“DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA...

157
1 “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA EL HOTEL ZEUS”. IRMA CRISTINA LÓPEZ PÉREZ. MARÍA GABRIELA OREJUELA TIAGUARO. TESIS DE GRADO. Previa la obtención del Título de: INGENIERO MECÁNICO. ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO FACULTAD DE MECÁNICA ESCUELA DE INGENIERÍA MECÁNICA. Riobamba – Ecuador. 2009

Transcript of “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA...

Page 1: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

1

“DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA EL HOTE L ZEUS”.

IRMA CRISTINA LÓPEZ PÉREZ. MARÍA GABRIELA OREJUELA TIAGUARO.

TESIS DE GRADO.

Previa la obtención del Título de: INGENIERO MECÁNICO.

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

FACULTAD DE MECÁNICA

ESCUELA DE INGENIERÍA MECÁNICA.

Riobamba – Ecuador.

2009

Page 2: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

2

Espoch Facultad de Mecánica

CERTIFICADO DE APROBACIÓN DE TESIS

CONSEJO DIRECTIVO Febrero, 27 del 2009

Yo recomiendo que la tesis preparada por:

IRMA CRITINA LÓPEZ PÉREZ

Titulada:

“DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA EL HOTE L ZEUS”.

Sea aceptada como parcial complementación de los requerimientos para el grado de:

INGENIERO MECÁNICO

f) ING. GEOVANNY NOVILLO A. Nosotros coincidimos con esta recomendación:

f) ING. RAMIRO VALENZUELA S.

f) ING. JORGE LEMA M.

f) ING. ANGEL TIERRA T.

Page 3: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

3

Espoch Facultad de Mecánica

CERTIFICADO DE EXAMINACIÓN DE TESIS

NOMBRE DEL ESTUDIANTE: IRMA CRISTINA LÓPEZ PÉREZ.

TÍTULO DE LA TESIS: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA

EL HOTEL ZEUS”

Fecha de Examinación: Febrero 27 del 2009.

RESULTADO DE LA EXAMINACIÓN:

COMITÉ DE EXAMINACIÓN APRUEBA NO APRUEBA FIRMA

ING. GEOVANNY NOVILLO A. ING. RAMIRO VALENZUELA S. ING. JORGE LEMA M. ING. ANGEL TIERRA T. * Más que un voto de no aprobación es razón suficiente para la falla total.

RECOMENDACIONES:

El Presidente del Tribunal quien certifica al Consejo Directivo que las condiciones de la defensa

se han cumplido.

f) Presidente del Tribunal

Page 4: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

4

Espoch

Facultad de Mecánica

CERTIFICADO DE APROBACIÓN DE TESIS

CONSEJO DIRECTIVO Febrero, 27 del 2009

Yo recomiendo que la tesis preparada por:

MARÍA GABRIELA OREJUELA TIAGUARO.

Titulada:

“DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA EL HOTE L ZEUS”.

Sea aceptada como parcial complementación de los requerimientos para el grado de:

INGENIERO MECÁNICO

f) ING. GEOVANNY NOVILLO A. Nosotros coincidimos con esta recomendación:

f) ING. RAMIRO VALENZUELA S. f) ING. JORGE LEMA M.

f) ING. ANGEL TIERRA T.

Page 5: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

5

Espoch Facultad de Mecánica

CERTIFICADO DE EXAMINACIÓN DE TESIS

NOMBRE DEL ESTUDIANTE: MARÍA GABRIELA OREJUELA TIAGUARO.

TÍTULO DE LA TESIS: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA

EL HOTEL ZEUS”

Fecha de Examinación: Febrero 27 del 2009.

RESULTADO DE LA EXAMINACIÓN:

COMITÉ DE EXAMINACIÓN APRUEBA NO APRUEBA

FIRMA

ING. GEOVANNY NOVILLO A. ING. RAMIRO VALENZUELA S. ING. JORGE LEMA M. ING. ANGEL TIERRA T. * Más que un voto de no aprobación es razón suficiente para la falla total.

RECOMENDACIONES:

El Presidente del Tribunal quien certifica al Consejo Directivo que las condiciones de la defensa

se han cumplido.

f) Presidente del Tribunal

Page 6: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

6

DERECHOS DE AUTORÍA

El trabajo de grado que presentamos, es original y basado en el proceso de investigación y/o

adaptación tecnológica establecido en la Facultad de Mecánica de la Escuela Superior

Politécnica de Chimborazo. En tal virtud, los fundamentos teóricos - científicos y los resultados

son de exclusiva responsabilidad de los autores. El patrimonio intelectual le pertenece a la

Escuela Superior Politécnica de Chimborazo.

f) Irma Cristina López Pérez. f) María Gabriela Orejuela Tiaguaro.

Page 7: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

7

AGRADECIMIENTO.

El más sincero agradecimiento a la Escuela Superior Politécnica de Chimborazo, en

especial a la Escuela de Ingeniería Mecánica, por brindarnos la oportunidad de obtener una

profesión y ser personas útiles a la sociedad.

Y en especial para todos nuestros familiares, amigos, compañeros y personas que nos

apoyaron de una u otra manera para culminar con éxito una etapa de nuestras vidas.

I.C.L.P.

M.G.O.T.

Page 8: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

8

DEDICATORIA.

Dedico todo este trabajo a mi hija Carly Noemi

Rosero, mis padres porque fue por su apoyo que he

logrado terminar una meta más de mi vida.

I.C.L.P.

A mis padres por sus enseñanzas valerosas y sabias

que han germinado en mi interior.

A mis hermanos y hermanas por su motivación para

salir adelante a pesar de las circunstancias que nos

ha dado la vida.

A Maru por ser esa luz en el camino.

A los amigos gracias por su compañía.

M.G.O.T.

Page 9: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

9

Sumario.

La necesidad de implementar un sistema para climatización en el “Hotel Zeus” se convierte

en una prioridad, debido a las condiciones climatológìcas que tiene la ciudad de Riobamba

considerada como una de la ciudades más frías del Ecuador, llegando a existir temperaturas

medias anuales oscilantes entre los 10 ºC con humedades relativas del 99%.

En el Ecuador la falta de Normas y fundamentos para la implementación de sistemas por

climatización, nos hace recurrir a normas internacionales tales como ASHRAE (Asociación

Americana de Aire Acondicionado y Refrigeración), SMACNA (Sheet Metal and Air

Conditioning Contractors National Association) y RITE (Reglamento de instalaciones

térmicas en los edificios).

Existien tres alternativas de instalación, sistemas de climatización por aire, agua y

refrigerante variable, con el estudio realizado se llegó a determinar que el sistema de

climatización por agua es el más óptimo para nuestra tesis, debido a su costo económico,

consumo energético y mantenimiento en las instalaciones. El “Hotel ZEUS” tiene entre sus

servicios un restaurante, en donde es necesario el implementar un sistema de ventilación

mecánica, debido a que las temperaturas en sus interiores pueden oscilar entre los 25 y 28 0C.

El “Hotel ZEUS”, con la implementación del sistema para climatización por agua, se verá

beneficiado, ya que estará entregando a sus usuarios tanto nacionales como extranjeros, dos

de las necesidades más importantes de un huésped, confort humano y calidad de servicio.

Page 10: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

10

Summary

The need of implementing an air conditioning system in the Zeus Hotel becomes a priority

due to the climate conditions of Riobamba city, considered to be one of the coldest cities of

Ecuador with yearly temperatures of 10ºC and 99% relative humidity.

In Ecuador the lack of norms and fundamental for the implementation of air conditioning

systems make us turn to international norm such as ASHRAE (American Association of Air

Conditioning and Refrigeration), SMACNA (Sheet Metal and Air Conditioning Contractors

National Association) y RITE (Regulations of Technical Installations in Buildings).

There are three installation alternatives, air, water and variable refrigerant flow air

conditioning systems. With the study, it was possible to determine that the water air

conditioning is the optimum one for our research, due to its cost, energy consumption and

installation maintenance.

The Zeus Hotel has a restaurant service where it is necessary to implement mechanic

refrigeration due to the fact that the internal temperatures range from 25 to 28 º C. The Zeus

Hotel, with the implementation of a water air conditioning system will benefit, as it will meet

two of the most important needs of national or foreign host human comfort and service

quality.

Page 11: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

11

CAPÍTULO. PÁGINA

1. GENERALIDADES.

1.1 Antecedentes…………………………………………………………………………………………………………………………………………………………………………11.2 Justificación…………………………………………………………………………………………………………………………………………………………………..21.3 Objetivo1.3.1 Objetivo general……………………………………………………………………………………………………………………………………………………………………..21.3.2 Objetivos específicos………………………………………………………………………………………………………………………………………………2

2. MARCO TEÓRICO.

2.1 Sistema de climatización……………………………………………………………………………………………………………………………………………………………32.2 Sistema de calefacción por agua…………………………………………………………………………………………………………………………………………32.2.1 Sistema de distribución por agua………………………………………………………………………………………………………………………………………62.2.2 Retorno directos e inversos en sistemas bitubulares…………………………………………………………………………………………………………92.2.3 Componentes básicos de las instalaciones de calefacción por radiadores………………………………………………………………………….112.3 Sistemas de calefacción por aire…………………………………………………………………………………………………………………………………………………………………….202.3.1 Condiciones de diseño…………………………………………………………………………………………………………………………………………………………………….212.3.2 Pérdida de calor en ductos…………………………………………………………………………………………………………………………………………………………………….242.3.3 Caudal de aire tratado…………………………………………………………………………………………………………………………………………………………………….242.3.4 Distribución de aire…………………………………………………………………………………………………………………………………………………………………….262.3.5 Equipos y elementos…………………………………………………………………………………………………………………………………………………………………….282.4 Sistema de caudal de refrigerante variable………………………………………………………………………………………………………….33

3. DISEÑO DE LOS SISTEMAS DE CALEFACCIÓN.

3.1 Cálculo de la carga térmica…………………………………………………………………………………………………………………………………………………………………….393.1.1 Habitaciones……………………………………………………………………………………………………………………………………………………………………393.1.2 Recepción……………………………………………………………………………………………………………………………………………………………………443.1.3 Restaurante…………………………………………………………………………………………………………………………………………………………………….443.1.4 Cocina…………………………………………………………………………………………………………………………………………………………………….513.2 Diseño de la tuberías (Utilización del software)……………………………………………………………………………………………………………………………………………………………………563.2.1 Diseño de los circuitos…………………………………………………………………………………………………………………………………………………………………….563.2.2 Cálculo de las tuberías…………………………………………………………………………………………………………………………………………………………………….613.2.3 Pérdidas de carga…………………………………………………………………………………………………………………………………………………………………….633.2.4 Cálculo de la bomba de circulación…………………………………………………………………………………………………………………………………………………………………….663.2.5 Pérdidas de calor por tuberías…………………………………………………………………………………………………………………………………………………………………….663.2.6 Potencia de la caldera…………………………………………………………………………………………………………………………………………………………………….683.2.7 Calculo de la chimenea…………………………………………………………………………………………………………………………………………………………………….71

TABLA DE CONTENIDO.

Page 12: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

12

3.2.8 Consumo anual de combustible…………………………………………………………………………………………………………………………………………………………………….723.3 Diseño de ductos (Utilización de software)…………………………………………………………………………………………………………………………………………………………………….743.4 Selección de equipos y elementos…………………………………………………………………………………………………………………………………………………………………….843.4.1 Sistema de calefacción por aire…………………………………………………………………………………………………………………………………………………………………….843.4.2 Sistema de calefacción por agua…………………………………………………………………………………………………………………………………………………………………….933.4.3 Restaurante…………………………………………………………………………………………………………………………………………………………………….943.4.4 Cocina…………………………………………………………………………………………………………………………………………………………………….98

4. COMPARACIÓN ECONÓMICA EN LOS SISTEMAS DE CALEFA CCIÓN.

4.1 Generalidades……………………………...…………………………………………………………………………………………………………994.2 Valoración de los sistemas de calefacción……………………………………………………………………………………………………………………………………………………………………………..…….1004.2.1 Costo de materiales………………………………………………………………………………………..……………………………………1004.2.2 Costo de mano de obra………………………………………………………………………………...……………………………………………………………………………1024.2.3 Costo de equipo y herramientas………………………………………………………………………………...……………………………………………………………………………1034.2.4 Costos indirectos…………………………………………………………………………………………………………………………………………………….1034.2.5 Costo total del proyecto…………………………………………………………………………………………………..1034.3 Alternativa económica final…………………………………………………………………………………………………………………………………………………………………….1104.4 Mantenimiento en las instalaciones…………………………...………………………………………………………………………………112

5. CONCLUSIONES Y RECOMENDACIONES.

5.1 Conclusiones…………………………………………………………………………………………………………………………………………………………………….114

5.2 Recomendaciones…………………………………………………………………………………………………………………………………………………………………….116

Referencias bibliográficas.BibliografíaAnexosPlanos

Page 13: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

13

TABLA PÁGINA

1 122 133 224 415 446 457 478 599 6010 6111 6112 6313 6314 6315 6416 6417 6518 6519 6620 6721 6822 6823 6924 7025 7026 7027 7228 7329 7530 7531 7532 7633 7734 7835 7936 7937 8038 8039 8140 8141 82

LISTA DE TABLAS

Poder calorífico……………………………….……………………………...………………………….Sistema y tipo de combustible en hoteles…………………………………………………………………..Resumen de datos técnicos, ecuaciones y referencias para calcular cargas de proyectos para Áreas para pared sur, este y oeste…………………………………….…………………………..…...…Resumen de cálculos. ………………………………………………..…………………………..………Influencia en la temperatura y altitud en ventiladores……………………………………………...………Equivalencia de ductos circulares a rectangulares para igual fricción y Resumen de carga calorífica por agua…………………………………………………………………….Resumen de carga térmica generada por radiadores………………………………………………………Número de elementos en los radiadores del 1º al 5º y 6º Demanda calorífica necesaria para las habitaciones del 1º al 6º Diámetros de tuberías para Caldera a D-E………………………………………………………………Diámetros de tuberías para E -RAD8 (Sexto Diámetros de tuberías para E -RAD8 (primer a quinto Pérdidas por accesorios, Caldera a D-E………………………………….………………...…….………..Pérdidas por accesorios, E - Rad8 (sexto piso)………………………….…..………………….…………Pérdidas por tuberías, Caldera a D-E…………………………………....………………………….…….Pérdidas por tuberías, E a Rad8 (sexto piso)…………………………….……………..………….………Pérdidas de carga en la bomba…………………………………………...……………………….………Pérdidas de calor por tuberías ida……………………………………………………………………….Pérdidas de calor por tuberías retorno……………………………………...……………………………Potencia de la caldera……………………………………………….……………………………………Volumen radiador………………………………………………………………………..……………….Volumen de tubería Caldera a E……………………………………………………..……………………Volumen de tubería E a rad8 (6º piso)…………………………………………………...………………..Volumen de tubería E a rad8 (1º al 5ºpiso)…………………………………………..……………………Cálculo de la chimenea…………………………………………………………….……………………..Cálculo de la capacidad anual……………………………………………………….……………………Secciones………………………………………………………………………...………………………Accesorios………………………………………………………………………….……………………Volumen de impulso………………………………………………………………...……………………Equivalencia de ductos circulares a rectangulares para igual fricción y

Accesorios………………………………………………………………………………………………

Presión estática en nodos…………………………………………………………………………...…….Presión estática de recuperación……………………………………………………………………...…..Presión estática disponible………………………………………………………………………………..Presión estática total………………………………………………………………………………...……

Presión estática accesorios…………………………………………………………………………..……

Comprobación del Sp del difusor…………………………………………………………………..…….Presión estática por ducto flexible…………………………………………………………………...……Secciones………………………………………………………………………………………………..

Page 14: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

14

42 8243 8444 8445 11046 11147 112

Resumen de presupuestos……………………………………………………………………………….RITE Mantenimiento de instalaciones…………………………………………………………...……….

Volumen de retorno……………………………………………………………………………….…….Presión estática accesorios…………………………………………………………………………..…..Ductos secundarios quinto piso…………………………………………………………………………..Resumen de consumo eléctrico…………………………………………………………………………..

Page 15: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

15

FIGURA

1 Alimentación superior circulación natural……………………………………………………………………………………..42 Alimentación superior …………………………………………………………………………………………73 Alimentación inferior ……………………………………………………………………………………………………..84 Circuito monotubular…………………………………………………………………………………………………………………………85 Emisores instalados en serie………………………………………………………………………………………………………………….96 Retorno directo……………………………………………………………………………………………………………………………107 Retorno invertido…………………………………………………………………………………………………………………………108 Opciones de entrada del agua al radiador…………………………………………………………109 Elementos de un sistema de climatización por agua……………………………………………………..………………. 1110 Caldera………………………………………………………………………………………………………1111 Quemador………………………………………………………………………………..………………………………….1212 Emisores o radiadores……………………………………………………………………………….1413 Transmisión de calor por radiadores…………………………………………………………………………………………………1414 Vaso de expansión abierto………………………..…………………………………………………………………………….1615 Vaso de expansión cerrado…………………………………….………………………………………………………………1616 Bomba de circulación y vaso de expansión abierto…………………………………………………………………………………………1717 Purgadores manuales……………………………………………………………………………………………………1818 Llaves de reglaje……………………………………………………………………………………………1819 Detentores……………………………………………………………………………………………………………….1920 Distribución descendente………………………………………………………………………………………………………………………………2721 Elementos de un sistema de climatización por aire………………………………………………..2822 Tipos de filtros………………………………………………………………………………………………………………………………………………….2923 Tipos de rejillas……………………………………………………………………………………………………………………………3024 Tipos de difusores…………………………………………………………………………………………………………………………3125 Conductos……………………………………………………………………………………………………………………………………3126 Dámper………………………………………………………………………………………………………………………………………….3227 Dámper fire……………………………………………………………………………………………………………………………….3228 Ventiladores …………………………………………………………………………………………………………………………………..3229 Ventilador tubular axial en línea………………………………………………………………………………………………….3230 Ventilador centrífugo……………………………………………………………………………………………………………………3331 Sistema de caudal de refrigerante variable……………………………………………………………………3332 Bombas de calor………………………………………………………………………………………………………3533 Ciclos de calefacción y refrigeración……………………………………………………………….3734 Esquematización de los ciclos frío y calor……………………………………………………………………………………….3735 Operación del controlador BC…………………………………………………………………………………..3836 Ubicación de los dormitorios……………………………………………………………………..3937 Ubicación del equipo en el restaurante……………………………………………………………………..4638 Velocidad del aire atendiendo al ruido. Bocas de impulsión………………………………………………………………..4639 Coeficiente n de entrada………………………………………………………………………………………………………………………4840 Velocidades recomendadas y máximas en ductos para uso industrial…………………………………………………………4841 Extracción en el restaurante………………………………………………………………………………………49

PÁGINA

LISTA DE FIGURAS

Page 16: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

16

42 Velocidad del aire - bocas de captación………………………………………………………………………..4943 Pérdidas en el sombrero……………………………………………………………………………………………………………………………5144 Ubicación del extractor en la cocina…………………………………………………………………………………….5245 Temperatura de entrada y salida en los radiadores……………………………………………….………….5846 Zonas en las que se genera la carga calorífica por agua………………………………………5947 Esquema de la instalación por agua……………………………………………………………………………….6248 Esquema de la distribución de ductos………………………………………………………………………………….7449 Niveles sonoros……………………………………………………………………………………………….86

Page 17: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

17

LISTA DE SÍMBOLOS

q Calor. U Coeficiente de transferencia de calor total. A Área. TD Diferencia de temperatura. F2 Coeficiente de pérdida de calor de una construcción con suelo de

loseta. P Perímetro de la planta. V Volumen del aire exterior que entra en el edificio. ∆W Diferencia de valores de humedad absoluta. Pe Peso específico. T Temperatura p Presión atmosférica Ve Volumen específico. D Densidad del aire. Ce Calor específico del aire. hfg Calor latente del vapor. Tsb Temperatura de bulbo seco del local. Ti Temperatura de impulso. η Coeficiente de confort. ºC Grados Centígrados. ºF Grados Fahrenheit. F Coeficiente debido a la influencia de la altitud. Q Caudal. D Diámetro. Vr Velocidad real en el ducto. Vp Velocidad dinámica. L Longitud del ducto. K Pérdida de fricción por ducto. ft Factor total de pérdida. Sp Presión estática del ducto. R Factor de corrección por fricción. Vd Velocidad mínima de transporte. ma Masa del aire. lba Libras de aire. δx Densidad del aire a x msnm. mv Masa de vapor. lbv Libras de vapor. dfe Factor de corrección por elevación. dft Factor de corrección por temperatura. dfm Factor de corrección por contenido de humedad. df Factor de corrección total. Vact Volumen actual. Te Temperatura de entrada. Ts Temperatura de salida. Ta Temperatura de diseño. Tr Temperatura media. ∆t Salto térmico. C Carga térmica.

Page 18: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

18

h Pérdidas secundarias o por accesorios. k Coeficiente de pérdida. g Aceleración de la gravedad. ∆Pcal Pérdida en la caldera. ∆p Pérdida de carga. Htotal Altura total de la bomba. hagua Coeficiente de transferencia de calor por convección del agua. haire Coeficiente de transferencia de calor por convección del agua. Vexp pm

Volumen de un depósito de expansión. Presión absoluta.

S Sección de la chimenea. PCI Poder calorífico inferior. Co Coeficiente de pérdidas en accesorios. f Factor de fricción. φ Diámetro. H Altura W Ancho.

Page 19: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

19

LISTA DE ABREVIATURAS. ABREVIATURA ASHRAE Asociación Americana de Aire Acondicionado y Refrigeración. SMACNA Asociación Nacional de Contratistas de Aire Acondicionado y

Planchas metálicas. RITE Reglamento de Instalaciones Térmicas en Edificios.

Page 20: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

20

LISTA DE ANEXOS.

Anexo 1: Coeficiente total de transferencia de calor para techos.

Anexo 2: Coeficiente total de transferencia de calor para paredes.

Anexo 3: Coeficiente total de transferencia de calor para cristales.

Anexo 4: Velocidad requerida por persona.

Anexo 5: Carta psicométrica.

Anexo 6: Factor de corrección por fricción de acuerdo al material.

Anexo 7: Nomograma de pérdida de carga.

Anexo 8: Factor de fricción en ductos rectangulares.

Anexo 9: Velocidades recomendadas para ductos.

Anexo 10: Coeficiente de pérdida de carga (Co).

Anexo 11: Factor de fricción en ductos flexibles.

Anexo 12: Operación de mantenimiento para potencias mayores y menores 70

Kw.

Anexo 13: Resumen de cálculos.

Anexo 14: Cotización según SEINGPROAÑO cía. Ltda.

Anexo 15: Catálogos del equipo seleccionado.

Page 21: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

21

CAPÍTULO 1

1.1 ANTECEDENTES.

En una ciudad como Riobamba parecería innecesario aplicar un sistema de calefacción, pero

debido a la construcción de los edificios sus interiores llegan a tener temperaturas bajas.

Riobamba se encuentra a una altitud de 2750m, siendo este influenciado por hermosos

nevados, se llegan a obtener una temperatura media anual que oscila entre los 10 y 18 0C, la

temperatura promedio máxima puede llegar a variar entre 22 y 32 0C, siendo esto necesario en

algunos espacios físicos utilizar sistemas de climatización, estos lugares pueden ser hoteles,

hospitales, auditorios, oficina, bancos, edificios, etc.

A más de las temperaturas que se tiene, un aspecto importante es la carga térmica que influye

en el edificio, la transmisión calorífica generada por las paredes, techos, ventanas, puertas,

ventilación e infiltración permite el cálculo del volumen de aire a impulsar, añadiendo la

presión estática se seleccionará el equipo adecuado.

Los servicios hoteleros deben contemplar la necesidad de mantener ambientes de confort

humano especialmente para turistas que provienen de lugares más cálidos.

En algunos casos donde se utiliza equipos de climatización con energía eléctrica, el consumo

es alto, por lo que la necesidad de ahorro impulsa a buscar otras alternativas para de esta

forma aportar con el “Plan Nacional de Eficiencia Energética”.

El Hotel Zeus en su desarrollo busca implementar un ambiente de confort paras sus huéspedes

razón por la cual se ha visto en la necesidad de realizar un estudio de climatización.

Consta de 48 habitaciones clasificadas en: Standard, Lujo y Suites con hidromasaje, un

amplio restaurante y parqueadero privado.

En su decoración resaltan los objetos culturales propios de nuestro medio, a tal punto, que el

Hotel luce como un pequeño museo Etno-Antropológico. Su gastronomía es fresca y

deliciosa. Su personal es amable, gentil y servicial.

Page 22: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

22

1.2 JUSTIFICACIÓN.

Este análisis busca optimizar el funcionamiento del Hotel “Zeus”, con la finalidad de mejorar

la calidad de servicio, así como el de brindar un mejor servicio tanto a huéspedes nacionales

como extranjeros.

Esta clase de estudios nos permite agilitar el desarrollo de proyectos en beneficio de nuestra

sociedad. Empleando de esta manera mano de obra especializada, generando fuentes de

trabajo sin descuidar el medio ambiente.

En nuestro país la competencia profesional nos lleva a buscar otros medios que nos permita

abrir las puertas de la industria uno de ellos es la utilización de programas computarizados

que nos ayuden a simplificar los cálculos, con los debidos conocimientos previos de la

ingeniería así poder garantizar el trabajo.

1.3 OBJETIVO.

1.3.1 Objetivo General.

Diseñar un Sistema de Climatización para el confort humano, en el Hotel “Zeus” de la ciudad

de Riobamba.

1.3.2 Objetivos Específicos.

1. Analizar los sistemas de climatización.

2. Diseñar los sistemas de climatización utilizando el software Autodesk Building Systems.

3. Seleccionar el equipo y los elementos adecuado para los sistemas.

4. Comparar económicamente los sistemas de climatización

Page 23: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

23

CAPÍTULO II .

MARCO TEÓRICO.

2.1 SISTEMAS DE CLIMATIZACIÓN.

Los sistemas que se citan a continuación son llamados Centrales debido a que generan calor

en un lugar del edificio sala de caldera o sala de máquinas y luego se conduce a los distintos

ambientes, significa pues que la provisión de calor es simultánea.

El sistema central, cuya potencia resulta de los valores de un balance térmico bien calculado,

puede funcionar en régimen discontinuo o intermitente, dicho de otra manera en ciertas horas

del día. No requiere que un ambiente intercambie calor con otro vecino, para lograr uniformar

sus temperaturas, pues cada uno de ellos recibe la cantidad exacta de cálculo aunque también

lo admite si así se desea.

Los sistemas de climatización se clasifican en dos tipos importantes dependiendo del fluido

para el transporte del calor, los mismos que se detallan a continuación: Calefacción por agua caliente

Natural (o por termosifón)

Forzada (fuerza la circulación con bomba)

Calefacción por aire caliente

Natural (diferencia de densidad)

Forzado (empleando turboventilador)

Acondicionado

2.2 SISTEMA DE CALEFACCIÒN POR AGUA. Las instalaciones de calefacción por agua caliente son las que permiten brindar el confort

necesario para el desarrollo de actividades humanas. Nada más natural y sano que el agua

para dar el calor necesario a cada ambiente de la casa, de acuerdo a las necesidades,

sensibilidades y estilo de vida de la familia. El sistema de calefacción por agua consta de una

caldera y radiadores en forma general.

Las instalaciones de calefacción por agua caliente, básicamente están divididas en dos tipos

de circulación, natural y forzado que a continuación se detallan:

Page 24: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

24

A.- Circulación natural. Conocida también como calefacción por radiadores, se compone de los siguientes elementos,

fuente generadora de calor o caldera, cañerías, radiadores, vaso de expansión y accesorios.

El agua a emplear aquí debe ser tratada a fin de reducir su porcentaje de sales, son

recomendables y totalmente justificadas si se desea una larga vida para la instalación.

Características de la instalación en Circulación Natural. • Es de funcionamiento silencioso.

• La temperatura del agua alcanza 80-90°C en alimentación caldera a radiadores y 60- 70°C

en retorno radiadores a caldera. El caldeo es entonces suave y progresivo, quizá un poco

lento, pero ello implica una gran inercia térmica.

• Se alcanza una velocidad no mayor de 0.30m/s.

• La instalación supone siempre una inversión grande para los usuarios, y también su

mantenimiento cuesta. Es obvio entonces que debe guardar una relación con el tipo

constructivo por un lado y con las posibilidades económicas del propietario por la otra.

• Con combustibles líquidos o con gas y quemador, se puede automatizar la instalación con

el auxilio de controles termostáticos que accionan sobre el motor del quemador, el que

puede interrumpir su marcha.

No debe culparse del elevado costo de funcionamiento al sistema, en aquellos casos en que la

“transparencia”, como factor de diseño, obliga a remediar con calor de calefacción las

enormes pérdidas de calor que ocasionan los vidrios no debe olvidarse, que abaratar costos

para lograr confort es posible, pero para ello hay que acondicionar en forma natural

previamente.

C Caldera R Radiadores V.E Vaso de expansión. Línea de alimentación: trazo lleno.

Línea de retorno: trazo punteado

Figura 1: Alimentación superior circulación natural.

Page 25: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

25

B.- Circulación forzado. Significa en términos generales, producir la circulación del agua con el auxilio de una bomba,

fuente generadora de calor o caldera, cañerías, radiadores, vaso de expansión y accesorios.

Varias son las razones que existen para adoptarlo:

1. Edificios grandes (altos o extendidos), para los cuales las tuberías alcanzan mucha

longitud.

2. Edificios con circuitos muy sinuosos, que representan grandes pérdidas de carga.

3. Imposibilidad de utilizar los otros sistemas, debido a la circunstancia de no poder

adaptarlos a los recorridos y pendientes.

4. Errores en la ejecución de la instalación por termosifón o circulación natural, que altera su

funcionamiento como las contra pendientes en líneas de alimentación.

La circulación forzada va ganando terreno día a día, debido a dos razones:

a) Perfeccionamiento de las bombas de circulación, más pequeñas, silenciosas y seguras,

además, muy económicas.

b) Simplicidad del trazado de los circuitos sin pendientes y su colocación en espacios más

reducidos, sobre todo en viviendas, donde el menor diámetro de las cañerías, se suma el

hecho de desaparecer la caldera tradicional y su sala.

Los sistemas de circulación forzada para casas de familia, han adquirido difusión con motivo

del perfeccionamiento de las fuentes generadoras de calor.

Hoy en día, el mercado ofrece calderas de pie, calefones, etc., que emplean combustibles

gaseosos y que además de probada calidad y funcionamiento, suman su buen aspecto estético

y reducido tamaño.

Como aporte realmente interesante, cabe señalar que no requieren locales especiales para ir

ubicados, ni tampoco desniveles respecto de los pisos

Características de la instalación Sistema Forzado. • Al disponer de una bomba para mover el agua, la presión que es conocida como

manométrica, resulta con valores muy grandes comparándola con la de termosifón y

consecuencia de ello es que se acelera la circulación, con lo que el fluido alcanza hasta

una velocidad de 1,5 m/seg. (Valor que no conviene sobrepasar).

• El salto térmico en radiadores es pues menor, oscilando entre 5 y 10°C. El sistema

provocará en general un calentamiento rápido, tanto del aire como mobiliario, paredes,

techos, etc.

Page 26: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

26

• La detención de la marcha de la bomba, supone la detención de la circulación.

Ventajas y desventajas del sistema natural y forzado.

1. Si existen límites, podemos decir que ellos son los impuestos por la misma instalación, es

decir por problemas de orden técnico (limitaciones propias).

2. En calefacción por agua caliente natural las presiones originadas por tales sistemas son

pequeñas, luego el agua podrá alcanzar alturas equivalentes a cuatro o cinco plantas altas

como máximo.

3. Si nuestro diseño se refiere a un edificio de 10 plantas altas, el fluido no podrá circular en

forma conveniente. Habrá que recurrir a forzar la circulación y de este modo cambiar a

circulación forzado. El criterio se debe extender de la misma manera, si se trata de plantas

superficialmente grandes.

4. Utilizar calefacción por agua caliente natural, en viviendas de una o dos plantas; hoteles

de tamaño mediano, casas de departamentos y oficinas, pero con limitación de altura

cuatro o cinco plantas altas y con superficie en planta también limitada.

5. Utilizar calefacción por agua caliente forzada en casas de departamentos, edificios para

oficinas y hoteles y similares con alturas entre cinco y diez plantas altas, escuelas en

plantas bajas, o planta baja y alta, que cubren mucha superficie horizontal.

2.2.1 SISTEMAS DE DISTRIBUCIÓN POR AGUA.

Los circuitos, sin perjuicio de sus propias particularidades, se encuadran dentro de los

sistemas siguientes:

a) Bitubular alimentación superior:

b) Bitubular Alimentación inferior.

c) Monotubular Alimentación superior.

d) Monotubular: alimentación inferior.

Se dice superior o inferior, según que el agua más caliente o de alimentación, se distribuya a

los radiadores desde las partes altas de los edificios o desde las bajas. La parte más alta podrá

ser una azotea y la mas baja la sala de caldera.

Se dice bitubular o monotubular, según que el agua de alimentación y de retorno, circulen por

distintas tuberías o por la misma.

Page 27: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

27

a) Bitubular: alimentación superior.

� Su funcionamiento es seguro, ya que el agua caliente tiene siempre libre el camino

para llegar al punto más alto; luego bajará alimentando los radiadores.

� Este diseño exige poder ganar altura con la alimentación sin inconvenientes, en lo

posible no quebrando la verticalidad de la tubería, montante o columna.

� Se estima que esta solución es adecuada para edificios de hasta tres plantas altas. Si

hay simetría en la planta arquitectónica, mejor para la instalación, ya que el centro

“geográfico” que es la caldera, puede coincidir con el centro geométrico.

� Como se aprecia en la Fig. 1, parte de cañería va por tierra y, consecuentemente, se

debe proteger, lo que se hace con albañiles de mampostería (cajas de ladrillos,

cerradas y revocadas interiormente para impermeabilizarlas y en cuyo centro las

cañerías van suspendidas).

� Menos las verticales, todas las tuberías llevarán pendientes de modo de ascender en el

sentido de la circulación del agua de caldera a radiadores, y descender desde aquellos

a la caldera. Tal criterio es válido para todos los circuitos en estudio.

� La Fig., 1 muestra también la ventaja que para este sistema es disponer espacio en

entretechos, donde se ubicará el vaso de expansión y se derivarán los ramales que

bajan a las columnas, todo ello sin mayor riesgo de heladas o fríos que obligarían a

buscar protecciones adecuadas.

� Se presenta un caso interesante de aplicación del sistema bitubular alimentación

superior Fig. 2, en casos de planta baja donde por causas muy conocidas, no se puede

desnivelar la caldera o bajarla, condición indispensable para otros sistemas.

Figura 2: Alimentación Superior.

Page 28: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

28

b) Bitubular: alimentación inferior

Figura 3: Alimentación inferior

• Sistema muy difundido en viviendas de plantas baja y alta, debido a su mayor flexibilidad.

• En la Fig. 3, el vaso de expansión se conecta desde abajo, a partir del quiebre de la salida

de alimentación y con tubería de pequeño diámetro.

• Todas las cañerías por tierra serán protegidas, así como el vaso de expansión que queda al

exterior y consecuentemente podría llegar a congelarse (ídem para sus accesorios).

c) Monotubular alimentación superior

Figura 4: Circuito monotubular.

• Este sistema es aplicable a edificios como los del caso Bitubular alimentación superior o

un poco más grandes, sin exceder las condiciones generales expuestas en la introducción.

• Sin embargo, existe una diferencia cierta y es la economía que el empleo de una sola

tubería significa.

Page 29: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

29

• Por otra parte, cabe señalar que este cálculo debe ser mucho más minucioso. Como la

circulación del agua, por último es de arriba hacia abajo, los radiadores de los pisos altos

reciben más calor que los bajos (a los que el agua llega mezclada), y que en consecuencia

deben ser de tamaño mayor para compensar el déficit (tamaño mayor a igualdad de

requerimientos calóricos). Para mayor aclaración ver en la Fig. 4 el recorrido del agua.

• Este es un sistema de instalación en los que los emisores están instalados en serie, es

decir, que el retorno del primer radiador hace de ida del segundo, a su vez el segundo hace

de ida del tercero, y así sucesivamente hasta volver a la caldera. Este tipo de circuito

recibe el nombre de anillo.

Como muestra la siguiente Fig. 5, el agua entra por A, una parte de esta agua se distribuirá

por todo el emisor, mientras que el resto irá directamente al retorno B, mezclándose con el

agua de salida del emisor A.

Figura 5: Emisores instalados en serie

2.2.2 RETORNOS DIRECTOS E INVERSOS EN LOS SISTEMAS BITUBULARES.

Características retorno directo.- Los recorridos de los tubos de ida más de retorno son

similares para todos los radiadores. Ello simplifica los cálculos y regulación. Notar que ida y

retorno van en el mismo sentido.

En retorno directo Fig. 6, el tubo de retorno parte del radiador más alejado y va recogiendo el

agua de los diferentes radiadores hasta devolverla a la caldera. El recorrido del agua es menor

para los radiadores más cercanos, por lo que su pérdida de carga es menor y existe la

necesidad de regular el caudal de manera adecuada.

Page 30: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

30

Figura 6: Retorno directo.

Características retorno inverso. - La suma de los recorridos de los tubos de ida más retorno

son diferentes para cada radiador. Ello complica los cálculos y regulación. Notar que ida y

retorno van en sentidos contrarios.

Con el retorno invertido Fig. 7, el tubo de retorno parte del radiador más cercano a la caldera

y siguiendo el sentido de la alimentación llega hasta caldera. Los recorridos a cada radiador

son similares en longitud por lo que no requieren una regulación de caudal.

Figura 7: Retorno invertido.

La entrada del agua del radiador siempre debe efectuarse por la parte superior y la salida por

la inferior, con las dos soluciones de la Fig. 8. Cuando la longitud del radiador supera los 25

elementos es conveniente adoptar la solución de la izquierda para que el radiador no pierda

potencia.

Figura 8: Opciones de entrada del agua al radiador.

Page 31: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

31

2.2.3 COMPONENTES BÁSICOS DE LAS INSTALACIONES DE CALEFACCIÓN

POR RADIADORES.

Figura 9: Elementos de un sistema de climatización por agua.

� Calderas.

Figura 10: Caldera.

Son los elementos encargados de generar el calor, se fabrican para todo tipo de combustibles:

sólidos (carbón o leña) líquidos (gasóleo) y gaseoso (propano, gas natural). Existen asimismo

las llamadas calderas "poli-combustibles" que, mediante la incorporación de los equipos

adecuados, pueden utilizar combustibles alternativos.

Las más usadas son las de gas y gasóleo, y se clasifican en función de sus potencias

caloríficas expresadas en Kcal. /hora.

Page 32: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

32

Tabla 1: Poder calorífico

Muchas veces se expiden formando KITS con sus complementos fundamentales, como son

quemador, circulador, depósito de expansión y cuadro de control.

La misma caldera, en general, se utiliza para los servicios combinados de calefacción y ACS

de los edificios. � Quemadores.

Figura 11: Quemador.

Los quemadores se clasifican inicialmente por el combustible a utilizar. En nuestras latitudes

los más usados son los de gasoil. Pueden ser de una llama ó etapa, de dos etapas o, por último

modulantes (con potencias escalonadas, conforme a la demanda). Estos últimos reducen

sobremanera las secuencias "encendido-paro" con el consiguiente ahorro energético.

Asimismo pueden estar preparados para trabajar bien con la cámara de combustión con

entradas de aire a depresión o bien hermética a sobre presión.

Para potencias pequeñas y medianas resulta usual que el quemador se suministre formando

bloque con la caldera, realizándose, entonces, la elección y acople en fábrica.

Quemadores para fluidos.-

Para que un quemador funcione hace falta que exista una pequeña llama o piloto

permanentemente encendida a la cual llega el combustible, convenientemente dosificado y

pulverizado, mezclado con el aire que proporciona un ventilador, produciéndose una potente

llama que se introduce en la cámara de combustión de la caldera a través de un cañón

adaptador. En los quemadores para fluidos líquidos hay que hacer que el fluido llegue a la

boquilla bien mediante la gravedad, o bien mediante una pequeña bomba incorporada al

cuerpo del quemador. En ambos casos debe dotarse el cuarto de calderas de un pequeño

depósito nodriza.

Los quemadores están automatizados: el circulador del circuito de calefacción excita el

funcionamiento de la microbomba de la que van provistos; asimismo mediante sondas, que

COMBUSTIBLE PODER CALORÍFICO DENSIDAD.

Gasóleo PCI =10200kcal/kg PCS =10400kcal/kg

0.85

Page 33: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

33

realizan lecturas térmicas en la instalación incluso en el exterior, se envía señales a una

centralilla que, por medio de electroválvulas, modula o cierra el paso del combustible, incluso

cuando no funciona el circulador. � Combustibles.

Las medidas a tomar en las instalaciones con combustibles líquidos son mucho menos

exigentes que las que utilizan gas, distancias de protección, conductos, ventilación etc., hasta

el punto que permite la ubicación dentro del edificio de depósitos de combustibles hasta un

total de 50.000 litros.

En la tabla 2 se presenta los diferentes tipos de combustibles que se utiliza en hoteles y

similares edifícios urbanos.

Tabla 2: Sistema y tipo de combustible en hoteles.

� Tuberías. Sirven para conducir el fluido caliente desde la caldera hasta los locales y retornarlo menos

caliente o más frío. Van ocultas en paredes o pisos.

Clases de tuberías.-

� Tuberías de hierro galvanizo.- son roscadas. No es de uso muy frecuente dado

las tensiones que se crean con las altas temperaturas en las soldaduras

longitudinales de los tubos.

� Tuberías de hierro negro roscadas.- Se utiliza en las instalaciones económicas,

con la precaución de recubrirlas exteriormente con pinturas anticorrosivos.

� Tuberías de cobre.- Cobre "crudo", rígido desoxidado con fósforo, con uniones

soldadas a accesorios siempre de cobre o latón. Muy utilizado, aunque el aumento

de la temperatura lo hace muy sensible a la corrosión, y el cobre puede ser

atacado por aguas amoniacales, aguas blandas (sin carbonatos), óxido cuproso,

etc.

� Tuberías de acero estirado.- Pueden unirse mediante soldaduras, o bien, hasta

Ø50 mm, mediante roscas. Solución ideal, aunque más caras. Los accesorios

pueden ser de acero, latón o bronce.

Calefacción gasóleo ACS centralizada gasóleo

ACS no centralizada termos eléctricos

Page 34: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

34

� Tuberías de materiales plásticos.- El polietileno reticular (PE-R ó PEX) es el

más empleado para instalaciones con agua desde 20ºC hasta 90 °C[1].

� Emisores.

Figura 12: Emisores o Radiadores.

Se denomina habitualmente emisor a todo elemento que emite o cede el calor del fluido que

de este modo pasa al ambiente (habitación o local). Los emisores más comunes son los

radiadores.

Los radiadores transmiten el calor mediante convección y radiación. Van colocados en

paredes, por fuera o en celdas practicadas a tal fin.

El calor es por una parte radiado por la superficie exterior del radiador y por otra el aire

caliente circula por toda la habitación (convección). El calor total, por lo tanto, es suma de

transmisión por radiación y convección

Figura 13: Transmisión de calor por radiadores.

La transmisión de calor por radiación sólo llega a los elementos más cercanos al radiador

mientras que la transmisión de calor por convección llega a los restantes elementos del local

gracias al movimiento de aire.

La efectividad de los radiadores es máxima para la mejor distribución del calor, cuando van

colocados bajo ventanas, ya que las corrientes de convección, contrarrestan las pérdidas más

importantes que se generan por los vidrios.

Los emisores más usados son los radiadores y los paneles. Los radiadores están constituidos

por elementos acoplables, cuyo número se determina según la potencia deseada.

Los elementos están compuestos por un corto tubo superior, otro inferior y por columnas que

los intercomunican. Los tubos tanto superior como inferior acaban en roscas hembras que

Page 35: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

35

sirven mediante manguitos machos, para acople de más elementos, o bien mediante

reducciones de "3/8 ó 1/2" para conectar con las tuberías de distribución y/o retorno. Los

orificios finales no utilizados se obturan mediante tapón "ad hoc".

Los radiadores deben separase 4cm, al menos, de las paredes y quedar levantados 10cm,

como mínimo, del suelo.

Los radiadores se construyen de fundición, chapa de acero y de aluminio.

� Vaso de expansión.

Ubicado en entretechos o sobre azoteas, su misión es absorber el aumento de volumen que el

agua experimenta al calentársela. Este pequeño tanque está en contacto con la atmósfera y

debe ser protegido contra las heladas.

El agua al calentarse se dilata aumentando su volumen, lo que podrá provocar una situación

peligrosa para la instalación.

Existen dos tipos de vasos de expansión: abiertos y cerrados. Vaso de Expansión Abierto. El circuito queda abierto al estar en contacto con el aire y por

lo tanto, el agua no puede superar los 95ºC, si no se corre el riesgo de que pueda empezar a

hervir.

Los vasos de expansión abiertos están cada vez más en desuso a favor de los cerrados. Las

razones son:

a) Dificultad de montaje frente a los cerrados, cuya instalación puede hacerse en la propia sala

de calderas.

b) Pérdidas de agua por evaporación, lo que favorece incrustaciones y corrosión por la cal y el

oxígeno disuelto en el agua de reposición.

c) Necesidad de aislamiento frente al peligro de heladas.

d) Necesidad de colocar largos conductos entre la caldera y el depósito, cuya altura habrá de

estar, necesariamente, por encima de los radiadores más altos.

En el caso de situar el V.E.A. entre el generador y la bomba, como es recomendable, la altura

mínima entre el punto más alto del circuito y el nivel mínimo del V.E.A. será de 0,5 m.

En el caso de estar conectado en la impulsión de la bomba esta diferencia habrá de ser como

mínimo igual a la altura manométrica de impulsión de la mencionada bomba.

Page 36: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

36

Figura 14: Vaso de expansión abierto.

Vaso de Expansión Cerrado.- cuando se coloca un vaso de expansión cerrado, se obtiene un

circuito que a su vez queda también cerrado y que será sometido a aumento de temperatura y

presión, por lo que obligatoriamente se colocará una válvula de seguridad y manómetro. Se

debe tener presente que para la instalación en vaso cerrado se cumplan los siguientes

aspectos:

• Colocar el vaso de expansión en el circuito de retorno, con el fin de evitar que la

temperatura del agua no llegue a los límites de trabajo de la membrana.

• Se colocará de modo que no se formen bolsas de aire.

• Evitar radiaciones cerca del vaso de expansión para proteger la membrana de posibles

excesos de temperatura.

• No deben colocarse en el conducto de enlace del vaso, llaves de paso o accesorios que

puedan interrumpirlo.

• Debe preverse el enlace del vaso de forma que no puedan crearse en éste bolsas de aire.

Con la instalación es imprescindible colocar una válvula de seguridad tarada según la presión

máxima de trabajo y un manómetro.

Figura 15: Vaso de expansión cerrado.

� Bomba de circulación. La bomba de circulación, debe situarse en el retorno de las cañerías, muy próxima a la caldera

o fuente de calor. Entre otras, la razón principal es que el agua que impulsa está allí más fría

que en el resto de la instalación. Para ampliar conceptos de la relación bomba-vaso de

expansión, se da el siguiente esquema que será analizado a continuación:

Page 37: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

37

Figura 16: Bomba de circulación y Vaso de expansión abierto.

Se trata de un sistema alimentación superior, bitubular, con el vaso de expansión abierto

conectado sobre la alimentación en la parte más alta fig. 15. A lo largo del tramo A-B la

bomba produce una sobre presión. En B hay una columna de agua de altura h que produce una

presión estática.

A lo largo de los tramos B-C-D-A, habrá entonces una depresión, ya que la bomba succiona

de esta parte. Si se considera un punto tal como H, un radiador conectado en tal lugar podría

disminuir su nivel de agua interior a causa de esa succión, y en tal caso ingresaría aire por la

llave, opuesta a la válvula de expurgue por la que sale aire cuando lo hay, y el agua lo

expulsa. Para evitar este inconveniente que podría perjudicar el funcionamiento del elemento,

se requiere una presión estática h1 suficientemente grande como para impedir la succión. En la

determinación de h1 juegan, por un lado la longitud B-H del circuito, y por el otro la situación

de las columnas intermedias B’A’ y B”A”, que pueden en algún momento estar aisladas del

funcionamiento del conjunto por ejemplo cerradas para reparaciones. � Purgadores de aire. La presencia de aire en los sistemas de calefacción por emisores constituye un problema

sobradamente conocido. Tales sistemas se llenan con agua corriente que, por definición

arrastran partículas de aire en suspensión, partículas que se van juntando con las de vapor de

agua que se originan con motivo de las altas temperaturas, formando así burbujas de

diferentes tamaños que ocasionan los siguientes efectos:

- Bolsas de aire que impiden la circulación del agua.

Page 38: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

38

- Ruidos.

- Disminución del rendimiento de la bomba, con posibilidad de daños en los rodetes por

cavitación.

- Disminución del rendimiento de las calderas.

- Corrosiones. Existen dos tipos de purgadores:

� Purgador automático.- Consiste en un pequeño vaso que tiene en su interior un

flotador que cierra o abre una válvula para la salida del aire. Todos los sistemas de

agua caliente, incluidos los de ACS, deben prolongar sus montantes y colocar en el

final un purgador.

� Purgador en emisores.- Los hay automáticos y manuales y se colocan en uno de los

tapones superiores de los emisores. Las recomendaciones para su colocación son las

siguientes:

- Instalación con anillo único, monotubular o bitubular (1 planta).- Colocar en

todos los emisores.

- Instalación con varios anillos mono tubulares (varias plantas).- Colocar en

todos los emisores.

- Instalación con varios anillos bitubulares (varias plantas).- Colocar en todos

los emisores de la última planta.

Figura 17: Purgadores manuales para emisores.

� Llaves de reglaje.

Figura 18: Llaves de reglaje.

Page 39: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

39

Llaves monogiro.

Dado que en los sistemas bitubulares son los más usados, la tubería de ida y la de retorno

quedan unidas periódicamente mediante los radiadores, deben equilibrarse las presiones de los

puntos de encuentro (entrada y salida) de los radiadores para que los caudales circulantes sean

los previstos en el cálculo para atender a los requerimientos caloríficos.

Primer reglaje.- Inicialmente se establece y fija la resistencia que debe aportar la llave de

entrada mediante una operación, giro de una placa sobre una base con numeración de 1 a 8.

Tal resistencia depende del caudal circulante y del número adoptado, tal como establece un

ábaco que suministra el fabricante.

Segundo reglaje.- El segundo reglaje corresponde al usuario, que en función de la

temperatura ambiente, cerrará o abrirá a su gusto la entrada de agua girando el volante que

rodea a la válvula. � Detentores.

Figura 19: Detentores.

Los detentores son unas llaves que se instalan a la salida de los emisores y que, en

combinación con la monogiro, de entrada, permite retirar el bloque emisor o panel sin

necesidad de vaciar el agua de la instalación. Asimismo puede completarse la regulación

primaria realizada en la llave monogiro, estando tabuladas las resistencias que aporta en

función del número de vueltas que se le da a la cabeza de giro, operación que se realiza

mediante herramienta de llave.

Page 40: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

40

2.3 SISTEMA DE CALEFACCIÓN POR AIRE.

Son los procesos relativos a la regulación de las condiciones ambientales con propósitos

industriales o para hacer más confortable el clima de las viviendas. La calefacción eleva la

temperatura en un espacio determinado, con respecto a la temperatura atmosférica, a un nivel

satisfactorio.

� Sistema de volumen de aire variable (VAV). Este sistema es utilizado con mucha comodidad en temporada de refrigeración pero para

temporada de calentamiento tiene que añadirse una variedad de equipos tales como batería de

calentamiento, radiadores, aleteados, etc., para aquellos espacios que se encuentran en

contacto con el exterior. Se puede añadir una batería de calentamiento a una caja de volumen

variable de aire (VAV). Este sistema también se lo puede utilizar en edificios de oficinas,

escuelas y grandes almacenes, que son los principales usuarios de este tipo de sistema. Unidad central.- consta de distribución con regulación de palas de entrada variable, control

de velocidad variable o reguladores de descarga, baterías de enfriamiento con refrigerante o

agua enfriada, filtros, baterías con vapor de agua o agua caliente para calentamiento de

arranque, ventilador de aire de retorno modulado por los controles para adaptarse a las

demandas del ventilador de distribución y una cámara impelente de aire de mezcla.

El ventilador de distribución se seleccionará de acuerdo con la carga calculada y presión

estática del sistema.

Para el diseño de un sistema VAV debemos tener en cuenta los siguientes puntos: Aire exterior mínimo .- hay que tener mucho cuidado con el caudal de aire del ventilador de

distribución, por lo que se recomienda mantener el mínimo caudal de aire exterior a través de

un conducto corto con un sensor. Presión estática del edificio.- En esta sección los sensores tienen una función muy

importante ya que deben tener una diferencia constante entre el aire de alimentación y de

retorno modulando los caudales de aire de retorno y de evacuación.

Movimiento de aire de habitación.- en este punto tenemos que seleccionar los difusores

adecuados para un buen rendimiento.

Page 41: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

41

Calefacción del edificio.- a pesar de todos lo aparatos eléctricos que producen calor estos no

son suficientes en las noches donde el lugar esta prácticamente desocupado tan solo el

contacto exterior nos reduce la temperatura es por esta razón que al sistema VAV se le debe

diseñar con una batería de calentamiento. Las cajas VAV deben ser diseñadas de tal forma

que caliente el aire mínimo que normalmente va de 13 o 15 ºC además del requerido para las

perdidas por transmisión. Sistema de conductos VAV.

Este diseño depende del espacio disponible en el techo, además un diseño a baja velocidad

dará por resultado un menor coste de operación.

Los conductos de distribución deben estar o bien provistos de puertas de alivio o con

capacidad suficiente para soportar toda la presión del ventilador en precaución a fallas del

regulador de presión estática y la caja VAV cerradas.

2.3.1 CONDICIONES DE DISEÑO.

Para determinar que sistema se debe utilizar en la climatización debemos tomar en cuenta

varias condiciones que influyen entre ellas la ubicación pues la velocidad de la corriente del

aire produce infiltraciones que intervienen en el cálculo de la carga térmica y la temperatura

mínima a la que se encuentra.

Los pasos para poder realizar un diseño son los siguientes: - Plano arquitectónico del lugar al cual se le va a climatizar, tomando en cuenta todos los

aspectos como alturas, puertas, conductos, divisiones importantes que influyan en la

infiltración.

- El número de personas existentes en el local se deben tomar en cuenta si se va a realizar

enfriamiento o ventilación.

- Los equipos eléctricos son importantes en acondicionamiento, para calefacción se anularán.

- Fijar las condiciones del ambiente exterior e interior y calcular la carga térmica teniendo en

cuenta que no tenemos “Ganancias interiores ni ganancias exteriores”, el viento es una

condición muy importante pues al infiltrar aire con otra temperatura este produce variación

en el calor. Para esto es indispensable tener conocimiento de la orientación lo cual se lo

puede fijar con una brújula.

- Determinar las cargas necesarias para calcular la temperatura de roció y condiciones del

equipo.

Page 42: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

42

- Dimensionar ductos y/o tuberías de aire o vapor, tomando en cuenta las pérdidas debido al

rozamiento, velocidad, nivel de ruido, pérdidas o ganancias de calor y frió.

- Selección de equipos y elementos necesarios para la instalación. Carga térmica de calefacción. Los cálculos de carga térmica se los realiza en la noche razón por la cual no se toma en cuenta

la influencia del sol (sombra, vidrio), alumbrado, influencia de personas, ni la maquinaria

existentes en el hotel.

TABLA. 3: RESUMEN DE DATOS TÉCNICOS, ECUACIONES Y REFERENCIAS PARA CALCULAR CARGAS

DE PROYECTOS PARA CALEFACCIÓN [2].

RESUMEN DE DATOS TÉCNICOS, ECUACIONES Y REFERENCIAS PARA CALCULAR

CARGAS DE PROYECTOS PARA CALEFACCIÓN.

Tejado, techos, paredes, cristales

Paredes por debajo del nivel del suelo

Piso

sobre el nivel

a nivel

Debajo del nivel.

Aire de infiltración y ventilación

sensible

latente

� Pérdida de calor por transferencia en la construcción.

Toma en cuenta la pérdida de calor por transferencia hacia el exterior a través de paredes,

puertas, pisos, techos, ventanas (TABLA 3) debido a la diferencia de temperaturas entre el

exterior y la habitación acondicionada. La ecuación que corresponde a esta pérdida es:

Qs = U A TD (2.1) Donde: Qs= Calor sensible. U = Coeficiente de transmisión. A = área TD = diferencia de temperatura.

TDAUq **=

TDAUq **=

TDAUq **=

TDPFq **2=TDAUq **=

tVqs ∆= **2.1

wVqs ∆= **2808

Page 43: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

43

� Pérdida de calor por transferencia, aire de infiltración y ventilación.

La ecuación que se necesita para la pérdida de calor por infiltración de aire y

ventilación sensible es el producto entre el volumen que depende de la actividad que

genera la persona y la diferencia de temperatura para el diseño multiplicado por un

factor de 1.2, en donde para una mejor interpretación se le demostrará.

(2.2)

Para este análisis se deben conocer las condiciones del aire normal [3]:

Pe = peso específico (1.2928 Kg. /m3).

T = 0 oC.

p = presión atmosférica (10.33 kg. /m3).

Ve= volumen específico (0.7735 m3/Kg).

D = Densidad del aire (1.2 Kg/m3).

Ce = Calor específico del aire (1.0 KJ/ (Kg ºK)).

hfg = Calor latente del vapor (2340 KJ/Kg).

Infiltración y ventilación sensible.

qs = Ce * D * V * ∆t

De donde:

qs = Calor sensible (W).

V = Volumen (L/s).

D = Densidad del aire.

Ce = Calor específico del aire.

∆t = diferencia de temperatura (ti – te). En donde al multiplicar calor específico por densidad y teniendo en cuenta las

unidades se obtiene el factor de 1.2:

Ce *D = 1.2

qs = 1.2 * V * ∆t

El mismo análisis se realiza para infiltración y ventilación latente. qL = D *V * ∆w * hfg (2.3)

tVqs ∆= **2.1

Page 44: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

44

De donde:

qL = Calor Latente (W)

D = Densidad del aire (Kg/m3).

V = Volumen (L/s)

∆w = diferencia de humedad específica (Kgv/Kga)

hfg = Calor latente del vapor ( KJ/Kg)

El producto entre la densidad y el calor latente del vapor y al tomar en cuenta las

unidades se obtienen el factor de 2808:

D * hfg = 2808

qL = 2808 *V*∆w

2.3.2 PÉRDIDAS DE CALOR EN DUCTOS. Cuando los ductos pasan por lugares sin calefacción estos transfieren calor es por este motivo

que se recomienda esta clase de instalación para lugares pequeños, caso contrario se debe

realizar un aislamiento de los ductos para que cuyo valor no exceda los 0.25.

2.3.3 CAUDAL DE AIRE TRATADO. A) Calidad del aire.

Un factor importante en el confort del ser humano es la calidad de aire en lo que se refiere a

su pureza. El aire se contamina con la presencia de polvo, humos o gases indeseables. Todos

estos factores se los puede limpiar a través de equipos y sustancias químicas especiales hasta

un nivel aceptable de ventilación exterior en el edificio.

En algunas normativas llegan a establecer que la ventilación adecuada para lugares cerrados

se establece en un orden 7.5 litros por segundo por persona esto como mínimo pero el valor

va creciendo de acuerdo a como se establece el nivel de contaminación es muy distinto de un

hotel, auditorios, bares, etc.

B) Calidad de aire entrante.

Este aire es el resultado de un suministro, adecuado y continuo, de aire fresco entrante.

ASHRAE establece que la mejor manera de evitar enfermedades debidas a la mala calidad del

aire entrante es incrementando el volumen de aire fresco entrante al edificio. El impacto

negativo de no controlar la entrada de aire al edificio es el incremento de los costos de

calefacción.

Page 45: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

45

Hay que identificar zonas y sistemas donde el aire es excesivo o deficiente. Es por este

motivo que tenemos que verificar donde debe ir colocado el dispositivo de calefacción el cual

puede ser un difusor su posición más recomendada es la central y además hay que tratar de

economizar la temperatura.

Uno de los aspectos más importantes es el ruido provocado por los equipos estos deben ser

colocados en lugares donde el ruido no molesten ni a dormitorios, auditorios, estudios, etc.

Para esto se debe realizar un estudio previo basado en lo siguiente: - Cuando el edificio esté en construcción las estructuras deben ser colocadas de tal forma que

sean adaptables a la colocación del equipo.

- En construcciones ya existentes se debe evitar las losas pues éstas afectan las vibraciones es

por eso que las estructuras se recomienda que sean de hierro.

- Las salas de máquinas deben estar aisladas acústicamente.

- En hoteles, hospitales y edificios similares, las máquinas deben estar alejadas del suelo y

techos a través de elásticos para así evitar los ruidos y vibraciones.

- A continuación se debe realizar un diseño preliminar donde se ubican los equipos en forma

axial para tener las mejores condiciones de flujo de aire. Caudal de aire de impulso (VI): es el volumen de aire impulsado al espacio climatizado. En

calefacción podemos tomar una variación de 5 a 10 ºF más a la temperatura del local.

( ) [ ]CFM

TTDCe

QV

I

sI −

=1**

(2.4)

Donde:

Qs = Calor sensible (Btu/h)

T1 = Temperatura de bulbo seco del local. ºF

TI= Temperatura de impulso ºF.

Vi = Volumen de impulso (CFM)

Ce = Calor específico del aire (0.239 Btu/lb ºF)

D = Densidad del aire (7.5*10-2lb/ft3)

Ce*D = 1.08

( ) MFCTT

QV

I

sI ..

08.1 1 −=

Page 46: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

46

2.3.4 DISTRIBUCIÓN DE AIRE.

La distribución de aire debe estar proyectada para mantener la temperatura dentro de los

límites de confort para lo cual se le esta diseñando, donde la variación máxima que se admite

es de 1.7 ºC entre habitaciones.

Una buena distribución presenta las siguientes características. 1. La temperatura del recinto deben estar a 1°C de la temperatura de diseño caso contrario se

vuelve incomoda la estadía. La zona adecuada se la considera desde el piso hasta una

altura de 2m por arriba de ésta se considera fluctuaciones más altas de temperatura.

2. Las velocidades de aire son también consideradas y para lugares donde las personas

permanecen sentadas se considera una velocidad entre 25 a 35 ft/min. En lugares donde

las personas se encuentran en actividad se permite velocidades entre 50 a 70 ft/min.

Una distribución correcta, debe ser llevada a un nivel que no descargue directamente sobre las

personas, se producirá un movimiento de aire suficiente para que se distribuya por el

ambiente sin corrientes molestas. Corrientes de aire.

A continuación se presenta algunos comportamientos del aire que nos servirá para las futuras

selecciones de equipos. 1. Cuando suministra aire a menor temperatura que la del recinto, el aire desciende.

2. Cuando se suministra aire a mayor temperatura que la del recinto, el aire sube.

3. Al suministrar aire en forma paralela al cielo raso, se tiende a pegarse al techo

denominándolo “efecto del cielo raso”.

4. Suministro a través de un dispositivo, a este aire se le denomina aire primario, el cual

ejerce corrientes a las que se les denomina aire secundario. El alcance de un dispositivo de suministro de aire es la distancia que el aire baja antes de

llegar a una velocidad relativamente baja, llamada la velocidad terminal. Se recomienda

velocidades terminales entre 75 y 200 ft/ min.

Para lograr una buena distribución de aire se debe tener en cuenta el lugar mas adecuado a

continuación se presenta algunos aspectos. 1. Alto en la pared. No es una buena ubicación para la calefacción. Porque el aire caliente se

eleva y deja una zona sin movimiento en el área ocupada. En este caso se debe usar

calefacción separada, bajo la ventana.

Page 47: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

47

2. En el cielo raso. No es una buena ubicación ya que aire caliente se eleva, a menos que se

fuera hacia abajo a grandes velocidades.

3. Bajo en la pared. Es una excelente ubicación para la calefacción porque el aire caliente se

eleva.

4. En piso o en umbral de ventana. Excelente ubicación para la calefacción ya que

contrarresta con el aire frío que ingresa por la ventana.

Principios de la distribución de aire. Distancia de propulsión.- es la distancia horizontal medida desde la boca de salida a una

velocidad de 0.25 m/s en una distancia de 21 metros por encima del suelo. Esta distancia es

proporcional a la velocidad del aire previamente tomada e independiente de las temperaturas,

apartamentos, hoteles, y edificios de oficinas.

� Tipos de distribución.

De acuerdo al sentido de circulación del aire en el interior del espacio climatizado, podemos

dividirlo en:

� Ascendente.- a este nivel se lo puede definir como aquel en el cual el aire se introduce

por la parte inferior y se lo extrae por la parte superior del ambiente.

Cuando se coloca las bocas de insuflaciones en niveles superiores al piso hay que

tener mucho cuidado con no dejar zonas muertas es decir secciones sin climatización. � Descendente.- en este caso encontramos a todos los sistemas en donde el aire que

ingresa lo realiza por la parte superior (fig. 14) y se lo extrae por la parte inferior aquí

la velocidad del aire debe ser lo suficiente para que logre una difusión en todo el local.

Figura 20: Distribución descendente.

� Mixta.- este sistema es el más adecuado para lugares donde se fume ya que el aire se

lo extrae por la parte superior y los conductos de extracción del aire están abajo para

llevarlo al circuito de circulación.

Page 48: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

48

� Cruzada.- este sistema consiste en introducir aire en forma horizontal al recinto

acondicionado desde la parte superior barriendo la superficie del techo y con gran

velocidad, a la misma altura debemos colocar las salidas del aire en la pared opuesta. Para su selección debemos tener en cuenta los siguientes parámetros: a) Estructura del edificio.

b) Situación de los ocupantes y fuentes de calor.

c) Si ha de usar solo ventilación o climatización del aire en el espacio considerado.

d) Situación del equipo y sus componentes.

2.3.5 EQUIPOS Y ELEMENTOS.

Sabemos que los equipos mecánicos necesitan de mantenimiento tanto preventivo como

correctivo en peor caso, por ello los elementos que constituyen el sistema deben estar

colocados de tal manera que su revisión o sustitución debe ser de forma accesible.

No se los debe ubicar en el techo ya que el equipo puede sufrir cambios de acuerdo a la

variación de la atmósfera, además si existe humedad el equipo corre riesgo de dañarse. Otro

inconveniente es que debido a la posición el mantenimiento no puede ser el correcto y con el

tiempo sufrir un deterioro más rápido. Por último es un riesgo para el personal ya que hay que

utilizar escaleras o caminar por los techos los cuales se pueden romper y en peor caso la

persona puede caer.

Figura 21: Elementos de un sistema por aire.

Page 49: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

49

Elementos que intervienen: � Filtros:

El aire es un gas que lleva en sus corrientes polvo, suciedad, fibras y otras partículas, por ello

se lo debe someter a una limpieza.

Entre las razones existentes para la limpieza tenemos las siguientes:

� Higiene.

� Mantener limpios los serpentines.

� Mantener el volumen de aire que circula constante.

� Mantener limpio los elementos y equipos que constituyen el sistema.

� Conservar en condiciones adecuadas las paredes, el piso, el techo en el lugar

acondicionado. Tipos de filtros.

� Filtros secos.

� Filtros húmedos.

� Filtros de autolimpieza.

� Lavadores de aire.

� Filtros electrostáticos.

Figura 22: Tipos de filtros.

Filtros secos: esta constituido por dos mallas metálicas de malla fina y es en éstas donde se

queda el polvo que el aire lleva en suspensión.

Existen filtros de 5 cm. de espesor que retienen hasta el 94% de las partículas de más de 0,8

micrones, con una caída de presión de 2mm de columna de agua a velocidades de 100m/min.

Filtros húmedos.- conocidos también como filtros viscosos, combina las cualidades de los

filtros secos con la de los lavadores de aire. Esta clase de filtros impregnados de líquidos,

permiten la deposición de polvo e impurezas en su película húmeda.

Page 50: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

50

� Rejillas.

Las rejillas son elementos muy importantes en los sistemas de climatización están ubicados en

las paredes y permiten el ingreso del aire, en rejillas simples no se controla y en rejillas

móviles sus láminas permiten el control del aire. Tipos de rejillas.-

� De Impulsión.

� De Retícula.

� De Puerta.

� Lineales

� De Suelo.

En estas rejillas considerando la misma cantidad de aire de acuerdo al tipo de dirección hay

que aumentar la velocidad, las rejillas pequeñas enviarán a grandes distancias el aire y las

rejillas con más direcciones tendrán gran velocidad para impulsar el aire a una distancia

acorde con la pared.

Figura 23: Tipos de rejillas.

� Difusores. Estos elementos nos permiten el ingreso y la extracción del aire además permite desviar o

difundir y controlar el flujo de aire así como no propagar ni producir ruidos.

Clases de difusores.- tenemos dos clases estos son:

� Baja velocidad.

� Alta velocidad.

Page 51: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

51

Figura 24: Tipos de difusores.

Baja velocidad.- está localizado en el techo con una apertura amplia de descarga sus

velocidades van de 1,5 a 5 m/s y son conocidos como Placa.

Alta velocidad.- estos difusores son patentados, el flujo de aire insuflado es de forma

horizontal con dirección hacia abajo con alta velocidad. � Conductos.

Figura 25: Conductos.

Lo conductos tienen como función proporcionar un medio para transportar el aire desde los

equipos de tratamiento como calentamiento, ventilación o acondicionamiento. Selección del sistema de conductos.- para esta selección debemos tomar en cuenta las

condiciones del edificio es decir techo, espacios disponibles, y todas las localidades

particulares de cada ambiente. � Dámper

Son elementos que se encuentran diseñados para controlar la presión, temperatura o flujo en

un sistema HVAC. Estos dámper (Fig. 26) tienen control manual o automático. Entre las

clases de damper tenemos uno muy importante el dámper FIRE (Fig. 27) cuyo fin es cerrar

sus compuertas en el caso de que existan humos o fuego evitando así que el sistema produzca

algún daño.

Page 52: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

52

Figura 26: Dámper.

Figura 27: Dámper FIRE.

� Ventiladores.

Figura 28: Ventiladores.

Todos los equipos incluyen un mecanismo para mover el aire es decir utilizan un ventilador.

Los ventiladores se clasifican en la siguiente forma: Ventiladores axiales:

� tubular.

� con paletas de guía.

Figura 29: Tubular axial en línea

Page 53: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

53

Figura 30: Ventiladores centrífugos.

Existen otros tipos de clasificaciones de acuerdo a requisitos físicos o también tipo ático. Con

diseños para proteger del medio sobre todo para instalaciones exteriores en el primer caso, o

en el que el equipo se encuentra encerrado en una caja con un pasillo de acceso interior para

poder dar mantenimiento en el segundo caso.

Entre las pérdidas que tiene un ventilador tenemos las siguientes: Presión Estática, Dinámica

y Total.

Cuando la presión estática es nula, el ventilador da el máximo caudal que puede mover, por

lo tanto la presión total es igual a la dinámica.

De la misma forma cuando el ventilador esta obturado es decir que da el mínimo caudal, la

presión dinámica es nula y en este punto la presión Total es igual a la estática.

2.4 SISTEMA DE CAUDAL DE REFRIGERANTE VARIABLE.

Figura 31: Sistema de caudal de refrigerante variable.

a) Focos de la bomba de calor

La Bomba de Calor extrae energía de un medio. Mediante el trabajo externo aportado, esta

energía es cedida a otro. El medio del que se extrae la energía se llama foco frío y el medio al

que se cede se llama foco caliente.

Page 54: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

54

Un foco frío ideal es aquel que tiene una temperatura elevada y estable a lo largo de la

estación en que es necesario calentar, está disponible en abundancia, no es corrosivo o

contaminante, tiene propiedades termodinámicas favorables, y no requiere costes elevados de

inversión o mantenimiento.

Aire atmosférico.

Su utilización presenta problemas de formación de escarcha. Este problema se resuelve

invirtiendo el ciclo durante pequeños períodos, lo que supone un gasto adicional de energía.

Para temperaturas por encima de 5ºC no es necesario el desescarche.

b) Bomba de calor.

El calor fluye de forma natural desde las altas temperaturas a las bajas temperaturas. Sin

embargo, la Bomba de Calor es capaz de hacerlo en dirección contraria, utilizando una

cantidad de trabajo relativamente pequeña. Las Bombas de Calor pueden transferir este calor

desde las fuentes naturales del entorno a baja temperatura (foco frío), tales como aire, agua o

la propia tierra, hacia las dependencias interiores que se pretenden calentar o bien para

emplearlo en procesos que precisan calor. Es posible también aprovechar los calores

residuales de procesos industriales como foco frío, lo que permite disponer de una fuente a

temperatura conocida y constante que mejora el rendimiento del sistema.

Las Bombas de Calor también pueden ser utilizadas para refrigerar. En este caso la

transferencia de calor se realiza en el sentido contrario, es decir desde la aplicación que

requiere frío al entorno que se encuentra a temperatura superior.

En algunas ocasiones, el calor extraído en el enfriamiento es utilizado para cuando se necesita

calentar algo.

Para transportar calor desde la fuente de calor al sumidero de calor, se requiere aportar un

trabajo.

Clasificación de las bombas de calor

- Las bombas de calor aire−aire: son las que más se usan, sobre todo en climatización.

- Bombas de calor aire−agua: se utilizan para producir agua fría para refrigeración o agua

caliente para calefacción y agua sanitaria.

- Compacta: Todos los elementos que constituyen la Bomba de Calor se encuentran alojados

dentro de una misma carcasa.

Page 55: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

55

- Split o partidas: Están constituidas por dos unidades separadas. Una exterior donde se aloja

el compresor y la válvula de expansión y una unidad interior. De esta manera se evitan los

ruidos en el interior local.

- Multi−split: Están constituidas por una unidad exterior y varias unidades interiores.

funcionamiento

- Reversibles: Pueden funcionar tanto en ciclo de calefacción como en ciclo de refrigeración

invirtiendo el sentido de flujo del fluido.

- No reversibles: Únicamente funcionan en ciclo de calefacción.

- Termofrigobombas: Producen simultáneamente frío y calor.

Componentes de la bomba.

La mayor parte de las Bombas de Calor existentes trabajan con el ciclo de compresión de un

fluido condensable.

Sus principales componentes son:

− Compresor

− Válvula de expansión

− Condensador

− Evaporador

Figura 32: Bombas de calor.

Los componentes se conectan en un circuito cerrado por el que circula un fluido refrigerante.

Bomba de calor de compresión mecánica accionada por motor eléctrico.

En este tipo de bombas el compresor es accionado por un motor eléctrico.

Page 56: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

56

Etapas del ciclo

1. En el evaporador la temperatura del fluido refrigerante se mantiene por debajo de la

temperatura de la fuente de calor (foco frío), de ésta manera el calor fluye de la fuente al

fluido refrigerante propiciando la evaporación de éste.

2. En el compresor el vapor que sale del evaporador es comprimido elevando su presión y

temperatura.

3. El vapor caliente accede al condensador. En este cambiador, el fluido cede el calor de

condensación al medio.

4. Finalmente, el líquido a alta presión obtenido a la salida del condensador se expande

mediante la válvula de expansión hasta alcanzar la presión y temperatura del evaporador. En

este punto el fluido comienza de nuevo el ciclo accediendo al evaporador.

Bomba de calor con motor de gas.

El compresor es accionado mediante un motor de combustión, alimentado con gas o con un

combustible líquido. Las más extendidas son las Bombas de Calor con motor de gas.

Ciertos tipos de Bombas de Calor (reversibles) son capaces de proporcionar calefacción y

refrigeración. Las Bombas de Calor reversibles incorporan una válvula de 4 vías que permite

la inversión de circulación del fluido frigorífico. De esta forma se consigue:

Que se bombee calor del exterior hacia el interior en el ciclo de calefacción.

Que se bombee calor del interior hacia el exterior en el ciclo de refrigeración.

Ciclos de calefacción y Refrigeración.

Ciclo de calefacción:

− El compresor eleva la presión y temperatura del fluido frigorífico. (1)

− En el intercambiador, situado en el interior del recinto a calentar, el fluido cede al aire del

recinto el calor de su condensación. (2)

− El fluido en estado líquido y a alta presión y temperatura se expande en la válvula de

expansión reduciendo su presión y temperatura, evaporándose en parte. (3)

− En el intercambiador situado en el exterior el fluido refrigerante completa su evaporación

absorbiendo calor del aire exterior, retornando al compresor (1) a través de una válvula de

cuatro vías. (5)

Page 57: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

57

Ciclo de refrigeración:

− El compresor eleva la presión y temperatura del fluido frigorífico (1) siguiendo su camino a

través de la válvula de 4 vías (5).

− En el intercambiador, situado en el exterior, el fluido se condensa cediendo su calor al

medio exterior. (4)

− El fluido en estado líquido y alta presión se expande en la válvula de expansión reduciendo

su presión y evaporándose en parte. (3)

− En el intercambiador (2), situado en el interior del recinto a refrigerar, el fluido frigorífico

completa su evaporación absorbiendo calor del medio interior.

Figura 33: Ciclo de Calefacción y Refrigeración.

Figura 34: Esquematización de los ciclos de frío y calor.

Page 58: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

58

MultiV System.

Este equipo consta de dos unidades interior y exterior.

Unidad exterior: Constituida por un comprensor, válvula check, válvula de 4 vías,

comprensor, ventilador e intercambiador de calor.

Unidad interior: Constituida por Controla BC (válvulas solenoides) y unidades interiores.

Funcionamiento: El líquido refrigerante circula por el sistema, inicia en el compresor pasando

por la válvula de 4 vías y dirigiéndose al intercambiador de calor en donde a su salida toma

un presión alta que ingresa al separador tomando una presión adecuada para ingresar a las

unidades interiores en donde intercambiará calor con el ambiente a climatizarse.

Figura 35: Operación del Controlador BC.

Page 59: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

59

CAPÍTULO III.

DISEÑO DE LOS SISTEMAS DE CALEFACCIÓN.

3.1 CÁLCULO DE LA CARGA TÉRMICA. La carga térmica es la ganancia o pérdida de calor, la cantidad instantánea de calor que entra o

sale del espacio a climatizar. 3.1.1. Habitaciones. Condiciones de cálculo:

Mes: Julio. Hora: 1 am.[4]

→ Temperatura de bulbo seco interior: 21 ºC o 69.8 ºF

Humedad Local: 50%

Humedad Específica: 0.011

→ Temperatura de bulbo seco exterior: 10.2 ºC o 50.36ºF

Humedad Local: 99%

Humedad Específica: 0.0106

→ Temperatura del corredor. 15ºC o 59ºF

→ Temperatura del Dormitorio Adyacente: 21ºC o 69.8ºF

→ Latitud: Sur � Cálculos para el 5º Piso.

Figura 36: Ubicación de los dormitorios.

Page 60: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

60

Dormitorio Nº = 3

• Techo.

Constitución del techo. 6in de concreto, 13ft. de altura.

U (Coeficiente total de transferencia de calor). = 0.318 (btu/hft2 0F). ASHRAE Anexo.1

Dimensiones: Las dimensiones son tomadas de los planos arquitectónicos.

Área: (0.9*4.25+1.95*3.95+3.6*0.18)*3.282=130.99 ft2

Diferencia de Temperatura (TD): Tbs interior – Tbs corredor

( ) FFTD o º8.10598.69 =−= (3.1) Calor:

• Pared. - Norte.

Constitución de la pared: aglomerado hueco de 20cm de espesor, con enlucido de 15 mm.

U = 0.430 (Btu/hft2 0F). CARRIER Anexo.2

Dimensiones: Anexo.

Área= (3.03*2.63-1.53*2.1)*3.282=47.97 ft2

TD: Tbs interior – Tbs exterior

( ) FFTD o º44.1936.508.69 =−=

Calor:

- Pared Sur, Este y Oeste.

Para estas paredes realizamos los mismos cálculos pero tomando en cuenta las siguientes

áreas y diferencia de temperatura.

h

BTUq

FftFhft

BTUq

TDAUq

87.449

*º*8.10*99.130*318.0

**

22

=

=

=

h

BTUq

FftFhft

BTUq

TDAUq

401

*º*44.19*97.47*430.0

**

22

=

=

=

Page 61: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

61

Tabla 4: Áreas para Pared Sur, Este y Oeste.

PUERTA VENTANA A TOTAL

NORTE(TBS exterior) 0,43 37,76 85,73 47,97 19,44 401,00SUR(TBS corredor) 0,43 20,33 85,73 65,40 10,8 303,71

OESTE(TBS Corredor) 0,43 20,33 120,25 99,92 10,8 464,02ESTE(TBS D adyacente) 0,43 111,76 111,76 0 0,00

A Cál. (ft^2)

TD (ºF)

Q (BTU/H)

PAREDES LATITUD SUR

DIMENSIONES (ft^2)U (btu/hft2

0F) TDAUqS **

.

=

• Cristales (Ventanas)

Ubicación: Norte.

Constitución del cristal. Es una ventana con un vidrio llano, solo vidrio.

U = 1.10 (Btu/hft2 0F). ASHRAE Anexo.3

Dimensiones:

Área: (1.53*2.6)*3.282= 37.76 ft2.

TD: Tbs interior – Tbs exterior

( ) FFTD o º44.1936.508.69 =−=

Calor:

� Pisos.

( ) FFTD o º08.698.69 =−=

Q = 0

� Aire de infiltración y ventilación

Para realizar los cálculos de ventilación hay que tomar muy en cuenta la clase de infiltración.

• Ventilación Sensible.

Volumen requerido por ocupantes V (cfm): ASHRAE Anexo 4

Ventilación requerida por persona = 7 cfm. /persona

Nº de persona = 2 persona

s

lcfmV

personaspersona

cfmV

personasdeNopersonaporrequeridanVentilacióV

607.614

2*7

*

==

==

= (3.2)

h

BTUq

FftFhft

BTUq

TDAUq

50.807

*º*44.19*76.37*10.1

**

2

2

=

=

=

Page 62: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

62

TD: Tbs interior – Tbs exterior

( ) FFTD o º08.10598.69 =−=

Calor:

• Ventilación Latente.

Diferencia de humedad específica (DW). Humedad específica interior – Humedad específica

exterior. Anexo 5.

0004.0

0106.0011.0

=∆=−=∆

−=∆

W

W

WWW exteriorlocal

(3.3)

Calor:

• Infiltración:

- Ventanas:

Nuestras ventanas se encuentran con rendijas por lo tanto se asume una infiltración de cero.

- Puertas.

o Infiltración Sensible

Volumen requerido por ocupantes V (cfm):

Ventilación requerida por persona = 2.83 m3/persona

No de persona = 2 persona

( )

cfmV

m

fth

h

personas

persona

mV

personasdeNopersonaporónInfiltraciV

328.3

1

28.3*

min60

1*

12*83.2

*

3

33

=

==

=

TD= Tbs interior – Tbs corredor.

( ) FFTD o º8.10598.69 =−=

Calor:

h

BTUWq

CsLq

tVq

24.29263.85

º08.10*/607.6*2.1

**2.1

==

=∆=

h

BTUWq

sLq

wVq

33.2542.7

0004.0*/607.6*2808

**2808

==

=∆=

h

BTUWq

CsLq

tVq

62.6235.18

º8.10*/42.1*2.1

**2.1

==

=∆=

Page 63: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

63

• Infiltración Latente

DW:

0004.0

0106.0011.0

=∆=−=∆

−=∆

W

W

WWW exteriorlocal

• Calor Total. El calor total es la suma de todos los calores previamente calculados.

• Calor Total Externos. Qexternos = Qtecho+Qparedes+Qcristales+Qpisos (3.4)

hBTU

externos

externos

Q

Q

10.2426

050.80776.168787.449

=+++=

• Calor Total Internos:

Calor total internos sensibles. Qi total sensibles = Qv ventanas+Qinfiltración puerta (3.5)

hBTUsensibletotal

sensiblestotal

Q

Q

355

62.6224.292

=

+=

Calor total internos latentes. Qi total sensibles = Qv ventanas+Qinfiltración puerta (3.6)

hBTUlatentetotal

latentetotal

Q

Q

76.30

43.533.25

=

+=

• Calor Total: QT = QExternos+QSensibles (3.7)

hBTU

T

T

Q

Q

2781

35510.2426

=+=

h

BTUWq

sLq

wVq

43.559.1

0004.0*/42.1*28081

**28081

==

=∆=

Page 64: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

64

RESUMEN DE CÁLCULOS .

Tabla 5: Resumen de cálculos.

η 1,3

Temperatura de bulbo seco del local: 69,8 ºF

Temperatura de impulso: 83,77 ºF

Nº 1 Nº 3 Nº 8 Nº 2 Nº 4 Nº 8

TECHOS 443 450 545 316 321 389

PAREDES LATITUD SUR 1688 1169 1965 1688 1169 1965

VENTANAS (CONDUCCION) 808 808 1615 808 808 1615

PISOS 0 0 0 0 0 0

VENTILACIÓN

Sensible 293 293 293 293 293 293

Latente 25 25 25 25 25 25

INFILTRACIÓN

Sensible 63 63 63 63 63 63

Latente 5 5 5 5 5 5

CALOR TOTAL (Btu/h) 3293 2781 4480 3166 2652 4324

CALOR TOTAL (Btu/h)* ηηηη 4281 3615 5824 4116 3448 5621

V. IMPULSO (CFM) 284 240 386 273 229 373

V. IMPULSO (CFM) POR PISO

CALOR TOTAL POR PISO (Btu/h)

CALOR TOTAL POR PISO (Kcal/h) 8737 8382

Necesidad de gran confort.

2298 2205

34671 33263

CARGAS TÉRMICAS.

5º PISO 6º PISOPISO

3.1.2. Recepción.

En el caso de la recepción no se realizará ningún cálculo debido a que se encuentra ubicado

adyacente al restaurante por lo tanto tiene esta influencia. 3.1.3. Restaurante.

En esta sección se utiliza el método de presión dinámica de acuerdo a las siguientes

condiciones de diseño: Condiciones de diseño para los Sistemas de impulsión y extracción.

1. Identificación del tramo.

2. Altitud (Z). La presión varía de acuerdo a la altura en la que ésta se encuentra, la mayoría de los datos

presentados en catálogos son datos experimentados a presiones sobre el nivel del mar por lo

cual se advierte la necesidad de realizar la corrección necesaria según la altura de Riobamba

Page 65: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

65

que tiene un valor de 9180 ft. s n m, por lo que es necesario realizar una interpolación de la

tabla a continuación presentada:

TABLA 6: Influencia en la temperatura y altitud en ventiladores.

De la interpolación se determina el siguiente valor: F= 1.41.

3. Para realizar el cálculo es necesario tomar las temperaturas más extremas en Riobamba se

ha llegado a tener una temperatura de 32ºC teniendo más frecuentemente una

temperatura máxima de 28ºC.

Tbulbo seco = 28 ºC

4. Caudal de aire estándar.

El caudal de aire estándar se lo calcula siguiendo la norma del Reglamento de

Instalaciones Térmicas en los Edificios (RITE) [5].

Área del local: 136.499 m2 = 1468.52 ft2.

Caudal = Área x 6 litros/s. (3.8)

.4.173599.8186*499.136 cfmQ slitros ===

Sistema de impulsión

1. En el plano se puede identificar la sección OA ubicada de forma horizontal en sentido de

sur a norte.

Page 66: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

66

Figura 37: Ubicación del equipo en el restaurante. 2. Velocidad mínima de transporte.- Para poder determinar la velocidad mínima de

transporte nos hemos guiado en el catálogo de Salvador Escoda (Fig. 38) tomando en

cuenta la clase de local y la posición de las personas.

Velocidad: 3.5 m/s ≈ 700 ft/min

Figura 38: Velocidad del aire atendiendo al ruido.

3. Área del ducto.

2479.2

700

36.1735

ftA

A

V

QA

=

=

=

(3.9)

4. Diámetro del ducto. ft

AD 777.1

4

* == π (3.10)

5. Diámetro equivalente del ducto.

D = 1.777 ft = 21.24 in

Page 67: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

67

6. Área del ducto seleccionado.

Con el diámetro del paso 5 nos vamos a la tabla 7 y seleccionamos un diámetro que este

en este rango.

TABLA 7: Equivalencia de ductos circulares a rectangulares para igual fricción y capacidad.

7. Velocidad real en el ducto.

Esta velocidad la encontramos al dividir el caudal actual para el área del ducto.

min2

70347.2

1735 ftr ft

cfmV == (3.11)

8. Presión dinámica del ducto.

OHdeinV

VP 2

22

031.04005

703

4005=

=

= (3.12)

9. Longitud del ducto.

Este dato se lo obtiene de los planos.

L = 67 ft.

10. Factor de corrección por fricción R.

Este valor se lo obtiene de tablas de acuerdo al material en nuestro caso utilizaremos

acero galvanizado. Anexo 6.

R = 1

11. Pérdida de fricción por ducto K.

011.0

1735

7030307.0

0307.0

612.0

533.0

612.0

533.0

=

=

=

K

K

Q

vK

actual

actual

(3.13)

12. Ducto.

Para la obtención de este dato multiplicamos los siguientes valores.

Ducto = Longitud del ducto * Factor de fricción * Pérdida de fricción. (3.14)

ftD

D

705.0

011.0*1*67

==

13. Factor total de pérdida.

Page 68: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

68

Pérdida de carga se la puede determinar como el gasto de energía del ventilador. Es decir

es la presión de aire necesaria para vencer la fricción en el conducto.

Este factor es el resultado de la suma entre la pérdida de ducto y efecto del sistema.

705.0=

=

t

ductot

f

ff (3.15)

14. Presión estática del ducto.

Su valor esta determinado por la multiplicación de la presión dinámica * el factor total de

pérdida.

wginSp

Sp

fVpSp t

022.0

705.0*031.0

*

===

(3.16)

15. Otros factores.

En esta sección se coloca los valores de Entrada, acoplamiento al ducto, filtro, rejilla, los

cuales se encuentran en manuales o catálogos de accesorios.

Por ejemplo:

El Coeficiente “n” de la entrada lo tomamos de la siguiente forma:

Figura 39: Coeficiente n de entrada.

Velocidad de entrada al ventilador.

Figura 40: Velocidades recomendadas y máximas en ductos para uso industrial.

Velocidad dinámica en la entrada al ventilador.

OHdeinV

VP 2

22

016.04005

500

4005=

=

= (3.17)

16. Sp Total. Sumamos todos los Sp.

Page 69: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

69

( )OHinSp

Sp

SpSpSp

Total

Total

accesiruisductoTotal

2354.0

028.027.0004.0010.0019.0022.0

=+++++=

+= (3.18)

17. Sp corregido. Spc = Sp Total *1.4 Spc = 0.354*1.4 = 0.45 in H2O

Sistema de extracción. 1. Identificación del tramo, en el plano se puede identificar la sección BC.

Figura 41: Extracción en el restaurante.

2. Velocidad mínima de transporte, 4 m/s ≈ 800 ft/min.

Figura 42: Velocidad del aire atendiendo al ruido - Bocas de captación.

3. Área del ducto.

24.1

800

1135

ftA

A

V

QA

=

=

=

4. Diámetro del ducto.

ftA

D 34.14

* == π

5. Diámetro equivalente del ducto.

D = 1.34 ft = 16 in

6. Área del ducto.

2

2

42.14

16*

ftA

A

=

= π

Page 70: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

70

7. Velocidad real en el ducto.

Esta velocidad se encuentra al dividir el caudal actual para el área del ducto.

min2800

42.1

1135 ftr

ft

cfmV ==

8. Presión dinámica del ducto.

OHdeinV

VP 2

22

040.04005

800

4005=

=

=

9. Longitud del ducto.

L = 6.56 ft.

10. Factor de corrección por fricción R.

Este valor se lo obtiene de tablas de acuerdo al material en nuestro caso utilizaremos acero

galvanizado.

R = 1

11. Pérdida de fricción por ducto K.

015.0

1135

8000307.0

0307.0

612.0

533.0

612.0

533.0

=

=

=

K

K

Q

vK

actual

actual

12. Ducto.

Para la obtención de este dato multiplicamos los siguientes valores.

Ducto = Longitud del ducto * Factor de fricción * Pérdida de fricción.

096.0

015.0*1*56.6

===

D

D

13. Factor total de pérdida.

Pérdida de carga se la puede determinar como el gasto de energía del ventilador. Es decir es la

presión de aire necesaria para vencer la fricción en el conducto.

Este factor es el resultado de la suma del valor de ducto y el efecto del sistema.

096.0

0096.0

==+=

+=

t

t

sistemadelefectoductot

f

f

fff

14. Presión estática del ducto.

Su valor está determinado por la multiplicación de la presión dinámica * el factor total de

pérdida.

Page 71: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

71

wginSp

Sp

fVpSp t

004.0

096.0*040.0

*

===

15. Otros factores.

En ésta sección se darán los valores de Entrada al ventilador, acoplamiento al ducto, filtro,

rejilla, los cuales los encontramos en manuales o catálogos de accesorios.

Coeficiente n del sombrero.

Figura 43: Pérdidas en el sombrero.

16. Sp Total.

Sumamos todos los Sp.

( )OHinSp

Sp

SpSpSp

Total

Total

accesiruisductoTotal

2129.0

05.004.0002.0019.0014.0004.0

=+++++=

+=

3.1.4 Cocina.

Datos Plan.

Page 72: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

72

Figura 44: Ubicación del extractor en la cocina.

1. En el diseño de la cocina se omite el cálculo para la campana debido a que esta existe y

cumple con los requerimientos de construcción.

El área de la campana cubre toda la zona donde se encuentran los equipos de cocina y su

altura es superior a 1m y 80 cm es decir no molestara al cocinero.

2. Caudal de extracción.

Q= 2300 * L *M [6] = 2300* 5.44*1.68 = 21020.16 m3/h = 12362.5 cfm. (3.19)

3. Velocidad mínima de transporte: (fpm)

Vd. = 2500 cfm [7].

4. Temperatura de bulbo seco.

Tbs = 82.4 ºF

5. Masa de aire. ( )aa lbm

3

3

25.92718

min60*1

8*

min5.12362

*

ft

h

hft

tQt

Q

=∨

==∨

==∨

=∨=

(3.20)

Densidad del aire en Riobamba [8].

Page 73: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

73

32754

2754

827.0

760

550*

º15.293

º26825.1

760*

º

º26825.1

m

Kg

mmHg

mmHg

K

K

mmHg

mmHgP

KT

K

msnm

msnm

lugar

lugarmsnmx

=

=

=

δ

δ

δ

(3.21)

( )1438.0

827.053.0

3

3

m

Kgv

m

Kgv

a

v

=

=

=

δ

δδδφ

(3.22)

( )2438.0827.0

75.92718 va

v

v

a

aT

vaT

mm

mmV

VVV

+=

+=

+=

δδ (3.23)

( )

av

a

v

a

v

mm

m

m

m

m

017.0

3017.0

=

=

(3.24)

( ) ( )12 en

( )

( )

min90.15

min60*8

36.7631

8

36.7631

27.16824438.0

017.0

827.075.92718

aa

aa

aa

a

aa

aa

lbm

lbm

entofuncionamidet

mm

lbam

Kgm

mm

=

=

=

==

+=

(3.25)

6. Masa de vapor. ( )vv lbm

Remplazando m3 en la ecuación (3)

Page 74: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

74

( )

( )

min27.0

min60*8

26.131

8

26.131

.36.7631*017.0

*017.0

vv

vv

vv

vv

vv

av

lbm

lbm

entofuncionamidet

mm

lbm

lbm

mm

=

=

=

===

7. Humedad específica.

Humedad Especifica.- Este valor lo encontramos en la carta psicométrica con los valores

de temperatura de bulbo seco (Tbs) y humedad relativa (%). Anexo.5

ω = 0.017

Comprobando:

a

v

lb

lb

a

v

a

v

lb

lb

lb

lb

m

m

a

v

017.0

90.15

27.0

min

min

=

=

=

ϖ

ϖ

ϖ

8. Factor de corrección de densidad.

En el diseño de la campana es necesario corregir el caudal con el cual vamos a trabajar,

debido a la influencia de altura, temperatura, y humedad

Cálculo de los coeficientes aplicados.

� Por elevación.

( )( )[ ]( )( )[ ]

715.0

18091073.61

1073.61258.56

258.56

=−=

−=−

dfe

xdfe

zxdfe

(3.26)

� Por temperatura

977.046040.82

530460

530

=+

=

+=

dft

dft

Tdft

(3.27)

� Por contenido de humedad

Page 75: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

75

99.0017.0*6070.11

156.01*6070.11

1

=+

+=

++=

dfm

dfm

w

wdfm

(3.28)

El factor total viene dado por la ecuación:

692.0

99.0*977.0*715.0

**

===

df

df

dfmdftdfedf (3.29)

9. Caudal de aire actual.

( )

acfmV

V

cfmdf

wVV

act

act

stdact

18236

692.0

017.0140012

1

=

=

+=

+=

(3.30)

10. Diámetro del ducto (in). Necesario para conocer el diámetro del extractor.

.6.36

05.329.7*4*4

29.72500

18236 2

ind

ftA

d

ftfpm

cfm

V

QA

=

===

===

ππ

11. Diámetro del ducto seleccionado (in).

d = 36in

12. Área del ducto.

( )

2

2

22

069.74

.3*4

*

ftA

A

ftd

A

=

==

=

π

π

13.- Velocidad actual. (fpm). Paso2/paso5.

min22580

069.7

18236 ftr

ft

cfmV ==

14.- Presión dinámica del ducto.

OHdeinV

dfVP 2

22

287.04005

2580*692.0

4005* =

=

=

Campana

15.- Coeficiente de pérdida. IDEM Referencia 8.

f = 0.25

16. Factor de aceleración.

0 o 1 para campanas tomamos el valor de 1.

Page 76: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

76

17.- Pérdida en VP.

25.1

125.0

=+=

+=

VPPérdida

VPPérdida

naceleraciódefactorperdidadeecoeficientPérdida

(3.31)

18.- Presión estática.

wginSP

SP

VPVPPérdidaSP

357.0

285.0*25.1

*

===

19.- Otras pérdidas.

No existen otros accesorios.

20.- Presión estática.

wginSP

SP

pérdidasOtrasSPSP

357.0

0357.0

=+=

+=

21.- Otras Pérdidas.

Filtro: 0.2

22.- Presión estática total.

( )( )

wginSP

SP

SPSPSP accesoriocampanatotal

609.0

25.0359.0

−=+−=

+−=

(3.32)

Page 77: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

77

3.2 DISEÑO DE TUBERÍAS. 3.2.1 DISEÑO DE LOS CIRCUITOS.

La finalidad de una instalación de calefacción es aportar una temperatura ambiente a un local

habitado mediante un aumento de calor, por medio de un elemento emisor, que sea capaz de

contrarrestar las pérdidas de calor que se producen en el local más la aportación necesaria

para obtener condiciones de confort.

Para calcular la instalación de calefacción por agua, deberán seguirse los siguientes pasos: � Un plano claro y legible del edificio indicando la escala y la orientación del mismo.

� Indicación de dónde estará colocada la caldera en el edificio y la localización de los tubos

de alimentación ascendentes y bifurcaciones dentro del edificio.

� Dividir el edificio por habitaciones, asignando a cada una un nombre o referencia. La

vivienda deberá estar siempre bien aislada para que disminuyan las pérdidas por

transmisión a través de las paredes con el consiguiente ahorro energético que ello supone.

El diseño de la instalación deberá ser lo más simple posible, procurando evitar innecesarios

desarrollos o excesivas sinuosidades de las tuberías, ya que ello conduce a complicaciones

en los cálculos e incrementos de las pérdidas de carga. Si hay interferencias con la

estructura, la instalación sanitaria o eléctrica, etc., se salvarán de la forma más racional

posible.

� Calcular el coeficiente global de transmisión térmica (U de cada uno de los cerramientos, a

partir de los datos de los materiales (espesor, conductividad, etc).

� Calcular las demandas caloríficas de cada habitación.

� Calcular los emisores necesarios para contrarrestar esas demandas. Los radiadores deberán,

siempre que sea posible, colocarse debajo de las ventanas sin ningún elemento que pueda

impedir la convección del aire en la habitación (cortinas, elementos decorativos, etc), no se

recomienda para todos los radiadores, sino para algunos. En un baño, en una oficina,

cocina, etc., irán donde convenga.

� Calcular el diámetro de las tuberías de la instalación.

� Calcular la caída de presión en el circuito.

� Seleccionar la bomba de circulación.

� Calcular la potencia de la caldera, está a su vez se ubicará de modo que favorezca el diseño

de la instalación en su aspecto y sin olvidar que los gases combustionados que deben

escapar al exterior, requieren una chimenea que debe poder salir lo más recta posible a los

cuatro vientos.

Page 78: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

78

Condiciones de cálculo: 1. La instalación a realizar se le considera como comerciales debido a que posee 48

habitaciones que no están climatizadas y por el desarrollo longitudinal de las tuberías.

2. Sistema Bitubular alimentación inferior, retorno directo.

3. Condiciones del ambiente [9].

4. Calcular el coeficiente global de transmisión térmica [10].

5. Calcular las demandas caloríficas de cada habitación.

6. Cálculo de radiadores. Con lo expuesto en condiciones de cálculo se tiene los siguientes resultados: Cálculo de radiadores.

Figura 45: Temperatura de entrada y salida en radiadores.

La temperatura de entrada y de salida en el radiador será [11]:

Te (ºC)= 80 Ts (ºC) =65

Temperatura diseño: Ta (ºC) = 21

Temperatura media:

2

TsTeTr

+= Tr (ºC) = 73 (3.33)

• Carga calorífica real.- aquella relacionada con la carga calorífica de aire, techos,

paredes, ventanas, pisos, infiltración y ventilación (fig. 38).

Page 79: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

79

Figura 46: Zonas en donde se genera la carga calorífica por agua.

TABLA 8: Resumen de carga calorífica por agua.

Piso Nº dormitoriosDEMANDA C

(Kcal/h)DEMANDA C

(Btu/h)DEMANDA

TOTAL (Kcal/h)

E - Rad1 1 977 3875

E - Rad5 2 977 3875

rad1 - rad2 3 809 3210rad5 - rad6 4 809 3210rad2 - rad3 5 809 3210rad6 - rad7 6 809 3210

rad3 - rad4 7 1365 5418

rad7 - rad8 8 1365 5418

E - Rad1 1 935 3710 E - Rad5 2 935 3710

rad1 - rad2 3 767 3042rad5 - rad6 4 767 3042rad2 - rad3 5 767 3042rad6 - rad7 6 767 3042rad3 - rad4 7 1314 5216rad7 - rad8 8 1314 5216

7565

7919

5ºPISO

6ºPISO

• Cálculo del salto térmico, ∆t.- es la diferencia entre la temperatura media de entrada y

salida del radiador y la temperatura a climatizar. Ayuda a encontrar la emisión

calorífica que genera cada radiador.

ambienteatemperaturlaysalidadeatemperaturlaentrediferenciattt

ambienteatemperaturlayentradadeatemperaturlaentrediferenciattt

ass

aee

=−=∆=−=∆ .

térmicosaltottt ar −=∆ (3.34)

Cttt ar º5.51=−=∆

Page 80: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

80

• Carga térmica generada por radiadores:

n

tCC

∆=5050 (3.35)

Siendo:

C50: Emisión calorífica en Kcal/h según UNE EN-442 para ∆t= 50 °C. Anexo 7.

n: exponente que se encuentra tabulado para cada modelo de panel o radiador.

A continuación se detalla el tipo de radiador y la emisión calorífica que genera dependiendo

de la demanda calorífica real.

En virtud de ello el salto térmico de referencia pasaría a ser de ∆t = 60°C á ∆t = 50°C, es

decir el que corresponde a una temperatura media del radiador de 70°C y una temperatura de

diseño de 20°C.

Evidentemente cuando el salto térmico coincide con 50°C la formula será simplemente:

C = C50

TABLA 9: Resumen de carga térmica generada por radiadores.

Piso Nº dormitoriosDEMANDA C real (Kcal/h)

DEMANDA Creal (Btu/h)

DEMANDA TOTAL (Kcal/h)

RADIADOR MOD. C50 Kcal/h

elem

E - Rad1 1 977 3875 Dubal 70(frontal aberturas) 119,1

E - Rad5 2 977 3875 Dubal 70(frontal aberturas) 119,1

rad1 - rad2 3 809 3210 Dubal 80(frontal aberturas) 133,7rad5 - rad6 4 809 3210 Dubal 80(frontal aberturas) 133,7rad2 - rad3 5 809 3210 Dubal 80(frontal aberturas) 133,7rad6 - rad7 6 809 3210 Dubal 80(frontal aberturas) 133,7

rad3 - rad4 7 1365 5418 Dubal 60(frontal aberturas) 103,9

rad7 - rad8 8 1365 5418 Dubal 60(frontal aberturas) 103,9

E - Rad1 1 935 3710 Dubal 60(frontal aberturas) 103,9 E - Rad5 2 935 3710 Dubal 60(frontal aberturas) 103,9

rad1 - rad2 3 767 3042 Dubal 60(frontal plano) 99rad5 - rad6 4 767 3042 Dubal 60(frontal plano) 99rad2 - rad3 5 767 3042 Dubal 60(frontal plano) 99rad6 - rad7 6 767 3042 Dubal 60(frontal plano) 99rad3 - rad4 7 1314 5216 Dubal 70(frontal aberturas) 119,1rad7 - rad8 8 1314 5216 Dubal 70(frontal aberturas) 119,1

6ºPISO

7565

7919

5ºPISO

• Número de elementos.- Para hallar el número de elementos por radiador a colocar en

cada local, basta con dividir la carga calorífica total y la carga calorífica que emite el

radiador.

8124

977º

)*/(

)/(º Re

==

=

elemn

helemKcalC

hKcalCelemn al

(3.36)

Page 81: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

81

TABLA 10: Número de elementos en los radiador del 1º al 5º y 6º piso.

Piso Nº dormitoriosDEMANDA C real (Kcal/h)

DEMANDA Creal (Btu/h)

DEMANDA TOTAL (Kcal/h)

RADIADOR MOD. C

(kcal/h*elem)

Nºelem

E - Rad1 1 977 3875 Dubal 70(frontal aberturas) 124 8

E - Rad5 2 977 3875 Dubal 70(frontal aberturas) 124 8

rad1 - rad2 3 809 3210 Dubal 80(frontal aberturas) 139 6rad5 - rad6 4 809 3210 Dubal 80(frontal aberturas) 139 6rad2 - rad3 5 809 3210 Dubal 80(frontal aberturas) 139 6rad6 - rad7 6 809 3210 Dubal 80(frontal aberturas) 139 6

rad3 - rad4 7 1365 5418 Dubal 60(frontal aberturas) 108 13

rad7 - rad8 8 1365 5418 Dubal 60(frontal aberturas) 108 13

E - Rad1 1 935 3710 Dubal 60(frontal aberturas) 108 9 E - Rad5 2 935 3710 Dubal 60(frontal aberturas) 108 9

rad1 - rad2 3 767 3042 Dubal 60(frontal plano) 103 8rad5 - rad6 4 767 3042 Dubal 60(frontal plano) 103 8rad2 - rad3 5 767 3042 Dubal 60(frontal plano) 103 8rad6 - rad7 6 767 3042 Dubal 60(frontal plano) 103 8rad3 - rad4 7 1314 5216 Dubal 70(frontal aberturas) 124 11rad7 - rad8 8 1314 5216 Dubal 70(frontal aberturas) 124 11

6ºPISO

7565

7919

5ºPISO

• Demanda calorífica necesaria.- aquella que se encuentra en los radiadores escogidos y

que no sobrepase la demanda calorífica real.

TABLA 11: Demanda calorífica necesaria para las habitaciones del 1º al 6º piso.

Piso Nº dormitoriosDEMANDA C real (Kcal/h)

DEMANDA Creal (Btu/h)

DEMANDA TOTAL (Kcal/h)

RADIADOR MOD. C50 Kcal/h

elemn

C (kcal/h*ele

m)Nºelem

Ctotal

kcal/h

E - Rad1 1 977 3875 Dubal 70(frontal aberturas) 119,1 1,34 124 8 991

E - Rad5 2 977 3875 Dubal 70(frontal aberturas) 119,1 1,34 124 8 991

rad1 - rad2 3 809 3210 Dubal 80(frontal aberturas) 133,7 1,33 139 6 834rad5 - rad6 4 809 3210 Dubal 80(frontal aberturas) 133,7 1,33 139 6 834rad2 - rad3 5 809 3210 Dubal 80(frontal aberturas) 133,7 1,33 139 6 834rad6 - rad7 6 809 3210 Dubal 80(frontal aberturas) 133,7 1,33 139 6 834

rad3 - rad4 7 1365 5418 Dubal 60(frontal aberturas) 103,9 1,35 108 13 1406

rad7 - rad8 8 1365 5418 Dubal 60(frontal aberturas) 103,9 1,35 108 13 1406

E - Rad1 1 935 3710 Dubal 60(frontal aberturas) 103,9 1,35 108 9 973 E - Rad5 2 935 3710 Dubal 60(frontal aberturas) 103,9 1,35 108 9 973

rad1 - rad2 3 767 3042 Dubal 60(frontal plano) 99 1,34 103 8 824rad5 - rad6 4 767 3042 Dubal 60(frontal plano) 99 1,34 103 8 824rad2 - rad3 5 767 3042 Dubal 60(frontal plano) 99 1,34 103 8 824rad6 - rad7 6 767 3042 Dubal 60(frontal plano) 99 1,34 103 8 824rad3 - rad4 7 1314 5216 Dubal 70(frontal aberturas) 119,1 1,34 124 11 1363rad7 - rad8 8 1314 5216 Dubal 70(frontal aberturas) 119,1 1,34 124 11 1363

6ºPISO

7565

7919

5ºPISO

3.2.2 Cálculo de tuberías por circulación forzada:

Una vez conocidos los radiadores a colocar en cada local, vamos a calcular el diámetro de las

tuberías por tramo de instalación, desde la caldera hasta el último radiador.

Page 82: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

82

Hemos marcado un criterio de diseño de forma que la pérdida de carga no sobrepase en

tramos rectos los 20 mm.c.a/m [12] y que fija una velocidad máxima de 2 m/s.

Para la presente instalación se ha previsto instalar tubería de polipropileno.

Figura 47: Esquema de la instalación por agua.

Para establecer que diámetro es el adecuado, basta con entrar en el nomograma de pérdida de

carga - caudal - velocidad (ver anexo 7) con las Kcal/h a transportar, y leer que pérdida de

carga y que velocidad se corresponden con ella.

Las tablas adjuntas muestran un resumen de los diámetros elegidos por tramo, para las

tuberías de la instalación como ya se ha indicado, esta tabla corresponde a la impulsión y al

retorno pues serán idénticas:

Page 83: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

83

Caldera a D-E

TABLA 12: Diámetros de tuberías para Caldera a D-E.

Tra

mo

Pot

enci

a (K

cal./

h)

Pot

enci

a (K

w.)

Diá

met

ro

nom

inal

(in

)

Diá

met

ro

nom

inal

(m

m)

Pér

dida

s

(m

m.c

.a/m

)

Long

. (m

)

Pér

dida

s po

r tu

berí

a (m

m.c

.a)

Cald.-A 48626 57 1 1/4 42,2 20,97 2,5 52,43

A - B 40495 47 1 1/4 42,2 14,99 2,2 32,98

B - C 32363 38 1 1/4 42,2 9,90 2,2 21,78

C - D 24232 28 1 33,7 17,87 2,2 39,32

D - E 19474 23 1 33,7 16,86 2,2 37,10

E-RAD8 (Sexto piso).

TABLA 13: Diámetros de tuberías para E -RAD8 (Sexto piso).

Tra

mo

Pot

enci

a (K

cal./

h)

Pot

enci

a (K

w.)

Diá

met

ro

nom

inal

(in

)

Diá

met

ro

nom

inal

(m

m)

Pér

dida

s

(mm

.c.a

/m)

Long

. (m

)

Pér

dida

s po

r tu

berí

a

(mm

.c.a

)

E - Rad1 3984 5 3/4 26,9 8,5 9,9 84,15rad2- rad1 3011 4 1/2 21,3 7 4,7 32,90rad3 - rad2 2187 3 1/2 21,3 4,4 2,8 12,32rad4 - rad3 1363 2 1/2 21,3 3,1 4,5 13,95 E - Rad5 3984 5 3/4 26,9 8,5 9,9 84,15

rad5 - rad6 3011 4 1/2 21,3 7 4,7 32,90rad6 - rad7 2187 3 1/2 21,3 4,4 2,8 12,32rad7 - rad8 1363 2 1/2 21,3 3,1 4,5 13,95

E-RAD8 (primer a Quinto piso).

TABLA 14: Diámetros de tuberías para E -RAD8 (primer a quinto piso).

Tra

mo

Pot

enci

a

(Kca

l./h)

Pot

enci

a (K

w.)

Diá

met

ro

nom

inal

(in

)

Diá

met

ro

nom

inal

(m

m)

Pér

dida

s

(mm

.c.a

/m)

Long

. (m

)

Pérd

idas

por

tube

ría

(mm

.c.a

)

E - Rad1 4066 5 3/4 26,9 8,5 9,9 84,15rad2- rad1 3074 4 1/2 21,3 7 4,7 32,90rad3 - rad2 2240 3 1/2 21,3 4,4 2,8 12,32rad4 - rad3 1406 2 1/2 21,3 3,1 4,5 13,95

E - rad5 4066 5 3/4 26,9 8,5 9,9 84,15rad5 - rad6 3074 4 1/2 21,3 7 4,7 32,90rad6 - rad7 2240 3 1/2 21,3 4,4 2,8 12,32rad7 - rad8 1406 2 1/2 21,3 3,1 4,5 13,95

3.2.3 Pérdidas de carga.- estas pérdidas ayudan a elegir la bomba para alimentar al circuito

de calefacción, para ello se buscará una bomba capaz de suministrar caudal a toda la

instalación y vencer las pérdidas de carga del circuito más desfavorable. Estas pérdidas de

carga son, por accesorios, por tuberías, caldera y radiadores.

Page 84: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

84

Por accesorios:

)./(

)./(

.

)..(

*2

*)(

2

2

1

smgravedaddenaceleracióg

smtuberíalaenvelocidadv

accesorioenpérdidadeecoeficientk

acmaccesorioenpérdidah

g

vKi

mh

ni

i

====

=∑

=

=

(3.37)

Ida y retorno.-

Caldera al tramo D-E.

TABLA 15: Pérdidas por accesorios, Caldera a D-E.

ACCESORIOS IDA k ACCESORIOS RETORNO k

Cald.-A1 te, 1 codos 90º, 1válvula check, 1

válvula globo completamente abierta0.3,

0.42,2.5,10Cald.-A

1 te, 1 codos 90º, 1válvula check, 1 válvula globo completamente abierta

0.3, 0.42,2.5,0,

2

A - B1cruz, valvula globo completamente

abierta0,3, 10 A - B

1cruz, valvula globo completamente abierta

0,3, 10

B - C1cruz, valvula globo completamente

abierta0,3, 10 B - C

1cruz, valvula globo completamente abierta

0,3, 10

C - D1cruz, valvula globo completamente

abierta0,3, 10 C - D

1cruz, valvula globo completamente abierta

0,3, 10

D - E1te, valvula globo copletamente

abierta0,3, 10 D - E

1te, valvula globo copletamente abierta

0,3, 10

Tra

mo

Diá

met

ro

nom

inal

(m

m)

Acc

se

(m

m.c

.a)

Cald.-A 42,2 2795,92A - B 42,2 2102,04

B - C 42,2 2102,04

C - D 33,7 2102,04D - E 33,7 2102,04

Calculo de tuberías ida

Tra

mo

Diá

met

ro

nom

inal

(m

m)

Acc

se

(m

m.c

.a)

Cald.-A 42,2 2795,92

A - B 42,2 2102,04

B - C 42,2 2102,04

C - D 33,7 2102,04

D - E 33,7 2102,04

Calculo de tubería retorno

Sexto piso.

TABLA 16: Pérdidas por accesorios, E - Rad8 (sexto piso).

ACCESORIOS IDA k ACCESORIOS RETORNO k

Rad1- E 3codos,1 te, llave de reglaje 0.42, 0.3, 4 Rad1- E 2codos,1 te, detentor 0.42, 0.3, 4rad2- rad1 2codos,1 te, llave de reglaje 0.42, 0.3, 4 rad2- rad1 2codos,1 te, detentor 0.42, 0.3, 4rad3 - rad2 2codos,1 te, llave de reglaje 0.42, 0.3, 4 rad3 - rad2 2codos,1 te, detentor 0.42, 0.3, 4rad4 - rad3 3codos,1 te, llave de reglaje 0.42, 0.3, 4 rad4 - rad3 3codos, detentor 0.42, 0.3, 4

E - rad5 3codos,1 te, llave de reglaje 0.42, 0.3, 4 E - rad5 2codos,1 te, detentor 0.42, 0.3, 4rad5 - rad6 2codos,1 te, llave de reglaje 0.42, 0.3, 4 rad5 - rad6 2codos,1 te, detentor 0.42, 0.3, 4rad6 - rad7 2codos,1 te, llave de reglaje 0.42, 0.3, 4 rad6 - rad7 2codos,1 te, detentor 0.42, 0.3, 4rad7 - rad8 3codos,1 te, llave de reglaje 0.42, 0.3, 4 rad7 - rad8 3codos, detentor 0.42, 0.3, 4

Page 85: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

85

TramoAccse

(mm.c.a)

E - Rad1 828,57

rad2- rad1 742,86

rad3 - rad2 742,86

rad4 - rad3 828,57

E - Rad5 828,57

rad5 - rad6 742,86

rad6 - rad7 742,86

rad7 - rad8 828,57

TramoAccse

(mm.c.a)

E - Rad1 828,57

rad2- rad1 742,86

rad3 - rad2 742,86

rad4 - rad3 828,57

E - Rad5 828,57

rad5 - rad6 742,86

rad6 - rad7 742,86

rad7 - rad8 828,57

Por tuberías: como se describe en la selección de diámetros de tubería, estas no deben

sobrepasar una pérdida de carga de 20mm.c.a/m y su velocidad no superar los 2m/s los cuales

determinamos en los mismos nomogramas de selección de diámetros. Ida y retorno.

TABLA 17: Pérdidas por tuberías, Caldera a D-E.

Tra

mo

Pot

enci

a (K

cal./

h)

Pot

enci

a (K

w.)

Pér

dida

s

(m

m.c

.a/m

)

Long

. (m

)

Pér

dida

s po

r tu

berí

a (m

m.c

.a)

Tra

mo

Pot

enci

a (K

cal./

h)

Pot

enci

a (K

w.)

Pér

dida

s

(m

m.c

.a/m

)

Long

. (m

)

Pér

dida

s po

r tu

berí

a (m

m.c

.a)

Cald.-A 48626 57 20,97 2,5 52,43 Cald.-A 48626 57 20,97 2,5 52,43A - B 40495 47 14,99 2,2 32,98 A - B 40495 47 14,99 2,2 32,98B - C 32363 38 9,90 2,2 21,78 B - C 32363 38 9,90 2,2 21,78C - D 24232 28 17,87 2,2 39,32 C - D 24232 28 17,87 2,2 39,32D - E 19474 23 16,86 2,2 37,10 D - E 19474 23 16,86 2,2 37,10

Calculo de tuberías ida Calculo de tubería retorno

Sexto piso.

TABLA 18: Pérdidas por tuberías, E a Rad8 (sexto piso).

Tra

mo

Pot

enci

a (K

cal./

h)

Pot

enci

a (K

w.)

Pér

dida

s

(mm

.c.a

/m)

Long

. (m

)

Pér

dida

s po

r tu

berí

a (m

m.c

.a)

Tra

mo

Pot

enci

a (K

cal./

h)

Pot

enci

a (K

w.)

Pér

dida

s

(mm

.c.a

/m)

Long

. (m

)

Pér

dida

s po

r tu

berí

a (m

m.c

.a)

E - Rad1 3984 5 8,5 9,9 84,15 E - Rad1 3984 5 8,5 10,4 88,40rad2- rad1 3011 4 7 4,7 32,90 rad2- rad1 3011 4 7 4,7 32,90rad3 - rad2 2187 3 4,4 2,8 12,32 rad3 - rad2 2187 3 4,4 2,8 12,32rad4 - rad3 1363 2 3,1 4,5 13,95 rad4 - rad3 1363 2 3,1 4,5 13,95 E - Rad5 3984 5 8,5 9,9 84,15 E - Rad5 3984 5 8,5 10,4 88,40

rad5 - rad6 3011 4 7 4,7 32,90 rad5 - rad6 3011 4 7 4,7 32,90rad6 - rad7 2187 3 4,4 2,8 12,32 rad6 - rad7 2187 3 4,4 2,8 12,32rad7 - rad8 1363 2 3,1 4,5 13,95 rad7 - rad8 1363 2 3,1 4,5 13,95

Calculo de tuberías ida Calculo de tubería retorno

Pérdidas por caldera.- Valor que se genera por la pérdida de carga para agua y pérdida de

carga por humos [13].

(3.38)

acmmP

acmmP

CAL

CAL

..64.22

..)24.240.20(

=∆+=∆

Page 86: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

86

3.2.4 Cálculo de la bomba de circulación.

Pérdidas de carga total.- Entonces las pérdidas por accesorios, tuberías, caldera y

radiadores proporcionan un valor de:

adiadoresRcalaccrettubidatubbomba ppppp ∆+∆+∆+∆+∆=∆ (3.39)

TABLA 19: Pérdidas de carga en la bomba.

mm.c.a

470

479

15057

23

761623645

PÉRDIDAS DE CARGA POR TUBERÍAS, ACCESORIOS Y CALDERA.

∆P

CIRCIMPP∆

RETCIRCP∆

ACCP∆

CALP∆radP∆

BOMBAP∆

• Presión de la bomba.- es la pérdida de carga por tubería, accesorios y caldera,

generando una altura total de:

H total bomba = 23.65m.

• Caudal de la bomba de circulación.- se calcula mediante la potencia de la caldera

dividida para la diferencia de temperatura del circuito.

CT

hkcalP

slQT

PQ caldera

º

/

/3600*

=∆==

∆=

(3.40)

gpmslQ

Q

71.20/307.13600*15

70560

==

=

3.2.5 Pérdidas de calor por tuberías.

)º/(

).(º

)(º),(

)(

)º/(

)(

*

1)/ln()/ln(

*

1)(***2

2

2312

CmWtérmicaconveccióndeecoeficienth

Cambienteatemperaturta

Cidaretornoaguadeatemperaturt

mtuberíasdelongitudL

CmWtérmicadadconductivideecoeficientk

WtuberiasporcalordepérdidaQ

rhk

rr

k

rr

rh

tatLQ

agua

aireairetaistubaguaagua

agua

=

=

====

+++

−=

π

(3.41)

Page 87: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

87

Coeficiente de transmisión para:

� tubería de polipropileno, K = 0.35 W/mºk. � aislamiento en lana de vidrio K=0.033 W/mºk. � r1 = 0.0154m; r2 = 0.0211; r 3 = 0.0460m. � hagua = 9990.19 W/m 2ºk. � haire = 4.5 W/m 2ºk.

• IDA.-

hKcalWQ

Q

/75.29793460

0460.0*5.4

1

033.0

)0211.0/046.0ln(

35.0

)0154.0/0211.0ln(

0154.0*19.9990

1)2180(*5.2**2

==

+++

−= π

TABLA 20: Pérdidas de calor por tuberías ida.

TramoP

(Kcal./h)Tramo

P (Kcal./h)

Tramo P (Kcal./h) Total ida (Kcal./h)

Cald.-A 27,18 6piso 1º al 5piso

A - B 23,92 E - Rad1 107,62 E - Rad1 107,62

B - C 23,92 rad2- rad1 51,09 rad2- rad1 51,09

C - D 23,92 rad3 - rad2 30,44 rad3 - rad2 30,44

D - E 23,92 rad4 - rad3 48,92 rad4 - rad3 48,92

E - Rad5 107,62 E - rad5 107,62

rad5 - rad6 51,09 rad5 - rad6 51,09

rad6 - rad7 30,44 rad6 - rad7 30,44

rad7 - rad8 48,92 rad7 - rad8 48,92

2979,75

PÉRDIDAS DE CALOR POR TUBERÍASIDA

• RETORNO.-

hKcalWQ

Q

/83.22702637

0460.0*5.4

1

033.0

)0211.0/046.0ln(

35.0

)0154.0/0211.0ln(

0154.0*19.9990

1)2165(*5.2**2

==

+++

−=

π

Page 88: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

88

TABLA 21: Pérdidas de calor por tuberías retorno.

Tramo P (Kcal./h) Tramo P (Kcal./h) Tramo P (Kcal./h)Total retorno

(Kcal./h)

Cald.-A 20,27 6piso 1º y 5piso

A - B 17,84 E - Rad1 84,32 E - Rad1 84,32

B - C 17,84 rad2- rad1 38,10 rad2- rad1 38,10

C - D 17,84 rad3 - rad2 22,70 rad3 - rad2 22,70

D - E 17,84 rad4 - rad3 36,48 rad4 - rad3 36,48

E - Rad5 84,32 E - rad5 84,32

rad5 - rad6 38,10 rad5 - rad6 38,10

rad6 - rad7 22,70 rad6 - rad7 22,70

rad7 - rad8 36,48 rad7 - rad8 36,48

PÉRDIDAS DE CALOR POR TUBERÍASRETORNO

2270,83

3.2.6 POTENCIA DE LA CALDERA:

(3.42)

QRAD = 48626 Kcal. /h

QTUB IDA = 2979.75 Kcal./h

QTUB RET = 2270.83Kcal./h

2.1*)83.227075.297948626()/( ++=hkcalP

TABLA 22: Potencia de la caldera.

kw

64652 7528000070560

POTENCIA DE LA CALDERA

P CALDERA (kcal/h)

82P UTILCALDERA (Btu/h)P UTILCALDERA (kcal/h)

La potencia útil de la caldera es aquella que se encuentra en catálogos y con la que se trabaja

para los demás cálculos posteriores.

• Cálculo del quemador.- es la fracción entre la potencia de la caldera y la multiplicación

entre el poder calorífico inferior del combustible y rendimiento de la caldera.

η*PCI

PQ = (3.43)

Q = Caudal en Kg/h, de combustible

P caldera = 70560 kcal/h.

)2.11.1(

*)()/(

−===

+=

inerciaporaumentodeecoeficienta

tuberíasporcalordeperdidaQ

radiadoreseninstaladapotenciaQ

aQQhkcalP

TUBS

RADS

TUBSRADI

Page 89: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

89

P.C.I. gas oil = 10200kcal/kg.

η =80% de la caldera.

hkgQ

kgkcal

hkcalQ

/65.8

80.0*/10200

/70560

=

=

• Volumen de caldera.- dada en catálogo su valor es:

Vcaldera = 102 lt

• Volumen radiador.-cada radiador tiene su capacidad en litros, para calcular el volumen

de cada radiador se multiplica el número de elementos por su capacidad.

TABLA 23: Volumen radiador.

LocalNº de

habitaciónRad. Mod. Nº elem

Volum Rádiador

(l)

1, 2 Dubal 70(frontal aberturas) 8 3,4

3,4,5,6 Dubal 80(frontal aberturas) 6 3,0

7,8 Dubal 60(frontal aberturas) 13 4,7

1, 2 Dubal 60(frontal aberturas) 9 3,2

3,4,5,6 Dubal 60(frontal plano) 8 2,9

7,8 Dubal 70(frontal aberturas) 11 4,7

Selección del Radiador

5º Piso

6º Piso

llV

llV

lllV

lllV

llV

lV

llV

llV

pisoTotalRAD

pisoRADTOTAL

PISORAD

PISRAD

pisoTotalRAD

pisoRAD

pisoDRA

pisoRAD

46.27)46.952.1148.6(

46.92*7.443.0*11

52.114*9.236.0*8

48.62*2.336.0*9

2.1415*)36.91288.6(

36.92*7.4)36.0*13(

124*35.0*6

88.62*4.343.0*8

º6

87º6

6543º6

21º6

º5

87º5

6543º5

21º5

=++=

===

===

===

=++=

===

===

===

−−−

−−−

Vradiador total = 141.2+27.46= 168.66 lt.

• Volumen de tubería.-

lVtube *4

* 2φπ= (3.44)

Tubería de ida y retorno.-

Page 90: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

90

Caldera a E.-

TABLA 24: Volumen de tubería Caldera a E.

Tra

mo

Diá

metro

(cm

.)

Vol

um

Tub

ería

(l)

Tra

mo

Diá

metro

(cm

.)

Vol

um

Tub

ería

(l)

Cald.-A 3,08 1,86 Cald.-A 3,08 1,86

A - B 3,08 1,64 A - B 3,08 1,64

B - C 3,08 1,64 B - C 3,08 1,64

C - D 2,39 0,99 C - D 2,39 0,99

D - E 2,23 0,86 D - E 2,23 0,86

Calculo de tuberías ida Calculo de tubería retorno

E a rad8 (6º piso).-

TABLA 25: Volumen de tubería E a rad8 (6º piso).

Tra

mo

Diá

met

ro

(cm

.)

Vol

um

Tub

ería

(l)

Tra

mo

Diá

met

ro

(cm

.)

Vol

um

Tub

ería

(l)

E - Rad1 1,91 2,84 E - Rad1 1,91 2,98rad2- rad1 1,45 0,78 rad2- rad1 1,45 0,78rad3 - rad2 1,45 0,46 rad3 - rad2 1,45 0,46rad4 - rad3 1,45 0,74 rad4 - rad3 1,45 0,74 E - Rad5 1,91 2,84 E - Rad5 1,91 2,98

rad5 - rad6 1,45 0,78 rad5 - rad6 1,45 0,78rad6 - rad7 1,45 0,46 rad6 - rad7 1,45 0,46rad7 - rad8 1,45 0,74 rad7 - rad8 1,45 0,74

Calculo de tuberías ida Calculo de tubería retorno

E a rad8 (1º al 5ºpiso).-

TABLA 26: Volumen de tubería E a rad8 (1º al 5ºpiso).

Tra

mo

Diá

met

ro

(cm

.)

Vol

um

Tub

ería

(l)

Tra

mo

Diá

met

ro

(cm

.)

Vol

um

Tub

ería

(l)

E - Rad1 1,91 2,84 E - Rad1 1,91 2,98rad2- rad1 1,45 0,78 rad2- rad1 1,45 0,78rad3 - rad2 1,45 0,46 rad3 - rad2 1,45 0,46rad4 - rad3 1,45 0,74 rad4 - rad3 1,45 0,74

E - rad5 1,91 2,84 E - rad5 1,91 2,98rad5 - rad6 1,45 0,78 rad5 - rad6 1,45 0,78rad6 - rad7 1,45 0,46 rad6 - rad7 1,45 0,46rad7 - rad8 1,45 0,74 rad7 - rad8 1,45 0,74

Calculo de tuberías ida Calculo de tubería retorno

• Volumen total de tubería.-

llV

VVVVVVV

VVV

TUBERIA

RETORNOIDATUBERIA

RETORNOIDATUBERIA

)61.4992.999.6()18.4864.999.6(

) () ( Rad8 - EPISO6ºRad8 - EPISOAL5º1ºA-Cald.Rad8 - EPISO6ºRad8 - EPISOAL5º1ºA-Cald.

+++++=

+++++=+=

V Tubería = 64.80 + 66.52 = 131.33 lt. (3.45)

Page 91: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

91

Entonces el volumen de instalación será:

TUBERADIACALDEINSTALA VVVV ++= (3.46)

V Instalación = 401.99 lt.

• Determinar el volumen de un depósito de expansión cerrado:

mM

MINS

PP

PVtV

−−

=**)48.33*738.0(

exp (3.47)

t = temperatura media de retorno e ida. (ºC).

V INS = volumen de la instalación. (m3).

Pm= presión absoluta = la altura del último radiador sobre el vaso de expansión incrementada

en 21.51 inHg.

PM = Pm +21.51 inHg, el anterior valor más otros 21.51inHg como factor de seguridad para el

tarado de la válvula de seguridad.

KPa

KPa

inHg

PainHg

inHg

Pa

OftH

inHg

m

252.102Pm

)841.72410.29(Pm

1

4.3386*51.21

1

4.3386*

1

8826.0*

1

3.28ft* 3m Pm

2

=+=

+=

PM = 102.252kpa +72.841kpa = 175.093kpa.

252.102093.175

093.175*99.401*)48.335.72*738.0(exp −

−=V

Capacidad total vaso de expansión: Vve = 19.35lt.

3.2.7 Cálculo de la chimenea.- viene determinada por:

• Sección de la chimenea

h

PkS

*= (3.48)

Donde:

S = sección de la chimenea (cm2).

K = 0.03 para gas oil.

P = potencia de la caldera = 70560 kcal/h.

h = altura reducida. =H – (0.5*n + L + P)

H = Es la altura real desde la caldera al punto más alto de la chimenea. La chimenea

debe sobresalir 1m del punto más alto del tejado.

n = número de codos.

L = longitud horizontal de la chimenea.

)(33.13166.168102 lVINSTALA ++=

Page 92: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

92

P = coeficiente dependiente de la potencia calorífica de la caldera, 2

TABLA 27: Cálculo de la chimenea.

Cálculo de la chimeneaP CALDERA Kcal./h 70560,00altura reducida m 11altura vertical m 14# de codos 1longitud horizontal m 0,5Coeficiente de potencia 2Coeficiente para gasoleo 0,03Sección de chimenea cm^2 638,24Sección de chimenea mínima cm^2 300,00Sección de chimenea mínima corregida cm^2 399,00

Por cada 500m de altura sobre el nivel del mar, se aumenta un 6% a la sección de chimenea.

Al ser una instalación realizada en la ciudad de Riobamba y con una altura sobre el nivel del

mar de 2753m, se añadirá un 33% de aumento a la sección de la chimenea. Siendo la sección

de la chimenea:

Sección de chimenea mínima corregida = 399,00 cm2

3.2.8 Consumo anual de combustible.

Se estima que la cantidad de combustible en kg que consume la caldera en un período z de

tiempo es:

η***)(

****)(**12

min PCIttt

PcbattzC

ema

ma

−−

= (3.49)

Z = número de días que se tendrá funcionando la calefacción.

ta = temperatura interior del local a calefaccionar.

tm = temperatura media exterior.

A = factor de reducción de temperatura = 0.95 en viviendas.

B = factor de reducción de servicio = 1 en viviendas.

C = factor de corrección = 0.9.

P = potencia calorífica que suministra la caldera.

tem = temperatura mínima exterior que se tendrá en temporada fría.

PCI = poder calorífico inferior de un combustible = 10200 Kcal. /kg.

η = rendimiento de la instalación = 0.85

Page 93: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

93

TABLA 28: Cálculo de la capacidad anual.

Capacidad anual Kg 1314,65Rendimiento Global de Text e r ior media ºC 4,7Te ºC

0,85

Ti ºC 21,00n rendimiento de instalación

11,00

0,88PCI (gasoleo C) 10200,00PC

0,80

a factor de reducción de temperatura 0,95factor de reducción del servicio 1,00

c factor de corección 0,90b

P CALDERA Kcal./h 70560,00z número de dias que funciona la calefacción 8,00

Page 94: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

94

3.3 DISEÑO DE CONDUCTOS. Diseño de Ductos para el 5º Piso.

Determinación del tramo crítico:

El tramo crítico es aquel que contiene el mayor flujo, inicia en la boca del ventilador y

termina en el último difusor, de acuerdo a los planos se ubicará el ventilador en la sección

oeste en un cuarto de maquinas, ductos subirán hasta el cielo raso por donde se desplegará a

todos los dormitorios a través de ductos flexibles y cada uno terminará con un difusor por lo

que se inicia con los ductos primarios; el diseño se realiza por el método de igual fricción. Ductos primarios:

Para poder instalar la tubería se necesita la temperatura de impulso y el caudal para lo cual se

realiza el siguiente cálculo:

Temperatura de impulso = 29ºC = 83.77ºF. Volumen de impulso por dormitorio:

Volumen de impulso por piso: V I = 184.28*2+240*4+386*2=2300cfm Con estos valores se inicia el diseño.

Figura 48: Esquema de la distribución de ductos.

( )

( )cfmV

V

cfmTT

QV

I

I

BSIBSL

SI

28.184

8.6977.83*08.1

2781

)(*08.1

=

=−

=

−=

Page 95: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

95

El método utilizado es igual fricción razón por lo cual en el monograma de pérdidas de

fricción en ductos rectangulares con la velocidad y el caudal (Anexo 8) encontramos el factor

de fricción que se utilizara en todo el diseño.

De acuerdo al esquema se determina como tramo crítico O-h para el diseño se determina:

1. Reconocer la sección desde un punto a otro para realizar el análisis. Como se observa en

el esquema.

TABLA 29: Secciones

TRAMO PRIMARIO

O-A

A-B

B-C

C-D

D-g .

2. Se tomará en cuenta todos los elementos que se encuentren en éste tramo como codos,

filtros, dámper, acoples, etc.

TABLA 30: Accesorios.

Ducto

2Codos

Dámper Fire

Ducto

Reducción

Dámper

Ducto

Reducción

Dámper

Ducto

Reducción

Y simétrica en cola de milano

Dámper

Ducto flexible

Dámper

Difusor

ELEMENTOTRAMO

PRIMARIO

O-A

A-B

B-C

C-D

D-g

3. El caudal que circula es el caudal de impulso ya calculado.

TABLA 31: Volumen de impulso.

VOLUMEN DE IMPUSLO CFM

5º Total 2300,00

Page 96: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

96

4. A través de la formula de Caudal se determina el área del ducto, la velocidad que se

considera es de 1500fpm Anexo 9.

254.11500

2300ft

fpm

cfmA

V

QA

==

=

5. Del área se despeja el diámetro equivalente y con este valor a las referencias de los

diámetros comerciales.

in

ft

ft

A

ftA

eequivalent

eequivalent

eequivalent

eequivalent

80.16

40.1

54.1*4

*4

54.1

2

2

=

=

=

=

=

φφ

πφ

πφ

TABLA 32 : Equivalencia de ductos circulares a rectangulares para igual fricción y capacidad.

6. Velocidad real del ducto.

min21493

54.1

2300 ftr

r

ft

cfmV

A

QV

==

=

7. Un punto necesario es expresar la longitud.

Longitud Tramo (ft) = 31.8

8. Todo accesorio produce pérdidas de carga (Co), es por lo tanto necesario buscar en

catálogos o en manuales dichos coeficientes. Anexo (10)

Codos,

1. H=500

W=300

6.1300

500==W

H

Page 97: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

97

Co = 0.08

2. H=300

W=500

6.0500

300==W

H

Co = 0.6

9. Presión dinámica:

( )

wginP

P

wginV

P

v

v

v

139.0

4005

1493

40052

2

=

=

=

=

10. Todas los ductos producen pérdidas y están en función de su caudal, diámetro y

velocidad, con estos valores en la gráfica de pérdidas de carga (f) se determina su valor.

Ducto, f = 0,175inwg/100ft.

11. La presión estática permite determinar el equipo que vencerá todas las pérdidas.

( )

( )

wginS

S

wginPCS

wginS

S

wginfLS

sPaccesorio

sPaccesorio

vosPaccesorio

P

P

P

020.0

135.0*15.0

*

042.0

175.0*8.31

*

===

==

===

(3.50)

TABLA 33: Presión estática accesorios.

W HDucto 2300 1,53 1,40 16,77 20 12 0,139 0,172 0,055 31,8Codo 20 12 0,08 0,011 6,5Codo 12 20 0,12 0,017 9,7Dámper Fire 0,090 52,3

Pv (in wg)

O-A

TRAMO PRIMARIO

DUCTO RECTANGULAR

(in)ELEMENTO

CAUDAL (CFM )

CoSP

(in wg)AREA (ft^2)

DIAM. EQUIV. (ft)

Long. Equiv. (ft)

DUCTOS

DIAM. EQUIV.

(in)

f (in wg/100ft)

Con el valor total de Sp corregido existente seleccionamos el equipo y comprobamos que nos

del mismo factor de fricción en caso contrario volvemos a calcular tomando el nuevo valor:

Sp equipo seleccionado = 0,8000 in wg

Longitud equivalente = 289,71 ft

factor de fricción = 0,0028 in wg/ft

= 0,28 in wg/100 ft

Page 98: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

98

El factor de fricción es diferente por lo tanto volvemos a realizar los cálculos.

W HDucto 2300 1,53 1,40 16,80 20 12 1,54 1494 8 31,8 0,139 0,28 0,089

Codo 20 12 0,08 0,011Codo 12 20 0,12 0,017Dámper Fire 0,090Ducto 1732 1,16 1,22 14,58 16 12 1,24 1397 7 19,7 0,122 0,28 0,055

Reducción 0,04 0,005

Cruz 90º 0,20 0,024

Dámper 0,040Ducto 1252 0,90 1,07 12,82 12 12 0,94 1332 7 10,5 0,111 0,28 0,029Reducción 0,04 0,004

Dámper 0,040

Ducto 772 0,58 0,86 10,31 10 10 0,65 1188 6 20,7 0,088 0,28 0,058

Reducción 0,04 0,004Y simétrica en cola de milano

0,20 0,018

Dámper 0,040

Ducto flexible 386 0,33 0,64 7,72 //// 10 0,5 708 4 9,8 0,031 0,28 0,028

Dámper 0,040

Difusor 0,0480,640

VELOCIDAD (m/s)

SP TOTAL

O-A

A-B

B-C

C-D

D-g

LONGITUD TRAMO (ft)

CoPv

(in wg)f

(in wg/100ft)SP

(in wg)

DUCTOS

TRAMO PRIMARIO

ELEMENTOCAUDAL (CFM )

AREA (ft^2)

DIAM. EQUIV. (ft)

DIAM. EQUIV. (in)

DUCTO RECTANGULAR

(in)AREA ft^2

VELOCIDAD (ft/min)

Ductos secundarios.

Con el Sp total se procederá a calcular el Sp en cada nodo para lo cual conviene realizar los

siguientes pasos:

1. Primero determinar los accesorios para cada nodo.

TABLA 34: Presión estática en nodos.

NODOS Spaccesorios

O 0,048

A 0,181

B 0,106

C 0,065

D 0,098

g 0,060 .

2. Determinación de la Presión estática de recuperación.

( )

wginASp

ASp

wginVV

ASp

ónrecuperaci

ónrecuperaci

ónrecuperaci

009.0

4005

1397

4005

1493

2

1

4005

2

40052

1

22

22

1

=

=

=

=

(3.51)

Page 99: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

99

TABLA 35: Presión estática de recuperación.

NODOSSp

recuperacion

O 0,054

A 0,009

B 0,006

C 0,011

D 0,028

g En el nodo O se encuentra la sumatoria de todos los Sp debido a que este es el punto de

partida.

wginOSp

OSp

DCBAOSp

ónrecuperaci

ónrecuperaci

ónrecuperaci

050.0

018.0012.0009.0012.0

=

=+++=

=+++=

∑∑

3. Cálculo de Sp disponible.

Realizando la resta del Sp total menos los Sp de los accesorios se determinan el Sp disponible

en cada nodo.

wginASp

ASp

disponible

disponible

377.0

181.0558.0

=

=−= (3.52)

TABLA 36: Presión estática disponible.

NODOS Spaccesorios Sp disponible

O 0,048 0,558

A 0,181 0,377

B 0,106 0,271

C 0,065 0,206

D 0,098 0,108

g 0,060 0,048

4. Cálculo de Sp en cada nodo.

Con todos los valores ya previamente calculados se realiza las operaciones apropiadas

determinado así el Sp.

En el punto O se encuentra el Sp sin recuperación debido a que esta en la caja de ventilación.

wginSpO

SpO

SpSpSpO ónrecuperacitotal

51.0

048.0558.0

==−=

−=

Para el Sp en el nodo A se resta los accesorios hasta este punto:

Page 100: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

100

wginSpA

SpA

ASpSpOSpA accesorios

327.0

181.0508.0

==−=

−=

A partir del punto B se puede observar la influencia de la recuperación debido al cambio de

velocidades:

wginSpB

SpB

SpBSpSpASpB ónrecuperaciaccesorios

230.0

009.0106.0327.0

==+−=

+−=

TABLA 37: Presión estática total.

NODOS Sptotal SpaccesoriosSp

recuperacionSp disponible Spnodo

O 0,640 0,048 0,054 0,640 0,586

A 0,586 0,207 0,009 0,433 0,387

B 0,387 0,124 0,006 0,308 0,269

C 0,269 0,074 0,011 0,235 0,206

D 0,206 0,119 0,028 0,116 0,116

g 0,116 0,068 0,048 0,048

Para los siguientes nodos se realiza la operación en el nodo B, para g solo restamos el

accesorio del ducto, de tal forma comprobamos que el Spg es el mismo que el del difusor que

se va a instalar.

TABLA 38: Comprobación del Sp del difusor.

Ducto flexible 0,013

Dámper 0,040

Difusor 0,048

ELEMENTO SP (in wg)TRAMO

PRIMARIO

D-g

Sp disponible

0,048

Con los Spnodo se empieza el diseño de los ductos que se distribuirán a cada dormitorio.

De cada nodo salen dos ramales con la misma cantidad de fluido debido a que tienen la

misma carga térmica.

Page 101: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

101

TABLA 39: Presión estática por ducto flexible.

Tramo SP

A-b 0,293

A-a 0,293

B-d 0,134

B-c 0,134

C-f 0,103

C-e 0,103

D-h 0,048

D-g 0,048

5. Diámetro del ducto flexible:

Con el caudal se calcula el diámetro y en catálogo se selecciona el más adecuado. Anexo 13

fpmV

ft

cfmV

A

QV

ftA

80.816

35.0

89.284

35.0

2

2

=

=

=

=

6. Factor de fricción. Anexo 11.

wginf 018.0=

7. Determinación del Spreal..

( )

wginft

wginftSp

wginft

friccióndefactorLongitudSp

real

real

013.0100

018.0*84.9

100

*

==

= (3.53)

Diseño de ductos para el retorno.

1. Reconocer la sección desde un punto a otro para realizar el análisis. Como se observa en

el esquema.

TABLA 40: Secciones

H - I

K -O

I - K

J - I

TRAMO PRIMARIO

Page 102: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

102

2. Se tomará en cuenta todos los elementos que se encuentren en éste tramo como codo,

reducciones, ducto, rejilla.

TABLA 41: Accesorios.

Ducto

Codos

ReducciónDucto

ReducciónDucto

ReducciónDucto

ReducciónRejilla

H - I

K -O

I - K

J - I

TRAMO PRIMARIO ELEMENTO

3. El caudal de retorno es la suma de los caudales por dormitorio menos 7.5 cfm de aire

nuevo por persona en este caso existen 2 personas en la habitación

TABLA 42: Volumen de retorno.

2180

1911

1686

1461

1090

719

494

269

269

M - N

O - H

H - I

I - J

J - K

K - L

L - M

TRAMO PRIMARIO

CAUDAL (CFM )

O -P

N - O

4. A través de la formula de Caudal se determina el área del ducto, la velocidad que se

considera es de 1300fpm Anexo 9.

2677.11300

2180ft

fpm

cfmA

V

QA

==

=

Page 103: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

103

5. Del área se despeja el diámetro equivalente y con este valor a las referencias de los

diámetros comerciales.

in

ft

ft

A

ftA

eequivalent

eequivalent

eequivalent

eequivalent

5.17

46.1

677.1*4

*4

677.1

2

2

=

=

=

=

=

φφ

πφ

πφ

Ducto seleccionado: 22*12 in

6. Nuevamente utilizando la formula de caudal encontramos la velocidad real del ducto.

min21290

69.1

2380 ftr

r

ft

cfmV

A

QV

==

=

7. Un punto necesario es expresar la longitud.

Longitud Tramo (ft) = 27

8. Todo accesorio produce pérdidas de carga (Co), es por lo tanto necesario buscar en

catálogos o en manuales dichos coeficientes.

a. H=550

W=300

83.1300

550==W

H

Co = 0.08

b. H=300

W=300

1300

300==W

H

Co = 0.09

9. Presión dinámica:

( )

wginP

P

wginV

P

v

v

v

104.0

4005

1290

40052

2

=

=

=

=

Page 104: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

104

10. Todas los ductos producen pérdidas y están en función de su caudal, diámetro y

velocidad, con estos valores en la gráfica de pérdidas de carga (f) se determina su valor.

Ducto, f = 0,13inwg/100ft

11. La presión estática permite determinar el equipo que vencerá todas las pérdidas.

( )

( )

wginS

S

wginPCS

wginS

S

wginfLS

sPaccesorio

sPaccesorio

vosPaccesorio

P

P

P

008.0

104.0*08.0

*

036.0

135.0*27

*

===

==

===

TABLA 43: Presión estática accesorios.

W H

Ducto 2180 1,677 1,46 17,0 22 12 1,69 1290 7 27,0 0,104 0,24 0,065Codo 22 12 0,08 0,008Reducción 0,05 0,005Ducto 1911 1,481 1,37 16,5 20 12 1,54 1241 6 10,0 0,096 0,24 0,024Reducción 0,05 0,005Ducto 1686 1,359 1,32 15,8 18 12 1,4 1204 6 20,0 0,090 0,24 0,048Reducción 0,05 0,005Ducto 1461 1,213 1,24 14,9 16 12 1,24 1178 6 10,0 0,087 0,24 0,024Reducción 0,05 0,004Ducto 1090 0,925 1,09 13,0 12 12 0,94 1160 6 37,0 0,084 0,24 0,089Codos 12 12 0,09 0,015Reducción 0,05 0,004Ducto 719 0,620 0,89 10,7 10 10 0,65 1106 6 10,0 0,076 0,24 0,024Reducción 0,05 0,004Ducto 494 0,447 0,75 9,0 8 10 0,52 950 5 20,0 0,056 0,24 0,048Reducción 0,05 0,003Ducto 269 0,283 0,60 7,2 8 8 0,42 640 3 10,0 0,026 0,24 0,024Codo 0,09 0,002Ducto 269 0,420 0,73 8,8φ circ. 10 0,55 493 3 4,0 0,015 0,24 0,010Damper 0,17 0,003Rejilla 0,020

Sp total = 0,433

SP (in wg)

VELOCIDAD (ft/min)

VELOCIDAD (m/s)

LONG. TRAMO (ft)

CoPv

(in wg)f

(in wg/100ft)

Diseño ductos de retorno

TRAMO PRIMARIO

ELEMENTOCAUDAL (CFM )

AREA (ft^2)

DIAM. EQUIV. (ft)

DIAM. EQUIV. (in)

DUCTO AREA

ft^2

M - N

N - O

O -P

O - H

H - I

I - J

J - K

K - L

L - M

Diseño de ductos secundarios. El diseño de ductos secundarios se realizó según el método descrito en circulación por impulso con las siguientes características. Velocidad = 1200 rpm Factor de corrección = 1.41. Todos los cálculos los encontramos en el anexo 14.

TABLA 44: Ductos secundarios quinto piso.

Page 105: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

105

Tramo SPLONG.

(ft)LONG. EQUIV.

carga unitaria (inwg/100ft)

Caudal (cfm)

Caudal (m^3/h)

DIAM. EQUIV.

(ft)

DIAM. comercial

(in)

DIAM. comercial (in)

AREA (in^2)AREA (ft^2)

VELOCIDAD (ft/min)

VELOCIDAD (m/s)

f (in wg/100ft)

SprealSPDIFUS

ORSPDV

H-a 0,187 7,00 10,50 1,78 269 457 0,53 6 8 50,27 0,35 771 3,92 0,130 0,009 0,020 0,158

I-b 0,172 7,00 10,50 1,64 225 382 0,49 6 8 50,27 0,35 645 3,28 0,130 0,009 0,020 0,143

J-c 0,142 7,00 10,50 1,36 225 382 0,49 6 8 50,27 0,35 645 3,28 0,130 0,009 0,020 0,113

K-d 0,126 7,00 10,50 1,20 371 630 0,63 8 10 78,54 0,54 681 3,46 0,130 0,009 0,020 0,097L-e 0,060 7,00 10,50 0,57 371 630 0,63 8 10 78,54 0,54 681 3,46 0,130 0,009 0,020 0,031M-f 0,053 7,00 10,50 0,51 225 382 0,49 6 8 50,27 0,35 645 3,28 0,130 0,009 0,020 0,024N-g 0,039 7,00 10,50 0,37 225 382 0,49 6 8 50,27 0,35 645 3,28 0,130 0,009 0,020 0,029O-p 0,028 7,00 10,50 0,27 269 457 0,53 6 8 50,27 0,35 771 3,92 0,130 0,009 0,020 0,019

DUCTOS SECUNDARIOS 5º PISO

Page 106: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

106

3.4 SELECCIÓN DE EQUIPOS Y ELEMENTOS. 3.4.1.- Sistema de calefacción por aire.

5 º Piso

Capacidad: 50000 BTU/h.

• Unidad de calefacción. Fabricante: Goodman

Alimentación: Gas.

Serie: CPG060 (50000 Btu/h; 2300 cfm; 0.8Sp) Codificación Anexo.

• Dámper.- Los dos tipos de dámpers son construidos de acuerdo a las dimensiones de los cálculos. Dámper Fire: W = 20 H = 12 Relación de forma = 1.6 Nº = 1 Dámper de presión: φ = 10 in. Nº = 8

• Ductos Flexibles: Fabricante: Flexiver D o Flexiver Clima. φ = 8 in. φ = 10 in. L = 9.51 ft.

• Reducciones (in)= construcción de acuerdo a los cálculos. 20*12 a 16*12

16*12 a 12*12

12*12 a 10*10

• Y simétrica (in) = construcción de acuerdo a los cálculos. W= 10 H= 10

• Codo (in) = construcción de acuerdo a los cálculos W1= 20

Page 107: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

107

H1= 12 W2= 12 H2= 20

• Difusores para esta selección se toma en cuenta los valores de niveles sonoros.

Figura. 49: Niveles sonoros.

Q1= 284 cfm = 482 m3/h. Q2= 240 cfm = 407 m3/h. Q3= 386 cfm = 655 m3/h. De acuerdo al catálogo tenemos: Dormitorio Nº 1y 2 = DCQ 300*300

Dormitorio Nº 3, 4, 5, 6 = DCQ 225*225

Dormitorio Nº 7y 8 = DCQ 300*300

• Ducto: Tol galvanizado.

Ducto (in) Longitud (ft). 20*12 31.8

16*12 19.7

12*12 10.5

10*10 20.7

Adquisición de láminas de tol de 1200 * 2100*2 mm

Ductos de Retorno.

• Ventilador Fabricante: Greenheck

Page 108: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

108

Alimentación: Electricidad.

Serie: SQ-140 Codificación.

Sp permisible: 0.75 in wg.

Nivel de ruido: 24. Según las tablas expuestas el nivel está acorde a lo permisible en funcionamiento nocturno (menor a 35).

• Dámper.- Los dos tipos de dámper son construidos de acuerdo a las dimensiones de los cálculos. Dámper de presión: φ = 8 in. Nº = 8

• Ductos Flexibles: Fabricante: Flexiver D o Flexiver Clima. φ = 8 in. L = 4 ft.

• Reducciones (in)= construcción de acuerdo a los cálculos. 22*12 a 20*12

20*12 a 18*12

18*12 a 16*12

16*12 a 12*12

12*12 a 10*10

10*10 a 10*8

10*8 a 8*8

• Codo (in) = construcción de acuerdo a los cálculos W1= 20 H1 = 12 W2= 12 H2 = 12 W2= 12 H2 = 12

• Rejillas de retorno para esta selección se toma en cuenta los valores de niveles sonoros.

Page 109: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

109

Q1= 269 cfm = 457 m3/h; φ = 8 in. Q2= 225 cfm = 382 m3/h; φ = 8 in. Q3= 371 cfm = 630 m3/h; φ = 10 in. De acuerdo al catálogo tenemos: Dormitorio Nº 1y 2 = RMT 200*300

Dormitorio Nº 3, 4, 5, 6 = RMT 200*250

Dormitorio Nº 7y 8 = RMT 250*300

• Ducto: Tol galvanizado.

Ducto (in) Longitud (ft). 22*12 27

20*12 10

18*12 20

16*10 10

12*12 37

10*10 10

10*8 20

8*8 10

Adquisición de láminas de tol de 1200 * 2100*2 mm Selección para cada dos pisos. 1º & 2º Capacidad: 100000 BTU/h.

• Unidad de calefacción. Fabricante: Goodman

Alimentación: Gas.

Serie: GMP 050 Codificación (100000Btu/h; 4500 cfm; 0.8”Sp).

Page 110: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

110

• Dámper.- Los dos tipos de dámper son construidos de acuerdo a las dimensiones de los cálculos. Dámper Fire: W = 32 H = 16 Relación de forma = 2 Nº = 1 Dámper en wye: W = 32 H = 16 Relación de forma = 2 Nº = 1 Dámper de presión: φ = 8 in. Nº = 8

• Ductos Flexibles: Fabricante: Flexiver D o Flexiver Clima. φ = 8 in.

• Reducciones (in)= construcción de acuerdo a los cálculos. Primarios:

32*16 a 16*16

16*16 a 14*14

14*14 a 12*12

12*12 a 10*10

Secundarios:

26*12 a 20*12

20*12 a 20*12

16*12 a 10*12

• Y simétrica (in) = construcción de acuerdo a los cálculos. Primario = W= 10

H= 10

Page 111: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

111

Secundario = W= 10 H= 10

• Codo (in) = construcción de acuerdo a los cálculos W1= 44 H1 = 12 W2= 20 H2 = 12

• Difusores para esta selección se toma en cuenta los valores de niveles sonoros.

Primarios. Q1= 286 cfm = 486 m3/h; φ = 10 in. Q2= 242 cfm = 411 m3/h; φ = 10 in. Q3= 388 cfm = 600 m3/h; φ = 10 in. De acuerdo al catálogo tenemos: Dormitorio Nº 1y 2 = DCQ 300*300

Dormitorio Nº 3, 4, 5, 6 = DCQ 225*225

Dormitorio Nº 7y 8 = DCQ 300*300

Secundarios: Q1= 286 cfm = 486 m3/h; φ = 10 in. Q2= 242 cfm = 411 m3/h; φ = 10 in. Q3= 388 cfm = 600 m3/h; φ = 10 in.

De acuerdo al catálogo tenemos: Dormitorio Nº 1y 2 = DCQ 300*300

Dormitorio Nº 3, 4, 5, 6 = DCQ 225*225

Page 112: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

112

Dormitorio Nº 7y 8 = DCQ 300*300

• Ducto: Tol galvanizado. Ducto (in) Longitud (ft). 32*16 16.40 16*16 26.24 14*14 19.68 12*12 10.40 10*10 20.50 Secundarios: Ducto (in) Longitud (ft). 26*12 15.84 20*12 18.83 16*12 10.69 10*10 25.81 Adquisición de láminas de tol de 1200 * 2100 *2mm

Ductos de Retorno.

• Ventilador Fabricante: Greenheck

Alimentación: Electricidad.

Serie: SQ-140 Codificación.

Sp permisible: 0.75 in wg.

Nivel de ruido: 24. Según las tablas expuestas el nivel está acorde a lo permisible en funcionamiento nocturno (menor a 35).

• Dámper.- Los dos tipos de dámper son construidos de acuerdo a las dimensiones de los cálculos. Dámper de presión: φ = 10 in. Nº = 8

• Ductos Flexibles: Fabricante: Flexiver D o Flexiver Clima. φ = 10 in. L = 4 ft.

• Reducciones (in)= construcción de acuerdo a los cálculos.

24*12 a 22*12

Page 113: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

113

22*12 a 20*12

20*12 a 18*12

18*12 a 14*12

14*12 a 12*10

12*10a 10*10

10*10 a 8*8

• Codo (in) = construcción de acuerdo a los cálculos

W1= 20 H1 = 14 W2= 12 H2 = 14 W2= 12 H2 = 14

• Rejillas de retorno para esta selección se toma en cuenta los valores de

niveles sonoros.

Q1= 269 cfm = 127 l/s; φ = 10 in. Q2= 225 cfm = 106 l/s; φ = 10 in. Q3= 371 cfm = 175 l/s; φ = 10 in.

De acuerdo al catálogo tenemos: Dormitorio Nº 1y 2 = RMT 200*200

Dormitorio Nº 3, 4, 5, 6 = RMT 350*200

Dormitorio Nº 7y 8 = RMT 250*250

• Ducto: Tol galvanizado. Ducto (in) Longitud (ft). 30*18 4.8

Page 114: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

114

20*14 23.7

18*14 10

16*14 20

14*14 10

12*14 37

12*10 10

10*10 20

8*8 10

Adquisición de láminas de tol de 1200 * 2100

3.4.2.-.- Sistema de calefacción por agua.

• Elección de radiadores.

12 radiadores Dubal 60 con capacidad de 0.36 l, potencia calorífica por

elemento de 103.9 Kcal/h, frontal aberturas.

4 radiadores Dubal 60 con capacidad de 0.36 l, potencia calorífica por

elemento de 99 Kcal/h, frontal plano.

12 radiadores Dubal 70 con capacidad de 0.43 l, potencia calorífica por

elemento de 103.9 Kcal/h, frontal aberturas.

20 radiadores Dubal 80 con capacidad de 0.50 l, potencia calorífica por

elemento de 133.7 Kcal/h, frontal aberturas.

• Elección de la tubería.- se selecciona tuberías tipo PLASTIGAMA, para

diámetros de 1 ¼. ¾, 1, 1/2, similar a Uponor wirsbo eval-PEX.

• Elección de la caldera.- Se elige una caldera tipo DR SERIES STEAM

AND WATER BOILERS ( Bryan Boilers), con una potencia calorífica útil de

82Kw. La misma que incluye quemador automático de dos marchas, reglaje

automático de caudal de aire en función de la marcha y accesorios para la

instalación.

• Elección de la bomba de circulación.-

La bomba a seleccionar tiene las siguientes características:

Marca: Grainger.

Modelos: NOS. 4PC77, 4PC80 y 4PC84. 0013-F3-1.

Page 115: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

115

Características: Usados en sistemas de alta velocidad, sistemas hidrónicos de

calentamiento o enfriamiento, instalación en serie.

Caudal = 1.307 l/s = 20.71gpm. Presión = 23.65 m.c.a = 33.61 Psi.

• Elección del vaso de expansión.- se selecciona un vaso de expansión de

Salvador Escoda con membrana fija, validas para circuito cerrado y

temperaturas comprendidas entre -10ºC a 110ºC, MF 25 litros,.

• Elección de la chimenea.

Sección de chimenea mínima corregida = 399,00 cm2

3.4.3. Restaurante.

Equipo de extracción:

• Caja de ventilación.

Determinación del caudal.

Caudal l/s m^3/h Cfm

819 2948,397 1735,36

Page 116: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

116

La caja seleccionada es CVB-270/200-N-250W y un caudal máximo de 3430m3/h.

• Bridas.

Brida CVB-270 con dimensiones CBR 400*400.

• Sombrero protector.

El sombrero seleccionado de acuerdo a las características de la caja de ventilación

será Sombrero CSC 270.

• Rejillas de retorno

Rejillas RMT 8”*10”

Page 117: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

117

El Difusor seleccionado es Tipo 2000 con tamaño de cuello 3 in.

• Acoplamientos.

Acoplamiento seleccionado CVB-270, tipo rectangular Impulsor+CBR,

KAD – 400*400.

Equipo de impulsión:

• Caja de ventilación.

La caja seleccionada es CVB-270/200-N-370W y un caudal máximo de 3160m3/h.

• Filtro para polvo.

Page 118: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

118

• Rejillas de impulsión.

Caudal m^3/s cfpm

3000 1750

velocidad m/s fpm

3,9 771

Rejilla tipo AMT con H=16” y L=18”.

Page 119: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

119

3.4.4 Cocina.

• Extractor:

Caudal de aire actual acfm a m^3/h 18236 30983

• Base techo para el extractor.

Page 120: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

120

CAPÍTULO IV.

COMPARACIÓN ECONÓMICA EN LOS SISTEMAS DE CALEFACCI ÓN.

4.1 GENERALIDADES.

El análisis económico del proyecto considera el diseño de Sistemas de Calefacción,

con difusores ubicados en las diferentes pisos a climatizarse, dispuestos

estratégicamente entre la losa y el cielo falso conectadas a un sistema de red de

ductos aislados como se indica en los planos, lo cual permite la climatización y el

control individual de temperatura en cada ambiente, con unidades calefactores

interiores ubicadas en la parte posterior del edificio. Se utilizan unidades calefactores

de la marca Goodman; difusores, rejillas y cajas de ventilación de la marca Mabel de

Soler y Palao. Los Sistemas de Ventilación distribuyen el aire a través de ductos dimensionados a

baja presión con la ayuda de ventiladores, lo que provoca una depresión respecto a la

presión atmosférica. En un sistema de ventilación óptimo siempre debe existir el

suministro y la extracción de aire para renovar el volumen de aire contenido en un

lugar con la frecuencia necesaria y movimiento de aire mantener un medio ambiente

confortable, también puede ser utilizado para retirar gases contaminantes, controlar

el calor generado por alguna máquina y retirar olores en baños, cocinas, etc. En lo que respecta al agua se considera una caldera de marca BRAYAN BOILERS

ubicada en el cuarto de máquinas que por el momento es el gimnasio del hotel

ubicado en la parte posterior, radiadores marca Dubal de aluminio los cuales serán

colocados en la parte inferior de la ventana, todas las zonas fueron analizadas de tal

forma que se facilite el mantenimiento de dichos equipos y que su costo de

instalación sea más económico.

Con la finalidad de evaluar el costo total que genera el proyecto, convencionalmente

se ha adoptado un criterio para agruparlos en dos elementos fácilmente identificables

y diferenciados entre si, estos son:

� Costos directos.

� Costos indirectos.

Page 121: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

121

4.2 VALORACIÓN DE LOS SISTEMAS DE CALEFACCIÓN. SISTEMA DE CALEFACCIÓN POR AIRE POR PISO.

Costos directos.- Son aquellos cuya incidencia monetaria en un producto o en una

orden de trabajo puede establecerse con precisión. Para evaluar los costos directos se

les clasifica en:

� Costos de materiales.

� Costos de mano de obra.

� Costos de equipos y herramientas.

� Costos de transporte

En el cálculo de consumo eléctrico, se tomó los datos técnicos de cada equipo,

llegando a valorar un consumo en Kw, que se representan en las tablas expuestas.

4.2.1 Costos de materiales.

Son los costos de adquisición de todos los materiales que con el tiempo reconvierten

en parte del objeto de costos y que puede realizarse su seguimiento a ese objeto de

costos en forma económicamente factible.

Los costos de los materiales que se utilizaron para el proyecto se detallan en las

siguientes tablas, cabe recalcar que se realiza para tres alternativas:

Costos de materiales para el sistema de calefacción por aire para un piso.

Page 122: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

122

DESCRIPCIÓN UNIDAD CANTIDADP.

UNITARIOP.

TOTAL

EQUIPO - INSTALACIÓN

CALEFACTOR 50000BTU/H"GOODMAN"-CPG-USA, Cap. 2,465CFM@0,75"SP

U 6,0 1.330,6 7.983,4

INSTALACIÓN DE UN CALEFACTOR 50000BTU/H"GOODMAN"-CPG-USA, Cap. 2,465 CFM@0,75"SP

U 6,0 700,0 4.200,0

VENTILADOR CENTRÍFUGO BSQ-120-LMDX-QD 2563 CFM,INCLUYE ACCESORIOS, 0,75" SP

U 6,0 1.128,8 6.772,6

INSTALACIÓN DE UN VENTILADOR CENTRÍFUGO BSQ-120-LMDX-QD 2500 CFM, INCLUYE ACCESORIOS

U 6,0 186,0 1.116,0

DÁMPER FIRE DE 20"x12" U 6,0 528,6 3.171,7

DÁMPERS DE PRESION 8" U 48,0 140,5 6.744,0

MANGUERA FLEXIBLE CON AISLAMIENTO DIAM. 8" m 150,0 9,6 1.443,8

DIFUSORES DE SUMINISTRO DE 10" X 10" MOVILES DE 4 VIAS . U 12,0 21,4 257,1

DIFUSORES DE SUMINISTRO DE 8" X 8" MOVILES DE 4 VIAS . U 36,0 17,6 635,0

SUMINISTRO E INSTALACIÓN DE DUCTOS DE TOLGALVANIZADO AISLADOS

Kg 1.597,6 5,6 8.947,5

LOUVERS DE 400x400mm 200mm EN TOL GALVANIZADO U 6,0 386,4 2.318,3

RETORNOVENTILADOR CENTRÍFUGO BSQ-140-LMDX-QD 2650 CFM,INCLUYE ACCESORIOS, 0,5 SP

U 6,0 1.126,6 6.759,3

INSTALACIÓN DE UN VENTILADOR CENTRÍFUGO BSQ-140-LMDX-QD 2650 CFM, INCLUYE ACCESORIOS

U 6,0 186,0 1.116,0

SUMINISTRO E INSTALACIÓN DE DUCTOS DE TOLGALVANIZADO AISLADOS

Kg 2.551,0 5,6 14.286,9

MANGUERA FLEXIBLE CON AISLAMIENTO DIAM. 8" m 81,0 9,6 780,0

MANGUERA FLEXIBLE CON AISLAMIENTO DIAM. 10" m 25,0 10,7 268,3

DÁMPERS DE PRESION 10" U 24,0 172,5 4.140,0

DÁMPERS DE PRESION 12" U 24,0 207,0 4.968,0

REJILLAS DE EXTRACCIÓN DE 6"x14" MOD. RA-A U 36,0 41,2 1.483,8

REJILLAS DE EXTRACCIÓN DE 12"x12" MOD. RA-A U 12,0 26,6 318,8

RESTAURANTE:

CAJA DE VENTILACIÓN EXTRACCIÓN Mod. CVB-270/200, Cap.2,000 CFM@0,24"SP

U 1,00 644,60 644,60

INSTALACIÓN DE UNA CAJA DE VENTILACIÓN Mod. CVB-270/200, Cap. 2,000 CFM@0,24"SP

U 1,00 231,25 231,25

CAJA DE VENTILACIÓN IMPULSIÓN Mod. CVB-270/200, Cap.3,000 CFM@0,48"SP

U 1,00 847,80 847,80

INSTALACIÓN DE UNA CAJA DE VENTILACIÓN Mod. CVB-270/200, Cap. 3,000 CFM@0,48"SP

U 1,00 231,25 231,25

REJILLAS DE IMPULSIÓN MOD. AMT 16X 18" U 2,00 27,50 55,00

REJILLAS DE EXTRACCIÓN 8X10" U 4,00 41,22 164,86

SUMINISTRO E INSTALACIÓN DE DUCTOS REFORZADOS DETOL GALVANIZADO SIN AISLAMIENTO.

Kg 295,30 4,50 1.327,82

LOUVERS DE 900x400mm 200mm EN TOL GALVANIZADO U 1,00 897,00 897,00

PORTAFILTROS DE 16"X16" EN TOL GALVANIZADO U 2,00 133,75 267,50

FILTROS METÁLICOS Mabel 0,16m2 U 1,00 25,40 25,40

COCINAEXTRACTOR DE COCINA MOD. CENTRIFUGAL EXHAUSTCUBE-420 CAP. 21000 m3/h

U 1,0 5.680,1 5.680,1

INSTALACIÓN DE UN EXTRACTOR DE COCINA MOD.CENTRIFUGAL EXHAUST CUBE-420 CAP. 21000 m3/h INCLUYEACCESORIOS.

U 1,0 432,5 432,5

FILTRO SEPARADOR DE LAMAS 50 mm. INOX. AISI 430 U 2,0 85,7 171,3

SUBTOTAL 88.686,8

HOTEL ZEUS SISTEMA DE CALEFACCIÓN POR AIRE POR UN PISO.

1. SISTEMA DE CALEFACCIÓN POR AIRE. PISO POR PISO (EQUIPO E INSTALACIÓN)

Fuente: SEINGPROAÑO Cía. Ltda.

Page 123: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

123

Costos de accesorios.

Descripción UnidadPrecio Unitario

Cantidad Costo

Lámina de tol galvanizado kg 1,50 48 72,00m2 4,40 0,4 10,56

Pletinas 1"x1/8" para anclaje kg 0,50 4 2,00Remaches U 0,02 16 0,24Clavos HILTI U 0,35 2 0,70

U 0,80 48 38,40Caja de tol galvanizado de 12"x12" U 0,60 4 2,40Electrodos 6011 Kg 3,25 2,5 8,13Disco de Desbaste 7" U 3,75 3 11,25

Gbl 10,67 1 10,67Alambre Galvanizado N.16 lb 1,00 0,05 0,05

Angulo 1 1/2"X1/8" U 12,80 12 153,60Disco de Corte 7" U 3,26 2 6,52Disco de Desbaste 7" U 3,75 1 3,75Electrodos 6011 Kg 3,25 0,5 1,63Anticorrosivo Negro Mate Gal 14,90 0,25 3,73Thiñer Laca Gal 4,50 0,25 1,13Lona Flexible m2 25,00 0,5 12,50Pernos Hylty 2 1/2"x3/8" U 3,50 12 42,00

Gbl 18,89 3 56,67Pletinas 1"x1/8" para anclaje kg 0,50 4 2,00Remaches U 0,02 16 0,24

U 0,35 2 0,70440,85

Duct Aislamiento.

Subotal Costo de Materiales

Caja de tol galvanizado de 8"x8"con salida de 8" para manguera

Material Menudo de Instalacion

Ventilación - extracción.

Material Menudo de Instalacion

Clavos HILTI

MATERIALES (incluye costo de transporte)

Costo total de materiales.

CALEFACCIÓN POR AIRE (1*1) PRECIO

Calefacción en impulso 43.589,4Calefacción en retorno 34.121,0Ventilación en restaurante 4.692,5Extracción en cocina 6.283,9Accesorios 440,8

Un Piso.

4.2.2 Costos de mano de obra.

Representan las compensaciones de toda la mano de obra que participan

directamente en la construcción, fabricación y elaboración de un equipo, maquinaria,

artículo u otros en los que intervenga un proceso.

A Continuación se describen los costos de mano de obra directa que será necesaria

para la realización de este proyecto.

Costos de mano de obra para el sistema de calefacción por aire para un piso.

Page 124: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

124

PERSONAL (CATEGORIA) N/Personal Horas/HombreSalario Real/Hora

Costo Subtotal/Piso.

Costo Total/Edificio.

Ingeniero 1 8 1,78 427,20 7689,6Ayudante 1 8 1,51 362,40 6523,2Instalador 2 8 1,94 931,20 16761,6Soldador 1 4 2,03 243,60 4384,8Electricista 1 4 1,78 213,60 3844,8Total. 1.964,40 35.359,20

Mano de obra calefacción por aire. Por Piso

4.2.3 Costos de equipos y herramientas. Constituye los costos debido al alquiler de equipos y herramientas para ejecutar la obra.

Costos de equipos y herramientas para el sistema de calefacción por aire para un piso.

DescripciónCosto Equipo/H

Horas/Equipo Costo/Hora Subtotal Costo obra

Herramienta menor 0,10 4 0,40 12 36Taladro de Mano 0,15 4 0,60 18 54Soldadora eléctrica 0,54 3 1,62 48,6 145,8

Total 2,62 78,60 235,80

EQUIPOS MENOR - CALEFACCIÓN POR AIRE.

Costos de transporte.- Estos costos están incluidos en costos por materiales.

4.2.4 Costos indirectos.- son aquellos costos que no pueden asignarse con

precisión. Dentro de los costos tenemos:

� Costos de ingeniería.

� Utilidad. Costos de ingeniería.

Un costo adicional de los anteriores mencionados y que muchas veces es ignorado,

es el criterio de ingeniería que toma en cuenta el trabajo realizado por parte del

profesional encargado de la investigación y diseño del equipo. El valor del criterio de

ingeniería esta en el rango del 10% al 15% de los costos directos.

Criterio de ingeniería para el sistema de calefacción por aire para un piso.

COSTO VALORCriterio de ingeniería 12.472,20

Utilidad.

Se considera el 0% del costo total debido a que es un trabajo de tesis de grado.

4.2.5 Costo total del proyecto.

Page 125: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

125

El costo total del proyecto está dado por la suma de todos los costos especificados

anteriormente, a continuación se presenta el costo total.

COSTO VALORMATERIALES 89.127,59MANO DE OBRA 35.359,20EQUIPOS Y HERRAMIENTAS 235,80CRITERIO DE INGENIERÍA 12.472,20TOTAL 137.194,79

Entonces el presupuesto que se genera por equipo, tanto para la climatización,

ventilación para restaurante y extracción en la cocina es de ciento treinta y siete mil

ciento noventa y cuatro dólares con setenta y nueve centavos.

SISTEMA DE CALEFACCIÓN POR AIRE PARA DOS PISOS. Costos de materiales para el sistema de calefacción por aire cada dos pisos.

Page 126: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

126

DESCRIPCIÓN UNIDAD CANTIDAD P.UNITARIO P.TOTAL

EQUIPO - INSTALACIÓN

1. SISTEMA DE CALEFACCIÓN POR AIRE. (EQUIPO E INSTALACIÓN)

CALEFACTOR 180000BTU/H"GOODMAN"-GMP050-USA, Cap.4600 CFM@0,75"SP

U 3,00 4.091,04 12.273,12

INSTALACIÓN DE UN CAELFACTOR180000BTU/H"GOODMAN"-GMP050-USA, Cap. 2,610 CFM@0,75"SP

U 3,00 700,00 2.100,00

VENTILADOR CENTRÍFUGO BSQ-160 4600 CFM, INCLUYEACCESORIOS

U 3,00 2.464,94 7.394,82

INSTALACIÓN DE UN VENTILADOR CENTRIFUGO BSQ-160 4600CFM, INCLUYE ACCESORIOS

U 3,00 276,00 828,00

DÁMPER FIRE DE 22"x12" U 3,00 535,99 1.607,97

DÁMPERS DE PRESION 8" U 48,00 140,50 6.744,00

MANGUERA FLEXIBLE CON AISLAMIENTO DIAM. 10" m 150,00 9,63 1.443,75

DIFUSORES DE SUMINISTRO DE 12" X 12" CTM U 28,00 21,43 600,01

DIFUSORES DE SUMINISTRO DE 8" X 8" .RTM U 20,00 17,64 352,78

SUMINISTRO E INSTALACIÓN DE DUCTOS DE TOLGALVANIZADO AISLADOS

Kg 1.607,18 5,60 9.001,01

LOUVERS DE 800x400mm 200mm EN TOL GALVANIZADO U 6,00 756,00 4.536,00

RETORNO

VENTILADOR CENTRÍFUGO BSQ-160 4504 CFM, INCLUYEACCESORIOS

U 3,00 2.464,94 7.394,82

INSTALACIÓN DE UN VENTILADOR CENTRÍFUGO BSQ-160 4504CFM, INCLUYE ACCESORIOS

U 3,00 276,00 828,00

SUMINISTRO E INSTALACIÓN DE DUCTOS DE TOLGALVANIZADO AISLADOS

Kg 2.582,00 5,60 14.460,49

MANGUERA FLEXIBLE CON AISLAMIENTO DIAM. 10" m 81,00 9,63 780,03

MANGUERA FLEXIBLE CON AISLAMIENTO DIAM. 12" m 25,00 10,73 268,25

DÁMPERS DE PRESIÓN 10" U 24,00 172,50 4.140,00

DÁMPERS DE PRESIÓN 12" U 24,00 207,00 4.968,00

REJILLAS DE EXTRACCIÓN DE 6"x14" MOD. RA-A U 36,00 41,22 1.483,78

REJILLAS DE EXTRACCIÓN DE 12"x12" MOD. RA-A U 12,00 26,57 318,78

RESTAURANTE:

CAJA DE VENTILACIÓN EXTRACCIÓN Mod. CVB-270/200, Cap.2,000 CFM@0,24"SP

U 1,00 644,60 644,60

INSTALACIÓN DE UNA CAJA DE VENTILACIÓN Mod. CVB-270/200, Cap. 2,000 CFM@0,24"SP

U 1,00 231,25 231,25

CAJA DE VENTILACIÓN IMPULSIÓN Mod. CVB-270/200, Cap.3,000 CFM@0,48"SP

U 1,00 847,80 847,80

INSTALACIÓN DE UNA CAJA DE VENTILACIÓN Mod. CVB-270/200, Cap. 3,000 CFM@0,48"SP

U 1,00 231,25 231,25

REJILLAS DE IMPULSIÓN MOD. AMT 16X 18 U 2,00 27,50 55,00

REJILLAS DE EXTRACCIÓN 8X8 U 4,00 41,22 164,86

SUMINISTRO E INSTALACIÓN DE DUCTOS REFORZADOS DETOL GALVANIZADO SIN AISLAMIENTO.

Kg 295,30 4,50 1.327,82

LOUVERS DE 900x400mm 200mm EN TOL GALVANIZADO U 1,00 897,00 897,00

PORTAFILTROS DE 16"X16" EN TOL GALVANIZADO U 2,00 133,75 267,50

FILTROS METÁLICOS Mabel 0,16m2 U 1,00 25,40 25,40

COCINA

EXTRACTOR DE COCINA MOD. CENTRIFUGAL EXHAUSTCUBE-420 CAP. 21000 m3/h

U 1,00 5.680,05 5.680,05

INSTALACIÓN DE UN EXTRACTOR DE COCINA MOD.CENTRIFUGAL EXHAUST CUBE-420 CAP. 21000 m3/h INCLUYEACCESORIOS.

U 1,00 432,50 432,50

FILTRO SEPARADOR 50 mm. INOX. AISI 430 U 2,00 85,67 171,34

SUBTOTAL 92.500,0

HOTEL ZEUS.SISTEMA DE CALEFACCIÓN POR AIRE EN DOS PISO.

Costos de accesorios.

Page 127: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

127

Descripción UnidadPrecio Unitario

Cantidad Costo

Lámina de tol galvanizado kg 1,50 48 72,00m2 4,40 0,4 10,56

Pletinas 1"x1/8" para anclaje kg 0,50 4 2,00Remaches U 0,02 16 0,24Clavos HILTI U 0,35 2 0,70

U 0,80 48 38,40Caja de tol galvanizado de 12"x12" U 0,60 4 2,40Electrodos 6011 Kg 3,25 2,5 8,13Disco de Desbaste 7" U 3,75 3 11,25

Gbl 10,67 1 10,67Alambre Galvanizado N.16 lb 1,00 0,05 0,05

Angulo 1 1/2"X1/8" U 12,80 12 153,60Disco de Corte 7" U 3,26 2 6,52Disco de Desbaste 7" U 3,75 1 3,75Electrodos 6011 Kg 3,25 0,5 1,63Anticorrosivo Negro Mate Gal 14,90 0,25 3,73Thiñer Laca Gal 4,50 0,25 1,13Lona Flexible m2 25,00 0,5 12,50Pernos Hylty 2 1/2"x3/8" U 3,50 12 42,00

Gbl 18,89 3 56,67Pletinas 1"x1/8" para anclaje kg 0,50 4 2,00Remaches U 0,02 16 0,24

U 0,35 2 0,70

440,85

Duct Aislamiento.

Subtotal Costo de Materiales

Caja de tol galvanizado de 8"x8"con salida de 8" para manguera

Material Menudo de Instalacion

Ventilación - extracción.

Material Menudo de Instalacion

Clavos HILTI

MATERIALES (incluye costo de transporte)

Costos de materiales.

CALEFACCION POR AIRE (2*2) PRECIO

Calefacción en impulso 46.912Calefacción en retorno 34.642Ventilación en restaurante. 4.692extracción en cocina 6.284Accesorios. 441Total 92.971

Costos de mano de obra para el sistema de calefacción por aire para dos pisos.

PERSONAL (CATEGORIA) N/Personal Horas/HombreSalario Real/Hora

Costo Subtotal/Piso.

Costo Total/Edificio.

Ingeniero 1 8 1,78 427,20 7689,6Ayudante 1 8 1,51 362,40 6523,2Instalador 2 8 1,94 931,20 16761,6Soldador 1 4 2,03 243,60 4384,8Electricista 1 4 1,78 213,60 3844,8Total. 1.964,40 35.359,20

Mano de obra calefacción por aire. Dos Pisos

Costos de equipos y herramientas para el sistema de calefacción por aire para dos pisos.

DescripciónCosto Equipo/H

Horas/Equipo Costo/Hora Subtotal Costo obra

Herramienta menor 0,10 4 0,40 12 36Taladro de Mano 0,15 4 0,60 18 54Soldadora eléctrica 0,54 3 1,62 48,6 145,8

Total 2,62 78,60 235,80

EQUIPOS MENOR - CALEFACCION POR AIRE.

Criterio de ingeniería para el sistema de calefacción por aire por dos pisos.

COSTO VALOR

Criterio de ingeniería 12.857

Costo total del proyecto

Page 128: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

128

CALEFACCIÓN POR AIRE (2*2) PRECIO

EQUIPO E INSTALACION 92.971,16

MANO DE OBRA 35.359,20

EQUIPO MENOR 235,80

CRITERIO DE INGENIERÍA 12.857

TOTAL 141.422,76

Entonces el presupuesto que se genera por equipo, tanto para la climatización,

ventilación para restaurante y extracción en la cocina es de ciento cuarenta y un mil

cuatrocientos veinte y dos dólares con setenta y seis centavos.

SISTEMA DE CALEFACCIÓN POR AGUA.

Costos de materiales para el sistema de calefacción por agua.

Page 129: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

129

PRESUPUESTO REFERENCIAL

DESCRIPCIÓN UNIDAD CANTIDAD P. UNITARIO P.TOTAL

1. SISTEMA DE CALEFACCIÓN POR AGUA.CALDERA BRYAN DR 350W (82kW), INCLUYE QUEMADOR Y ACCESORIOS.

U 1,00 8.473,42 8.473,42

INSTALACIÓN CALDERA BRYAN DR 350W (82kW), INCLUYE QUEMADOR Y ACCESORIOS.

U 1,00 2.000,00 2.000,00

DUBAL 80(frontal aberturas), 9 elementos U 30,00 382,94 11.488,20DUBAL 60(frontal aberturas),14 elementos U 10,00 441,47 4.414,70DUBAL 70(frontal aberturas), 9 elementos U 6,00 337,47 2.024,82DUBAL 60(frontal aberturas), 12 elementos U 2,00 378,41 756,82INSTLACION DE RADIADORES DUBAL U 2,00 65,00 130,00REDUCCIONES 1" x 3/4" U 12,00 25,70 308,40PURGADOR AUTOMATICO 1"D.ROSCA DERECHA(EMBALADOS EN CAJAS DE 10 u.),

C 5,00 13,80 69,00

TAPONES 1" DB U 50,00 1,54 77,00SOPORTE DE PIE 100/JPARA RADIADOR JET y ALIS (EMBALADOS EN CAJAS DE 25 u.)

C 4,00 14,06 56,24

SOPORTE DE EMPOTRAR 73 A U 100,00 1,56 156,00LLAVE MONOGIRO NT 3/4" recta U 48,00 34,89 1.674,72DETENTOR 3/4" recto U 48,00 24,99 1.199,52TUBERÍA DE POPLIPROPLILENO CON AISLAMIENTO 32mmx3 L(m) 12,00 16,14 193,68TUBERÍA DE POPLIPROPLILENO CON AISLAMIENTO 25mmx2,5 L(m) 16,00 11,58 185,28TUBERÍA DE POPLIPROPLILENO CON AISLAMIENTO 20mmx2 L(m) 48,00 8,48 407,04TUBERÍA DE POPLIPROPLILENO CON AISLAMIENTO 16mmx2 L(m) 136,00 6,37 866,32CODOS 32 U 12,00 7,55 90,60CODOS 25 U 2,00 6,35 12,70CODOS 15 U 4,00 4,30 17,19TE 32 U 4,00 10,10 40,41TE 25 U 6,00 9,11 54,68TE 20 U 4,00 7,50 30,00TE 16 U 7,00 6,61 46,30VASO DE EXPANCIÓN 35 LTROS SOPORTE COMPLETO PARA VASOS

U 1,00 132,74 132,74BOMBAS SENCILLAS PARA SISTEMAS DE CALEFACCIÓN INDIVIDUAL. SERIE GRAINGER

U 1,00 487,46 487,46

RESTAURANTE:CAJA DE VENTILACIÓN EXTRACCIÓN Mod. CVB-270/200, Cap. 2,000CFM@0,24"SP

U 1,00 644,60 644,60

INSTALACIÓN DE UNA CAJA DE VENTILACIÓN Mod. CVB-270/200, Cap.2,000 CFM@0,24"SP

U 1,00 231,25 231,25

CAJA DE VENTILACIÓN IMPULSIÓN Mod. CVB-270/200, Cap. 3,000CFM@0,48"SP

U 1,00 847,80 847,80

INSTALACIÓN DE UNA CAJA DE VENTILACIÓN Mod. CVB-270/200, Cap.3,000 CFM@0,48"SP

U 1,00 231,25 231,25

REJILLAS DE IMPULSIÓN MOD. AMT 16X 18 U 2,00 27,50 55,00REJILLAS DE EXTRACCIÓN 8X8 U 4,00 41,22 164,86SUMINISTRO E INSTALACIÓN DE DUCTOS REFORZADOS DE TOLGALVANIZADO SIN AISLAMIENTO.

Kg 295,30 4,50 1.327,82

LOUVERS DE 900x400mm 200mm EN TOL GALVANIZADO U 1,00 897,00 897,00PORTAFILTROS DE 16"X16" EN TOL GALVANIZADO U 2,00 133,75 267,50FILTROS METÁLICOS Mabel 0,16m2 U 1,00 25,40 25,40COCINAEXTRACTOR DE COCINA MOD. CENTRIFUGAL EXHAUST CUBE-420CAP. 21000 m3/h

U 1,00 5.680,05 5.680,05

INSTALACIÓN DE UN EXTRACTOR DE COCINA MOD. CENTRIFUGALEXHAUST CUBE-420 CAP. 21000 m3/h INCLUYE ACCESORIOS.

U 1,00 432,50 432,50

FILTRO SEPARADOR 50 mm. INOX. AISI 430 U 2,00 85,67 171,34

SUBTOTAL 46.369,61

HOTEL ZEUS.SISTEMA DE CALEFACCIÓN POR AGUA.

Costos por accesorios.

Page 130: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

130

Descripción UnidadPrecio

UnitarioCantidad Costo

Aislamiento. m2 4,40 0,4 10,56Abrazaderas U 0,50 4 2,00Remaches U 0,02 16 0,24Teflón U 0,35 150 52,50Permatex U 0,80 80 64,00

U 0,60 10 6,00Gbl 10,67 1 10,67

Angulo 1 1/2"X1/8" U 12,80 12 153,60Disco de Corte 7" U 3,26 2 6,52Disco de Desbaste 7" U 3,75 1 3,75Electrodos 6011 Kg 3,25 0,5 1,63Anticorrosivo Negro Mate Gal 14,90 0,25 3,73Thiñer Laca Gal 4,50 0,25 1,13Lona Flexible m2 25,00 0,5 12,50Pernos Hylty 2 1/2"x3/8" U 3,50 12 42,00

Material Menudo de Instalacion Gbl 18,893 56,67

Pletinas 1"x1/8" para anclaje kg 0,50 4 2,00Remaches U 0,02 16 0,24

U 0,35 2 0,70Subtotal Costo de Materiales 430,42

Clavos HILTI

MATERIALES (incluye costo de transporte)

Clavos de anclaje Material Menudo de Instalacion

Ventilación - extracción.

Costos de materiales.

COSTO VALORCalefacción por agua 46.369,61Ventilación en restaurante 4.692,00Extracción en cocina 6.284,00Accesorios 430,42TOTAL 57.776,03

Costos de mano de obra para el sistema de calefacción por agua.

PERSONAL (CATEGORIA) N/Personal Salario RealHoras/HombreCosto SubtotalIngeniero 1 1,78 8 1281,6Ayudante 7 1,51 8 7610,4Instalador 7 1,94 8 9777,6Soldador 1 2,03 4 730,8Electricista 1 2,03 4 730,8Total: 20.131,20

MANO DE OBRA CALEFACCIÓN POR AGUA.

Costos de equipos y herramientas para el sistema de calefacción por agua.

DescripciónCosto Equipo/H

Horas/Equipo Costo/Hora Subtotal Costo obra

Herramienta menor 0,10 4 0,40 12 36Taladro de Mano 0,15 4 0,60 18 54Soldadora eléctrica 0,54 3 1,62 48,6 145,8

Total 2,62 78,60 235,80

EQUIPOS MENOR - CALEFACCIÓN POR AGUA

Criterio de ingeniería para el sistema de calefacción por agua.

COSTO VALORCriterio de ingeniería 6717

Page 131: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

131

Costo total del proyecto COSTO PRECIOEQUIPO E INSTALACIÓN 46.800,03

MANO DE OBRA 20.131,20

EQUIPO MENOR 235,80

CRITERIO DE INGENIERÍA 6717

TOTAL 73.883,71

Entonces el presupuesto que se genera por equipo, tanto para la climatización,

ventilación para restaurante y extracción en la cocina es de setenta y tres mil

ochocientos ochenta y tres dólares con setenta y un centavos. Consumo eléctrico. El consumo eléctrico para los tres sistemas se detalla a continuación.

TABLA 45: Resumen de consumo eléctrico.

208/1/60 208/3/60 230/3/60

TOTAL KW TOTAL KW TOTAL KW

0,00 91,00 0,74

TOTAL KW (AIRE 1 EN 1)

208/1/60 208/3/60 230/3/60

TOTAL KW TOTAL KW TOTAL KW

87,30 4,00 0,74

TOTAL KW (AIRE 2 EN 2)

208/1/60 208/3/60 230/3/60

TOTAL KW TOTAL KW TOTAL KW0,00 86,00 2,00

TOTAL KW (AGUA)

4.3 ALTERNATIVA ECONÓMICA FINAL. La realización de la obra se la estima para un tiempo de 3 meses con los siguientes

costos por presupuesto de calefacción y consumo eléctrico aproximados debido a la

valoración y análisis técnico de producción descrito se comprobó que la alternativa

más favorable para el proyecto es el sistema de climatización por agua, como se

indica en las tablas.

� Factor objetivo.- Con el propósito de establecer una comparación entre los tres

sistemas se da una calificación cuantitativa en una escala del 1 al 10.

FACTOR CUALITATIVOUTILIDAD FACTOR U

Aire piso por piso 6 0,27273Aire por dos piso 7 0,31818Por agua. 9 0,40909

22

FACTOR OBJETIVO

Page 132: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

132

� Factor Subjetivo.

INVERSIÓN 1/INVERSIÓN FACTOR I DEMANDA FACTOR D COSTO DE MANT. FACTOR CM137195 7,2889E-06 0,38 6 0,250 5 0,294141423 7,07099E-06 0,32 8 0,333 4 0,23573883 1,35349E-05 0,30 10 0,417 8 0,471

2,78948E-05 24 17

FACTORES SUBJETIVOS

� Factor objetivo y subjetivo.

F.O F.S2 1

0,66 0,33

� Grado de importancia.

INVERSIÓN DEMANDA COSTO MANT.0,35 0,25 0,150,5 0,35 0,220,2 0,13 0,05

GRADO DE IMPORTANCIA

� Porcentaje de cada factor de importancia.

F.Q INVERSIÓN DEMANDA COSTO MANT. F. IMPORTANCIA % PRODUCCIÓNPISO POR PISO 0,18 0,05833 0,04167 0,02500 0,33 27,73POR DOS PISOS 0,21 0,08333 0,05833 0,03667 0,30 25,21POR AGUA 0,27 0,03333 0,02167 0,00833 0,56 47,06

1,19

PORCENTAJE DE CADA FACTOR DE IMPORTANCIA

TABLA 46: Resumen de presupuestos.

Page 133: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

133

4.4 MANTENIMIENTO EN LAS INSTALACIONES.

El RITE, en lo que se refiere al mantenimiento de las instalaciones, establece un

programa de mantenimiento preventivo de la instalación, distinguiendo para la

periodicidad de las operaciones de mantenimiento entre instalaciones con potencia

mayor o menor de 70 kW.

Se adjunta a continuación una tabla con las operaciones de mantenimiento, así como

su periodicidad, relativas a los conductos y elementos afines de las instalaciones que

aparece en el apartado ITE 08.1.3., titulado “Operaciones de mantenimiento”:

TABLA Nº 47: RITE Mantenimiento de instalaciones.

s: una vez cada semana; m: una vez al mes, la primera al inicio de la temporada; t:

una vez por temporada (año); 2 t: dos veces por temporada (año), una al inicio de

la misma y otra a la mitad del período de uso, siempre que haya una diferencia

mínima de 2 meses entre ambas.

Limpieza de ductos para el restaurante.

Este ítem está basado en el “Manual de prácticas recomendadas para la inspección,

apertura, limpieza, cierre y puesta en servicio de los conductos para la distribución de

Page 134: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

134

aire en lana de vidrio”, editado por la Asociación Norteamericana de Fabricantes de

Aislamiento (NAIMA).

El procedimiento para la operación de limpieza de los conductos se desglosa en:

- Inspección del sistema de aire acondicionado y evaluación para determinar si

existe necesidad de limpiar los conductos y, en caso positivo, acciones a

seguir.

- En caso necesario, apertura de los conductos para su limpieza.

- Métodos de limpieza.

- Cierre de los conductos después de la limpieza, inspección final y puesta en

funcionamiento.

a) Inspección de la instalación.

La limpieza de la red de conductos puede ser costosa e ineficaz para resolver el

problema de la calidad del aire interior si la fuente de la contaminación está en otra

parte. Por esa razón, antes de tomar la decisión de limpiar los conductos, deben de

investigarse completamente todas las causas potenciales del problema, realizando un

chequeo total del ambiente interior y de la instalación de aire acondicionado en el

caso de que este análisis nos dirija hacia la misma. Según Norma UNE 100012

RITE indica: “las redes de conductos deben estar

equipadas con aperturas de servicio de acuerdo a lo

indicado en la norma UNE-EN 12097 para permitir las

operaciones de limpieza y desinfección”.

Page 135: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

135

CAPÍTULO V.

CONCLUSIONES Y RECOMENDACIONES.

5.1 CONCLUSIONES.

Mediante un análisis detallado durante todo el proceso de diseño se puede concluir lo

siguiente:

Los Sistemas de Ventilación y Climatización de cada uno de los ambientes, han

sido estimado de acuerdo a las consideraciones, indicadas por la Asociación

Americana de Aire Acondicionado y Refrigeración ASHRAE, Sheet Metal And

Air Conditioning Contractors National Association SMACNA, RITE

Reglamento de instalaciones térmicas en los edificios, de tal forma de poder

cubrir en un alto porcentaje las necesidades futuras de los propietarios.

Los equipos del sistema aire–aire no tienen control de operación individual, por

lo que el consumo energético aumenta mientras, el sistema agua–aire puede ser

controlado mediante llaves de reglaje permitiendo su utilización solo en

dormitorios ocupados.

Se ha diseñado y seleccionado un sistema de climatización para el Hotel Zeus,

analizando tres tipos de sistemas, aire-aire, agua-aire y caudal de refrigerante

variable.

Mediante el programa Autodesk Building Systems se esquematizaron (2D y

3D) los planos de instalación en los tres sistemas analizados.

Page 136: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

136

Para seleccionar los equipos se debe tomar en cuenta el coeficiente de confort,

Sp corregido por altitud.

La mejor alternativa de diseño es el sistema de calefacción por agua demostrada

mediante una comparación económica, de instalación, operación y

mantenimiento.

En lo que respecta a los servicios del Hotel este cuenta con un restaurante que en

horas pico llega a temperaturas de 28 ºC razón por la que se tubo la necesidad de

instalar el sistema de ventilación mecánica.

Page 137: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

137

5.2 RECOMENDACIONES

Se recomienda asegurarse que la ubicación de los equipos tengan una sala de

maquinas amplia que facilite el mantenimiento.

Para un control de temperatura adecuado se recomienda al usuario utilizar el

segundo reglaje.

Los radiadores deberán, siempre que sea posible colocarse debajo de las

ventanas, sin ningún elemento que pueda impedir la convección del aire en la

habitación (cortinas, elementos decorativos, etc).

La entrada del agua del radiador siempre debe efectuarse por la parte superior y

la salida por la inferior, si la longitud del radiador supera los 25 elementos es

conveniente que la entrada y la salida sea en el mismo lado, tomando en cuenta

la consideración citada.

Nuestro caso es la instalación con varios anillos bitubulares (varias plantas), se

debe instalar purgadores en todos los emisores de la última planta, los mismos

que se colocarán en uno de los tapones superiores de los emisores, así se evitará

que pueda generarse corrosión en las tuberías y dificultar la llegada de agua a

algunos radiadores.

El vaso de expansión cerrado se colocará preferentemente en la tubería de

retorno y del lado de la aspiración de la bomba de recirculación, se colocará de

forma que no puedan formarse bolsas de aire.

Page 138: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

138

REFERENCIAS BIBLIOGRÁFICAS

[1] Tuberías UPONOR wirsbo- evalPEX

[2] DATOS TÉCNICOS ASHRAE. CAP.25

[3] Elementos Básicos de Aire Acondicionado. Peragallo Raúl.

[4] Datos tomados del Aeropuerto del Ejército Riobamba.

[5] RITE 0.2.2.2 denominada “Calidad del aire interior y ventilación”, UNE – 100

011 la cual nos indica que para comedores públicos se requiere un caudal de aire de

10 litros/segundos por persona o 6 litros/segundo por m2 de superficie.

[6] Catálogo Salvador Escoda. 2da Edición. Pág. 100

[7] Catálogo Salvador Escoda. 2da Edición. Pág. 40

[8] Ecuación. Apuntes Termodinámica I. Ing. Rodolfo Santillán.

[9] Las mismas condiciones del capítulo 3.3.1

[10] Las mismas condiciones del capítulo 3.3.1

[11] Calefacción Manuel Roca, 2004 pág. 19 tema 4.

[12] Normas RITE que expresa lo siguiente es conveniente dimensionar las tuberías

de modo que la pérdida de carga lineal no supere los 20 mmca/m, habitualmente

entre 10 y 15 mmca/m; en estas condiciones, las velocidades siempre serán inferiores

a 2 m/s.

[13] Valores que se obtienen de catálogo caldera Compact A.

Page 139: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

139

BIBLIOGRAFIA.

PERAGALLO, R. Elementos Básicos de Aire Acondicionado. Madrid: Paraninfo,

S.A. 1979

PITA, E. Acondicionamiento de Aire Principios y Sistemas. 2da.ed. México:

Continental, S.A. 2003.

GRIMM, N. Manual de Diseño de Calefacción, Ventilación y Aire Acondicionado.

Madrid: Interamericana de España, S.A. 1996.

CARRIER AIR CONDITIONING COMPANY. Manual de Aire Acondicionado.

Barcelona: Marcombo, S.A. 1996.

HERNÁNDEZ, G. Fundamentos de Aire Acondicionado y Refrigeración. México:

Limusa, S.A. 2003.

HOLMAN, P. Transferencia de Calor. México: Continental, S.A. 1996.

WIRSBO. Cálculo de una Instalación de Calefacción por Radiadores. Madrid:

Interamericana de España, S.A. 2007.

SAVIOLI, C. Instalaciones Termomecánicas. Madrid: Espacio Editorial. 1976.

SMACNA. HVAC Duct Construction Standars Metal and Flexible. Virginia:

SMACNA. 1985.

VALENZUELA, R. Apuntes de Aire Acondicionamiento y Ventilación Industrial.

Riobamba: Docucentro. 2003.

VALENZUELA, R. Apuntes de Transferencia de Calor. Riobamba: Docucentro.

2003.

ASHRAE. Fundamentals. Madrid: Index. 1988.

Page 140: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

140

ANEXOS.

Page 141: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

141

1. Coeficiente total de transferencia de calor para techos.

2. Coeficiente total de transferencia de calor para paredes.

3. Coeficiente total de transferencia de calor para cristales.

Page 142: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

142

4. Ventilación requerida por personas.

Page 143: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

143

5. Carta Psicométrica – Humedad específica.

Page 144: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

144

6. Factor de corrección por fricción.

Page 145: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

145

7. Nomograma de pérdida de carga – caudal – velocidad.

Page 146: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

146

8. Factor de fricción en ductos rectangulares.

Page 147: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

147

Page 148: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

148

9. Velocidad recomendada en ductos.

10. Coeficiente de pérdida de carga (Co) ASHRAE.

Page 149: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

149

11. Factor de fricción en ductos flexibles.

Page 150: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

150

12. Operación de mantenimiento para potencias mayores y menores 70 Kw.

≤ 70 kW > 70 kW1 t t

2 t t

3 t 2t

4 t 2t

5 t m

6 t m

7 t m

8 t m

9 t t

10 t m

11 - t

12 - 2t

13 - m

14 - 2t

15 t m

16 - t

17 t 2t

18 t 2t

19 t t

20 t 2t

21 - m

Comprobación y limpieza, si procede, de circuito de humos de calderas

Comprobación y limpieza, si procede, de conductos de humos de chimenea

Limpieza del quemador de la caldera

PeriodicidadOperación

Limpieza de los ductos

Limpieza de los difusores

Revisión de los sistemas de tratamiento de agua

Revisión del vaso de expansión

Revisión general de calderas de gas

Comprobación de estanqueidad de cierre entre quemador y caldera

Comprobación de niveles de agua en circuitos

Comprobación de estanqueidad de circuitos de tuberías

Comprobación de estanqueidad de válvulas de interceptación

Comprobación de tarado de elementos de seguridad Revisión y limpieza de filtros de agua

Revisión y limpieza de filtros de aire

Revisión de radiador

Revisión de unidades terminales agua-aire

Revisión de unidades terminales de distribución de aire

Revisión y limpieza de unidades de impulsión y retorno de aire

Revisión de equipos autónomos

Revisión de bombas y ventiladores

13. Resumen de cálculos.

Page 151: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

151

14. Cotización según SEING.

DESCRIPCION UNIDAD CANTIDAD P. UNITARIOP.

TOTALEQUIPO - INSTALACIÓN

CALEFACTOR 50000BTU/H"GOODMAN"-CPG-USA, Cap. 2,465CFM@0,75"SP

U 6,0 1.330,6 7.983,4

INSTALACION DE UN CALEFACTOR 50000BTU/H"GOODMAN"-CPG-USA, Cap. 2,465 CFM@0,75"SP

U 6,0 700,0 4.200,0

VENTILADOR CENTRIFUGO BSQ-120-LMDX-QD 2563 CFM,INCLUYE ACCESORIOS, 0,75" SP

U 6,0 1.128,8 6.772,6

INSTALACION DE UN VENTILADOR CENTRIFUGO BSQ-120-LMDX-QD 2500 CFM, INCLUYE ACCESORIOS

U 6,0 186,0 1.116,0

DAMPER FIRE DE 20"x12" U 6,0 528,6 3.171,7DAMPERS DE PRESION 8" U 48,0 140,5 6.744,0MANGUERA FLEXIBLE CON AISLAMIENTO DIAM. 8" m 150,0 9,6 1.443,8DIFUSORES DE SUMINISTRO DE 10" X 10" MOVILES DE 4 VIAS . U 12,0 21,4 257,1DIFUSORES DE SUMINISTRO DE 8" X 8" MOVILES DE 4 VIAS . U 36,0 17,6 635,0SUMINISTRO E INSTALACION DE DUCTOS DE TOL GALVANIZADOAISLADOS

Kg 1.597,6 5,6 8.947,5

LOUVERS DE 400x400mm 200mm EN TOL GALVANIZADO U 6,0 386,4 2.318,3RETORNOVENTILADOR CENTRIFUGO BSQ-140-LMDX-QD 2650 CFM,INCLUYE ACCESORIOS, 0,5 SP

U 6,0 1.126,6 6.759,3

INSTALACION DE UN VENTILADOR CENTRIFUGO BSQ-140-LMDX-QD 2650 CFM, INCLUYE ACCESORIOS

U 6,0 186,0 1.116,0

SUMINISTRO E INSTALACION DE DUCTOS DE TOL GALVANIZADOAISLADOS

Kg 2.551,0 5,6 14.286,9

MANGUERA FLEXIBLE CON AISLAMIENTO DIAM. 8" m 81,0 9,6 780,0MANGUERA FLEXIBLE CON AISLAMIENTO DIAM. 10" m 25,0 10,7 268,3DAMPERS DE PRESION 10" U 24,0 172,5 4.140,0DAMPERS DE PRESION 12" U 24,0 207,0 4.968,0REJILLAS DE EXTRACCION DE 6"x14" MOD. RA-A U 36,0 41,2 1.483,8REJILLAS DE EXTRACCION DE 12"x12" MOD. RA-A U 12,0 26,6 318,8RESTAURANTE:CAJA DE VENTILACION EXTRACCION Mod. CVB-270/200, Cap. 2,000CFM@0,24"SP

U 1,00 644,60 644,60

INSTALACION DE UNA CAJA DE VENTILACION Mod. CVB-270/200,Cap. 2,000 CFM@0,24"SP

U 1,00 231,25 231,25

CAJA DE VENTILACION IMPULSION Mod. CVB-270/200, Cap. 3,000CFM@0,48"SP

U 1,00 847,80 847,80

INSTALACION DE UNA CAJA DE VENTILACION Mod. CVB-270/200,Cap. 3,000 CFM@0,48"SP

U 1,00 231,25 231,25

REJILLAS DE IMPULSION MOD. AMT 16X 18" U 2,00 27,50 55,00REJILLAS DE EXTRACCION 8X10" U 4,00 41,22 164,86SUMINISTRO E INSTALACION DE DUCTOS REFORZADOS DE TOLGALVANIZADO SIN AISLAMIENTO.

Kg 295,30 4,50 1.327,82

LOUVERS DE 900x400mm 200mm EN TOL GALVANIZADO U 1,00 897,00 897,00PORTAFILTROS DE 16"X16" EN TOL GALVANIZADO U 2,00 133,75 267,50FILTROS METALICOS Mabel 0,16m2 U 1,00 25,40 25,40COCINAEXTRACTOR DE COCINA MOD. CENTRIFUGAL EXHAUST CUBE-420CAP. 21000 m3/h

U 1,0 5.680,1 5.680,1

INSTALACION DE UN EXTRACTOR DE COCINA MOD.CENTRIFUGAL EXHAUST CUBE-420 CAP. 21000 m3/h INCLUYEACCESORIOS.

U 1,0 432,5 432,5

FILTRO SEPARADOR DE LAMAS 50 mm. INOX. AISI 430 U 2,0 85,7 171,3

SUBTOTAL 88.686,8

HOTEL ZEUS INTERNACIONAL.SISTEMA DE CALEFACCION POR AIRE POR UN PISO.

1. SISTEMA DE CALEFACCION POR AIRE. PISO POR PISO (EQUIPO E INSTALACION)

Page 152: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

152

PERSONAL (CATEGORIA) N/PersonalCosto

Mano ObraN/horas

Costo Total/Piso.

Costo Total/Edificio.

Ingeniero 1 1,78 8 427,20 7689,6Ayudante 1 1,51 8 362,40 6523,2Instalador 2 1,94 8 931,20 16761,6Soldador 1 2,03 4 243,60 4384,8Electricista 1 1,78 4 213,60 3844,8Total. 1.964,40 35.359,20

Descripción Costo Equipo/H N/horas Total. Mensual Costo obra

Herramienta menor 0,10 4 0,40 12 36Taladro de Mano 0,15 4 0,60 18 54Suelda eléctrica 0,54 3 1,62 48,6 145,8

Total 2,62 78,60 235,80

Descripción UnidadPrecio

UnitarioCantidad Costo

Lámina de tol galvanizado kg 1,50 48 72,0Duct Aislamiento. m2 4,40 0,4 10,6Pletinas 1"x1/8" para anclaje kg 0,50 4 2,0Remaches U 0,02 16 0,2Clavos HILTI U 0,35 2 0,7

U 0,80 48 38,4U 0,60 4 2,4

Electrodos 6011 Kg 3,25 2,5 8,1Disco de Desbaste 7" U 3,75 3 11,3

Gbl 10,67 1 10,7Alambre Galvanizado N.16 lb 1,00 0,05 0,1

Angulo 1 1/2"X1/8" U 12,80 12 153,6Disco de Corte 7" U 3,26 2 6,5Disco de Desbaste 7" U 3,75 1 3,8Electrodos 6011 Kg 3,25 0,5 1,6Anticorrosivo Negro Mate Gal 14,90 0,25 3,7Thiñer Laca Gal 4,50 0,25 1,1Lona Flexible m2 25,00 0,5 12,5Pernos Hylty 2 1/2"x3/8" U 3,50 12 42,0

Gbl 18,89 3 56,7Pletinas 1"x1/8" para anclaje kg 0,50 4 2,0Remaches U 0,02 16 0,2

U 0,35 2 0,7440,8

Ventilación - extracción.

Material Menudo de Instalacion

Clavos HILTI

Total Costo de Materiales

MATERIALES (incluye costo de transporte)

MANO DE OBRA CALEFACCION POR AIRE

EQUIPO MENOR - CALEFACCION POR AIRE.

Caja de tol galvanizado de 8"x8"con salida de 8" para mangueraCaja de tol galvanizado de 12"x12"

Material Menudo de Instalacion

COSTO VALORMATERIALES 89.127,59MANO DE OBRA 35.359,20EQUIPOS Y HERRAMIENTAS 235,80CRITERIO DE INGENIERÍA 12.472,20TOTAL 137.194,79

Page 153: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

153

DESCRIPCION UNIDAD CANTIDAD P.UNITARIO P.TOTAL

EQUIPO - INSTALACION

1. SISTEMA DE CALEFACCION POR AIRE. (EQUIPO E INSTALACION)CALEFACTOR 180000BTU/H"GOODMAN"-GMP050-USA, Cap. 4600CFM@0,75"SP

U 3,00 4.091,04 12.273,12

INSTALACION DE UN CAELFACTOR 180000BTU/H"GOODMAN"-GMP050-USA, Cap. 2,610 CFM@0,75"SP

U 3,00 700,00 2.100,00

VENTILADOR CENTRIFUGO BSQ-160 4600 CFM, INCLUYEACCESORIOS

U 3,00 2.464,94 7.394,82

INSTALACION DE UN VENTILADOR CENTRIFUGO BSQ-160 4600CFM, INCLUYE ACCESORIOS

U 3,00 276,00 828,00

DAMPER FIRE DE 22"x12" U 3,00 535,99 1.607,97DAMPERS DE PRESION 8" U 48,00 140,50 6.744,00MANGUERA FLEXIBLE CON AISLAMIENTO DIAM. 10" m 150,00 9,63 1.443,75DIFUSORES DE SUMINISTRO DE 12" X 12" CTM U 28,00 21,43 600,01DIFUSORES DE SUMINISTRO DE 8" X 8" .RTM U 20,00 17,64 352,78SUMINISTRO E INSTALACION DE DUCTOS DE TOL GALVANIZADOAISLADOS

Kg 1.607,18 5,60 9.001,01

LOUVERS DE 800x400mm 200mm EN TOL GALVANIZADO U 6,00 756,00 4.536,00RETORNOVENTILADOR CENTRIFUGO BSQ-160 4504 CFM, INCLUYEACCESORIOS

U 3,00 2.464,94 7.394,82

INSTALACION DE UN VENTILADOR CENTRIFUGO BSQ-160 4504CFM, INCLUYE ACCESORIOS

U 3,00 276,00 828,00

SUMINISTRO E INSTALACION DE DUCTOS DE TOL GALVANIZADOAISLADOS

Kg 2.582,00 5,60 14.460,49

MANGUERA FLEXIBLE CON AISLAMIENTO DIAM. 10" m 81,00 9,63 780,03MANGUERA FLEXIBLE CON AISLAMIENTO DIAM. 12" m 25,00 10,73 268,25DAMPERS DE PRESION 10" U 24,00 172,50 4.140,00DAMPERS DE PRESION 12" U 24,00 207,00 4.968,00REJILLAS DE EXTRACCION DE 6"x14" MOD. RA-A U 36,00 41,22 1.483,78REJILLAS DE EXTRACCION DE 12"x12" MOD. RA-A U 12,00 26,57 318,78RESTAURANTE:CAJA DE VENTILACION EXTRACCION Mod. CVB-270/200, Cap. 2,000CFM@0,24"SP

U 1,00 644,60 644,60

INSTALACION DE UNA CAJA DE VENTILACION Mod. CVB-270/200,Cap. 2,000 CFM@0,24"SP

U 1,00 231,25 231,25

CAJA DE VENTILACION IMPULSION Mod. CVB-270/200, Cap. 3,000CFM@0,48"SP

U 1,00 847,80 847,80

INSTALACION DE UNA CAJA DE VENTILACION Mod. CVB-270/200,Cap. 3,000 CFM@0,48"SP

U 1,00 231,25 231,25

REJILLAS DE IMPULSION MOD. AMT 16X 18 U 2,00 27,50 55,00REJILLAS DE EXTRACCION 8X8 U 4,00 41,22 164,86SUMINISTRO E INSTALACION DE DUCTOS REFORZADOS DE TOLGALVANIZADO SIN AISLAMIENTO.

Kg 295,30 4,50 1.327,82

LOUVERS DE 900x400mm 200mm EN TOL GALVANIZADO U 1,00 897,00 897,00PORTAFILTROS DE 16"X16" EN TOL GALVANIZADO U 2,00 133,75 267,50FILTROS METALICOS Mabel 0,16m2 U 1,00 25,40 25,40COCINAEXTRACTOR DE COCINA MOD. CENTRIFUGAL EXHAUST CUBE-420CAP. 21000 m3/h

U 1,00 5.680,05 5.680,05

INSTALACION DE UN EXTRACTOR DE COCINA MOD.CENTRIFUGAL EXHAUST CUBE-420 CAP. 21000 m3/h INCLUYEACCESORIOS.

U 1,00 432,50 432,50

FILTRO SEPARADOR 50 mm. INOX. AISI 430 U 2,00 85,67 171,34SUBTOTAL 92.500,0

HOTEL ZEUS INTERNACIONAL.SISTEMA DE CALEFACCION POR AIRE EN DOS PISO.

Page 154: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

154

PERSONAL (CATEGORIA) N/PersonalCosto Mano Obra

N/horasCosto Total/Piso.

Costo Total/Edificio.

Ingeniero 1 1,78 8 427,20 7689,6Ayudante 1 1,51 8 362,40 6523,2Instalador 2 1,94 8 931,20 16761,6Soldador 1 2,03 4 243,60 4384,8Electricista 1 1,78 4 213,60 3844,8Total. 1.964,40 35.359,20

DescripciónCosto Equipo/H

N/horas Total. Mensual Costo obra

Herramienta menor 0,10 4 0,40 12 36Taladro de Mano 0,15 4 0,60 18 54Suelda eléctrica 0,54 3 1,62 48,6 145,8

Total 2,62 78,60 235,80

Descripción UnidadPrecio Unitario

Cantidad Costo

Lámina de tol galvanizado kg 1,50 48 72,00m2 4,40 0,4 10,56

Pletinas 1"x1/8" para anclaje kg 0,50 4 2,00Remaches U 0,02 16 0,24Clavos HILTI U 0,35 2 0,70

U 0,80 48 38,40Caja de tol galvanizado de 12"x12" U 0,60 4 2,40Electrodos 6011 Kg 3,25 2,5 8,13Disco de Desbaste 7" U 3,75 3 11,25

Gbl 10,67 1 10,67Alambre Galvanizado N.16 lb 1,00 0,05 0,05

Angulo 1 1/2"X1/8" U 12,80 12 153,60Disco de Corte 7" U 3,26 2 6,52Disco de Desbaste 7" U 3,75 1 3,75Electrodos 6011 Kg 3,25 0,5 1,63Anticorrosivo Negro Mate Gal 14,90 0,25 3,73Thiñer Laca Gal 4,50 0,25 1,13Lona Flexible m2 25,00 0,5 12,50Pernos Hylty 2 1/2"x3/8" U 3,50 12 42,00

Gbl 18,89 3 56,67Pletinas 1"x1/8" para anclaje kg 0,50 4 2,00Remaches U 0,02 16 0,24

U 0,35 2 0,70440,85

Clavos HILTI

MATERIALES (incluye costo de transporte)

Duct Aislamiento.

Total Costo de Materiales

Mano de obra calefacción por aire. Dos Pisos

EQUIPOS MENOR - CALEFACCION POR AIRE.

Caja de tol galvanizado de 8"x8"con salida de 8" para manguera

Material Menudo de Instalacion

Ventilación - extracción.

Material Menudo de Instalacion

CALEFACCION POR AIRE (2*2) PRECIO

EQUIPO E INSTALACION 92.971,16

MANO DE OBRA 35.359,20

EQUIPO MENOR 235,80

CRITERIO DE INGENIERÍA 12.857

TOTAL 141.422,76

Page 155: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

155

PRESUPUESTO REFERENCIAL

DESCRIPCION UNIDAD CANTIDADP.

UNITARIP.TOTAL

1. SISTEMA DE CALEFACCION POR AGUA.CALDERA BRYAN DR 350W (82kW), INCLUYE QUEMADOR Y ACCESORIOS.

U 1,00 8.473,42 8.473,42

INSTALACION CALDERA BRYAN DR 350W (82kW), INCLUYE QUEMADOR Y ACCESORIOS.

U 1,00 2.000,00 2.000,00

DUBAL 80(frontal aberturas), 9 elementos U 30,00 382,94 11.488,20DUBAL 60(frontal aberturas),14 elementos U 10,00 441,47 4.414,70DUBAL 70(frontal aberturas), 9 elementos U 6,00 337,47 2.024,82DUBAL 60(frontal aberturas), 12 elementos U 2,00 378,41 756,82INSTLACION DE RADIADORES DUBAL U 2,00 65,00 130,00REDUCCIONES 1" x 3/4" U 12,00 25,70 308,40PURGADOR AUTOMATICO 1"D.ROSCA DERECHA(EMBALADOS EN CAJAS DE 10 u.),

C 5,00 13,80 69,00

TAPONES 1" DB U 50,00 1,54 77,00SOPORTE DE PIE 100/JPARA RADIADOR JET y ALIS (EMBALADOS EN CAJAS DE 25 u.)

C 4,00 14,06 56,24

SOPORTE DE EMPOTRAR 73 A U 100,00 1,56 156,00LLAVE MONOGIRO NT 3/4" recta U 48,00 34,89 1.674,72DETENTOR 3/4" recto U 48,00 24,99 1.199,52TUBERIA DE POPLIPROPLILENO CON AISLAMIENTO 32mmx3 L(m) 12,00 16,14 193,68TUBERIA DE POPLIPROPLILENO CON AISLAMIENTO 25mmx2,5 L(m) 16,00 11,58 185,28TUBERIA DE POPLIPROPLILENO CON AISLAMIENTO 20mmx2 L(m) 48,00 8,48 407,04TUBERIA DE POPLIPROPLILENO CON AISLAMIENTO 16mmx2 L(m) 136,00 6,37 866,32CODOS 32 U 12,00 7,55 90,60CODOS 25 U 2,00 6,35 12,70CODOS 15 U 4,00 4,30 17,19TE 32 U 4,00 10,10 40,41TE 25 U 6,00 9,11 54,68TE 20 U 4,00 7,50 30,00TE 16 U 7,00 6,61 46,30VASO DE EXPANCION 35 LTROS SOPORTE COMPLETO PARA VASOS

U 1,00 132,74 132,74BOMBAS SENCILLAS PARA SISTEMAS DE CALEFACCIÓN INDIVIDUAL. SERIE GRAINGER

U 1,00 487,46 487,46

RESTAURANTE:CAJA DE VENTILACION EXTRACCION Mod. CVB-270/200, Cap. 2,000CFM@0,24"SP

U 1,00 644,60 644,60

INSTALACION DE UNA CAJA DE VENTILACION Mod. CVB-270/200, Cap.2,000 CFM@0,24"SP

U 1,00 231,25 231,25

CAJA DE VENTILACION IMPULSION Mod. CVB-270/200, Cap. 3,000CFM@0,48"SP

U 1,00 847,80 847,80

INSTALACION DE UNA CAJA DE VENTILACION Mod. CVB-270/200, Cap.3,000 CFM@0,48"SP

U 1,00 231,25 231,25

REJILLAS DE IMPULSION MOD. AMT 16X 18 U 2,00 27,50 55,00REJILLAS DE EXTRACCION 8X8 U 4,00 41,22 164,86SUMINISTRO E INSTALACION DE DUCTOS REFORZADOS DE TOLGALVANIZADO SIN AISLAMIENTO.

Kg 295,30 4,50 1.327,82

LOUVERS DE 900x400mm 200mm EN TOL GALVANIZADO U 1,00 897,00 897,00PORTAFILTROS DE 16"X16" EN TOL GALVANIZADO U 2,00 133,75 267,50FILTROS METALICOS Mabel 0,16m2 U 1,00 25,40 25,40COCINAEXTRACTOR DE COCINA MOD. CENTRIFUGAL EXHAUST CUBE-420CAP. 21000 m3/h

U 1,00 5.680,05 5.680,05

INSTALACION DE UN EXTRACTOR DE COCINA MOD. CENTRIFUGALEXHAUST CUBE-420 CAP. 21000 m3/h INCLUYE ACCESORIOS.

U 1,00 432,50 432,50

FILTRO SEPARADOR 50 mm. INOX. AISI 430 U 2,00 85,67 171,34

TOTAL 46.369,61

HOTEL ZEUS INTERNACIONAL.SISTEMA DE CALEFACCION POR AGUA.

Page 156: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

156

PERSONAL (CATEGORIA) N/PersonalCosto Mano

ObraN/horas

Costo Total/Edificio.

Ingeniero 1 1,78 8 1281,6Ayudante 7 1,51 8 7610,4Instalador 7 1,94 8 9777,6Soldador 1 2,03 4 730,8Electricista 1 2,03 4 730,8Total: 20.131,20

DescripciónCosto

Equipo/HN/horas Total. Mensual Costo/ obra

Herramienta menor 0,10 4 0,40 12 36Taladro de Mano 0,15 4 0,60 18 54Suelda eléctrica 0,54 3 1,62 48,6 145,8

Total 2,62 78,60 235,80

Descripción Unidad Precio Unitario Cantidad Costo Aislamiento. m2 4,40 0,4 10,56Abrazaderas U 0,50 4 2,00Remaches U 0,02 16 0,24Teflón U 0,35 150 52,50Permatex U 0,80 80 64,00

U 0,60 10 6,00Gbl 10,67 1 10,67

Angulo 1 1/2"X1/8" U 12,80 12 153,60Disco de Corte 7" U 3,26 2 6,52Disco de Desbaste 7" U 3,75 1 3,75Electrodos 6011 Kg 3,25 0,5 1,63Anticorrosivo Negro Mate Gal 14,90 0,25 3,73Thiñer Laca Gal 4,50 0,25 1,13Lona Flexible m2 25,00 0,5 12,50Pernos Hylty 2 1/2"x3/8" U 3,50 12 42,00Material Menudo de Instalacion Gbl 18,89 3 56,67Pletinas 1"x1/8" para anclaje kg 0,50 4 2,00Remaches U 0,02 16 0,24

U 0,35 2 0,70Total Costo de Materiales 430,42

Clavos HILTI

MANO DE OBRA CALEFACCION POR AGUA.

EQUIPOS MENOR - CALEFACCION POR AGUA

MATERIALES (incluye costo de transporte)

Clavos de anclaje Material Menudo de Instalacion

Ventilación - extracción.

COSTO PRECIOEQUIPO E INSTALACION 46.800,03

MANO DE OBRA 20.131,20

EQUIPO MENOR 235,80

Criterio de ingeniería 6717TOTAL 73.883,71

15. Catálogos de equipos.

Page 157: “DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN PARA …dspace.espoch.edu.ec/bitstream/123456789/261/1/15T00411.pdf1 “diseÑo de un sistema de climatizaciÓn para el hotel zeus”. irma

157

PLANOS.