagy diszlokációsűrűség miatt nagyobb

szilárdságúak, ezért ezeket kemény állapotúaknak nevezzük. Kisebb hőmérsékleten végzett hőkezelés

következtében a szövetszerkezetben változások indulnak meg, a diszlokációk sorokba rendeződnek, kis szögű

szemcsehatárok által alkotott szubkristályszerkezetet hoznak létre. Ez a félkemény állapot. További hőkezelés

következtében megkezdődik az újrakristályosodás, ami lényegében a kedvező helyzetű szubkristályszemcsék

növekedését jelenti, s a keménység tovább csökken. Ezt nevezzük negyedkemény állapotnak. A hőkezelés végén

kialakul a teljesen újrakristályosodott lágy állapot. A folyamat, ill. a kialakult szövetszerkezet látható a 72 [97].

ábrán.

72. ábra.

A

hidegen

alakított

alumíniu

m

szövetsze

rkezete

a)

kemény

állapot; b)

félkemén

y állapot;

c)

negyedke

mény

állapot; d)

lágy

állapot

Az ötvözetlen kohóalumínium tulajdonságait az alapanyag kristályainak méretén és a szubkristályok

átmérőjén kívül a második fázis alakja, nagysága, ill. méret szerinti eloszlása határozza meg (73 [97]. ábra).

73. ábra.

Az

ötvözetle

n

alumíniu

m

Page 102: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

98 Created by XMLmind XSL-FO Converter.

szövetksz

erkezete

A második fázisok közül az Fe- és a Si-tartalmúak a legjelentősebbek (AlFeSi), de 0,4%-nál nagyobb

vastartalom esetén tű alakú, rideg Al Fe is keletkezhet. Ezt a mechanikai tulajdonságokat károsan befolyásolja.

Ebben az esetben Mn-adagolással ( ) elérhető, hogy a kristályosodás végén gömbszerű

AlSiFeMn vegyület keletkezzen.

A kohóalumínium mechanikai tulajdonságait ötvözéssel javítva kapjuk az alakítható alumíniumötövözeteket.

Legfontosabb ötvözők: Cu, Mg, Si és Zn. Mennyiségük a maximális odlhatóságot nem éri el, így ezek az

ötvözetek legfeljebb 5% Cu-t, 10% Mg-t, 1,5% Si-t és 4% Zn-t tartalmaznak. Az ötvözetekhez kiegészítő

ötvözőket adagolva egyes tulajdonságok tovább javíthatók, így a nikkel a hőszilárdságot, a mangán pedig a

korrózióállóságot javítja.

Az alakítható ötvözetek között külön csoportot jelenteken a nem nemesíthető ötvözetek. Az általában kétalkotós

alumínium-magnézium ötvözetek nagyon jó korrózióállók, elsősorban tengervízzel szembeni ellenálló

képességük nagy. Viszonylag kis szilárdságuk hidegalakítással jelentősen növelhető (74 [98]. ábra). Nagyon jó

korrózióállóság jellemzi a szintén nem nemesíthető Al-Mn ötvözeteket, amelyeket elsősorban élelmiszeripari

célra használnak.

74. ábra.

Az Al-

Mg

ötvözetre

ndszer

szilárdsá

ga a

hidegala

kítás

függvény

ében

Page 103: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

99 Created by XMLmind XSL-FO Converter.

Nemesíthető ötvözetek. Az alumíniumötövözetek nemesítő hőkezelése a szilárdságot és a keménységet növeli.

Ennek módja a diszlokációk mozgásának megakadályozása. A hőkezelés során a diszlokációk mozgásának

útjában, az alumínium alapanyagban viszonylag kis méretű kiválásokat hozunk létre. Amennyiben egy

diszlokáció ilyen kiváláshoz ér, át kell vágnia azt (75 [99]a ábra). Ha ehhez az átvágáshoz túlságosan nagy

energia szükséges, akkor a diszlokáció nem vágja át a kiválást, hanem megkerüli (75 [99]b ábra).

75. ábra.

A

diszlokác

iók és a

kiválások

kapcsolat

a

Page 104: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

100 Created by XMLmind XSL-FO Converter.

A szilárdságnövelő hatás ekkor mérsékeltebb. A diszlokációk akkor növelik jelentős mértékben a szilárdságot,

ha az alapanyag és a kiválás kristályrácsa azonos, és a rácsparamétere majdnem megegyezik. Ezt nevezzük

koherens kiválásnak (76 [100]. ábra).

76. ábra.

Különfél

e

kiválások

Page 105: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

101 Created by XMLmind XSL-FO Converter.

Az alumíniumötövözetek nemesítésekor éppen az ilyen kiválások létrehozása a cél. A nemesítés első lépése az

alumíniumötövözet homogenizálása (77 [101]. ábra). Ennek célja az ötvözetben jelen lévő kiválások teljes

oldatba vitele, azaz a homogén -szilárd oldat létrehozása. Az ötvözők csak ebben az esetben képesek

szilárdságnövelő hatásukat kifejteni. A homogén -szilárd oldat elérésére az ötvözetet a hőmérsékletre

hevítjük, és ott kellően hosszú ideig tartjuk, mígnem a diffúziós folyamat során az ötvözők teljes egészében fel

nem oldódnak.

77. ábra.

Alumíniu

mötvözet

ek

nemesíté

se

a)

egyensúly

i diagram;

b) a

hőkezelés

menete

Page 106: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

102 Created by XMLmind XSL-FO Converter.

A homogenizáló izzítást követően az ötvözetet nagyon gyorsan (pl. vízben) szobahőmérsékletre hűtjük. A

rendkívül gyors hűtés célja a kiválások keletkezésének megakadályozása, vagyis ötvözőben túltelített -szilárd

oldat létrehozása. A nemesítés következő lépése az öregítés, ami lényegében kiválásos keményítés. Megfelelő

hőmérsékleten végzett kezelés hatására elkezdődik a túltelített szilárd oldatból az ötvözőben dús második fázis

kiválása.

Az ötvözőatomok az alapfém rácsában rendszerint egy diszlokáció környékén csoportosulnak, és kezdetben igen

kis méretű, az alapfém rácsával teljesen koherens hoznak létre. Ezeket a kiválásokat Guinier–Preston-(G.P.)-

övezetnek nevezzük. Az elsőrendű (I.) G.P.-övezetek néhány atom vastagságúak, és kiterjedésük is legfeljebb

8...10 nm. A hőmérséklet további növelésével keletkezik a másodrendű (II.) G. P..övezet. Ennek jellemzője,

hogy legalább kétféle atom alkotja, összetétele már közelebb van az egyensúlyi kiválás összetételéhez, de

kristályszerkezete ugyancsak koherens az alapanyag szerkezetével. Vastagsági mérete 1...4 nm, kiterjedése már

a 10...100 nm-t is elérheti. A G.P.-övezetek közös jellemzője, hogy kis méretük miatt fénymikroszkópos képen

nem mutathatók ki, csak röntgendiffrakciós vizsgálattal, ill. legalább 10000...50000-szeres nagyítású

transzmissziós elektronmikroszkópos felvétellel igazolható a jelenlétük (78 [102]. ábra).

78. ábra.

Nemesíte

tt Al-Mg-

Si

ötvözet

szerkezet

e

a) első

rendű

G.P.-

övezetek;

b) -

fázis; c)

-fázis

transzmis

sziós

elektronm

ikroszkóp

i felvétel,

nagyítás

10 000x-

es

A hőkezelés hőmérsékletének további növekedésével az alanyaggal inkoherens, de még mindig nem egyensúlyi

összetételű második fázis keletkezik, amely a hőkezelés utolsó állomásaként egyensúlyi összetételű második

fázissá alakul. Szilárdság szempontjából ez ún. túlöregített állapot, hiszen a szakítószilárdság, a keménység

ekkor lesz a legkisebb. Az előzőkben ismertetett folyamat jól látható az Al-Cu ötvözet öregítési görbéjén (79

[103]. ábra). Az ábra alapján azt is megfigyelhetjük, hogy a mechanikai tulajdonságok szempontjából a

Page 107: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

103 Created by XMLmind XSL-FO Converter.

másodrendű G. P.-övezet a legkedvezőbb (ekkor legnagyobb a keménység), míg a második fázis ( )

megjelenése rontja a keménységet. Az is látható, hogy a -on végzett hőkezelés során először G.P. I.,

majd G.P. II.-övezet keletkezik, míg -on csak a G.P. I.-övezet jön létre, s ezt hamar felváltja az

egyensúlyi fázis.

79. ábra.

A

Guinier–

Preston

(G.P. I.

és G.P.

II)-

övezetek

keletkezé

se Al-Cu

ötvözetbe

n

egyensúly

i második

fázis (

);

nem

egyensúly

i második

fázis

Page 108: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

104 Created by XMLmind XSL-FO Converter.

A megfelelő kiválások eléréséhez szükséges hőmérsékleteket az egyensúlyi diagramon feltüntetett oldhatósági

görbékből olvashatjuk le (80 [104]. ábra).

80. ábra.

A

összetétel

ű ötvözet

oldhatós

ági

görbéi

Page 109: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

105 Created by XMLmind XSL-FO Converter.

egyensúly

i második

fázis (

);

nem

egyensúly

i második

fázis;

G.P.-

övezet

A diagramon az egyensúlyi második fázis ( ) mellett a nem egyensúlyi második fázis ( ), ill. a G.P.-övezet

oldhatósági görbéi is szerepelnek. A görbékről leolvasható, hogy a összetételű ötvözetet hőmérséklet

alatt kell hőkezelni ahhoz, hogy belőle G.P.-övezet váljon ki. Az is nyilvánvaló, hogy szobahőmérsékleten a

G.P.-övezet keletkezéséhez (természetes öregítés) legalább mennyiségű ötvözőnek kell lennie az

alumíniumban.

A nemesíthető és alakítható alumíniumötvözetek általában három- vagy többalkotósak. Legjellegzetesebb

típusuk az Al-Cu-Mg ötvözet, amelyet durálként ismerünk. A 4% Cu és 2% Mg-tartalmú ötvözet a legnagoybb

Page 110: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

106 Created by XMLmind XSL-FO Converter.

szilárdságú. Kedvező mechanikai tulajdonságú a 4% Cu és 2% Ni-tartalmú Al-Cu-Ni ötvözet, amelynek a

hőálló képessége is nagy. A nemesíthető ötvözetek közös hátránya, hogy a korrózióval szemben kevésbé

ellenállók.

A természetesen öregedő ötvözetek egyik képviselője az Al-Zn-Mg-Ti hegeszthető alumíniumötvözet, amelyet

ha -on homogenizálunk, majd gyorsan lehűtünk, hevertetés közben szobahőmérsékleten nagyobb

szilárdságúvá válik. Végleges szilárdsági jellemzőit 3-6 hőnap alatt éri el (81 [106]. ábra).

81. ábra.

A

természe

tesen

öregedő

ötvözetek

mechani

kai

tulajdons

ágai

heverteté

s közben

Page 111: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

107 Created by XMLmind XSL-FO Converter.

Az Al-Si-Mg nemesíthető ötvözet általában 1,5% Si-ot és 1,5% Mg-ot tartalmaz. Szakítószilárdsága mintegy

300 MPa-ra növelhető, és a korrózióállósága is megfelel.

Öntészeti alumíniumötvözetek. Az öntészeti alumíniumötvözeteket három nagy csoportba soroljuk: a

szilíciumos, a magnéziumos és a rezes ötvözetek.

Szilíciumos ötvözetek. A legjobb önthetőségű alumíniumötvözet a szilumin. Legfontosabb A legjobb

önthetőségű alumíniumötvözet a szilumin. Legfontosabb ötvözete az Al-Si és az Al-Si-Mg. Mindkettő

tulajdonképpen eutektikus ötvözet, amelynek szövetszerkezetében az -szilárd oldat dendrit mellett Al-Si

eutektikum található.

Az ötvözetek kedvező szövetszerkezetének megvalósítására nátriumos, vagy újabban stronciumos kezelést

alkalmaznak. Az alumíniumolvadékban feloldódó Na és Sr meggátolja az Si csíraképződését, ennek hatására az

ötvözet jelentősen túlhűl, majd rendkívül finom szilíciumkristályokat tartalmazó homogén eutektikumot hoz

létre. Az Al-Si-Mg öntészeti alumíniumötvözet öntés után hőkezeléssel nemesíthető, s így a szilárdsága még

tovább javítható.

Az eutektikum szerkezetének finomodásával járó folyamatot az öntödei gyakorlatban

szintén nemesítésnek nevezik, amelyet nem szabad összetéveszteni a homogenizálás, az

edzés és az öregítés részfolyamatból álló nemesítő hőkezeléssel!

Magnéziumos ötvözetek. Ebbe a csoportba tartoznak az Al-Si-Mg és az Al-Mg-Mn ötvözetek, amelyekre

kedvező mechanikai tulajdonságuk mellett a jó korrózióállóság jellemző.

Rezes ötvözetek. Ide soroljuk az Al-Cu és az Al-Cu-Ni ötvözeteket. Jól önthetők, jó a hővezető képességük és

bizonyos fokig hőállóság jellemzi őket. Jól forgácsolhatók, de a szívós alumínium könnyen képlékeny réteget

alkot az alumíniumötvözet felületén. A kedvezőbb forgácsleválás szilícium és magnézium adagolásával érhető

el. Hőszilárdsága nikkelötvözéssel fokozható.

Az öntészeti ötvözetek között igen fontosak a dugattyúötvözetek. A dugattyú, mintegy

hőmérsékleten működik, és az öntöttvas perselyek hőtágulása kisebb, mint az alumíniumötvözeteké. A

szilíciumötvözés az alumínium tágulását csökkenti, és a létrejött hipereutektikus szövetszerkezet megfelelő

kopásállóságot és szilárdságot ad. A rézalapú dugattyúötvözetek az Al-Cu-Ni és az Al-Cu-Si ötvözetek,

amelyeknek fő ötvözője a 2...4% Cu. Ezeket az ötvözeteket nagyobb hőmérsékleten használják.

5. 6.5. Kompozitok (olvasmány)

Sokak véleménye szerint a kompozitok (az összetett anyagok) a XXI. század legfontosabb

szerkezeti anyagai. Fejlesztésük világszerte intenzíven folyik. A kompozitok

tulajdonképpen különböző anyagok (fémek, kerámiák, műanyagok) egyesítésével jönnek

létre, abból a célból, hogy az így kapott új anyag a kedvező tulajdonságok különleges

kombinációját (pl. kis sűrűség, nagy szilárdság) ötvözze magában.

A hosszú szálakkal erősített alumíniumalapú kompozitok gyártása bonyolult és drága,

néhány esetben mégis alkalmazzuk, különösen a repülőgépiparban. Mára már elérhető a nagy

szilárdságú acélokhoz hasonló szakítószilárdság és az acélénál nagyobb merevség, sokkal

kisebb sűrűséggel. A hosszú bőrszálakkal erősített, alumíniummátrixú kompozitok

szakítószilárdsága például meghaladhatja az 1500 -t, és rugalmassági modulusa

közelítően 270 .

A gyakorlat számára a kompozitoknak több előnyük is van. Elsősorban lehetővé teszik,

hogy a tulajdonságok különleges kombinációját hozzuk létre. Másrészt ezek a

tulajdonságok adott tartományon belül folyamatosan változhatnak. Az alumíniummátrixú

kompozitok hőtágulása is szabályozható szálerősítéssel. Ezt hasznosítják például a

mikrochipek Al-B kompozitból készült hűtőelemeiben. A kompozitok harmadik lényeges

sajátsága, hogy némely fizikai tulajdonságuk nem érhető el külön-külön egyik alkotójával

sem. Például egyes kompozitok – ha az egyik ,,alkotójuk” a levegő vagy vákuum – kisebb

hővezető képességűek, mint bármely más anyag (pl. a fémhabok).

A szálerősítésű kompozitok előállításához soklépcsős, nehezen automatizálható

eljárásokat használnak. Az alkalmazott módszerek egyik legnagyobb problémája az

optimális nedvesítés a szál és a mátrix között. Sok, gyakorlatban használt rendszer

esetén az erősítőfázis kémiai tulajdonságai, vagy a jelen levő oxidfilm akadályozza a

nedvesítést. Az érintkező felületek tulajdonságainak javítására tett erőfeszítések

Page 112: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

108 Created by XMLmind XSL-FO Converter.

sokszor a szál és a mátrix közötti túl nagy mértékű reakciót, a szálak károsodását

okozzák. Előállításukra többféle módszert alkalmaznak.

A diffúziós kötés módszere lényegében szilárd állapotú hegesztőeljárás fémek és/vagy

kerámiaszálak egyesítésére. A nagy hőmérsékleten érintkező anyagok diffúziója által jön

létre az összehegedés. Fő előnye, hogy sokfajta fémötvözethez alkalmas és szabályozható

a szálak orientációja, ill. térfogataránya. Hátránya, hogy a kompozit előállítása több

órát vesz igénybe, a nagy hőmérséklet és nyomás előállítása költséges, és csak

korlátozott méretű termékek gyárthatók ezzel a módszerrel. Az eljárásnak sok változata

ismert, de mindegyik alapja az egyidejűleg alkalmazott nagy hőmérséklet és nyomás. A

különböző módszerek közös jellemzője, hogy a mátrixötvözetből készült fóliákat és a

szálakat meghatározott rend szerint egymásra helyezve jön létre a kompozit.

Az alakításos módszerek közé tartozik a fém/fém komopozitok előállítása mechanikai

alakítóeljárásokkal – süllyesztékes kovácsolással, sajtolással, húzással vagy

hengerléssel – kétfázisú, képlékeny anyagból. A kapott kompozit tulajdonságai nagyrészt

az öntéssel vagy porkohászati úton előállított kiindulóanyag jellemzőitól függnek. Ezek

a módszerek csak képlékenyen alakítható és hasonló folyáshatárú alapanyagokhoz

használhatók.

A nagy hőmérsékletű szupravezetőket 1987-ben fedezték fel. A nióbiumalapú, rézmátrixú

hagyományos és az oxidalapú, ezüstmátrixú nagy hőmérsékletű szupravezetők az alakítással

előállított kompozitok különleges csoportját alkotják. A nióbiumalapú szupravezetők –

nióbium/titán vagy szálak rézmátrixban – talán a legnagyobb piaccal rendelkező szálas fémmátrixú kompozitok.

Nióbiumalapú szupravezetőt kétféle módszerrel állítanak elő. Az egyik eljárás során Nb-

Ti pálcákat helyeznek réztömbbe fúrt lyukakba, majd azokat vákuumban légmentesen

lezárják. A szupravezető kompozithuzalt lágyító hőkezelések közbeiktatásával végzett

többszörös húzás eredményeként kapják meg. Mivel a törékeny intermetallikus

fázis, a kompozit készítésére másik módszert használnak. A kiinduló Cu-13% Sn ötvözetbe fúrt lyukakba tiszta nióbiumpálcákat tesznek, majd az előzőkben leírtakhoz

hasonlóan huzalt készítenek a kompozitból. A kritikus pont a körüli hőkezelés,

amelynek hatására a nióbiumpálcák a mátrixban levő ónnal reagálva szupravezető fázist alkotnak, amelyeket most már rézmátrix vesz körül.

Porkohászat. Sokfajta porkohászati technológia használatos részecske-, ill. tűerősítésű, fémmátrixú kompozit előállítására. Az eljárások egyik kritikus pontja a mátrix és az

erősítőanyag porának egyenletes összekeverése. Az erre a folyamatra vonatkozó

információk többségét szabadalom védi. A következő lépés a hidegen sajtolás, amelynek

eredményéül kb. 80%-os relatív tömörségű, könnyen kezelhető darabot kapunk. Az esetleg

jelen levő nedvességet eltávolítva melegsajtolással érjük el a végtermék nagy

tömörségét. Ily módon előállított és SiC részekcskékkel erősített alumínium alapanyagú

kompozitot használnak újabban az autógyártásban.

Folyamatos szálakkal erősített kompozit is előállítható porkohászati Úton. Ekkor az

alapanyag száraz porában levő szálakat melegen sajtolják. A hidegsajtolás és az azt

követő hőkezelés kevésbé jó megoldás, mivel a szálak a kívánt sűrűség eléréséhez

szükséges nagy nyomás hatására eltörhetnek, vagy a hőkezelés során károsodhatnak.

A közvetlen eljárás a kompozitok előállításának nagyon hatékony módszere. Ezzel a

technológiával az erősítőfázist az alapanyagban hozzák létre. Ez közel ideális módszer,

mivel a kompozit a kiindulóanyagból egy lépcsőben jön létre, elkerülve a kompozit

alkatrészek gyártásához rendszerint szükséges több műveletet. Az erősítőfázis felülete

tiszta marad, és soha nem kerül érintkezésbe a levegővel, nedvességgel vagy más légköri

szennyezőkkel, így sokszor jobb kötés jön létre az alapanyag és az erősítőfázis között,

mint más módszerek alkalmazása esetén. Ezenkívül ezzel a módszerrel gyakran csaknem kész

alkatrészek gyárthatók. A kompozitok közvetlen gyártásának klasszikus példája az

eutektikus ötvözet (Al-6% Ni) irányított kristályosítása, amelynek során a nagy

szilárdságú vegyületfázis ( ) hosszú szálak formájában van jelen.

A nyomásos fémolvadék-átitatás során az olvadékfémet az erősítőszálak közé juttatják, de ide sorolhatók azok az eljárások is, amelyek során a szálak haladnak át a fémfürdőn. Ez

utóbbi esetben az egyes szálakat az olvadt fém nedvesíti, majd a felesleges fém

eltávolításával, és az összefogott szálak sajtolásával kész a kompozit. A szálak és az

olvadék közötti nedvesítés problémái miatt viszonylag kevés kompozitot készítenek

egyszerű olvadékátitatással.

Page 113: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

GYAKORLATI ÖTVÖZETEK

109 Created by XMLmind XSL-FO Converter.

Ha a szálakból készült előformába könnyen belemegy a fém, akkor a szálak és az olvadék

közötti reakciók könnyen leronthatják a szál tulajdonságait. Ezeknek a reakcióknak a

szabályozására és a nedvesítés javítására fejlesztették ki a szálak előzetes bevonását.

Az eljárás hátránya, hogy az előzetesen bevont szálakat a felületük oxidációját

megelőzendő levegőtől elzártan kell tartani.

Nyomásos öntés esetén az olvadékot a szálas előformába sajtolják. A nyomást egészen a

kristályosodás végéig kell fenntartani. Az olvadékot a szálas előformába sajtolva a szál

és az alapanyag közötti jó nedvesítés már nem alapvető fontosságú. Az így gyártott

kompozitokban minimális a reakció az erősítőfázis és az olvadék között, és a termék

mentes a szokásos ötvényhibáktól, pl. a porozitásoktól vagy a zsugorodási üregtől. A

szálas előforma átitatható fémolvadékkal, nagynyomású gáz segítségével is. Ezekkel a

módszerekkel nagy száltérfogat-hányadú, bonyolult alakú, de olcsó, kevés megmunkálást

igénylő termékek állíthatók elő.

6. Kérdések, feladatok

1. Hogyan magyarázza, hogy a Fe-C ötvözetek közül a metastabilis rendszer fordul elő gyakrabban?

2. Milyen ideális egyensúlyi diagramokból áll a Fe-C ötvözetek reális egyensúlyi diagramja?

3. Milyen alloptróp módosulatai vannak a vasnak?

4. Milyen nonvariáns folyamatok játszódnak le a vas-szén ötvözetek megszilárdulása során?

5. Mondjon egy hipoeutektoidos összetételű vasötvözetet!

6. Szerkessze meg a karbidos és a grafitos rendszer kristályosodás végén érvényes szövetdiagramját!

7. Szerkessze meg a karbidos és a grafitos rendszer átalakulás után érvényes szövetdiagramját!

8. Mondja el az eutektikus összetételű, stabilisan kristályosodó és metastabilisan átalakuló ötvözetben lezajló

folyamatokat! Milyen szövetelemek és milyen fázisok lesznek a szobahőmérsékletű próbában?

9. Jellemezze az acél martenzites átalakulását!

10. Mi a különbség az alsó és a felső bénit kialakulása között!

11. A perlit homogén vagy heterogén szövetelem?

12. Hogyan változik az hőmérséklet a széntartalom növekedésével?

13. Milyen jelenséget (tágulást vagy összehúzódást) tapasztalunk a hevítés közben felvett tágulásgörbén, a ferrit

ausztenitté való alakulása közben?

14. Sorolja fel az alumínium legfontosabb tulajdonságait! Milyen felhasználási területei vannak az

alumíniumötvözeteknek?

15. Csoportosítsa a legfontosabb alumíniumötvözőket!

16. Miért lehet az alumíniumból háztartási fóliát készíteni? Mire kell ügyelni a gyártás alatt?

17. Mi a különbség (összetétel, szövetszerkezet) az alakítható és az öntészeti célú alumíniumötvözetek között?

18. Hogyan lehet növelni az ötvözetlen alumínium keménységét?

19. Ismertesse az alumíniumötvözetek nemesítésének lépéseit! Rajzolja fel a hőkezelés hőmérséklet–idő

diagramját!

20. Mit nevezünk Guinier–Preston-övezetnek? Hogyan lehet láthatóvá tenni?

21. Nemesíthető a szilumin?

22. Mi az a dugattyúötvözet?

Page 114: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

110 Created by XMLmind XSL-FO Converter.

7. fejezet - HŐKEZELÉSI ELJÁRÁSOK

1. 7.1. Alapfogalmak

Vannak bizonyos hőkezelések, amelyeket meghatározott ötvözetcsaládhoz használnak, és vannak olyanok,

amelyek függetlenek a hőkezelendő anyagtól. Az elvégzett hőkezelés eredményessége attól függ, hogy

mennyire ismertek a munkadarabban lejátszódó folyamatok. Pontosan kell tudni, hogy milyen a darabban

kialakult hőmérséklet-eloszlás, és milyen annak az időbeni változása. A leggyakrabban alkalmazott hőkezelési

eljárások ismertetése előtt ezért az alapvető technológiai számításokkal ismerkedünk meg.

Számítások hőkezelési technológiákhoz. A kiterjedt testek melegedése és hűlése nem egyenletes, a

munkadarab bármely pontjának a hőmérséklete az időben változik. A hőmérséklet-változást alapvetően két

folyamat szabja meg: a felületi hőátadás és a testen belüli hővezető képesség. A két tényező együttes hatását az

ún. hődiffúziós együttható foglalja össze:

,

ahol a hővezető képesség, a sűrűség és a fajhő.

Bármely pont hőmérséklet-változása a hővezetés differenciálegyenletével írható le. A gyakorlatban az egyenlet

a szélsőséges peremfeltételek miatt nehezen oldható meg, de ma már egyre tökéletesebb számítógépes modellek

készülnek. A műszaki gyakorlatban igen elterjedt a táblázatok, grafikonok és tapasztalati képletek használata a

feladat megoldására. Például a felhevítési idő számítására a

gyakorlati képlet használatos, ahol a melegítendő munkadarab geometriájától függő alaktényező;

hevítőközegre jellemző állandó, s/mm; a munkadarabon belüli legkisebb keresztmetszetű átmérő, mm; a

munkadarabnak a kemencén belüli elhelyezkedését figyelembe vevő tényező (5 [110]. táblázat).

5.

táblázat.

Hőkezelé

si

tényezők

és

állandók

A darab méreteit nagyobb hangsúllyal figyelembe véve:

Page 115: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

HŐKEZELÉSI ELJÁRÁSOK

111 Created by XMLmind XSL-FO Converter.

, min,

ahol a térfogat, , a felület, ; a hőmérsékletet figyelembe vevő tényező, min/cm.

800...1000 hőmérséklet-tartományban használatos sófürdő esetén:

, min,

feletti hőmérsékletű sófürdő esetén:

, min.

Tapasztalati képlet lévén a hőmérséklet értékét értékben, de mértékegység nélkül helyettesítjük be.

Ólomfürdő esetén 0,5 értékkel, levegő közegű hőátadás esetén 3,25 értékkel számolunk.

A hőn tartási idő kiszámítása mindig az adott összetételtől és a hevítés céljától függ, pl. ausztenitesítés esetén

alapvetően az ausztenitesítési diagramból határozzuk meg a szükséges hőmérsékletet, ez a érték, majd

ehhez számoljuk a hőn tartási időt. Az ipari méretű kemencék hőmérséklete általában eltér az elméleti

úton meghatározott értéktől, ezért a hőn tartási idő számítása során pontosítani kell.

Gyengén ötvözött hipereutektoidos acélokra:

, min.

Gyorsacélokra:

, min,

ahol a betűjelek az illető kémiai elemek mennyiségét jelentik tömegszázalékban.

2. 7.2. Lágyítás

Általában hidegen alakított félkész termékekhez alkalmazott hőkezelés. Célja az előzetes alakítás során

felszaporodó és a további alakítást megnehezítő rácshibák eltüntetése az anyagból. Pl. hidegen hengerelt lemez

további vastagságcsökkenése érhető el lágyító hőkezelés után. Hevítés hatására az alakítás során létrejött és

feltorlódott diszlokációk a bevitt hő hatására mozgékonyak lesznek, a próbadarabok szélére vándorolnak,

hibátlan anyagot hagyva maguk után.

Teljes kilágyításról beszélünk, ha pl. az acélt hőmérséklet fölé hevítjük, ausztenites állapotba hozzuk, majd

lassan hútjük le. A végeredmény: lemezes perlites szövet kialakulása.

A szferoidizáló lágyítás során a rendszer felveszi a legkisebb energiájú állapotot, és a lemezes perlit helyett

ferrit alapszövetbe ágyazott karbidrögök alakulnak ki (82 [111]. ábra ). Az így kialakult szövet könnyebben

alakítható, mint a lemezes szerkezet és keménysége is kisebb. A hosszan tartó, hőmérséklet alatti izzítás

során a kialakult rögök durvulnak, a keménység még tovább csökken.

82. ábra.

Szferoidi

t (1680x-

es

nagyítás)

Page 116: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

HŐKEZELÉSI ELJÁRÁSOK

112 Created by XMLmind XSL-FO Converter.

Ezt a hőkezelést leggyakrabban gyengén ötvözött, nemesíthető és hipereutektoidos acélokhoz alkalmazzák.

Nagy széntartalmú acélok esetén a folyamat gyorsítható, ha gyorsan hőmérséklet fölé hevítik egy kicsivel,

ezáltal megindul a karbidok oldódása, majd lassan alá hűtik, miközben az oldott karbidok a még meglévőkre

válnak ki, s növelik azokat. Ezt a folyamatot többször kell megismételni.

3. 7.3. Normalizálás

A szövetben kialakult egyenetlenségeket (szemnagyság-, koncentráció-különbség stb.) szünteti meg.

Rendszerint ausztenitesítő izzításból áll, amelyet levegőn való hűts követ; így finom lemezes perlites szövet

alakul ki. A normalizálás hőmérsékletét elsősorban a karbontartalmú kiindulási szerkezet határozza meg. Pl.

hipereutektoidos acél esetében, ha hőmérséklet fölé hevítünk, akkor a lehűlés során káros szekunder

cementitháló (szemcsehatárra kivált szekunder cementit), jön létre. Ezért célszerű a kicsivel fölé hevíteni,

amelynek során a karbidok oldódása csak részleges.

Hipoeutektoidos acélok esetében szokásos eljárás, hogy a darabot hőmérsékletre hevítik, majd úgy

hűtik le, hogy az átalakulás tartományát gyorsan lépjék át, ezáltal az erős túlhűtésből adódóan sok csíra

keletkezik, finom szerkezet alakul ki.

A normalizálás gyakran nem a befejező hőkezelési művelet, csak megfelelő szerkezetet hoz létre a következő

hőkezelés számára. Ezzel szemben a 0,2% szenet tartalmazó hegeszthető ötvözetekben a normalizálást nem

követi újabb hőkezelés. Ilyenkor a normalizálást az indokolhatja, hogy a melegalakítás hőmérséklete túl nagy

Page 117: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

HŐKEZELÉSI ELJÁRÁSOK

113 Created by XMLmind XSL-FO Converter.

volt, és durva szerkezet alakult ki, vagy kismértékű hidegalakítást kapott a munkadarab, esetleg a melegalakítás

egyenetlen volt, vagy a hegesztési varratok mentén kialakult durvulást kell megszüntetni.

A normalizálás eredményét a próbadarab mechanikai tulajdonságainak mérésével és nem a szövetszerkezet

vizsgálatával állapítjuk meg.

4. 7.4. Szemcsedurvító izzítás

Ennél a műveletnél az ausztenitesítést követően durva ferrit-perlites szövet kialakítása a cél. Normalizálás során

gyakran alakul ki ún. soros szövet (83 [113]. ábra), amely az ötvözők nem homogén eloszlásából ered. A

forgácsolás során a periodikusan elhelyezkedő ferrit-, ill. perlitsorok igen kedvezőtlenek. Ezért eldurvítjuk a

szövetet.

83. ábra.

Soros

szövet

(200x-es

nagyítás)

Page 118: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

HŐKEZELÉSI ELJÁRÁSOK

114 Created by XMLmind XSL-FO Converter.

5. 7.5. Diffúziós (homogenizál) izzítás

A szükségtelen vagy káros koncentrációkülönbségek csökkentését, ill. megszüntetését célzó hőkezelések. szilárd

oldatok kristályosodása során a szilárd fázis összetétele folyamatosan változik. Általában az idő rövidsége miatt

a szilárd fázisban a kocentrációkiegyenlítődés nem tud végbemenni, koncentrációkülönbség, mikrodúsulás

alakul ki a dendritágakban. Szoliduszhőmérséklet alatt végzett izzítással ezek az inhomogenitások

megszüntethetők. Ha eutektikum is kristályosodik az ötvözetrendszerben, akkor az izzítás hőmérsékletét

célszerű az eutektikus hőmérséklet alatt tartani. Ennek az oka az, hogy kristályosodáskor a

koncentrációkülönbségek miatt nem egyensúlyi eutektikum is keletkezhet, s ha az izzítás hőmérséklete

meghaladja az eutektikus hőmérsékletet, akkor helyi megolvadások jöhetnek létre, amelyek teljesen

tönkretehetik a munkadarabot. Különösen alumínium- és rézötvözetek esetén fontos és gyakran alkalmazott

hőkezelés. Acélokhoz ez az eljárás a nagy hőmérséklet miatt túlságosan költséges.

6. 7.6. Újrakristályosító izzítás

Újrakristályosodáskor kis diszlokációtartalmú lágy kristályok keletkeznek, a hidegalakítás következményei

megszűnnek. Melegalakítás során az újrakristályosodás az alakítás hőmérsékletén végbemegy. Ezért kötjük a

hideg-, ill. melegalakítás fogalmát az ötvözet újrakristályosodási hőmérsékletéhez.

Ennek megfelelően pl. a szobahőmérsékleten végzett hengerlés az acélok esetében hideg-, míg az

ólomötvözetek esetében melegalakításnak számít!

Az újrakristályosodás szakaszai: diszlokációk átrendeződése, a hibátlan kristályok kialakulása és a

szemcsedurvulás. Az újrakristályosodás folyamata függ az ötvözet összetételétől, a hőmérséklettől, az időtől és

az alakítás mértékétől. Az újrakristályosodás összekapcsolódhat kiválásokkal (pl. acélban alumínium-nitrid),

amely módosíthatja az újrakristályosodás folyamatát. Például az apró szemű kiválások a szemcsehatárokon

megakadályozzák a szemcsehatárok mozgását, így a durvulást.

7. 7.7. Stabilizáló izzítás

Az ilyen hőkezelés során – ahogyan a nevéből is kitűnik – a szerkezet stabilizálása a cél. Például az időjárásnak

ellenálló acélok stabilizáló izzításakor réz válik ki az ötvözetben. A felhasználás során a felület rozsdásodik,

avas laza szerkezetű oxiddá alakul, így a felülethez közel a réz feldúsul, ezáltal megakadályozza a további

rozsdásodást. Az ilyen védőréteg kialakulásához először az acélnak rozsdásodnia kell, ezért az ilyen termékeket

nem szabad lefesteni!

A stabilizáló izzítás másik példája: a hőkezelés során tercier cementit válik ki. Ez természetesen a szívósság

romlásával jár, de így kevésbé káros, mintha később a felhasználás során alakulna ki, amikor már nem

ellenőrizhető a folyamat. A karbidképződést akár karbidképző ötvözők adagolásával és 600...650 -on történő

hőkezeléssel is fokozhatjuk.

8. 7.8. Feszültségcsökkentő izzítás

A munkadarabban öntés, hőkezelési megosztás, vagy alakítás hatására kialakult feszültségek csökkenésekor

vetemedések, mérettorzulások alakulhatnak ki. Izzításkor ezek a méretváltozások jól szabályozhatók. A

hőkezelés lényege a lassú, 50...100 sebességű hűtés. A feszültségcsökkentő izzítás akadályozza a

szemcsehatár menti korróziót, növeli a kifáradási határt, és csökkenti a repedésveszélyt, stabilizálja a

munkadarab méreteit.

9. 7.9. A célok nemesítése

Page 119: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

HŐKEZELÉSI ELJÁRÁSOK

115 Created by XMLmind XSL-FO Converter.

Az acélok legfontosabb és a leggyakrabban előforduló hőkezelési művelete. Előnye, hogy a kialakuló szerkezet

tulajdonsága széles tartományban változtatható. Három fő műveletből áll: ausztenitesítés, edzés és megeresztés.

Az ausztenitesítés során legalább olyan hőmérsékleten és annyi ideig hőntartjuk a darabot, hogy ferrit a

szövetben ne maradjon. Az összes karbid oldódásához ennél hosszabb időre, és esetenként nagyobb

hőmérsékletre van szükség (l. az ausztenitesítési diagramokat a 6.1.5. pontban). A további hőkezelés

szempontjából a kialakuló ausztenit mennyisége, összetétele és szemcsenagysága a fontos. Nagyobb

hőmérsékleten és hosszabb ideig végzett hevítés során egyre több karbid, ill. – ha jelen van, akkor – egyéb

ötvöző megy oldatba, egyre több lesz az ausztenit mennyisége, ill. magasabb lesz az ötvözőtartalma. A nagyobb

széntartalmú ausztenitből az edzés során nagyobb széntartalmú, így nagyobb keménységű martenzit jön létre.

Magának az edzett munkadarabnak a keménysége viszont bizonyos érték után már nem nő, hanem csökken. Ez

a jelenség szintén az ausztenit megnövekedett széntartalmának következménye: nagyobb széntartalom esetén az

edzés után kialakult maradék ausztenit mennyisége nő, csökkentéve a munkadarab keménységét.

Az ausztenitesítés során a már kialakult ausztenit szemcsenagysága nő, ezekből durvább martenzitkrisztallitok

alakulnak ki, ami általában káros. Az ausztenitesítés hőmérsékletének növelésével bizonyos acélok

szemcsenövekedése nem folyamatos görbe szerint változik. Ha van valamilyen kiválás a szemcsehatárokon,

akkor amíg a kiválás fel nem oldódik, akadályozza a szemcsék növekedését. Ahol a kiválás már oldatba ment,

ott a szemcsenagyság hirtelen növekedésnek indul. Ilyenkor az acélban apró és igen nagy szemcséjű ausztenitet

is találunk. Ezt a szerkezetet duplex szövetnek, az ilyen viselkedésű – rendszerint nitridkiválásokat tartalmazó –

acélt pedig finomszemcsés acélnak hívjuk (84 [115]. ábra). Általában az az optimális ausztenitesítési idő és

hőmérséklet, amely minél nagyobb keménységet, és minél kisebb szemcsenagyságot ad. Ez acélonként más és

más hőmérsékletet jelent, hipoeutektoidos acéloknál többnyire hőmérséklet felett -kal, hipoeutektoidos

összetétel esetén hőmérséklet felett.

84. ábra.

Ausztenit

szemcsen

agysága

hevítés

közben

Page 120: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

HŐKEZELÉSI ELJÁRÁSOK

116 Created by XMLmind XSL-FO Converter.

Erősen ötvözött acélok esetében mindig figyelembe kell venni az ötvözők hatását, és ennek megfelelően kell az

ausztenitesítési hőmérsékletet meghatározni. Pl. ferrit- és karbidképzővel ötvözött gyorsacélok esetén az

ötvözők hatására az S pont balra, a kisebb széntartalom, és felfele, a nagyobb hőmérséklet irányába tolódik el.

Az S pont koncentrációja 0,2...0,3%-ra csökken. Ahhoz tehát, hogy megfelelő keménységű martenzitet kapjunk

edzés után, a karbidokat is oldatba kell vinni, ami jelen esetben magas, az eutektikust megközelítő

hőmérsékleten lehetséges. Ötvözött acélokat a szabványban megadott hőmérsékleten célszerű ausztenitesíteni.

A hevítés végezhető közönséges légterű kemencében. Ez esetben gondot okozhat a felület erős oxidációja,

revésedése, amely anyagveszteséggel jár, és főleg késztermék hőkezelésekor káros. Ilyenkor védőgázról kell

gondoskodni (pl. nitrogén-, hidrogén-, endogén-, vagy exogéngáz), a munkadarab összetételétől függően. A

másik megoldás az, ha vákuumkemencét használunk. A hőkezelés végezhető fém- vagy sófürdőben is.

Az edzés során az ausztenitesítési hőmérsékletről a munkadarabot úgy hűtik le, hogy a kialakuló szövet

martenzites legyen. A martenzit a széntúltelítettség miatt igen kemény, de kevésbé szívós (rideg) lesz. A hűtési

sebesség kiválasztásakor figyelembe kell venni az adott ötvözet átalakulási diagramját. A nagy kiterjedésű

darabok esetében ez még nem elég, mivel a munkadarab belseje lassabban hűl, mint a felülete, ahol közvetlenül

érintkezik a hűtőközeggel. Ezért az edzhetőség jellemzésére bizonyos mérőszámokat vezettek be:

Kritikus átmérő olyan darab átmérője, amelynek közepén – adott hűtési viszonyok között hűtve – a szövet 50%-

ban martenzites.

Ideális kritikus átmérő olyan kritikus átmérő, amely az ideális hűtési (végtelen gyors) sebességhez tartozik.

Adott ötvözet edzhetősége az ún. Jominy-vizsgálattal határozható meg. Szabványos méretű hengeres

próbadarabot ausztenitesítés után egyik véglapjára irányított vízsugárral lehűtünk (85 [116]. ábra).

85. ábra.

Jominy-

vizsgálat

Page 121: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

HŐKEZELÉSI ELJÁRÁSOK

117 Created by XMLmind XSL-FO Converter.

Ezután megnézzük a szövet keménységének változását a véglaptól távolodva. Az eredményeket ábrázolva

kapjuk az ún. Jominy-görbét. Az így meghatározott görbéből – vagy az ötvözet ismert összetételéből –

kiindulva, többféle számítási eljárás (Grossmann-Moser-Legat- stb.) is ismert a fent említett jellemzők, ill. az

edzés feltételeinek meghatározására. Pl. kiválasztható az adott ötvözethez alkalmas hűtőközeg. A leggyakrabban

használt közegek: levegő, olaj, víz, különféle szintetikus oldatok stb. A közeg lehet nyugodt vagy különböző

mértékben áramoltatott. A közeg hőelvonó képességét a H hűtési erélyesség (felületi hőátadási együttható)

mérőszámával jellemezzük. Mértékegysége 1/m, értékeit a 6 [117]. táblázat tartalmazza.

6.

táblázat.

Hűtési

erélyessé

g, H, 1/m

Page 122: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

HŐKEZELÉSI ELJÁRÁSOK

118 Created by XMLmind XSL-FO Converter.

A megeresztés célja a martenzites állapottal járó keménység és ridegség csökkentése. Megereszteni

hőmérséklet alatti tartományban szoktak. A megeresztés során végbemenő folyamatok:

– csökken a martenites rács tetragonalitása, karbid válik ki (100...200 ),

– átalakul a maradék ausztenit (150...300 ),

– megjelenik a cementit (350...700 ),

– megjelennek az ötvözőfém karbidjai (500...600 ).

Ötvözetlen és gyengén ötvözött acélok esetében a keménység a megeresztési hőmérséklet és az idő

függvényében monoton csökken. Minél nagyobb a hőmérséklet, annál nagyobb a karbidok mérete és a karbidok

közötti átlagos távolság, vagyis a diszlokációk szabd úthossza. Ennek következtében csökken a szilárdság és a

keménység, ugyanakkor nő a szívósság. Az ötvözött acélok keménységgörbéje nem monoton csökken, hanem

közelében maximuma van (86 [118]. ábra). Ezt a jelenséget nevezzük szekunder keménységnek. A

keménység azért növekedik, mert megjelennek az ötvözőfém karbidjai. Ezek az acélok csak fölé hevítve

lágyulnak ki, ezért alkalmasak olyan munkákhoz, amelyek a munkadarab felmelegedésével járnak. A szekunder

keménység biztosítja a volframötvözésű gyorsacél forgácsolószerszámok kitűnő élettartamát.

86. ábra.

Szekund

er

keménys

ég

Page 123: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

HŐKEZELÉSI ELJÁRÁSOK

119 Created by XMLmind XSL-FO Converter.

Nemesítéskor előforduló hibák. A leggyakoribb hiba az edzési feszültségek kialakulása, ami az ausztenit–

martenzit átalakulással járó térfogatváltozásból, ill. abból származik, hogy az átalakulás rendszerint nem

egyidőben megy végbe az egész darabban. Feszültséget kelt többnyire az is, ha nem martenzit, hanem egyéb

szövetelemek alakulnak ki. A kialakuló feszültségek hatására jelentős vetemedések keletkeznek. A nagy belső

húzófeszültségek hatására a zárványoktól vagy egyéb hibahelytől kiindulva az ausztenit-szemcsehatárokon

repedések indulnak el. Gyakori hiba, hogy az átedződés nem egyenletes. Különböző módon edződik a

munkadarab, ha az ausztenit-szemcsenagyság az egyes részeken eltérő, ill. ha az edzőközeg nem egyformán

érintkezett a felülettel. Alakos munkadarabok esetében, valamint akkor, ha a felület foltokban revés, ez gyakori

gond. Ha hevítéskor a szén a felületből kiég, akkor ott – a megváltozott összetétel következtében – más szövet

alakul ki edzés után.

10. 7.10. A réz- és az alumíniumötvözetek nemesítése

A réz- és az alumíniumötvözeteket szintén szilárdság növelése céljából hőkezeljük, a hőkezelés szakaszai is

megegyeznek az acélok nemesítésénél megismertekkel, a keményítés mechanizmusa azonban egészen más. A

hőkezelés során a diszlokációk mozgását akadályozó kiválások jönnek létre. Ilyen részecskék keletkeznek

túltelített szilárd oldatból való kiválás esetén. Ha egy diszlokáció kiváláshoz ér, továbbhaladásához át kell

vágnia azt. Az átvágáshoz nagy energia kell, vagyis a kiválás jelentős szilárdságnövekedést okoz. Ha az

energiaszükséglet túl nagy, akkor a diszlokáció megkerüli a kivágást (l. a 77 [101]. ábrát). Ekkor mérsékeltebb

a szilárdságnövelő hatás. A legnagyobb a szilárdságnövekedés akkor, ha a kiválás a mátrixszal koherens vagy

félkoherens (l. a 78 [102]. ábrát). Az ilyen igen apró (100 nm-es) kiválásokat G.P. (Gunier–Preston)-övezetnek

Page 124: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

HŐKEZELÉSI ELJÁRÁSOK

120 Created by XMLmind XSL-FO Converter.

hívjuk. Nemesíthetőnek nevezzük azt az ötvözetet, amelyikben a túltelített szilárd oldatból való kiválás lépései a

következők: szilárd oldat G.P.-övezet metastabil fázis stabil fázis.

A homogenizálás (oldó hőkezelés) célja az ötvözők minél tökéletesebb oldása, ezért mindig a

szolvuszhőmérséklet felett és a szolidusz-hőmérséklet alatt kell végezni. Az esetleges helyi megolvadások

elkerülésére célszerű 5...10 -kal az eutektikus hőmérséklet alatt maradni. Az oldó hőkezelés ideje az ötvözet

állapotától, összetételétől, ill. a darab vastagságától függ.

Az edzés az oldó hőkezelés során kialakult szilárd oldat állapotának megtartását célozza szobahőmérsékleten is.

Mivel általában gyors hűtést jelent, ezért gyakran hívják ,,befagyasztásnak”. Az edzés akkor sikeres, ha a nagy

hőmérsékleten kialakult szerkezet minden atomja, ill. vakanciája a helyén marad. A leggyakrabban előforduló

hiba, hogy a kritikus hőmérsékleten megindul a kiválás. Kritikus hőmérsékletnek nevezzük azt a tartományt,

amelyben a kiválási folyamat különösen gyors. A kiválás sebessége a túltelítettségtől (túlhűléstől), ill. a diffúzió

sebességétől függ.

Megeresztés (öregítés). A túltelített nem egyensúlyi szilárd oldatból az ötvözók kiválni igyekeznek. Kis

hőmérsékletű hevítéssel ez a folyamat jól szabályozható. A kiválások a körülményektől függően többfélék

lehetnek. Az egyensúlyi diagramba ún. nem egyensúlyi szolvuszgörbéket is berajzolhatunk, amelyek a kiváló

fázisok stabilitási területeit mutatják. A legkisebb hőmérsékleten keletkeznek a G.P.-zónák, ennél nagyobb

hőmérsékleten a metastabil fázis(ok), végül a legnagyobb hőmérsékleten a stabil egyensúlyi fázis. A G.P.-zóna

képződése szobahőmérsékleten is megindulhat. Ekkor pusztán néhány napos, esetleg hetes hevertetéssel is

jelentős szilárdságnövekedés érhető el. Az ilyen ötvözeteket önnemesedő ötvözeteknek hívjuk. A szilárdsági

tulajdonságok a hőkezelési idő függvényében maximumos görbe szerint változnak, ezért fontos a megfelelő idő

és hőmérséklet meghatározása. Az egyensúlyi fázis megjelenésével a kiválások mérete és a köztük lévő távolság

már nagy, a szilárdsági tulajdonságok csökkennek, a kontrakció és a nyúlás nő, vagyis az anyag lágyul. Ez a

folyamat a túlöregítés, ami a felhasználás szempontjából általában káros.

11. 7.11. Felületi edzés

Abban az esetben alkalmazzák – főleg acélok esetén –, ha csak a felületnek kell nagy szilárdságúnak,

kopásállónak lennie (pl. fogaskerekek, tengelyek, hengerek, húzószerszámok, vasúti sínek). Többféle módszer

ismeretes:

– A teljes keresztmetszetet ausztenitesítik, majd a hűtést úgy irányítják, hogy csak a felület edződjön.

Ötvözetlen nagy széntartalmú acélok esetében használatos eljárás.

– Csak az edzeni kívánt részt ausztenitesítik, majd megeddzik. Ausztenitesíteni lehet valamilyen fém- vagy

sófürdőbe való mártással. Ez általában egyszerű, de nehezen szabályozható módszer. Ennél jobb megoldás a

lánggal való fűtés, ami a hegesztéshez hasonlít, csak arra kell vigyázni, hogy az anyag ne olvadjon meg.

Gyakran alkalmazzák a villamos, indukciós melegítést is. Ezek az eljárások jól szabályozhatók, és finom

ausztenit-szemcseszerkezet alakul ki. Az alapanyagot mindenképpen nemesíteni kell. Nagyon vékony (tized

milliméteres) edzett kéreg kialakításához elektronsugárral vagy lézersugárral pásztázva melegítik fel az anyagot.

Ez esetben általában hűtőközegre már nincs is szükség, maga a munkadarab tömege vonja el a hőt a

felmelegített részről.

12. 7.12. Termokémiai kezelések

A termokémiai kezelések célja – csakúgy, mint a felületi edzésé – a felület keménységének, szilárdságának

növelése. Az eddig bemutatott hőkezelésekkel szemben a termokémiai eljárások megváltoztatják a felületen a

darab összetételét.

Cementálás. A legkézenfekvőbb a széntartalom növelése. Ezt az eljárást szenitésnek, cementálásnak,

kérgesítésnek vagy betétből való edzésnek hívják. A szenet célszerű ausztenites állapotban bevinni. Az a jó, ha a

felületen a széntartalom 0,8...0,9%, míg a mag széntartalma 0,25%. A cementáló közeget a szénpotenciál

jellemzi, amely megmutatja, hogy adott hőmérsékleten cementálva a színvasat, mennyi szén oldódik fel. Az

oldódás mértéke függ a szén állapotától; a legjobb, ha CO alakban van jelen. A cementálóközeg lehet gáz,

faszén, sófürdő. Cementálás után megeddzik a munkadarabot, majd újabb felhevítéssel és edzéssel beállítják a

kívánt szemcsenagyságot, ill. a mag és a kéreg szövetszerkezetét. Finomszemcsés acél használatával a többszöri

felhevítés költségei megtakaríthatók, és elkerülhető a cementáláskor kialakuló szemcsedurvulás. Ezzel az

Page 125: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

HŐKEZELÉSI ELJÁRÁSOK

121 Created by XMLmind XSL-FO Converter.

eljárással a darab feszültségállapota is az igénybevételnek megfelelően állítható be. Pl. húzó igénybevételnek

kitett munkadarabban célszerű nyomó maradófeszültséget beállítani.

Nitridálás. A 0,1...0,2 mm vastag, igen kopásálló réteget nitrogéntartalmú vegyületek kialakításával hozzák

létre. Az eljárást mintegy körüli hőmérsékleten végzik. A nitridálás általában a nemesítést követően,

ammóniagáz elbontásával történik.

Boridálás. Ahogyan a nevében is benne van, e hőkezelési eljárás során 800...1050 hőmérsékleten bórt visz a

felületbe. Bórt leadó közegben való izzításkor FeB és vegyületek keletkeznek 0,1 vastagságban,

keménységük 2000 HV. Az igen kemény, kopásálló réteg kialakítása után a munkadarabot megeddzik, majd

megeresztik, hogy a mag tulajdonságai is megfelelők legyenek.

Szubsztitúciósan oldódó ötvözőkkel (pl. Al, Cr, Si, Ni, W, Zn, Sn) a kezelés hőmérséklete nagyobb, mivel a

szubsztitúciós oldódás időszükséglete több, mint az intersztíciós oldódásé. Azonkívül ezeket az ötvözéseket nem

a keménység és a kopásállóság növelése, hanem egyéb tulajdonságok, mint pl. a hőállóság növelése céljából

végzik.

13. 7.13. Termomechanikus kezelések

Az eljárások során a melegalakítást és a hőkezelést összekapcsolják. Nagy hőmérsékletű termomechanikus

kezelés esetén a melegalakítást ausztenites állapotban végezik, és a melegalakítás következményei benne

maradnak az anyagban, nem történik újrakristályosodás. Ha a hőmérséklet kisebb, akkor az ausztenit még

keményebb lesz. Ez a kezelés csak erősen ötvözött acélokhoz alkalmas, ahol a C görbék jobbra, a hosszabb idők

irányába tolódnak el. Ha tovább csökken a hőmérséklet, akkor az alakítás és az átalakulás azonos időben zajlik.

Ilyenkor az eutektoid nem lemezes, hanem ferritben ágyazott karbidrögök alakulnak ki.

14. 7.14. Patentozás

Termomechanikus kezelésnek is felfogható izotermás, főleg huzaltermékekhez alkalmazott hőkezelés, amelynek

a célja nagy szilárdságú, jól alakítható perlites szerkezet létrehozása. A hőkezelés után létrejött nagyon finom,

lemezes perlites szövet jól alakítható, nagymértékben keményedik. A hidegalakítást jól elviseli, így az edzett

acél szilárdságával vetekedő végtermék jön létre. A gyakorlatban az izotermás hőkezelést általában fém- vagy

sófürdőben végzik.

15. 7.15. Heterogenizáló izzítás

A szolvuszhőmérséklet alatt végzett hevítés hatására az anyagban kiválások jelennek meg. Különösen jellemző

ez az Al-Mn ötvözetek esetén, amikor a kiválások megjelenésével a villamos vezetőképesség nő.

16. Kérdések, feladatok

1. Mi a kilágyítás és a szferoidizáló lágyítás közötti különbség?

2. Milyen a kialakuló szövet normalizálás után?

3. Milyen ötvözeteknél használnak homogenizáló és melyeknél heterogenizáló hőkezelést?

4. Milyen lépései vannak az újrakristályosodásnak?

5. Mikor alkalmaznak feszültségcsökkentő izzítást?

6. Milyen lépései vannak a nemesítésnek?

7. Hogyan változik a szövet keménysége a nemesítés egyes lépései alatt acél, ill. alumínium hőkezelése során?

8. Jellemezze a G.P.-övezeteket!

9. Milyen izotermás hőkezeléseket ismer?

10. Milyen termokémiai kezeléseket ismer, és mi a céljuk?

Page 126: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

122 Created by XMLmind XSL-FO Converter.

8. fejezet - A FÉMÖTVÖZETEK SZERKEZETÉNEK VIZSGÁLATA

1. 8.1. Alapfogalmak

Az anyagszerkezet-vizsgálat gyakorlati jelentőségét az adja, hogy a fémötvözetek fizikai tulajdonságait

(szilárdságukat, sűrűségüket, villamos vezetőképességüket vagy éppen a korrózióval szembeni ellenálló

képességüket) az ötvözetek atomos szerkezete (a kristály típusa, a kristályhibák formája és mennyisége),

valamint szövetszerkezete, más néven mikroszerkezete: az ötvözetet alkotó szemcsék mérete, az alapfém

kristályszerkezetével összefüggő (koherens) kiválások mennyisége vagy az alapanyag kristályaitól többé

kevésbé független (inkoherens-) részecskék száma és mérete határozza meg (87 [122]. ábra).

87. ábra.

A

fémötvöz

etek

térbeli

szerkezet

e

Mindezekből következik, hogy a megfelelő tulajdonságú ötvözetek előállításához pontosan ismerni kell a

szerkezetüket. A szerkezetet vizsgáló módszerek sokfélék, ide tartoznak többek között a különböző fény- és

elektronmikroszkópos módszerek. A fémek szövetszerkezete szabd szemmel ugyanis nem tanulmányozható,

vizsgálatukra 25...2000-szeres nagyítású fénymikroszkópot vagy 100000-szeresnél is nagyobb nagyításra képes

elektronmikroszkópot használunk. A fémek atomos felépítését, kristályos szerkezetét röntgensugár segítségével

lehet tanulmányozni.

2. 8.2. A próbavétel. A vizsgálandó próbatestek beágyazása

Page 127: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

123 Created by XMLmind XSL-FO Converter.

Ahhoz, hogy a fémek és ötvözeteik szövetszerkezetét fénymikroszkóppal vagy elektronmikroszkóppal meg

tudjuk vizsgálni, először is csiszolatot kell készíteni. A csiszolatkészítés első lépése a próbavétel. Ez döntő

jelentőségű, hiszen a próbatestnek az egész anyag szerkezetét kell jellemeznie, nem közömbös tehát, hogy a

gyártmány melyik részéből, milyen módszerrel és milyen módon vágjuk ki a próbatestet. Hengerelt, kovácsolt

alkatrészek szálirány-elrendeződését, zárványosságát mindig hosszmetszeten vizsgáljuk. Ugyanezeken az

alkatrészeken a gázhólyagokat vagy a hengerlési, kovácsolási gyűrődéseket keresztirányú csiszolatokon

mutathatjuk ki a legjobb minőségben. A vizsgálat helyének és a csiszolat síkjának kiválasztása után a

próbatestet ki kell vágni. A kivágás módja a vizsgálandó anyag keménységétől függ. Lágy anyagot fűrészeléssel,

esetleg esztergálással, marással vagy gyalulással darabolhatunk. Nagyobb nehézséget jelent a kemény

anyagból, pl. az edzett acélból való kimunkálás, ekkor köszörűkorongokkal vagy gyémánttárcsával vághatunk

kisebb méretű próbatestet. A próbatestek melegedését feltétlenül el kell kerülni, mert az újrakristályosodás vagy

az edzett acélok megeresztődése miatt a szövetszerkezet jelentősen megváltozhat.

A vizsgálatra szánt próbatestek nagysága a gyártmány méretétől és a vizsgálat céljától függ. Keresztmetszetük

lehetőleg ne legyen nagyobb 30x30 mm-nél, mert ennél nagyobbat nehéz csiszolni. Az apró vagy kedvezőtlen

alakú próbatestet a 88 [123]. ábrán látható fémkeretbe foglalják, majd azzal együtt csiszolják, polírozzák és

maratják. Egy másik egyszerű eljárás szerint a próbatestet üveglapra helyezik, és műanyag gyűrűvel veszik

körbe, majd hidegen keményedő műgyantába (például ipari Dentacryl-ba) ágyazzák (89 [123]. ábra).

88. ábra.

A

próbatest

ek

befogása

fémkeret

be

A vizsgálandó fémfelületet csiszolás előtt síkra kell munkálni, esztergálással, marással vagy gyalulással,

ügyelve arra, hogy a próbatestek ne melegedhessenek fel. A keményebb próbatestek vizsgálandó felületét

köszörülni szokták.

89. ábra.

A

próbatest

ek

beágyazá

sa

műgyant

ába

Page 128: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

124 Created by XMLmind XSL-FO Converter.

3. 8.3. A próbatestek csiszolása, polírozása és maratása

A megfelelően előkészített próbatesteket egyre finomabb – általában 60, 100, 150, 220, 280, 320, 400, 500 és

600 szemcsefinomságú – csiszolópapírokkal kell megmunkálni.

Lágyabb anyagok előkészítésekor elegendő, ha a sorozatnak csak minden második tagját használjuk. Egy-egy

fokozaton mindig az előző csiszolás nyomaira merőlegesen kell végezni a csiszolást, mindaddig, amíg az összes

nyomot el nem tüntettük. A 90 [124]. ábrán az érintetlen szövetszerkezet felett a különböző fokozatú

csiszolószemcsék által okozott karcokat, s a létrejött deformált réteget tüntettük fel. Az ábrából látható: hiába

csiszolunk később akármilyen gondosan, ha egy durvább fokozaton elmulasztottuk a deformált réteg teljes

eltávolítását. Az egyes fokozatok között vízzel gondosan meg kell tisztítani a próbatesteket, mert akár egy-egy

nagyobb csiszolószemcse is összekarcolhatja a próbatestet.

90. ábra.

A

megmun

kálással

deformál

t réteg és

az ép

mikrosze

rkezet

Page 129: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

125 Created by XMLmind XSL-FO Converter.

Nagyon hatékony és korszerű módszer a nedvescsiszolás. Ekkor a szilícium-karbid szemcséket tartalmazó

csiszolópapírt olyan korongra helyezzük, amelyet folyamatos vízáramnak teszünk ki (91 [125]. ábra), így a

centrifugális erő hatására a kicsapódó víz helyén keletkező vákuum a papírt a koronghoz szívja és simán tartja.

Eközben a vízáram folyamatosan eltávolítja a próbatestről leváló szemcséket és a szilícium-karbid részecskéket.

91. ábra.

Nedvescs

iszolás

Page 130: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

126 Created by XMLmind XSL-FO Converter.

Az előzetesen legalább 400-as szemcsefinomságú papíron csiszolt és tisztára mosott próbatestet nemezzel,

posztóval, vászonnal bársonnyal bevont forgókorongokon polírozzuk, s polírozószerrel nedvesítjük. Rendszerint

vízben lebegtetett (szuszpendált) alumínium-oxidot használunk. A 92 [126]. ábrán egyetemes asztali

polírozógép vázlata látható.

92. ábra.

Az

asztali

polírozóg

ép

Page 131: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

127 Created by XMLmind XSL-FO Converter.

Újabban a próbatestek polírozására gyémántpasztát használunk. Ekkor a műanyag tárcsára helyezett, kifeszített

fényesítőszövetre juttatjuk a gyémántszemcséket tartalmazó pasztát. A gyémántszemcsék mérete 0,25...15 .

A pasztával bekent szöveten kezdjük a polírozást, időnként a pasztához szállított kenőanyaggal (vagy denaturált

szesszel) nedvesítünk. Ezzel a módszerrel a rendkívül kemény ötvözetek is igen jól fényesíthetők (93 [127].

ábra).

93. ábra.

Gyémánt

szemcsés

polírozás

Ipari üzemek minőség-ellenőrző központjaiban, ill. anyagvizsgálati és metallográfiai laboratóriumaiban

rendszerint nagyobb mennyiségű csiszolatot készítenek. Ezt úgy automatizálják, hogy a műgyantába ágyazott

azonos méretű próbatesteket automatikus próbatartóba fogják be (94 [127]. ábra). A próbatesteket egyedileg

különböző nagyságú rugó- vagy súlyterheléssel kell a csiszoló-, ill. a polírozókoronghoz szorítani.

94. ábra.

Automati

kus

próbatar

Page 132: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

128 Created by XMLmind XSL-FO Converter.

Amikor a csiszoló- (polírozó-) korongot forgásba hozzuk, a vezetőtárcsa is forogni kezd,

valamint a próbatestek külön-külön is forognak saját tengelyük körül, mivel a korongnak

kívül nagyobb a kerületi sebessége. A próbatartó tehát nemcsak tartja a próbatesteket,

hanem külön hajtás nélkül forgatja is.

A próbatesteknek csiszolással és polírozással létrehozott tükörfényes felületén általában nem láthatók a

szövetszerkezet részletei. Legfeljebb a matt zárványokat, repedéseket vagy az öntöttvas grafitját vizsgálhatjuk

az ilyen csiszolatokon. A szövetszerkezet részleteit: a szemcsehatárokat, az egyes fázisokat maratással tesszük

láthatóvá. A maratás során az ötvözet egyes fázisai különbözőképpen oldódnak, sík vagy éppen szabálytalan

felületet hoznak létre (95 [128]. ábra), amely mikroszkópos eljárásokkal már jól megfigyelhető.

95. ábra.

Többfázi

ötvözet

maratása

Page 133: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

129 Created by XMLmind XSL-FO Converter.

Az ötvözetek nem maródott, sík szövetrészletei a mikroszkópban világosnak látszanak,

mert az ilyen felületekről visszaverődött fénysugarak nagy része közvetlenül bejut a

tárgylencsébe. Ezzel szemben az erősen maródott, egyenetlen felület általában sötét,

mert a fénysugarak jelentős része szétszóródik, és nem vesz részt a mikroszkópos

képalkotásban.

A legegyszerűbb maratás az, ha az ötvözetet maratószerbe mártjuk vagy helyezzük, s addig tartjuk benne, amíg

az a hatását kellően ki nem fejtette. Erre a célra a leggyakrabban használt maratószer a 21% salétromsav

alkoholos oldata, az ún. nital. A nital a salétromsav angol nevének – nitric acid – és az alkohol szó

kezdőbetűinek összevonásából keletkezett. Az alumíniumötvözetek maratására általánosan használt maratószer

a hidrogén-fluorid 0,1...1%-os vizes oldata.

Hatékonyabbá tehetjük a közönséges maratást, ha a próbatest felületének oldódását elektrolízissel elősegítjük.

Ezt nevezzük elektrolitos maratásnak (96 [129]. ábra). A legkönnyebben megvalósítható esetben a próbatestet

és a saválló acélból készült elektródát egymással szemben bemártjuk a maratószerbe. A próbatestet az

egyenfeszültségű áramforrás pozitív, az elektródát pedig az áramforrás negatív sarkához csatlakoztatjuk, így az

elektrolitos oldódás végbemegy.

96. ábra.

Elektroli

tos

maratás

Page 134: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

130 Created by XMLmind XSL-FO Converter.

4. 8.4. A fénymikroszkóp felépítése

A fémtani vizsgálatra szánt termékeket célszerű először szabad szemmel megvizsgálni, és tájékozódni próbatest

felületén lévő esetleges törésekről, repedésekről vagy korróziós folyamatokról. Az ilyen szabad szemmel

végzett vizsgálatot makroszkópos vizsgálatnak nevezzük. A szövetszerkezetet és a különböző fázisokat viszont

csak mikroszkóppal tehetjük láthatóvá.

A mikroszkóp lényegében két lencséből áll. A tárgyhoz közelebb lévő tárgylencse (objektív) a tárgy valódi,

fordított állású, nagyított képét hozza létre (97 [130]. ábra). Ezt a valódi képet egy másik lencsével, a

szemlencsével (okulárral) tovább nagyítjuk, így jutunk az AB tárgy fordított állású, erősen nagyított látszólagos

képéhez. A mikroszkópos kép minősége nagyrészt az objektíven múlik.

Az objektív két fontos adata a fémgyűjtő képesség ( ) és a feloldóképesség.

97. ábra.

A

fénymikr

oszkóp

képalkot

ása

az

objektív

fókusztáv

olsága;

az

okulár

fókusztáv

olsága;

az

objektív

és az

okulár

gyújtópon

Page 135: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

131 Created by XMLmind XSL-FO Converter.

tjai

közötti

köz; 250

mm a

normális

éles látás

mélysége

Fémgyűjtő képesség. A képalkotásban csak azok a fénysugarak vesznek részt, amelyek az objektívbe belépnek

(98 [131]. ábra). Az numerikus apertúra az apertúraszög szinusza, vagyis a fél lencseátmérő és az

fókusztávolság a hányadosa:

.

Ez az összefüggés arra az esetre vonatkozik, amikor az objektív és a próbatest közötti teret levegő tölti ki. Ha a

lencse és a tárgy közé olajat (pl. cédrusfaolajat) öntünk, akkor olyan 1 fénysugarak is bekerülhetnek az

objektívbe, amelyek a levegőn áthaladva elkerülnék azt (2). Ha a felhasznált olaj törésmutatója n, akkor az ún.

immerziós objektív numerikus apertúrája:

.

98. ábra.

Az

objektív

NA

fénygyűjt

ő

képesség

e

a)

Page 136: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

132 Created by XMLmind XSL-FO Converter.

normálob

jektív; b)

immerzió

s objektív

Feloldóképességen annak a két legközelebbi pontnak a tárgyon mért távolságát értjük, amelyet a nagyított

képen meg tudunk különböztetni. A fény hullámtermészete miatt a feloldóképesség nem növelhető tetszés

szerint. Ha ugyanis a tárgy két, egymástól távolságra levő A és B pontját objektívlencsével vizsgáljuk, a

fényhullámok elhajlása miatt a pontoknak egy-egy véges méretű, korongocska felel meg. Ha tehát az A-B

pontokat bizonyos távolságnál jobban közelítjük, az korongok összeérnek, s nem láthatók külön-külön

(99 [132]. ábra). Ernst Abbe bebizonyította, hogy ha az objektív numerikus apertúrája , a használt fény

hullámhosszúsága pedig , akkor a feloldóképessége nem lehet jobb, mint (planparallel-lemezes vertikális

illuminátor esetén)

.

99. ábra.

Az

objektív

feloldóké

pessége

Page 137: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

133 Created by XMLmind XSL-FO Converter.

Figyelembe véve, hogy a zöld fény hullámhosszúságú, az immerziós objektív maximális

numerikus apertúrája pedig 1,6, a fénymikroszkóppal legfeljebb feloldóképesség érhető el.

A fémtani gyakorlatban használt fénymikroszkóp megvilágítóberendezése a 100 [133]. ábra látható. A

fényforrás mindig mesterséges, a szubjektív megfigyeléshez 15...30 W-os, a fényképezéshez 100...250 W-os

fényforrás használatos. A megvilágítócső feladata, hogy a fényforrásból kilépő fénysugarakból párhuzamos

fénynyalábot alkosson. A sugárnyaláb vertikális illuminátorra esik, amelyik a fényt az objektív felé, majd a

csiszolatra irányítja. Vertikális illuminátorként rendszerint üveglapot használnak.

100.

ábra. A

fénymikr

oszkóp

megvilág

ítóberen

dezése

L

fényforrá

s; K K'

kollektorl

encsék; C

kondenzo

rlencse;

L' a

fényforrá

s képe az

apertúra-

fényrekes

zben; L”

a

fényforrá

s képe az

objektív

gyújtósíkj

ában

Page 138: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

134 Created by XMLmind XSL-FO Converter.

Az üveglap a ráeső fénysugaraknak csak egy részét tereli az objektív felé, a sugarak

másik része áthalad rajta. Hasonló történik a tárgyról visszavert fénysugarakkal is: a

szemünkbe azok a sugarak érkeznek, amelyek az illuminátorról első alkalommal a tárgy

irányába haladtak, majd onnan visszaverődve, s az illuminátoron áthaladva az okulárba

jutottak.

5. 8.5. Az elektronmikroszkópia alapjai

Mint az előzőkben említettük, a fénymikroszkóppal legfeljebb 0,1...0,2 felbontás, azaz legfeljebb

1500...2000-szeres nagyítás érhető el. A fémötvözeteket alkotó fázisok szerkezetének pontosabb

megismeréséhez ennél sokkal nagyobb feloldóképességre van szükség, ezt csak nagyságrenddel rövidebb

hullámhosszúságú elektromágneses sugárzással lehet megvalósítani. A feladat megoldásában de Broglie tette

meg a döntő lépést, amikor bebizonyította, hogy minden, sebességgel mozgó anyagi részecske egyúttal

hullámhosszúságú rezgésként is viselkedik:

,

ahol a Planck-állandó; a részecske tömege; a részecske sebessége.

Ha a nyugalomban lévő elektront feszültséggel gyorsítjuk, akkor az töltésű elektron kinetikus energiája:

,

a sebessége pedig:

.

Ha ezt a sebességet és a fizikai állandókat behelyettesítjük a de Broglie-egyenletbe akkor a következő közelítő

összefüggést kapjuk:

.

Ez az összefüggés azt mutatja, hogy a gyorsítófeszültség növelésével az elektronok hullámhossza szinte

tetszőlegesen csökkenthető. Pl. 15 000 V gyorsítófeszültséget alkalmazva, a hullámhossz , vagy 1

500 000 V esetén lesz.

Page 139: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

135 Created by XMLmind XSL-FO Converter.

Az elektronok hullámtermészetének kimutatása révén sikerült a fénymikroszkópnál lényegesen jobb

felbontóképességű mikroszkópot, az elektronmikroszkópot megalkotni. Ehhez szükség volt szabályozott

elektronforrásra, valamint elektronoptikai lencsékre. Az elektronágyú elvét a 101 [135]. ábra szemlélteti. Az

izzó katódból kilépő elektronokat nagy gyorsítófeszültség szívja el a felület közepéből, ehhez az anódra

40000...100 000 V pozitív egyenfeszültséget kell kapcsolni. A Wehnelt-henger célszerűen kialakított elektróda,

amely negatív feszültsége miatt taszítja az izzó katódot körülvevő elektronfelhőt, így szabályozza az

elektronáramot. Az elektronok a Wehnelt-henger és az anód közötti térrészben mindig az azonos mágneses

térerősségű felületekre, az ún. ekvipotenciális felületekre merőlegesen haladnak, és így egy nyílásszöggel

szóródó elektronsugár jön létre.

101.

ábra. Az

elektroná

gyú elve

Az elektronoptikai lencsék elvi alapja az a fizikai jelenség, hogy az elektronok a mágneses tér hatására

megváltoztatják röppályájukat. A mágneses lencsékben gyűrű alakú elektromágneses tekercsek révén

forgásszimmetrikus mágneses erőterek hozhatók létre. A megfelelő irányú mágneses erővonalak vagy légrés

(102 [136]a ábra), vagy pólussaru (102 [136]b ábra) segítségével alakíthatók ki. Ezek révén el lehet érni, hogy

a mágneses lencsék adott fókuszpontban gyűjtsék össze az elektronokat.

Page 140: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

136 Created by XMLmind XSL-FO Converter.

102.

ábra. A

mágneses

lencsék

szerkezet

e

Átvilágításos elektronmikroszkóp. Az elektronforrás és az elektronoptikai lencsék segítségével az

átvilágításos fénymikroszkóphoz nagyon hasonló felépítésű, átvilágításos (transzmissziós) elektronmikroszkóp

alakítható ki. (103 [136]. ábra).

103.

ábra. Az

átvilágítá

sos

elektron

mikroszk

óp elve

A nagyon vékony tárgyon áthaladó elektronok a különböző vastagságú sűrűségű vagy eltérő rendszámú

anyagrészeken más-más mértékben szóródnak, majd az objektív és a projektív segítségével az eltérő

elektronintenzitású foltokból a megfelelő ernyőn létrejön az elektronmikroszkópos kép. A cink-szulfid vagy

nátrium-jodid bevonatú ernyők az elektronok hatására látható fényt bocsátanak ki, így az elektronmikroszkópos

kép szabad szemmel is megfigyelhető. A nagy nagyítású transzmissziós elektronmikroszkóppal (High

Resolution Transmission ElectronMicroscope) a fémötvözetekben előforduló kisméretű kiválások, rácshibák, sőt

az atomsíkok is láthatóvá tehetők (104 [136]. ábra).

104.

ábra.

Éldiszlok

ációs

vonalak.

Átvilágít

ásos

elektron

Page 141: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

137 Created by XMLmind XSL-FO Converter.

mikroszk

óppal

készült

felvétel

(25 000x-

es

nagyítás)

A pásztázó elektronmikroszkóp (Scanning ElectronMicroscope, 105 [137]. ábra) 1965-ben jelent meg először

a kereskedelmi forgalomban. Az elektronágyúból kilépő elektronsugarat mágneses lencsékkel a próbatest

felületére, 5...50 nm átmérőjűre fókuszálják. Megfelelően vezérelt eltérítőtekercs segítségével az elektronsugár

mozgatható a tárgyon. A tárgy felületéből kilépő szekunder elektronokat vagy visszavert elektronokat, ill. a

próbaáramot mérik, majd a jelet felerősítve katódsugárcsőre vezetik. Így a katódsugárcső egyetlen pontjának

fényessége attól függ, hogy a hozzá tartozó tárgypont – ill. a gerjesztett igen kis térfogat – mennyi

szekunderelektront ill. visszavert elektront bocsátott ki. Ezekből a világosabb-sötétebb pontokból rajzolódik ki a

katódsugárcsövön a tárgy felületének képe.

105.

ábra. A

Page 142: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

138 Created by XMLmind XSL-FO Converter.

pásztázó

elketron

mikroszk

óp

(SEM)

elve

Megjegyezzük, ez esetben a képalkotás nem elektronoptikai elven történik, s így a felbontóképességet az

elektronnyaláb átmérője, valamint a próbatest belsejében lejátszódó elektronszóródás mértéke befolyásolja;

legnagyobb értéke 20 nm lehet.

A pásztázó elektronmikroszkóp a fémötvözet anyagából kilépő elektronok segítségével hozza létre a tárgy

felületének képét. Amikor a PE primer elektronnyalábbal bombázzuk a tárgyat, akkor az anyagba hatoló

elektronok körte alakú térfogatot gerjesztenek (106 [138]. ábra).

106.

ábra. A

próba

felületén

ek

gerjeszté

se primer

elektrono

kkal

A gerjesztés és a rugalmas-rugalmatlan ütközések hatására a következő jelenségek játszódnak le: gerjesztés

révén SE szekunder elektronok lépnek ki, a primer elektronok egy része visszaverődik, az elektronok más része a

Page 143: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

139 Created by XMLmind XSL-FO Converter.

próbatestben abszorbeálódik, az elektronok gerjesztésének hatására karakterisztikus röntgensugárzás is létrejön.

Ezen jelek mindegyike felhasználható képalkotásra. A szekunder elektronok 50 eV energiánál kisebb

energiájúak, és a próbatest 1...10 nm vastagságú rétegéből lépnek ki. Segítségükkel a felület domborzatára

jellemző, térhatású képet lehet létrehozni (107 [139]a ábra). A visszavert elektronok a próbatest 100...1000 nm

mély részben keletkeznek. Mennyiségük az elektron rugalmas szórásában szerepet játszó atom rendszámától

függ, így segítségükkel rendszámérzékeny kép jön létre (107 [139]b ábra).

107.

ábra.

Öntöttva

s

pásztázó

elektron

mikroszk

ópos

képe

(500x-os

nagyítás)

a)

szekunder

elektrono

kkal

alkotott

kép; b)

visszavert

elektrono

kkal

alkotott

kép

(Kovács

Árpád

felvétele)

A pásztázó (scanning) elektronmikroszkóp segítségével a különféle fémötvözetekből készült termékek,

tönkrement szerkezeti elemek felülete nagyon jól vizsgálható, a felvételekből következtetni lehet a töret, a

repedés jellegére, ill. a lejátszódó folyamatokra. A 108 [140]. ábrán kis zséntartalmú, ötvözetlen acél szívós

törete és egy szerszámacél rideg törete látható.

Page 144: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

140 Created by XMLmind XSL-FO Converter.

108.

ábra.

Töretfelü

letről

készült

pásztázó

elektron

mikroszk

ópos

felvétel

a)

ötvözetle

n acél

szívós

törete

(10000x-

es

nagyítás);

b)

szerszám

acél rideg

törete,

(500x-os

nagyítás)

(Kovács

Árpád

felvétele)

A 108 [140]a ábrán a szekunder elektronok jól láthatóvá teszik a különbözőképpen maródott, így más-más

felületi rajzolatot mutató grafitot (fekete), a ferritet (szürke) és a lemezes perlitet. A visszavert elektronok által

létrehozott képen (108 [140]b ábra) csak a kisebb rendszámú grafit (szén) és a nagyobb rendszámú fémes

alapanyag (vas) különböztethető meg.

A szekunder elektronok segítségével készült felvétel a szívós töretre jellemző, és a törést megelőzően

keletkezett gödröket, valamint az azok alján található MnS-zárványokat mutatja. A szintén szekunder elektronok

alkotta másik képen a síklapokkal határolt, hasadásos (kagylós) töretfelület látható.

6. 8.6. A kristályszerkezet vizsgálata röntgensugárral

Page 145: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

141 Created by XMLmind XSL-FO Converter.

A röntgensugarak tulajdonképpen elektromágneses hullámok pontosan olyanok, mint a rádióhullámok, a

hősugarak vagy a látható fény. A sokfajta elektromágneses hullám között a hullámhosszúság alapján tehetünk

különbséget (109 [141]. ábra). A röntgensugarak hullámhosszúsága a ... m-es tartományba esik,

ezzel szemben a látható fény hullámhosszúsága m (ibolya) és a (vörös) között van. Mint ahogy

Einstein igazolta, a frekvenciájú (ill. hullámhosszúságú) elektromágneses sugárzás energiája:

,

ahol a Planck-állandó; a fénysebesség. Az egyenlet értelmében minél nagyobb a röntgensugárzás

hullámhosszúsága, annál kisebb az energiája, és fordítva.

109.

ábra. Az

elektrom

ágneses

hullámok

osztályoz

ása

Page 146: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

142 Created by XMLmind XSL-FO Converter.

A röntgensugarakat röntgencsőben állítják elő. A röntgencső elektronforrásból (izzó katódból) és a vele

szemben elhelyezkedő antikatódból áll. Az elektródok légtelenített, üvegből készített csőbe vannak forrasztva

(110 [142]. ábra). A nagy hőmérsékleten izzó katódból kilépő elektronok a katód és az antikatód közé kapcsolt

10...40 kV gyorsítófeszültség hatására nagy energiával csapódnak az antikatódba. Az itt lévő atomokkal

kölcsönhatásba lépve energiájuk részben röntgensugárzássá alakul. A röntgencsőben keletkező röntgensugarakat

kis rendszámú elemekből – legtöbbször fém berilliumból – készült ablakon keresztül juttatják ki a

röntgencsőből, nehogy azok a cső falában elnyelődjenek. Mivel a gerjesztőelektronok energiájának nagyobb

része hővé alakul, ezért az antikatód jó hővezető képességű vízzel hűtött réztartón van.

110.

ábra. A

röntgenc

felépítése

A karakterisztikus röntgensugárzás keletkezésének mechanizmusát a 111 [142]. ábra szemlélteti. Mint

ismeretes, az elektronok különböző energiájú héjakon helyezkednek el az atommag körül. A héjakat belülről

kezdve K-, L-, M-héjnak nevezzük. Amikor a nagy energiájú elektron kiüt egy elektront az antikatód valamelyik

héjáról, akkor az itt keletkező hiányt egy külső héjról az alsó héjra ugró elektron pótolja. Ebben az esetben az

elektron kezdeti és végső állapota közötti energiakülönbség röntgensugárzás formájában távozik. A keletkező

röntgensugárzás több hullámhosszúságú vonalsorozatból áll, amely minden elemre nézve hasonló felépítésű,

hullámhossza azonban az anód anyagára jellemző. Egy-egy elem legrövidebb hullámhosszúságú sorozatát K-

sorozatnak nevezzük, a K-sorozat is két vonalcsoportból áll ( , ). A következő, nagyobb hullámhosszúságú

sorozat az L-sorozat, ahol a különböző átmeneteket szintén görög betűkkel jelöljük, így megkülönböztetünk -,

-, -sorozatot.

111.

ábra. A

karakteri

sztikus

röntgens

ugárzás

keletkezé

sének

mechaniz

musa

Page 147: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

143 Created by XMLmind XSL-FO Converter.

A karakterisztikus röntgensugárzáson kívül háttér-röntgensugárzás – más néven fehér vagy fékezési

röntgenspektrum – is keletkezik. Fékezési röntgensugárzás akkor jön létre, amikor a gerjesztőelektronok

kinetikus energiája az atommag és az elektronok közötti térben lecsökken, és ez az energiakülönbség

röntgenfoton formájában távozik. A fehér röntgenspektrum alakja független az antikatód anyagától. Minimális

hullámhosszúsága, vagyis maximális energiája megegyezik a gerjesztőelektronok energiájával. Ez abban az

esetben fordul elő, ha a gerjesztőelektron teljes energiáját elveszíti. Ez a minimlis hullámhosszúság:

,

vagyis minél nagyobb feszültséggel gyorsítjuk az elektronokat, annál kisebb a keletkező fékezési

röntgensugárzás hullámhosszának minimuma (112 [143]. ábra).

112.

ábra. A

karakteri

sztikus és

a fehér

röntgens

ugárzás

Page 148: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

144 Created by XMLmind XSL-FO Converter.

Amennyiben a röntgensugarakkal rácssíktávolságú kristályos anyagot vizsgálunk (113 [144]. ábra), a

röntgensugarak a rácsot alkotó atomokon elhajolnak, ugyanúgy, mint a fénysugarak az optikai rácson. Az

atomok – mint szórócentrumok – az eredeti röntgensugárzással megegyező energiájú (ill. hullámhosszúságú)

sugarakat a tér minden irányába eltérítik. Ugyanez a jelenség játszódik le a rácssíktávolságnyival beljebb

elhelyezkedő atomokon is. A próbatest felületét elhagyva a különböző atomsíkokon szóródott röntgensugarak

között útkülönbség keletkezik. Ha ez az útkülönbség a hullámhossz egész számú többszöröse, interferencia

jön létre, és a szóródott röntgensugarak erősítik egymást, más szóval létrejön a diffrakció. Az idősb és ifjabb

William Bragg által levezetett összefüggés szerint: .

113.

ábra. A

röntgens

ugarak

interfere

nciája a

kristályr

ácson

Page 149: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

145 Created by XMLmind XSL-FO Converter.

Az összefüggés azt mutatja, hogy ha hullámhosszúságú röntgensugárzással vizsgálunk rácssíktávolságú

anyagot, a Bragg-egyenletet kiegyenlítő szögnél jön létre az interferencia, és a szórt röntgensugárzásnak

maximális lesz az intenzitása. Ezen összefüggés felhasználásával lehetőség nyílik a kristályos szerkezet

vizsgálatára, a síktávolság vagy éppen a rácsparaméter mérésére, ill. a rács típusának azonosítására.

A legegyszerűbben kivitelezhető mérési módszer a Debye–Scherrer-eljárás (114 [145]. ábra). A vizsgálandó

próbatestből készült port vékony falú üvegcsőbe töltjük, amelyet állandó hullámhosszúságú röntgensugárzás

hatásának teszünk ki. A sugárzás a próbatest nagyszámú kristálya között olyanokat is talál, amelyek kielégítik a

Bragg-egyenletet. Ily módon nyílásszögű diffrakciós kúpok jönnek létre. Ez azt jelenti, hogy a kúpok palástja

mentén a röntgensugárzás intenzitása helyi maximumot mutat. A diffrakciós szög kimérésére filmet

használhatunk, amellyel átmérőjű henger alakban vesszük körbe a próbatestet. Ahol a diffrakciós kúpok

mentén az intenzív röntgensugárzás a filmet eléri, végbemegy a jól ismert ezüst-bromidos reakció, és a film

megfeketedik. Előhívás után a filmet síkba terítjük, és megmérjük a diffrakciós gyűrűk átmérőjét. Ekkor

,

Az egyenlet átrendezésével:

.

114.

ábra. A

Debye–

Scherrer

-eljárás

elve

Page 150: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

146 Created by XMLmind XSL-FO Converter.

Egyszerűbben meghatározható a diffrakciós szög, ha a tört értéke egyszerű egész szám. Éppen ezért

a Debye–Scherrer-kamrák geometriai adatait úgy választjuk, hogy a kamrában készülő felvételen 1 mm

gyűrűátmérő -nak feleljen meg. Ez úgy valósulhat meg, hogy mm.

A diffrakciós gyűrűk átmérőjéből a diffrakció szögét meghatározva, és a Bragg-egyenletbe helyettesítve,

meghatározható a rácssíkok távolsága. Ha ismerjük a rácssíkok távolságát, az adatok további feldolgozásával

következtethetünk a kristályos anyag rácstípusára, vagy kiszámíthatjuk a rácsparaméterét is.

A röntgendiffrakciós felvételek mélyebb elemzése révén megállapítható a fémötvözetek

diszlokációsűrűség, az ötvözés hatására bekövetkező rácsparaméter-változás, a mechanikai

feszültséggel együtt járó rácsparaméter-torzulás, továbbá következtetni lehet a

rácssíkok elhelyezkedésének térbeli egyenlőtlenségére, vagyis az anizotropiára is. A

röntgendiffrakciós felvételek segítségével lehetővé válik a kristályos anyagok egyes

fázisainak azonosítása, sőt a kristályos fázisok mennyiségének becslése. A korszerű,

számítógépes adatfeldoglozással felszerelt röntgendifrakciós laboratóriumok ma már nem

nélkülözhetők a minőség-ellenőrzéssel és anyagminősítéssel foglalkozó intézetekben.

7. 8.7. Mikroszkópos mérések

A mikroszkópos mérések célja, hogy a fémötvözeteket alkotó szövetelemek és fázisok geometriai jellemzőit (a

fázisok által elfoglalt területet, a fázisok lineáris méretét, az alapanyag szemcsenagyságát stb.) meghatározzuk.

Az anyagok minősítésével foglalkozó szabványok ma már sok esetben elő is írják a szövetszerkezet számszerű

értékelését.

Az ötvözetlen szerkezeti acélok ferrit-perlit aránya, az edzett acélok kiindulási

ausztenit-szemcsenagysága, a kis széntartalmú acélokban a ferrit szemcsenagysága és

alakja, az ötvözetlen alumínium szemcsenagysága, a szilumin eutektikumának finomsága

mind jelentősen befolyásolja a belőlük készült termékek tulajdonságait.

A térfogatarány meghatározása. A fázisok térfogataránya igen fontos szövetszerkezeti jellemző.

Értelmezése a következő: Vegyünk szemügyre egy méretű kockát (115 [147]. ábra), amelynek belsejében

térfogatú fázis található. Ekkor a térfogatarány:

.

Mivel a fémötvözetek nem átlátszók, értékét véletlenszerű síkmetszeten mérhetjük meg.

Page 151: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

147 Created by XMLmind XSL-FO Converter.

115.

ábra.

Kocka

alakú

térfogatr

ész,

benne

térfogatú

fázis és

magassá

gban lévő

sík

Az egyik lehetséges mód a kérdéses -fázis által elfoglalt terület meghatározása, a másik az -fázisba eső

vonalhosszúságok mérése, és végül a harmadik az -fázisba eső pontok megszámolása. A térfogatarány egyaránt

számítható a területarány, a vonalarány vagy a pontarány alapján. Ezek a mennyiségek egymással teljesen

egyenértékűek.

Page 152: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

148 Created by XMLmind XSL-FO Converter.

Ezt mutatja a Rosiwal által készített rajz (116 [148]. ábra) is, ahol véletlenszerűen elrendezett négyzetek (mint a

kérdéses fázis �részecskéi”) láthatók, amelyek által elfoglalt területarány, vonalarány és pontarány egyaránt

0,2, azaz 20%.

116.

ábra. A

területar

ány, a

vonalará

ny és a

pontarán

y

egyenért

ékűsége

Metsszük el az méretű kockát az x-y síkkal párhuzamosan, s a távolságot válasszuk ki véletlenszerűen,

valahol a 0 és az között. Ekkor az adott síkból a második fázis által kimetszett összes terület:

.

Ennek a területnek az nagysága a metszősík helyzetével változik, ezért meg kell határozni a teljes

térfogatra jellemző átlagértéket. Végül, az átlagos területarányt az -fázis átlagos területének és a vizsgált

keresztmetszetnek a hányadosa adja, amely a térfogataránnyal azonos:

.

Rosiwal német geológus írt először arról, hogy a térfogatarányt egyszerű vonalarány-méréssel is meg lehet

határozni. Magyarországon a módszert Verő József honosította meg. A vizsgálandó síkmetszet mikroszkópos

képére (esetleg fényképére) hosszúságú szakaszokat helyezünk. Ezután megmérjük (pl. milliméterpapír

segítségével vagy vonalzóval), hogy a kérdéses -fázis az összesen hosszúságú szakaszokból milyen

vonal hosszóságot metsz ki. Ekkor az átlagos vonalarány:

.

A mikroszkópos mérések között a pontelemzés (pontszámlálás) a legegyszerűbb és a legszellemesebb műveletek

egyike. A méréshez rendszeres ponthálóra van szükségünk. A pontháló elemei lehetnek párhuzamos vonalakból

álló rácsos alakzatok metszéspontjai vagy rövid vonalszakaszok végpontja (a gyakrabban használt rendszeres

Page 153: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

149 Created by XMLmind XSL-FO Converter.

ponthálókat l. a 117 [149]. ábrán). Pontszámláláskor a vizsgálandó területbe (például az -fázisba) eső pontok

mennyiségét határozzuk meg, majd a ponthálót véletlenszerűen elmozdítjuk egy másik területre. Az -fázisba

eső pontok számlálását mindaddig folytatjuk, amíg értékelhető mennyiségű mérést nem végeztünk. A

szemcsehatárra eső pontokat csak értékkel vesszük figyelembe. Ha az -fázis belsejébe eső pontok száma ,

a mérés során felhasznált összes rácspont száma pedig , a átlagos pontarány:

.

117.

ábra. A

leggyakr

abban

használt

rendszer

es vonal-

és

pontháló

k

Page 154: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

150 Created by XMLmind XSL-FO Converter.

A hosszúságú vonalszakaszok a vonalarány mérésre, a szakaszok végpontjai pedig a pontarány

meghatározására alkalmasak. Az ábrákon feltüntettük a számításhoz feltétlenül szükséges összes

vonalhosszúságot, ill. az összes pontszámot. A mérés során egyszerű hosszméréssel határozzuk meg, hogy a

kérdéses fázis mennyit foglal el ebből az . A pontszámlálás alkalmával az adott fázisba eső pontokat kell

megszámolni.

118.

ábra.

Egyfázis

ú (

) anyag

síkmetsz

eti képe

A szemcsenagyság mérése. A szemcsenagyság többféle adattal jellemezhető, így például az egységnyi

területre esőszemcseszámmal. Az egyfázisú anyag síkmetszeti képén (118 [150]. ábra) az mérésére kétféle

módszer ismeretes:

Az első esetben a mikroszkóp homályos üvegére kivetített képen megszámoljuk azokat a szemcséket, amelyek

teljes egészében a kiválasztott terület – rendszerint egy átmérőjű kör – belsejében találhatók ( ), és azokat a

Page 155: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

151 Created by XMLmind XSL-FO Converter.

szemcséket is, amelyeket a vizsgált terület kontúrja elmetsz ( ). Így az összes szemcse száma

. Egy másik módszer szerint összeszámoljuk a szemcsék sarkait, a hármas (vagy négyes)

csomópontokat adott területen belül, ekkor . A vizsgált terület nagysága

,

ahol az alkalmazott nagyítás. Természetesen mindkét esetben az egységnyi területre eső a szemcseszám:

.

A szemcsék átlagos területe:

.

A D átlagos szemcseátmérő (négyzet alapú szemcsékre):

mm.

A mikroszkópos mérések számítógép segítségével is elvégezhetők. Ekkor a fény- vagy

elektronmikroszkópos képet videokamera és képdigitalizáló kártya segítségével a

számítógép számára is ,,érthető” digitális adatokká alakítjuk. Ebben az esetben a kép

pontokból áll, pl. 512 sorból és 512 oszlopból álló adathalmaz lesz. A mikroszkópos

képen látható pontok szürkeségétől (a fekete/fehér skálán elfoglalt helyzetétől) függ a

képpont számszerű értéke. Pl. 8 bites felbontás esetén a fekete színnek 0, míg a

fehérnek felel meg. Ekkor a számítógép 256 szürke árnyalatot tud

megkülönböztetni. Ezután matematikai módszerekkel a képek célszerűen átalakíthatók, s a

lényeges és lényegtelen információk elkülöníthetők, a csiszolatkészítés és maratás

tökéletlenségei ,,kijavíthatók”. Megfelelő programok segítségével az egyes

képpontcsoportok (a mikroszkópi képen: fázisok) geometriai adatait (területüket,

kerületüket, méretüket, alakjukat) könnyen meghatározhatjuk. (További információk az

Interneten a http://www.uni-miskolc.hu/image_analysis címen érhetők el.)

8. Kérdések, feladatok

1. Mi a szerkezetvizsgálat gyakorlati jelentősége? Milyen szerkezetvizsgáló módszereket és eszközöket ismer?

2. Hogyan történik a próbavétel, mire kell ügyelni a vizsgálatra szánt minta kimunkálásakor?

3. Milyen módon lehet a próbatesteket beágyazni?

4. Hogyan mérjük az 500-as csiszolópapír szemcsefinomságát?

5. Mire kell figyelni a csiszolás alkalmával? Mi a nedvescsiszolás?

6. Milyen anyagokkal és eszközökkel végezzük a polírozást?

7. Mi a maratás célja, és milyen marószereket ismer?

8. Rajzolja fel a fénymikroszkópos kép keletkezését! Mit nevezünk objektívnek, ill. okulárnak?

9. Hogyan lehet meghatározni a tárgylencse numerikus apertúráját és felbontóképességét?

10. Hogyan lehet ,,változtatni” az elektronok hullámhosszúságát?

11. Rajzolja fel az elektronágyút és a mágneses lencsét! Milyen fizikai jelenségek szolgálnak működésük

alapjául?

12. Rajzolja fel az átvilágításos elektronmikroszkópot!

13. Mutassa be a pásztázó elektronmikroszkóp működését!

Page 156: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A FÉMÖTVÖZETEK

SZERKEZETÉNEK VIZSGÁLATA

152 Created by XMLmind XSL-FO Converter.

14. Hogyan épül fel a röntgencső? Mitől függ a karakterisztikus röntgensugárzás hullámhosszúsága?

15. Mire használható a röntgensugárzás interferenciájának nevezett fizikai jelenség? Milyen feltételek esetén

játszódik le?

16. Mit értünk mikroszkópos méréseken?

17. Hogyan lehet meghatározni a fázisok térfogatarányát? Mi a pontelemzés lényege?

18. Milyen módon lehet megmérni a fémötvözetek egységnyi területre eső szemcseszámát?

Page 157: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

153 Created by XMLmind XSL-FO Converter.

9. fejezet - ANYAGVIZSGÁLAT

1. 9.1. Alapfogalmak

A gyakorlati felhasználás során a szerkezeti anyagokat valamilyen mechanikai igénybevételnek (nyomás, húzás,

hajlítás, csavarás) tesszük ki. Mivel az anyagokat érő igénybevételek sokfélék, így a velük szembeni ellenálló

képességet biztosító mechanikai tulajdonságok is változatosak. Az igénybevételeket aszerint is csoportosítjuk,

hogy mennyi ideig hatnak az anyagra. A mechanikai igénybevétel hatására az anyagban alakváltozás következik

be, amelynek mérőszáma a próbatest valamilyen méretének fajlagos megváltozása (nyúlása):

,

ahol a próbatest eredeti mérete, mm; a próbatest megváltozott mérete, mm.

Az alakváltozás sebessége az egységnyi idő alatt bekövetkező alakváltozást jelenti, mértékegysége; 1/s. Azokat

a vizsgálatokat, amelyek során azt tanulmányozzuk, hogy néhány óra, esetleg több nap, netalán több száz nap

alatt milyen alakváltozás megy végbe az anyagban, tartóssági (kúszásállósági) vizsgálatoknak nevezzük. Ekkor

az alakváltozás sebessége igen kicsi: 1% maradó alakváltozáshoz ... s idő szükséges.

Ha az anyag igénybevételét (közepes sebességgel) folyamatosan növeljük egészen a tönkremenetelig, akkor

statikus vizsgálatot végzünk. Ebben az esetben 1% alakváltozás 1... 10 s alatt megy végbe. Amennyiben a

szerkezeti anyagot ütésszerű dinamikus hatásnak tesszük ki, akkor dinamikus vizsgálatokról beszélünk. Ekkor

az anyag 1%-os alakváltozásához ... s kell.

2. 9.2. Statikus mechanikai vizsgálatok

A mechanikai vizsgálatokat érdemes statikus módon kezdeni, mert az ilyen vizsgálat viszonylag rövid idő alatt

elvégezhető, és az anyag legfontosabb tulajdonságait jellemezhetjük vele.

A szakítókísérlet során a hengeres vagy a hasáb alakú próbatestet húzó igénybevételnek vetjük alá. A kísérletet

az alakváltozás teljes kimerüléséig folytatjuk, vagyis mindaddig, amíg az anyag el nem szakad. A vizsgálattal a

külső mechanikai igénybevétellel szembeni ellenálló képességet és az alakíthatóságot tudjuk jellemezni. Sajnos

a kísérlet eredménye nem csak a vizsgált anyag tulajdonságaitól, hanem a kísérlet körülményeitől is függ,

nevezetesen:

– a próbatest alakjától, méretétől és felületi egyenetlenségeitől;

– a befogás módjától;

– a vizsgálóberendezés pontosságától;

– a kísérlet elvégzésének módjától, vagyis a terhelés növekedésének egyenletességétől;

– legfőképpen az alakváltozás sebességétől.

A szabványos szakítópróbatestnek három fő része van: a kísérleti hengeres vagy hasáb alakú rész, a befogófejek,

valamint a két rész közötti átmenet. A próbatest fő része, ahol a kísérleti jellemzőket meghatározzuk, a hengeres

vagy hasáb alakú vizsgálati hossz. Keresztmetszetének nagysága szerint megkülönböztetünk normális

próbatestet 314 keresztmetszetű szelvénnyel és ettől eltérő keresztszelvénnyel arányos próbatestet. A

gyakorlatban használt próbatestek alakját a 119 [153]. ábra szemlélteti, méreteit pedig a 7 [156]. táblázat

foglalja össze.

119.

ábra. A

szabvány

os

szakítópr

Page 158: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

154 Created by XMLmind XSL-FO Converter.

óbatestek

alakja

a fej

hossza;

a

szakítópr

óbatest

teljes

hosszúság

a; a

vizsgálati

hosszúság

;

az

eredeti

keresztme

tszet;

az eredeti

átmérő;

az

eredeti

jeltávolsá

g

Page 159: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

155 Created by XMLmind XSL-FO Converter.

Nagyon fontos a szakítópróbatestek megbízható befogása. A befogófejek alakja a kísérleti részhez, ill. az

alkalmazott szakítógéphez igazodik. Ékes befogófejeket főleg hasáb alakú próbatestekhez és tömeges kísérletek

esetén használunk, mert olcsók, gyorsak és a szakítópróbatest fejrészét nem kell megmunkálni. Hátrányuk

viszont, hogy ékes befogás esetén a próbatest megcsúszhat, s ez megzavarja a kísérletet.

Page 160: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

156 Created by XMLmind XSL-FO Converter.

7.

táblázat.

A

szakítópr

óbatestek

méretei

A szakítógépbe befogott próbatest terhelését fokozatosan növeljük a próbatest elszakításáig. A szakítókísérlet

közben a terhelőerőt a próbatest eredeti keresztmetszetének 1 -re vonatkoztatjuk, s az így kapott értéket

konvencionális feszültségnek nevezzük:

.

A terhelés növekedése közben a próbatest alakja megváltozik, mérete megnő, vagyis nyúlás következik be. A

megnyúlást fajlagos értékekben fejezzük ki, így az relatív nyúlás:

,

ahol a szakítópróbatest eredeti jeltávolsága; a szakítópróbatest megnövekedett jeltávolsága.

Kifejezhetjük a megnyúlást százalékos értékekben is. A megnyúlás a szakítókísérlet elején rugalmas, majd a

későbbiekben maradó lesz. A rugalmas megnyúlás szakaszában érvényes az előzőkben már ismertetett Hooke-

törvény. A lineáris arányossági tényező az anyagra jellemző rugalmassági modulus. A maradó alakváltozás

során már nincs a Hooke-törvényhez hasonló összefüggés. Amennyiben a próbatest relatív megnyúlását a

mechanikai feszültség függvényében ábrázoljuk, a szakítódiagramhoz jutunk. A szakítódiagram alakja a

szerkezeti anyag típusától és tulajdonságaitól függ (120 [156]. ábra).

120.

ábra.

Különbö

ötvözetek

szakítódi

agramjai

Page 161: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

157 Created by XMLmind XSL-FO Converter.

Minden szakítódiagram a rugalmas alakváltozás egyenes vonalával kezdődik. A rideg anyagok (öntöttvas,

edzett acél, üveg) már a rugalmas alakváltozás közben elszakadnak, így a rugalmas alakváltozás az egyenes

szakasz végén véget ér (120 [156]a ábra). Az ilyen próbatesteken a szakítás után nincs maradó alakváltozás. Az

alumíniumötvözetek, valamint néhány sárgaréz fajta rugalmas nyúlása az arányossági határ után lassan laposodó

görbébe megy át, megkezdődik a maradó alakváltozás. A szakadás a görbe még emelkedő részén következik be

(120 [156]b ábra). A szívós fémek (réz, alumínium, nikkel, ólom) és néhány ötvözetük másképpen viselkedik

(120 [156]c ábra). Itt is megtalálható a rugalmas alakváltozás egyenes vonala, amely a maradó nyúlás laposodó

görbéjébe vált át, majd a maradó alakváltozás közben a terhelés eléri a maximumot, a próbatest pedig még nem

szakad el. A maximális erő elérését követően a terhelés csökkenni kezd, és a szakadás csak ezután következik

be. A maximális terhelés utáni feszültségcsökkenés a keresztmetszet hirtelen csökkenésének, az ún.

kontrakciónak az eredménye. Ekkor a próbatest alakváltozása nem egyenletes, nem terjed ki a próbatest teljes

hosszára, csak a kontrahálódó térfogatban folytatódik. Ebből következik, hogy a kontrakciót megelőző

szakaszban a maradó alakváltozás egyenletes, a próbatest teljes hosszúságában a keresztmetszet csökkenése

azonos. Hidegen erősen alakított szívós fémek (hidegen hengerelt alumínium, hidegen húzott rézhuzal) a

szakítódiagramján (120 [156]d ábra) az arányossági határt követően gyakran azonnal megkezdődik a terhelőerő

csökkenése, ezzel a kontrakció. Az ilyen anyagoknak az egyenletes nyúlása igen csekély, esetleg nulla. A lágy

acélok szakítódiagramjának jellegzetes alakja a 120 [156]e ábra (görbéjén látható jellegzetessége, hogy a

rugalmas alakváltozás határának közelében a terhelőerő hirtelen lecsökken, és a maradó alakváltozáshoz már

kisebb feszültség is elegendő. Ez a kisebb feszültség néhány tized, esetleg néhány milliméternyi alakváltozást

okoz. Ezt a jelenséget nevezzük folyásnak. A folyás befejezésével a terhelőerő megint nőni kezd, eléri a

maximumot, majd a kontrakciót követően csökken, s végül a próbatest elszakad.

A szakítókísérlet során, ill. azt befejeződően több fontos jellemzőt határozhatunk meg. A szakítópróba

geometriai adatai a következők:

a vizsgálati szakasz eredeti keresztmetszete, ;

a próbatest legkisebb keresztmetszete szakadás után, ;

a hengeres próbatest vizsgálati szakaszának eredeti átmérője, mm;

a hasáb alakú próbatest vizsgálati szakaszának vastagsága, mm;

a hasáb alakú próbatest vizsgálati szakaszának szélessége, mm;

a próbatest hosszúsága a fejrésszel együtt, mm;

a próbatest hengeres vagy hasáb alakú részének hossza az átmeneti részek nélkül, mm;

a próbatest vizsgálati hosszán kijelölt eredeti jeltávolság, mm;

Page 162: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

158 Created by XMLmind XSL-FO Converter.

a jeltávolság a szakadás után, mm.

A szakítókísérlettel meghatározható anyagjellemzők:

a szakítószilárdság, amely a legnagyobb terhelőerő és az eredeti keresztmetszet hányadosa, ;

a felső folyáshatár, abból a terhelőerőből számított feszültség, amelynél a maradó alakváltozás megindul,

;

alsó folyáshatár, a folyás közben mért legkisebb terhelőerőből számított feszültség, ;

a szakadáskor fellépő feszültség, amely a szakadáskor mért terhelőerő és az eredeti keresztmetszet

hányadosa, ;

a terhelt állapotban mért egyezményes folyáshatár, abból a terhelésből számított feszültség, amelynek

hatására a próbatest eredeti jeltávolságának 0,2%-os maradó megnyúlása bekövetkezik.

A meghatározás során a szakítódiagram vízszintes tengelyén kijelöljük a 0,2%-os

alakváltozáshoz tartozó pontot, majd párhuzamost húzunk a szakítógörbe egyenes

szakaszával. Az egyenes a szakítódiagramból kimetszi a megfelelő terhelőerőt, amelyet az

eredeti keresztmetszettel osztva megkapjuk az egyezményes folyáshatárt.

a teljes nyúlás (szakadási nyúlás) százalékban adja meg, hogy az hosszúságú eredeti jeltávolság a

szakítókísérlet végére milyen értékben nyúlt meg, %;

a kontrakció, a szakítókísérlet végére bekövetkező keresztmetszet-csökkenés, %.

Keménységmérés. Keménységen a szerkezeti anyagoknak azt a tulajdonságát értjük, hogy egy keményebb test

benyomódásával szemben milyen ellenállást képesek kifejteni. A keménység jellemzésére többféle keménységi

mérőszámot használunk. Meghatározásuk közös elve, hogy valamilyen kemény anyagból (edzett acél, gyémánt)

készített golyót, kúpot vagy gúlát viszonylag kis sebességgel belenyomnak a vizsgálandó fémbe, majd vizsgálják

a benyomódás hatására bekövetkező maradó alakváltozást. A legelterjedtebb keménységmérési módszerek a

Brinell-, a Rockwell- és Vickers-féle keménységmérés.

Brinell-keménységmérés esetén átmérőjű golyót terhelőerővel nyomnak a vizsgálandó anyagon előkészített

sík, polírozott felületbe (121 [158]. ábra). Az alakváltozás során az anyagban gömbsüveg alakú bemélyedés jön

létre, amelyet átmérőjű kör határol. A Brinell-keménység mérőszáma a terhelőerő és a gömbsüveg felszínének

a hányadosa:

,

ahol a terhelőerő, N; a gömb átmérője, mm.

121.

ábra. A

Brinell-

keménys

égmérés

elve

Page 163: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

159 Created by XMLmind XSL-FO Converter.

Mivel a mérés eredménye függ a vizsgálati körülményektől, – elsősorban az alkalmazott golyóátmérőtől és a

terhelőerő nagyságától – ezért ezeket szabvány rögzíti. Az edzett golyó átmérőjét a próbatest vastagságának

függvényében választjuk. Rendszerint 2,5, ill. 5 és 10 mm átmérőjű golyókat használnak. A terhelőerő

nagyságát úgy választják meg, hogy a benyomódás d átmérője 0,2D és 0,7D közé essen. Ezeket az előírásokat

betartva a terheléstől kevésbé függő mérőszámot kapunk.

A Vickers-keménységmérést ugyanúgy végezzük, mint a Brinellt, de ebben az esetben csúcsszögű, négyzet

alapú gyémántgúlát nyomunk a próbatestbe (122 [159]. ábra). A Vickers-keménység mérőszáma úgy adódik,

hogy a terhelőerőt elosztjuk a gúla alakú lenyomat felületével. A gyakorlatban a Vickers-nyom átlóját mérjük,

ebből a felület kiszámítható. Ha a terhelőerő , N, a lenyomat átlójának átlaga pedig , mm, akkor a

keménység:

.

122.

ábra. A

Vickers-

keménys

égmérés

Page 164: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

160 Created by XMLmind XSL-FO Converter.

elve

A Vickers-nyom a Brinell-nyomnál sokkal kisebb beavatkozást jelent a felületbe, ez a kész gyártmányok

gyakorlatilag roncsolás nélküli minősítését teszi lehetővé. Az ilyen jellegű keménységmérés hátránya az, hogy

hosszadalmas.

A Rockwell-keménységmérés alapvetően különbözik az előzőktől, mert ebben az esetben a keménységet a

benyomódás mélységével jellemezzük (123 [160]. ábra). Az alakváltozás létrehozására vagy edzett acélgolyót,

vagy csúcsszögű gyémántkúpot használunk. A golyóval mért keménységi mérőszámot RockwellB (HRB),

a kúppal mértet RockwellC (HRC) keménységnek nevezzük.

123.

ábra. A

Rockwell

-

keménys

égmérés

elve

Page 165: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

161 Created by XMLmind XSL-FO Converter.

A benyomódás mélységét nem a próbatest felszínétől számítjuk, hanem egy kisebb terhelés, az ún. előterhelés

által létesített benyomódás felszínétől mérjük. Ez az előterhelés tulajdonképpen a kúpnak a próba anyagával

való pontos érintkezését biztosítja.

A fő terhelés hatására létrejövő maradó benyomódás mélységét 0,002 mm egységekben fejezzük ki. A

legkeményebb anyag keménységét 130-nak, ill. 100-nak választjuk, s ekkor a keménységi mérőszámok értéke a

következő:

, .

A Rockwell-keménységmérés viszonylag egyszerűen elvégezhető, s könnyen automatizálható. A mérés

legnagyobb előnye a gyorsaság. Kevésbé megbízható, mint a Vickers-keménységmérés, ennek ellenére a

gyakorlatban sok esetben használjuk.

3. 9.3. Dinamikus szilárdsági vizsgálatok

A szerkezeti anyagok lökésszerű mechanikai igénybevétellel szembeni viselkedésére a statikus mechanikai

vizsgálatokból nem lehet következtetni, ezért különféle dinamikai vizsgálati módszerek alakultak ki. A

dinamikai eljárások során a próbatest egyetlen, erős ütéssel eltörik, és a töréshez alkalmazott fajlagos

ütésenergiát határozzák meg. Aszerint, hogy az ütés a próbatestet húzásra, nyomásra, hajlításra vagy csavarásra

veszi-e igénybe, dinamikus szakító-, duzzasztó, hajlító- és csavarókísérleteket különböztetünk meg. Legnagyobb

gyakorlati jelentősége a bemetszett próbatesttel végzett hajlító-ütő vizsgálatnak van.

A Charpy-kísérlethez 10x10 mm keresztmetszetű, 55 mm hosszúságú hasáb alakú próbatestet használunk,

amelynek egyik oldalán 2, vagy 5 mm mélységű, vagy 0,25 mm sugárral lekerekített bemetszés van (124 [161].

ábra).

124.

ábra. A

Charpy-

kísérleth

ez

használt

próbatest

Page 166: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

162 Created by XMLmind XSL-FO Converter.

A próbatestet ütőművel törjük el (125 [162]. ábra). Az állványon csapágyazott inga felemelt állapotában

rögzíthető. Ha ezt a rögzítést feloldjuk, az inga leesik, miközben helyzeti energiája mozgási energiává alakul.

Az energiának egy része a próbatest eltörésére, pontosabban a törés előtti maradó alakváltozásra fordítódik. A

visszamaradó rész az ingát túllendíti függőlegesen, annál magasabbra, minél kevesebb energia fordítódott az

alakváltozásra. A túllendülés szögéből, az inga tömegéből és a indulási magasságából számítható a

törési folyamat során elhasznált energia. Ezt az energiát elosztva a próba eltört keresztmetszetével, a fajlagos

ütőmunkát kapjuk. Az ütőgépeken a próbatest törése során elfogyasztott energia megfelelő skáláról közvetlenül

leolvasható. A Charpy-féle ingák általában 100 vagy 300 J mérésére készülnek. Az ütés végsebessége is

szabványos: 5...7 m/s. Ennek igen nagy jelentősége van, hiszen ha különbözik az ütési sebesség, ez eltérő

alakváltozási sebességet jelent, s ennek következtében a fajlagos ütőmunka is különbözni fog.

125.

ábra. A

Charpy-

féle inga

Page 167: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

163 Created by XMLmind XSL-FO Converter.

Az ütőmunka nagyságát a próbatest kialakítása is befolyásolja, elsősorban a bemetszés élessége, mérete és

alakja. Ezért az ütőmunka jelölésében a bemetszés alakját is feltüntetjük. Megkülönböztetjük a KU értékét az U

alakú, ill. KV értékét a V alakú bemetszésű próbatestek esetén.

A Charphy-féle ütőmunka-vizsgálat csak meghatározott alakú (bemetszésű) és adott ütőgépen elvégzett

kísérletre érvényes mérőszámot ad. A nem azonos körülmények között végzett vizsgálati eredmények egymással

nem hasonlíthatók össze, és egymásba nem számíthatók át! A módszer egyszerűsége miatt igen elterjedt.

Ez a vizsgálat arra is alkalmas, hogy az anyag ridegtörési hajlamát a hőmérséklet függvényében jellemezze,

hiszen a szerkezeti anyagok ütőmunkája nagymértékben függ a hőmérséklettől. Szívós állapotban a fajlagos

ütőmunka nagyobb, mint a rideg állapotban, amikor is sok esetben csaknem nulla. A kettő között inflexiós görbe

teremt kapcsolatot. Ennek az inflexiós pontját tekintjük átmeneti hőmérsékletnek, mert ennél kisebb

hőmérsékleten az anyag ridegen viselkedik: viszonylag kisebb energiájú ütés hatására bekövetkezik a nem

kívánt törés. A gyakorlatban az inflexiós pont meghatározása nehézségeket okoz, éppen ezért az általánosan

elfogadott 40 értéket tekintjük a szívós és a rideg állapot közötti átmenetnek. Vagyis az a hőmérséklet,

amelyen a fajlagos ütőmunka 40 alá csökken, a szívós-rideg állapot közötti átmeneti hőmérséklet.

4. 9.4. Ismétlődő terheléssel végzett vizsgálatok

Page 168: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

164 Created by XMLmind XSL-FO Converter.

Vasúti üzemben tapasztalták, először, hogy a vasúti kocsik tengelyei az üzembe helyezéstől számított 12 év

múlva rendszeresen eltörnek. A jelenség oka az anyag kifáradása. Amióta ezt a jelenséget megismerték, a

váltakozó igénybevételnek kitett alkatrészeket és szerkezeteket kifáradásra is méretezik. A Wöhler-

görbét(kifáradási görbét) a gyakorlatban úgy veszik fel, hogy különböző feszültségi szinteken meghatározzák a

törést okozó igénybevételi számokat. A vizsgálatot több feszültségszinten is elvégzik, és az összetartozó

feszültség-igénybevételi számpárokat diagramban ábrázolják. Az így kapott görbe aszimptotikus, tehát van

olyan feszültséghatár, amelynél kisebb feszültség végtelen sok igénybevételi szám esetén sem okoz törést. Ez az

elméleti kifáradási határ.

Innen kezdve a görbe vízszintesnek tekinthető (126 [164]. ábra).

126.

ábra.

Wöhler-

görbe

N az

igénybev

ételek

száma

Kifáradási határra kell méretezni minden olyan üzemi berendezést, amelynek üzem közbeni igénybevétele

meghaladja a értéket. Vannak olyan esetek, amikor nem kell végtelen számú igénybevételre tervezni,

ilyenkor gazdaságosabb csökkenteni a szerkezet méreteit, és bizonyos idő elteltével új alkatrészt beépíteni,

mielőtt a törés bekövetkezne. Ha a feszültségszinten igénybevételi szám okozna törést a Wöhler-görbe

szerint, akkor ennél kevesebb számú igénybevételt a szerkezet elvisel, annak ellenére, hogy a kifáradási határnál

Page 169: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

165 Created by XMLmind XSL-FO Converter.

nagyobb feszültségszinten üzemel. igénybevétel után a szerkezetet ki kell vonni az üzemeltetésből. Ilyen

esetben élettartamra (szilárdságra) való méretezésről beszélünk (l. a 126 [164]. ábrát).

A Wöhler-görbe meghatározhatja statisztikus módszerrel, ez esetben adott feszültségszinten nagyszámú

próbapálcát eltörve meg tudjuk adni a törés valószínűségét. Másik módszer szerint egyetlen próbatesttel az ún.

rövidített vagy Locati-féle vizsgálat végezhető el a görbe meghatározásához.

A kifáradási határt számos tényező befolyásolja, elsősorban az igénybevétel módja és a feszültségváltozás

időbeni lefolyása. Általában négy alapesetet különböztetünk meg (127 [165]. ábra):

– Szimmetrikus lengőfeszültség (127 [165]a ábra). A leggyakrabban előforduló eset, a feszültség a és a ,

azaz a húzás és a nyomás között váltakozik, a húzó- és a nyomófeszültség abszolút értéke egyenlő. Ilyenkor a

középfeszültség nulla. A kifáradási határt szokták lengő szilárdságnak is nevezni.

– Lengőfeszültség (127 [165]b ábra). Hasonló az előzőhöz, annyi különbséggel, hogy a feszültségek abszolút

értéke nem egyenlő, tehát az igénybevétel nem szimmetrikus.

– Lüktetőfeszültség (127 [165]c ábra). A feszültség a nullatengely egyik oldalára eső két határérték között

ingadozik, tehát változó értékű, de csak pl. húzó igénybevétel lép fel.

– 0 kezdésű lüktető igénybevétel (127 [165]d ábra). Az előző sajátos esete, amikor az igénybevétel 0 és

(vagy 0 és ) között változik.

127.

ábra.

Igénybev

ételi

módok

fárasztóv

izsgálato

knál

A kifáradási határt ezek az igénybevételi módok jelentősen befolyásolják, vagyis a Wöhler-diagramból

meghatározott kifáradási határ csak egyetlen esetre érvényes! A gyakorlatban a gépalkatrészek a

Page 170: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

166 Created by XMLmind XSL-FO Converter.

legkülönbözőbb igénybevételi módoknak vannak kitéve, ezért igyekeznek olyan diagramokat kidolgozni,

amelyekből kisszámú fárasztóvizsgálat alapján következtetni lehet a többi igénybevételi mód hatására is. Ezek

az ún. teljes kifáradási (Smith-féle)diagramok. Két fárasztó- és egy statikus szakítóvizsgálat elvégzése után

kapott adatokból a diagram biztonsági területe megszerkeszthető. A területen belül eső feszültségek a különböző

feszültségváltozásoknak megfelelően a kifáradási határon belül vannak, törés nem következik be.

5. 9.5. Kúszásvizsgálat

Szobahőmérsékleten az acélok alakításakor keményedés jön létre, amely ellenállást tanúsít a további alakítással

szemben. A rugalmassági határt meghaladó terheléskor a fém alakja maradandóan megváltozik, de a

keményedés miatt a rugalmassági határ is megnő. Ha a terhelés kisebb a szakítószilárdságnál, akkor a

keményedés gátat szab a további alakváltozásnak. Ezek után, ha a fémet olyan hőmérsékleten alkalmazzuk, ahol

a lágyulás is végbemegy, akkor a rugalmassági határ az eredeti értékére esik vissza. Ez változatlan terhelés

mellett újabb alakváltozást tesz lehetővé. Az ilyen állandó terhelés alatt bekövetkező alakváltozást kúszásnak

nevezzük. A szerkezeti anyagok terhelhetőségéről ezért kúszásvizsgálattal kell meggyőződni.

A kúszásvizsgálat elve a 128 [166]. ábrán látható.

128.

ábra.

Kúszásvi

zsgálat

Az állandó hőmérsékletre szabályozott kemencébe helyezett próbatestre állandó súlyterhelést rakunk, és mérjük

a próbatest nyúlását az idő függvényében. A különböző terhelésektől függően, különböző jellegű kúszásgörbék

adódnak (129 [166]. ábra).

129.

ábra.

Jellegzet

es

kúszásgö

Page 171: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

167 Created by XMLmind XSL-FO Converter.

rbék

A C görbe arra utal, hogy valamilyen, feltehetően fémtani folyamat (pl. karbidkiválás), az alakváltozást

megakadályozza, a kúszás megáll. A szokásos jelleget a B görbe szemlélteti: az I. szakaszban nagy a nyúlási

sebesség, a II. szakaszban a nyúlás lelassul, a III. szakaszban pedig törésig tartó gyors nyúlás következik be.

Egyetlen próbatest vizsgálatával egy kúszásgörbét lehet kapni, ami adott hőmérsékletre és terhelésre érvényes.

A gyakorlatban a méretezéshez szükséges kétféle mérőszámot, az időszilárdságot és a kúszáshatárt használjuk.

Nyilvánvaló, hogy mindkét jellemző meghatározásához több próbatest vizsgálatára van szükség. A vizsgálati

idő lehet 1000 órától akár 100 000 órás időtartamú is. Az igen hosszú idejű mérések kiváltására ún.

extrapolációs módszereket vezettek be.

6. 9.6. Technológiai vizsgálatok

Technológiai próbáknak nevezik az olyan vizsgálatokat, amelyek az adott anyag megmunkálhatóságáról

tájékoztatnak.

Ezek a vizsgálatok általában nem adnak konkrét mérőszámokat, inkább arra adnak választ, hogy a próbatest

elviseli-e az adott terhelést vagy sem. A technológiai próbákat igen sok esetben a gyakorlat alakította ki.

Technológiai hajlítópróba. A próbatestet vagy bizonyos szögig, vagy a szárak párhuzamosságáig kell hajlítani.

Ehhez általában a 130 [168]. ábra látható szerkezetet használjuk. A próba megítélésére alkalmas az ún.

Tetmayer-féle hajlítási mérőszám:

,

Page 172: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

168 Created by XMLmind XSL-FO Converter.

ahol a lemez vastagsága; a semleges szál (középvonal) sugara.

130.

ábra.

Technoló

giai

hajlítópr

óba-

vizsgálat

A próbatestet általában hidegen hajlítjuk. Ha a lemez a -os hajlítást repedés és törés nélkül elviseli, akkor a

gyártás során sem lesz nehézség. A próba érzékenyen jelzi az anyaghibákat, a zárványok jelenlétét, az edzési

vagy megmunkálási repedéseket. Ha a technológia megköveteli, akkor a vizsgálatot dinamikusan is el kell

végezni.

Hajtogatóvizsgálat. Szabványos méretű huzalt vagy lemezcsíkot hajlítóhengerek közé fogunk és mindkét

irányban -ig hajlítunk. A hajtogatást addig végezzük, amíg a próbatest eltörik. A törésig elviselt hajtogatások

száma adja a vizsgálat mérőszámát. A hajtogatási szám függ a hajtogatóhengerek sugarától és a próbatest

vastagságától, ezért célszerű a vizsgálatot a szabványos méretekkel végezni.

Page 173: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

169 Created by XMLmind XSL-FO Converter.

Csavarópróba. Elsősorban a rugóacél huzalok hibáinak kimutatására használatos. A vizsgálandó huzal hosszát

az átmérő egész számú többszörösére választjuk. A próbatest egyik végét rögzítjük, a másikat pedig

csavarószerkezetbe fogva a törés megjelenéséig csavarjuk. A mérőszám a törésig elviselt teljes fordulatok

száma. A vizsgálat igen alkalmas mind a huzalfelületen, mind a belsejében lévő hibák kimutatására.

Duzzasztási próba. Célja az acélban előforduló vöröstörékenység kimutatása. A vöröstörékenység oka, hogy a

szemcsehatárokon elhelyezkedő fázisok közül a Fe-FeS alacsony olvadáspontú eutektikum, vagy a kivált réz a

melegalakítás hőmérsékletén megolvad, így törést okoz. A hengeres próbához rendszerint olyan méretet

választunk, hogy a magasság az átmérő kétszerese legyen. A magasságot gépi kalapáccsal addig csökkentjük,

amíg meg nem jelennek az első repedések a hengerpaláston. A mérőszám a repedés nélkül elviselt százalékos

magasságcsökkenés értéke. A vizsgálat idején a hőmérséklet ne csökkenjen a megadott érték alá!

Lyukasztási próba. A vörösizzás hőmérsékletén lévő lemezbe a szélétől változó távolságban egy

lyukasztótüskével lyukakat ütünk, majd a lehűlt lemezt megvizsgálva megállapítjuk, hogy melyik az a szélhez

legközelebbi lyukasztás, amelyik még nem okozott repedést. A lyukasztószerszám átmérőjét a lemez

vastagságának 0,5...0,75-szeresére célszerű választani.

Csővizsgálatok. A csöveket elsősorban belső nyomáspróbának vetjük alá. Ez a nyomás rendszerint nagyobb,

mint amelyet üzemi körülmények között el kell viselnie. A csővégeket lezárjuk, a csövek belsejében víznyomást

létesítünk, amit repedés és jelentős méretváltozás nélkül kell elviselniük.

Ezzel ellentétes a lapítási próba, melynek során a cső belsejébe helyezett fémlemez eléréséig lapítjuk össze a

csövet, s ezt a deformációt kell a csőnek repedés nélkül elviselnie.

A mélyhúzhatóság vizsgálata. Olyan vékony lemezekhez alkalmazzuk, amelyekből mélyhúzással készítenek

végterméket (pl. edények, dobozok). Az Erichsen-féle mélyhúzásvizsgálat elvét a 131 [169]. ábra szemlélteti. A

lemezt húzógyűrűre rögzítjük, majd 20 mm átmérőjű, edzett golyót nyomunk a felületébe. A mérőszám az a

távolság, amelyet a golyó kiindulási helyzetétől számítva megtesz anélkül, hogy a lemezen repedések

jelennének meg.

131.

ábra. Az

Erichsen

-féle

mélyhúz

ásvizsgál

at

vázlata

Page 174: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

170 Created by XMLmind XSL-FO Converter.

Önthetőségi vizsgálat. Öntéskor a megolvadt fémet olyan tűzálló anyagból vagy fémből készült formába öntik,

amelynek belső üreges része a készítendő öntvény formájának felel meg. Mindkét esetben igen fontos, hogy a

folyékony fém a formát jól kitöltse, és a dermedés során lehetőleg kevéssé húzódjon össze, szilárd állapotban

pedig kevéssé zsugorodjon. A vizsgálat céljára használatos kokilla – amelyet tervezője után Courty-féle

kokillának nevezünk – előírt keresztmetszetű spirál. A formakitöltés mérőszámául azt a hosszúságot adják meg

centiméterben, ameddig a fém a spirálban kifolyt.

A vizsgálatot jelentősen befolyásolja az öntési hőmérséklet, a kokilla töltési hőmérséklete, továbbá az öntés

magassága. Nyilvánvaló, hogy minél magasabbról végezzük a kokillába való öntést, annál nagyobb lesz az

áramlási sebesség, tehát annál nagyobb lesz az az út, amelyet az olvadék a spirálban megtesz. A kokilla

hőmérsékletének növelésével a spirál hosszúsága csak lassan nő. Igen nagymérvű az öntési hőmérséklet

befolyása: minél nagyobb az öntési hőmérséklet, annál hosszabb a spirál. A nagyobb olvadáspontú ötvözetek

formakitöltésének vizsgálatára homokba formázott spirált alkalmazunk.

7. 9.7. Radiográfia

Az anyagokban előforduló folytonossági hiányt röntgen- vagy radioaktív sugaras átvilágítással lehet kimutatni.

Ezzel a módszerrel a hiba helyzete is jól meghatározható (132 [170]. ábra). A sugarak egy része anyagon való

áthaladás során elnyelődik, mégpedig az

törvényszerűség szerint, ahol az áthaladt sugárzás, intenzitása; a primer sugárzás intenzitása, az anyag

vastagsága, pedig a lineáris abszorpciós együttható.

132.

ábra.

Anyaghi

ba

kimutatá

sa

röntgens

ugárral

Page 175: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

171 Created by XMLmind XSL-FO Converter.

Ha az anyagban valahol vastagságú üreg van, aminek következtében az átvilágított anyag vastagsága kisebb,

az áthaladó sugár intenzitása nagyobb lesz, a minta alá helyezett fluoreszkálóernyőn világosabb folt jelentkezik.

A kép rögzítésére a fényképezésben használt filmhez hasonló, a röntgensugárzásra érzékeny filmeket

használunk.

Az ernyőn képződött kép minősége a kontraszttól és az élességtől függ. A kontraszt mértékét főleg a

röntgensugárzás hullámhossza, az átvilágított darab és környezetének szekunder sugárzása, valamint a

fényérzékeny réteg tulajdonságai határozzák meg. A rövidebb hullámhosszúságú röntgensugárzás kevésbé

nyelődik el, s így az anyaghibát is megbízhatóbban mutatja ki. A röntgenkép élességének javítására a filmet

minél közelebb kell vinni a fókuszfolthoz, vagyis a vizsgált darabnak a folttal ellenkező felületéhez kell

szorítani.

A gyakorlatban minden egyes röntgenfelvétel minőségét huzalsorral ellenőrizzük, amelyet az átvilágítandó

tárgynak röntgencső felőli oldalára helyezünk, és vele együtt veszünk fel.

A huzalsor hét különböző, szabványos vastagságú huzalból áll, amelyek gumilemezbe vannak ágyazva. A

huzalok anyaga az átvilágítandó minta anyagához igazodik, pl. könnyűfémhez alumíniumhuzal, öntöttvashoz

acélhuzal. A legvékonyabb, a felvételen nyomot hagyó huzal átmérője a még biztosan kimutatható hiba

nagyságát jellemzi.

Röntgen helyett radioaktív izotópok is használhatók sugárforrásnak. Ebben az esetben jóval kisebb a sugárzás

hullámhossza és intenzitása. Ilyen források általában kobalt 60, cézium 137, iridium 192 izotópok. Az izotópos

vizsgálat előnye, hogy nem kell hozzá villamos áram, és maga a berendezés is egyszerűbb, kisebb méretű. Ennél

a módszernél az izotópokkal való bánásmód biztonsági előírásainak betartására kell ügyelni.

8. 9.8. Anyagvizsgálat ultrahanggal

Kísérletileg kimutatható, hogy az acélban előforduló, mm vastagságú levegőréteg (pl. lunker) az ultrahang

100%-át, a mm-es légréteg pedig a besugárzott energia 80%-át vissza veri.

Page 176: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

172 Created by XMLmind XSL-FO Converter.

Az ultrahang a hallásküszöbnél nagyobb frekvenciájú mechanikai hullámzás. A mechanikai hullámokat az

anyag részecskéinek rezgése továbbítja. A rezgés különféleképpen terjed, ennek megfelelően különböző

hullámfajták keletkeznek, mégpedig

– longitudinális hullámok,

– transzverzális hullámok,

– lemezhullámok,

– felületi hullámok.

Gázokban és folyadékokban csak longitudinális, szilárd testekben valamennyi hullámfajta keletkezik.

Anyagvizsgálatban elsősorban a longitudinális és a transzverzális hullámoknak van jelentőségük (133 [172].

ábra).

133.

ábra.

Hullámtí

pusok

Szilárd testekben a hang terjedési sebessége, a közeg rugalmassági modulusától, és a sűrűségétől függ. A

longitudinális hullámok terjedési sebessége:

,

ahol a Poisson-szám. A transzverzális hullámok terjedési sebessége pedig:

.

A sugárzás hullámhosszúsága és frekvenciája valamint a terjedési sebessége között a következő

összefüggés áll fenn:

.

A hangterjedési sebességét különböző közegekben a 8 [172]. táblázat foglalja össze.

8.

táblázat.

A

hanghull

ámok

terjedési

sebessége

Page 177: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

173 Created by XMLmind XSL-FO Converter.

Az ultrahangok terjedésének fizikai törvényszerűségei igen hasonlók az optikai törvényekhez:

– két különböző közeg határfelületén az ultrahangok visszaverődnek,

– az egyik közegből a másikba való haladáskor törési jelenség keletkezik,

– egy közegen belül haladó ultrahanghullám intenzitása a közegtől függően csökken (abszorpciójelenség).

Ez a három alapvető tulajdonság az ultrahangokkal való anyagvizsgálat fizikai alapja. A reflexió törvénye Shock

szerint (134 [173]. ábra):

,

ahol a visszaverődő és a beeső hullám intenzitásának aránya ( ); , az 1 és a 2 közeg sűrűsége; ,

az ultrahang terjedési sebessége az 1, a 2 közegben.

134.

ábra. Az

ultrahan

ghullám

terjedése

Page 178: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

174 Created by XMLmind XSL-FO Converter.

A hanghullám visszaverődési szöge, és törési szöge az beesési szögtől, valamint a hangsebességtől

függ (Schnellius-féle törési törvény):

.

Az optikai hullámokkal szemben az ultrahangok a tárgy belsejében többféle hullámformában is jelentkezhetnek,

s az egyik a másikba át is alakulhat.

A hangelnyelődés (abszorpció) mértéke az anyag vastagságától és az anyagi minőségtől függ:

,

ahol és az 1, ill. a 2 helyen mért intenzitás, az anyagban megtett távolság, az elnyelési

együttható.

Nagy rezgésszámú ultrahangot többféle módon elő lehet állítani. Az egyik legfontosabb és anyagvizsgálati

célokra legelterjedtebb módszer a piezoelektromos jelenségen alapszik: A megfelelő síkok mentén csiszolt

kvarc- ( ), vagy bárium-titanát- ( ) kristály felületén mechanikai igénybevétel hatására villamos

töltések jelentkeznek. A kristályt két fémlemez közé fogva, a töltések hatására ez a kondenzátor feltöltődik, és

megfelelő berendezésen keresztül a kapott villamos jelet át lehet vinni egy katódsugárcsőre. A jelenség

megfordítva is érvényes. Megfelelő frekvenciájú villamos rezgések hatására a kristály mechanikai rezgéseket

végez.

Az ultrahangos anyagvizsgáló berendezés nagyfrekvenciás villamos generátorból áll, amely rezgéseit az

adókristály kondenzátorára adja. Az így rezgésbe hozott adóból kiinduló ultrahanghullámok – átbocsátva őket a

vizsgálandó anyagon – a vevőkristályba érkeznek, ahol a mechanikai rezgések ismét villamos jelekké alakulnak,

és katódsugárcső segítségével észlelhetők.

Két alapvető ultrahangvizsgálati eljárása fejlődött ki: az átsugárzásos és az impulzusvisszhangos.

Az átsugárzásos módszer elvét a 135 [175]. ábra szemlélteti. Két kristályra van szükség, amelyek közül az

egyik az adó, vele szemben lévő pedig a vevő. Ha a tárgyban haladó ultrahanghullámok útjába valamilyen hiba

kerül, az a hullámok egy részét visszaveri, így a vevőkristály kisebb ultrahangintenzitást érzékel.

Page 179: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

175 Created by XMLmind XSL-FO Converter.

135.

ábra.

Ultrahan

gvizsgála

t

átsugárz

ásos

módszerr

el

A visszhangeljárás egyetlen kristályt alkalmaz. A kristály s ideig bocsát ki hullámokat, ezután mint vevő

dolgozik (136 [175]. ábra).

136.

ábra.

Ultrahan

gvizsgála

t

impulzus

visszhan

g

módszerr

el

Page 180: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

176 Created by XMLmind XSL-FO Converter.

9. 9.9. Mágneses és elektroinduktív eljárások

A mágneses térbe helyezett vastestben az erővonalak – mivel a vas jó mágneses vezető – a vastestben

sűrűsödnek össze. Ha a vas egyneműnek tekinthető, az erővonalak eloszlása is egyenletes lesz. Ha a termék

belsejében anyaghiba mutatkozik, akkor az erővonalak az épen maradt részekben sűrűsödnek össze, sőt ki is

léphetnek a felületből.

A vizsgálathoz a felületet olajos vasporral (vagy ferromágneses fluoreszkálóporral) kenjük be. A vaspor ott

sűrűsödik össze, ahol az erővonalak az anyag belsejéből kilépnek. A mágneses repedésvizsgálatot igen

érzékenyen befolyásolja a hibák mérete. Ha a hiba a mágneses tér irányára merőleges, akkor igen vékony

repedéseket is ki lehet mutatni. Ha azonban a hiba hosszirányú, a mágneses tér irányával egyezik, akkor az

erővonal-eloszlást nem befolyásolja, s így a hiba nem ismerhető fel. Ezért a vizsgálatot célszerű két, egymásra

merőleges irányban is elvégezni (137 [176]. ábra). Kisméretű tárgyak vizsgálatához nagyméretű

elektromágneseket használunk. A mágneses teret elektromágnes gerjeszti, s a vizsgálandó darab az

elektromágnes sarkait zárja rövidre. Nagyméretű testek vizsgálatához jobban megfelel a váltakozó áramú

gerjesztés.

137.

ábra. Az

erővonal

ak

eloszlása

a

vastestbe

n

különböz

ő

anyaghib

ák esetén

Page 181: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

177 Created by XMLmind XSL-FO Converter.

A mágneses repedésvizsgálat alkalmas edzett alkatrészek repedéseinek kimutatására, ill. a kovácsolás vagy

hegesztés során keletkező melegrepedések feltárására.

Az elektroinduktív eljárások elsősorban a nem mágnesezhető fémek repedéseinek kimutatására alkalmas. Az elv

a transzformátorok primer áramfelvételét szabályozó elvvel azonos. Ha a transzformátor szekunder tekercsén

megnő a terhelés, akkor a mágneses kapcsolat révén a primer oldalon is nagyobb teljesítmény jelentkezik. Ez a

hatás repedésvizsgálatra úgy hasznosítható, hogy a váltakozó áramú áramforrással táplált tekercset a

vizsgálandó anyag fölé helyezik, mindig ugyanolyan távolságba. A darabban a tekercs örvényáramokat indukál.

Ez az örvényáram visszahat a tekercsre, minél nagyobb lesz az örvényáram, annál nagyobb lesz az áram az

indukálótekercsben is. Ha repedés miatt nem tud nagy örvényáram kialakulni, akkor a tekercsben nem folyik

erős áram. A sorba kapcsolt árammérő ezt a változást érzékeli, és a mutató kilengésével jelzi a repedést. A

repedés alakját azonban nem tudja meghatározni. Előnyös, ha a vizsgált darab jó vezető, mert így nagy áram tud

kialakulni a tekercs alatt. Az ilyen vizsgálati módszer elsősorban a réz- és az alumíniumtárgyak ellenőrzésére

alkalmas.

10. 9.10. Festékpenetrációs eljárás

Anyagfajtától független repedés kimutatására alkalmas. A vizsgált felületre kis viszkozitású festéket juttatunk,

amely a repedésekbe diffundál. A felesleges folyadék eltávolítása után a darabot szárazra töröljük, majd fehér,

krétaszerű anyaggal vonjuk be. A fehér réteg a repedésből kiszivárgó sötét folyadék hatására láthatóvá teszi a

repedés vonalát. Gyorsítható a folyamat, ha a darabot kismértékben megmelegítjük, vagy ha a diffúziós folyadék

finom fluoreszkálószemcséket tartalmaz. Ilyenkor ibolyántúli fényben vizsgálva a darabot, a repedés zöldes

fénnyel világít.

11. Kérdések, feladatok

1. Hogyan csoportosíthatók a mechanikai igénybevételek?

2. Milyen mechanikai vizsgálatokat szoktunk használni az alakváltozási sebesség függvényében?

3. Rajzolja fel a rideg öntöttvas, a szívós alumíniumötvözet és a hidegen alakított acél szakítódiagramját!

4. Sorolja fel a szakítóvizsgálat alkalmával meghatározható anyagjellemzőket!

5. Hogyan jellemezzük az anyagok keménységét?

6. Mi a különbség a Brinell- és a Vickers-módszer között? Mutasson rá a közös vonásokra is!

7. Mi a lényege a Rockwell-keménységmérésnek!

8. Miért lenne szokatlan Rockwell-keménységmérésnél, ha mindenféle átszámítás nélkül, csupán a benyomódás

mélységét használnánk a keménység jellemzésére?

9. Mutassa be a Charpy-féle ütőkísérletet, és a fajlagos ütőmunka meghatározásának módját!

10. Mikor mondjuk, hogy a fémes anyag rideg?

11. Mit nevezünk átmeneti hőmérsékletnek?

12. Mit mutat meg a Wöhler-görbe egy pontja?

13. Miben áll a kifáradás jelensége?

Page 182: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

ANYAGVIZSGÁLAT

178 Created by XMLmind XSL-FO Converter.

14. Mi a kifáradási határ?

15. Milyen igénybevételi módokat különböztetünk meg kifáradás szempontjából?

16. Mitől függ a kifáradási határ?

17. Rajzoljon egy Wöhler-görbét!

18. Milyen anyagvizsgálati mérőszámok ismerete szükséges a Smith-diagram megszerkesztéséhez?

19. Mi a kúszás jelensége?

20. Milyen mérőszámokat ismer a kúszás jellemzésére?

21. Mi a duzzasztási próba lényege?

22. Hogyan végzik az önthetőségi vizsgálatot?

23. Mi a radiográfiai vizsgálatok elve?

24. Milyen hullámhosszúságú röntgensugárzás alkalmasabb radiográfiai vizsgálathoz, és miért?

25. Határozza meg 3 MHz frekvenciájú longitudinális hullám hullámhosszúságát paraffinközegben!

26. Számítsa ki a rugalmassági modulus és a sűrűség alapján a rézanyagban haladó transzverzális

ultrahanghullám terjedési sebességét!

27. Mi a különbség az átsugárzásos és a visszhangmódszer között, ultrahangos anyagvizsgálat esetén?

Page 183: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

clxxix Created by XMLmind XSL-FO Converter.

A LEGFONTOSABB FÉMTANI FOGALMAK ÉS MEGHATÁROZÁSAIK

A fémtani fogalmakat fejezetenként, előfordulásuk sorrendjében közöljük.

(a 2.

fejezethez

)

Amorf anyagok. Ha az anyag háromdimenziós és mindhárom irányban rendezetlenséget mutat (nincs szabályos

belső vagy külső rendje), akkor amorf anyagról beszélünk. Az amorf anyagokban csak rövidtávú rend uralkodik.

Kristályos anyagok. A természetben előforduló anyagok egy részének szabályos külső és/vagy belső formája

van. A szerkezetükben szigorú periodicitást mutató anyagokat kristályos anyagoknak hívjuk.

Rövid távú rend, ha az anyag rácsszerkezetében a periodicitás csak néhány atomsíknyi távolságon belül áll

fenn.

Hosszú távú rend, ha a rácsszerkezet valamely részének sokszori ismételt eltolásával (transzláció) az eredeti

ráccsal azonos szerkezetet kapunk.

Primitív rács. A rácselemben csak egyetlen atom van.

Térelem. Egy pontból kiinduló három vektor által meghatározott paralellepipedon. A térelemet hat sík lap

határolja, a csúcsok száma szintén hat, az éleké pedig tizenkettő, amelyek közül négy egymással párhuzamos. A

térelemek eltolásával az adott rács résmentesen leírható. A térelemben atomok nem szerepelnek.

Rácselem. A térelembe a megfelelő pozícióba berajzolva az atomokat, kapjuk a rácselemet. A rácselem

transzlációs tulajdonságú.

Elemi cella. Ha a térelem egy sarkát a kristály egy atomjára tesszük, és a térelembe berajzoljuk az összes

atomot, amely a csúcsokra, lapokra, élekre vagy a térelem belsejébe esik, akkor kapjuk az elemi cellát. Az elemi

cellának nincs transzlációs tulajdonsága!

Allotrópia. Bizonyos anyagok többféle kristályos szerkezetet is felvehetnek. A kémiai elemeknek ezt a

tulajdonságát allotrópiának nevezzük, más esetben polimorfizmusról beszélünk.

Miller-index. A síkot kerek zárójelbe tett számhármas, a Miller-féle index jellemzi, amelynek egy-egy tagja a

megfelelő kristálytani tengelyből levágott szakasz rácsparaméterben mért hosszának reciproka. A (hkl) Miller-

indexű sík, tehát olyan sík, amely az , , vektorral meghatározott kristálytani tengelyekből rendre:

és

szakaszokat vág le.

Vakancia a legegyszerűbb ponthiba, amely egy atom hiányát jelenti a rácsban.

Szubsztitúciós atom. Ponthiba: valamely ötvöző atom az alapanyag rácspontjában ül, helyettesít egy

mátrixatomot.

Intersztíciós atom. Ponthiba: valamely ötvöző atom az alapanyag rácsközi helyére ékelődik be.

Diszlokáció a kristályokban leggyakrabban előforduló egyenes vagy görbült vonal, amely mentén a kristályrács

sérült. Lehet vonal-, ill. csavardiszlokáció.

Rétegződési hiba, ha két részdiszlokáció közötti tartományban az atomok nem a rácspontokon ülnek. A hiba

nagysága szabja meg, hogy az anyag könnyen vagy nehezen alakítható.

Page 184: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A LEGFONTOSABB FÉMTANI

FOGALMAK ÉS

MEGHATÁROZÁSAIK

clxxx Created by XMLmind XSL-FO Converter.

Antifázishatár. A diszlokációs mozgások során az eredeti ABABAB rétegződések helyett AA vagy BB

szomszédságok alakulnak ki. Az így kialakult hibák, az antifázishatárok.

(a 3.

fejezethez

)

Rugalmas alakváltozás esetén a külső terhelés megszűnésekor a fémes anyagok visszanyerik eredeti alakjukat.

Hook-törvény. A rugalmas alakváltozás során a létrejövő alakváltozás és az azt létrehozó mechanikai feszültség

között egyenes arányosság van. Az arányossági tényező az anyagra jellemző rugalmassági (Young-) modulusz.

Maradó alakváltozás következik be, ha a külső mechanikai terhelés megszűnése után is visszamarad

deformáció.

Csúszási mechanizmus. Az atomokkal legsűrűbben kitöltött síkok mentén a kristályrészek egymáshoz képest

elcsúsznak. A csúszási sík, ill. csúszási irány az a sík, ill. irány, ahol a csúszás bekövetkezik.

Kritikus csúszási feszültség az a mechanikai feszültség, amelynél a kristálysíkok csúszása megkezdődik.

Ikerképződés. Míg a csúszási mechanizmus során a csúszási sík alatt és fölött elhelyezkedő kristályrészek

orientációja nem változik, addig az ikerképződés alkalmával az elmozduló kristályrész irányultsága

megváltozik. A létrejövő új orientációjú kristályrészt ikerkristálynak hívjuk.

Alakítási keményedés. A fémek képlékenyalakítása során a diszlokációk száma nő. A diszlokáció

környezetében lévő mechanikai feszültség miatt a diszlokációk egymás mozgását akadályozzák. Így a

diszlokációk további mozgása csak növekvő mechanikai feszültséggel lehetséges: a fémötvözetek

keményednek.

Anizotrópia. A véletlenszerűen elhelyezkedő kristályok alakváltozás és hőkezelés hatására rendezettekké

válnak. A rendezettség abban nyilvánul meg, hogy az eredetileg gömbölyded szemcsék igen nyújtottak lesznek,

valamint a kristálysíkok térbeli előfordulási valószínűsége sem lesz véletlenszerű.

(a 4.

fejezethez

)

Fázisegyensúlyi diagram. Adott ötvözetrendszerre vonatkozóan a diagram megmutatja a különböző

hőmérsékleten egyensúlyban lévő fázisokat.

Fázis az ötvözetnek az a része, amelyen belül a kémiai és fizikai tulajdonságokban ugrásszerű változás nem

következik be.

Likviduszgörbe adott összetételű ötvözet kristályosodásának kezdeti hőmérsékletét mutatja a fázisegyensúlyi

diagramban.

Szoliduszgörbe adott összetételű ötvözet kristályosodásának befejező hőmérséklete.

Szolvuszgörbe a szilárd oldat oldhatósági határát mutatja a fázisegyensúlyi diagramban.

Monovariáns folyamat. A szabadsági fokok száma 1, vagyis az adott folyamat hőmérséklet-csökkenés közben

megy végbe.

Nonvariáns folyamat. A szabadsági fokok száma 0, vagyis a folyamat állandó hőmérsékleten zajlik.

Szilárd oldat: oldat jellegű kristályos fázis. Legalább két alkotórésze van, a nagyobb mennyiségben előforduló

oldószer (alapfém) és az oldott fém. A szilárd oldat koncentrációja bizonyos határok között változik.

Fémvegyület. Olyan két- vagy többalkotós kristályos fázis, amelynek rácsszerkezete független az alkotó

fémétől. A vegyület fáziskoncentrációjának határai mindig az egyensúlyi diagram belsejébe esnek.

Page 185: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A LEGFONTOSABB FÉMTANI

FOGALMAK ÉS

MEGHATÁROZÁSAIK

clxxxi Created by XMLmind XSL-FO Converter.

Eutektikum: olvadékból a Gibbs-féle fázisszabály értelmében állandó hőmérsékleten kristályosodó (kétalkotós

rendszer esetén) kétfázisú szövetelem. Eutektikumot bármelyik kristályos fázis képezhet bármelyik fajta

kristályos fázissal.

Eutektoid: többfázisú (heterogén) szövetelem. Mindig állandó hőmérsékleten (kétalkotós rendszer esetén) és

szilárd állapotú átalakulás során jön létre. Fázisa szilárd oldat, vegyület vagy színfém.

(az 5.

fejezethez

)

Homogén csíraképződés. Homogén kristálycsíra keletkezéséről akkor beszélhetünk, ha a kristályosodás kezdő

térfogataiban a kristályosodó anyag saját atomjait találjuk, valamint a csíraképződés valószínűsége az olvadék

minden pontjában azonos.

Heterogén csíraképződés. Az olvadékból megszilárduló fématomok az olvadékba került idegen fázishoz

kapcsolódva hozzák létre a kristályosodás kezdő térfogatait, az ún. csírákat.

Csíraképződési sebesség a térfogategységben időegység alatt keletkező csírák száma.

Növekedési sebesség a stabil csírák lineáris méretváltozásának a sebessége.

Hőmérséklet-gradiens a kristályosodási front közelében (olvadék-szilárd határfelületen) az 1 mm-re eső

hőmérséklet-változás nagysága.

Kristályosodás sebessége a szilárd–olvadék határfelület lineáris mozgási sebessége.

Összetételi túlhűlés. Amennyiben a szilárd–olvadék határfelület előtt az olvadékban mérhető tényleges

hőmérséklet kisebb, mint az olvadék összetételéből számítható likviduszhőmérséklet (összetételi túlhűlés),

akkor az olvadék túlhűl, minek következtében a kristályosodás határfelülete cellás vagy dendrites lesz.

Mikrodúsulás. A szilárd fázisban lassú diffúzió miatt a kristályosodás végén kialakult szerkezet összetétele

nem egyenletes. A koncentráció a dendrit közepétől a széle felé fokozatosan haladva nő. A szövetben

rendszerint megtalálható a nem egyensúlyi eutektikum is.

Fogyás a kristályosodás során bekövetkező fajtérfogat-csökkenés.

Porozitás. Nagyon lassú hűtés esetén a kristályosodás a dendritek (cellák) közötti térfogatrészben fejeződik be.

Az itt keletkező kisméretű fogyási üregeket porozitásnak vagy pórusoknak nevezzük.

Lunker. Ha az öntvény erős hűtőhatású hideg fémformába kristályosodik, a folyamat végén gúla alakú

összefüggő fogyási üreg, az ún. lunker keletkezik.

Átalakulás. Fémötvözetekben végbemenő átalakulásról akkor beszélünk, ha az atomokból felépülő

kristályszerkezet jelentősen őjrarendeződik.

Heterogén átalakulás, ha az anyag kis térfogataiban teljesen új szerkezet keletkezik, és az átalakulás közben az

anyagban együtt található meg az átalakult és az át nem alakult térfogat.

Homogén átalakulás, ha az anyag teljes térfogatában kisméretű változás következik be, és az folyamatosan

halad előre.

Martenzites átalakulás. A kiindulási fázis atomjai összehangolt mozgással hozzák létre az új fázist. A két

fázisban legtöbb atomnak azonos a legközelebbi szomszédja, az atomok keveredése nem következik be. Az

átalakulás diffúzió nélkül megy végbe.

Csíraképződéses és növekedéses átalakulás. Az új fázis a régi rovására nő oly módon, hogy a fázishatár

folyamatosan vándorol. A növekedés annak a következménye, hogy az atomok egyedi atommozgással átlépik

ezt a határt.

Bénites átalakulás két fő átalakulási típus között helyezkedik el. Létrejöttekor az atomok összehangolt

mozgásán kívül a diffúziónak is van szerepe.

Page 186: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A LEGFONTOSABB FÉMTANI

FOGALMAK ÉS

MEGHATÁROZÁSAIK

clxxxii Created by XMLmind XSL-FO Converter.

Újrakristályosodás. Képlékenyen alakított, elnyújtott, nagy diszlokációsűrűségű kristályokból álló ötvözetet

megfelelő hőmérsékletre hevítve, a képlékeny alakváltozás következményeitől mentes, viszonylag lágy, teljesen

új kristályok képződésével és azok növekedésével zajló folyamat.

Újrakristályosodási diagram az újrakristályosodás végén kialakuló szemcsenagyságot szemlélteti a

hidegalakítás, valamint az újrakristályosodás hőmérsékletének függvényében.

Megújulás: az újrakristályosodást megelőzően a diszlokációs szerkezet módosulása, a diszlokáció rendeződése

és kisszögű szemcsehatárok keletkezése.

Szekunder újrakristályosodás: az újrakristályosodott szemcsék durvulása.

(a 6.

fejezethez

)

Cementit: vas-karbid ( ), amely metastabil kristályosodás során jön létre.

Ausztenit a vas felületen középpontos kockarácsú allotróp módosulata. Szilárd oldat.

Lédeburit az - rendszerben kristályosodó, ausztenit és cementet fázisokból álló eutektikum.

Perlit az - rendszerben kialakuló, ferrit és cementit fázisokból álló eutektoid.

Ferrit a vasnak térben középpontos kockarácsú allotróp módosulata. Szilárd oldat.

Hipoeutektoidos acél: az eutektoidos összetételnél kevesebb széntartalmú vasötvözet.

Hipereutektoidos acél: az eutektoidos összetételnél több szenet tartalmazó acél.

Perlitkolónia: egy csírából növekedett perlit, amelyet egymással párhuzamosan elhelyezkedő ferrit- és

cementitlemezek alkotnak.

Martenzit az ausztenit diffúzió nélküli (martenzites) átalakulása során keletkezik. Olyan tűs jellegű szövetelem,

amelyeik szénben túltelített, rácsszerkezete pedig tetragonálissá torzult.

Bénit. Ha az ausztenit túlhűtése a martenzites átalakuláshoz szükségesnél kisebb, de az eutektoidos

átalakulásénál nagyobb, akkor a bénites mechanizmus szerint alakul át. Ebben az esetben a túlhűlés miatt a ferrit

megjelenésének kényszere nagy, ezért először ferritcsíra jelenik meg az ausztenit szemcsehatárán. A csíra

megjelenését cementitlemezek képződése követi. A bénit ezért tűs jellegű heterogén szövetelem.

Ausztenitképző ötvözők az ötvözők olyan csoportja, amely az ausztenit képződését elősegíti.

Ferritképző ötvözők az ötvözők olyan csoportja, amely a ferrit képződését elősegíti, stabilizálja.

Karbidképző ötvözők az ötvözők olyan csoportja, amely karbidokat képez.

Alakítható alumíniumötvözetek azok az alumíniumötvözetek, amelyek hideghengerléssel, kovácsolással,

hidegfolyatással, sajtolással jól alakíthatók. Ötvözőtartalmuk általában kicsi és rendszerint egyfázisúak. Vannak

olyan alakítható ötvözetek is, amelyek a hőmérséklettől függően különböző mennyiségű ötvözőt képesek

oldatban tartani, ezért alakíthatók és nemesíthetők.

Öntészeti alumíniumötvözetek ötvözőtartalma rendszerint nagyobb, és többfázisú ötvözetek.

Legjellegzetesebb képviselőjük a dugattyúötvözet, amely alumínium-szilícium eutektikumból áll.

Nemesíthető alumíniumötvözetek az ötvözetek, amelyek a hőmérséklettől függően különböző mennyiségű

ötvözőt képesek oldani. A nemesítő hőkezeléssel az alumínium alapanyagban viszonylag kisméretű kiválásokat

hozunk létre, amelynek eredményeként nagyszilárdságú és viszonylag szívós (ún. nemesített) ötvözetet kapunk.

Homogenizálás az ötvözetben jelenlévő kiválások oldatba vitele, amikor is teljesen homogén szilárd oldatot

hozunk létre.

Page 187: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A LEGFONTOSABB FÉMTANI

FOGALMAK ÉS

MEGHATÁROZÁSAIK

clxxxiii Created by XMLmind XSL-FO Converter.

Öregítés: tulajdonképpen kiválásos keményítés. Megfelelő hőmérsékleten végzett kezelés hatására túltelített

szilárd oldatból elkezdődik az ötvözőben dús második fázis kiválása.

Koherens kiválás: az alapfém rácsával megegyező kristályszerkezetű, de az egyensúlyitól eltérő összetételű

kiválás.

Nem koherens kiválás: az alapfém rácsától eltérő kristályszerkezetű, a fázisegyensúlyi diagramnak megfelelő

összetételű kiválás.

Guinier–Preston-övezet: az alapfém rácsával teljesen koherens kiválás, amely a mechanikai tulajdonságok

szempontjából rendkívül kedvező. Az elsőrendű és a másodrendű (GP-övezet) között méretben és összetételben

van a különbség.

Kompozitok olyan összetett anyagok, amelyek különböző anyagok (fémek, kerámiák, műanyagok)

egyesítésével jönnek létre. Az így nyert új anyag a tulajdonságok különleges kombinációját (pl. kis sűrűség

mellett viszonylag nagy szilárdság) valósítja meg.

Diffúziós kötés, olyan kompozit-előállítási módszer, amelynek során a különböző, egymással érintkező

anyagok nagy hőmérsékleten végbemenő diffúziója hozza létre az alapanyag és az erősítő fázis közötti

kapcsolatot.

Porkohászat. Porkohászati úton az alapanyag és az erősítő anyag porának egyenletes összekeverésével, majd az

azt követő, megfelelő hőmérsékleten végzett hőkezeléssel (szintereléssel) állítunk elő összetett anyagokat.

Közvetlen (in situ) eljárás. Az olvasztott alapanyag megfelelő összetételének beállításával a kristályosodás

közben hozzuk létre az erősítő második fázist. Például az irányítottan kristályosított eutektikus ötvözet

tekinthető ilyen kompozitnak.

Nyomásos fémolvadék-átitatás. Az olvasztott fémolvadékot megfelelő nyomással juttatjuk az erősítőszálak

közé. Amennyiben az olvadt fém az erősítőfázis szálait jól nedvesíti, ezzel a módszerrel is megfelelő szilárdságú

összetett anyag állítható elő.

(a 7.

fejezethez

)

Szferoidit: ferritmátrixba ágyazott cementitrögökből álló heterogén szövetelem.

Nemesítés. Gyakori hőkezelési eljárás, főleg acél-, alumínium- és rézötvözetekben. Első lépés az oldó,

homogenizáló hőkezelés, azt követi a gyors hűtés (edzés), ekkor a homogenizálás során kialakult állapotot

kívánjuk megőrizni. Harmadik lépés alacsonyabb hőmérsékletű hevítés (megeresztés), ekkor olyan folyamatok

mennek végbe, amelyek hatására a rendszer az egyensúlyi állapothoz közelebb kerül. Végeredményben kedvező

mechanikai tulajdonságú szövetszerkezet keletkezik.

Duplex szövet alakul ki valamely anyag hőkezelése során, amikor a szemcsedurvulás valamely kiválásnak

köszönhetően nem egyenletesen megy végbe a darab teljes térfogatában. Így egyszerre található finom és igen

durva szemcse is a szövetben.

Jominy-vizsgálat az acélok szabványos edzhetőségi vizsgálata. A szabványos méretű, hengeres ausztenitesített

próbatestet véglapjára irányított vízsugárral hűtjük le, majd valamely palást alkotó mentén mérjük a próbatest

keménységét.

Patentozás: izotermás, főleg drót termékeknél végzett hőkezelés, célja finomlemezes ferrites-perlites szövet

kialakítása.

(a 8.

fejezethez

)

Page 188: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A LEGFONTOSABB FÉMTANI

FOGALMAK ÉS

MEGHATÁROZÁSAIK

clxxxiv Created by XMLmind XSL-FO Converter.

Ötvözetek atomos szerkezete. A fémek és ötvözetek atomokból épülnek fel. Az atomos szerkezetet az általuk

létrehozott kristály típusa, a kristályhibák mennyisége, a rácssíkok távolsága, a rácsparaméter nagysága jellemzi.

Ezt a szerkezetet röntgendiffrakciós technikával szoktuk vizsgálni.

Ötvözetek szövetszerkezete az ötvözetet alkotó fázisok mérete, alakja és elhelyezkedése. Rendszerint

mikroszkópos technikával vizsgáljuk.

Csiszolat: a vizsgálandó anyagból célszerű módon kimunkált, majd csiszolt, polírozott és maratott darab.

Maratás. A szövetszerkezet részletei (a szemcsék határa, az egyes fázisok) maratással tehetők láthatóvá. A

maratás alkalmával az ötvözet egyes fázisai, ill. határai különbözőképpen oldódnak, így sík vagy szabálytalan

felületet hoznak létre, amely mikroszkópban már jól megfigyelhető.

Elektrolitos maratás. A csiszolatot az egyenfeszültségű áramforrás pozitív, az elektródát pedig az áramforrás

negatív sarkához kapcsoljuk, és marószerbe mártjuk. A potenciálkülönbség hatására végbemegy az elektrolitos

oldódás.

Numerikus apertúra az objektív fénygyűjtő képességét fejezi ki. Annak a szögnek a szinusza, amely szög alatt

érkező fénysugarak még az objektívbe jutnak.

Feloldó (felbontó) képesség: annak a két legközelebbi pontnak a tárgyon mért távolsága, amely a nagyított

képen még megkülönböztethető. Értéke a vizsgálatnál alkalmazott fénysugár hullámhosszúságától és a

numerikus apertúrától függ.

Vertikális illuminátor a fénymikroszkóp fontos része. A fényt az objektív felé a csiszolatra, amjd onnét

visszaverődve az okulárra, s így a szemünkbe juttatja.

Elektronágyú: izzó katódból szabályozottan kilépő elektronokat nagy gyorsító feszültséggel a tárgyra

fókuszálja.

Ekvipotenciális felület: azonos mágneses térerősségű pontokat összekötő felület.

Mágneses lencse: forgásszimmetrikus mágneses erőterek, amelyek az elektronnyalábot fókuszálni képesek.

Átvilágításos elektronmikroszkóp. A nagyon vékony tárgyon (fólián) áthaladó elektronok a különböző

vastagságú, eltérő rendszámú anyagrészeken más-más mértékben szóródnak, majd az objektív és a projektív

segítségével az eltérő elektronintenzitású foltokból megfelelő ernyőn létrejön az elektronmikroszkópos kép.

Pásztázó elektronmikroszkóp. A tárgy felületén mozgatott elektronsugár hatására a tárgyból kilépő szekunder

elektronok vagy visszaszórt elektronok – esetleg próbaáram – segítségével állítjuk elő a pásztázó

elektronmikroszkópos képet.

Primer elektronok az anyagba hatoló gerjesztő elektronok.

Szekunder elektronok a primer elektronok gerjesztő hatására jönnek létre, viszonylag kis energiájúak,

mennyiségük a felületi domborzatra jellemző.

Visszaszórt elektronok. Tulajdonképpen visszaverődött primer elektronok, amelyek rugalmas ütközés

eredményeként pattannak vissza a tárgy felületéről. Mennyiségük a rendszámtól függ, így az általuk létrehozott

kép az egyes fázisok közötti összetételbeli különbségeket mutatja.

Röntgensugarak: olyan elektromágneses hullámok, amelyeknek hullámhosszúsága a piko- és a nanométeres

tartományba esik.

Röntgencső izzó katódból és vele szemben elhelyezkedő antikatódból áll. Az elektronok gerjesztő hatása révén

szabályozott röntgennyaláb kibocsátására képes.

Karakterisztikus röntgensugárzás hullámhosszúsága a kibocsátó anyag rendszámára jellemző.

Háttér-röntgensugárzás, más néven fehér vagy fékezési röntgensugárzás. Az elektronok lefékeződésekor

kibocsátott röntgenspektrum.

Page 189: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A LEGFONTOSABB FÉMTANI

FOGALMAK ÉS

MEGHATÁROZÁSAIK

clxxxv Created by XMLmind XSL-FO Converter.

Interferencia. Amennyiben primer röntgennyalábbal kristályos anyagot vizsgálunk, a rácspontokon lévő

atomokon a röntgensugár szóródik. A rácssíktávolságban elhelyezkedő atomokon szóródott röntgensugarak

között erősítés (interferencia) jön létre, ha az útkülönbség a hullámhossz egész számú többszöröse.

Mikroszkópos mérés a fémötvözetet alkotó szövetelemek és fázisok geometriai jellemzőinek meghatározása.

Térfogatarány a kérdéses fázis térfogatának és a vizsgálatba bevont teljes térfogatnak a hányadosa.

Területarány a kérdéses fázis területének és a vizsgálat területnek a hányadosa.

(a 9.

fejezethez

)

Alakváltozási sebesség az egységnyi idő alatt bekövetkező alakváltozás nagysága.

Statikus vizsgálat. Ha az anyag igénybevételét folyamatosan növeljük egészen a tönkremenetelig, akkor 1%

alakváltozás legfeljebb 10 s alatt megy végbe.

Dinamikus vizsgálat. A szerkezeti anyagot ütésszerű (dinamikus) hatásnak tesszük ki, ekkor 1% alakításához

ezred, esetleg milliomod másodperc kell.

Kúszásállósági vizsgálat során azt tanulmányozzuk, hogy néhány óra, több nap, esetleg több száz nap alatt

milyen alakváltozás megy végbe az anyagban. Ebben az esetben az alakváltozás sebessége nagyon kicsi: 1%

maradó alakváltozáshoz néhány ezer, esetleg millió másodperc kell.

Konvencionális feszültség: szakítókísérlet közben a terhelőerő és a próbatest eredeti keresztmetszetének a

hányadosa.

Relatív nyúlás a szakítópróbatest eredeti jeltávolságának megváltozása, az eredeti jeltávolsághoz viszonyítva.

Szakítószilárdság a szakítókísérlet közben mérhető legnagyobb konvencionális feszültség.

Kontrakció a keresztmetszet hirtelen lecsökkenése a szakítókísérlet közben.

Felső folyáshatár abból a terhelőerőből számított feszültség, amikor a maradó alakváltozás megindul.

Alsó folyáshatár a folyás közben mért legkisebb terhelőerőből számított feszültség.

Terhelt állapotban mért egyezményes folyáshatár abból a terhelőerőből számított feszültség, amelynek

hatására a próbatest eredeti jeltávolságának 0,2% maradó alakváltozása bekövetkezik.

Teljes nyúlás a szakítópróbatest eredeti jeltávolságának a szakítókísérlet végéig bekövetkező megnyúlása.

Keménység a szerkezeti anyagoknak az a tulajdonsága, hogy valamely keményebb test benyomódásával

szemben milyen ellenállást képesek kifejteni.

Brinell-keménység. Edzett acélgolyót nyomunk adott terhelőerővel a vizsgálandó anyagba. Az alakváltozás

során az anyagban gömbsüveg alakú bemélyedés jön létre. A Brinell-keménység a terhelőerő és a gömbsüveg

felszínének hányadosa.

Vickers-keménység. -os négyzet alapú gyémántgúlát nyomunk adott terhelőerővel a próbatestbe.

Mérőszáma a terhelőerő és a gúla alakú lenyomat felületének hányadosa.

Rockwell-keménység: csúcsszögű gyémántkúpot nyomunk a szerkezeti anyagba. A keménységet a

benyomódás mélységével jellemezzük.

Charpy-féle kísérlet. Szabványok geometriájú próbatestet adott energiájú ütőművel eltörünk. A törési munkát a

törés előtti maradó alakváltozásra fordított energiával jellemezzük.

Kifáradás: váltakozó, a folyáshatárnál kisebb feszültségű igénybevétel hatására történő tönkremenetel.

Page 190: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

A LEGFONTOSABB FÉMTANI

FOGALMAK ÉS

MEGHATÁROZÁSAIK

clxxxvi Created by XMLmind XSL-FO Converter.

Wöhler-görbe (kifáradási görbe) az adott feszültségi szinten terhelt próbatest törésig elviselt ciklusszámát

(igénybevételi számát) mutatja.

Ultrahang a hallásküszöbnél nagyobb frekvenciájú mechanikai rezgés.

Piezoelektromos jelenség, ha a megfelelő kristálytani síkok mentén csiszolt kvarc ( ), vagy bárium-titanát (

) kristály felületén mechanikai igénybevétel hatására villamos töltések jelentkeznek.

Page 191: Dr. Gácsi, Zoltán Dr. Mertinger, Valéria · Magyarországon a fémtant Verő József akadémikus alapozta meg, aki a Miskolci Egyetem Fémtani Tanszékének alapító tanszékvezetője

187 Created by XMLmind XSL-FO Converter.

Irodalomjegyzék

[1] Verő József-Káldor Mihály. Fémtan. Budapest, Tankönyvkiadó. 1977.

[2] Bárczy Pál. Anyagismeret. Budapest, Tankönyvkiadó. 1998.

[3] Fuchs Erik. Anyagvizsgálat. Budapest, Tankönyvkiadó. 1966.

[4] Tisza Miklós. Metallográfia. Miskolci Egyetemi Kiadó. 1998.

[5] Bárczy Pál. Fémötvözetek fémtana. Budapest, Tankönyvkiadó. 1984.

[6] Fishman, S.G.-Dhingra, A. K.. Cast Reinforced Metal Composites. Conference Proceedings, ASM

International. 1988.

[7] Brooks, Charlie R.. Heat Treatment, Structure and Properties of Nonferrous Alloys, Third printing.

American Society for Metals. 1986.

[8] van Vlack, Lawrence H.. Elements of Materials Science and Engineering, Sixth Edition. Addison-Wesley

Publishing Company. 1989.

[9] Czinege Imre-Kisfaludy Antal-Kovács Ágoston-Vojnich Pál-Verő Balázs. Anyagvizsgálat. Bánki Donát

Gépipari Műszaki Főiskola Jegyzete, Budapest, Műszaki Könyvkiadó. 1976.

[10] Gillemot László. Anyagszerkezettan és anyagvizsgálat. Budapest, Tankönyvkiadó. 1988.

[11] Bárczy Pál-Fuchs Erik. Metallográfia I. Budapest, Tankönyvkiadó. 1981.

[12] Bárczy Pál. Fémtan III. Budapest, Tankönyvkiadó. 1986.

[13] Tranta Ferencné. Fémtan, hőkezelés IV. Budapest, Tankönyvkiadó. 1988.

[14] Uray Mártonné. Fémtan, hőkezelés II. Budapest, Tankönyvkiadó. 1988.

[15] George Krauss. Principles of Heat Treatment of Steel, Fifth printing. American Society for Metals. 1988.

[16] Metals Handbook. Volume 8. Metallography, Structures and Phase diagrams. Ohio, American Society for

Metals. 1979.