Digital System 1 - esfarayen.ac.ir†شریات/sequential_circuits1.pdf · Digital System 1....

46
زمانبی هم ترتیرهای مدا فصل پنجم بخش اول اسفراینزش عالی فنی و مهندسیع آموجتم مسما باقری ا بهمن98 - 99 Digital System 1

Transcript of Digital System 1 - esfarayen.ac.ir†شریات/sequential_circuits1.pdf · Digital System 1....

  • فصل پنجم مدارهای ترتیبی هم زمان

    بخش اول مجتمع آموزش عالی فنی و مهندسی اسفراین

    اسما باقری

    99-98بهمن

    Digital System 1

  • Sequential Circuits

    2

    Combinational

    Circuit Memory

    Elements

    Inputs Outputs

    Asynchronous

    Synchronous

    Combinational

    Circuit Flip-flops

    Inputs Outputs

    Clock

  • Memory

    3

    0 1

    A B

    Q Q′

    Q Q′

  • (Latch) لچ 4

    SR Latch

    R

    S

    Q

    Q

    S R Q0 Q Q’ 0 0 0

    0

    1

    0

    0

    0 1 Q = Q0

    Initial Value

  • 5

    SR Latch

    R

    S

    Q

    Q

    S R Q0 Q Q’ 0 0 0 0 1

    0 0 1

    1

    0

    0

    0

    1 0 Q = Q0

    Q = Q0

  • 6

    SR Latch

    R

    S

    Q

    Q

    S R Q0 Q Q’ 0 0 0 0 1

    0 0 1 1 0

    0 1 0 0 1

    0 1 1 1

    0

    1

    0

    0 1

    Q = 0

    Q = Q0

    Q = 0

  • 7

    SR Latch

    R

    S

    Q

    Q

    S R Q0 Q Q’ 0 0 0 0 1

    0 0 1 1 0

    0 1 0 0 1

    0 1 1 0 1

    1 0 0 1 0

    1 0 1

    1

    0

    0

    1

    1 0

    Q = 0

    Q = Q0

    Q = 1 Q = 1

  • 8

    SR Latch

    R

    S

    Q

    Q

    S R Q0 Q Q’ 0 0 0 0 1

    0 0 1 1 0

    0 1 0 0 1

    0 1 1 0 1

    1 0 0 1 0

    1 0 1 1 0

    1 1 0 0 0

    1 1 1

    1

    0

    1

    1

    0 0

    Q = 0

    Q = Q0

    Q = 1

    Q = Q’

    0

    Q = Q’

  • 9

    SR Latch

    R

    S

    Q

    Q

    S R Q

    0 0 Q0

    0 1 0

    1 0 1

    1 1 Q=Q’=0

    No change

    Reset

    Set

    Invalid

    S

    R

    Q

    Q

    S R Q

    0 0 Q=Q’=1

    0 1 1

    1 0 0

    1 1 Q0

    Invalid

    Set

    Reset

    No change

  • 10

    𝑺 𝑹 Latch

    R

    S

    Q

    Q

    S R Q

    0 0 Q0

    0 1 0

    1 0 1

    1 1 Q=Q’=0

    No change

    Reset

    Set

    Invalid

    S’ R’ Q

    0 0 Q=Q’=1

    0 1 1

    1 0 0

    1 1 Q0

    Invalid

    Set

    Reset

    No change

    S

    R

    Q

    Q

  • Controlled Latches 11

    SR Latch with Control Input

    C S R Q

    0 x x Q0

    1 0 0 Q0

    1 0 1 0

    1 1 0 1

    1 1 1 Q=Q’

    No change

    No change

    Reset

    Set

    Invalid

    S

    R

    Q

    Q

    S

    R

    C

    S

    RQ

    QS

    R

    C

  • 12

    D Latch (D = Data)(Transparent Latch)

    C D Q

    0 x Q0

    1 0 0

    1 1 1

    No change

    Reset

    Set

    S

    R

    Q

    Q

    D

    C

    C

    Timing Diagram

    D

    Q

    t

    Output may change

  • 13

    D Latch (D = Data)

    C D Q

    0 x Q0

    1 0 0

    1 1 1

    No change

    Reset

    Set

    C

    Timing Diagram

    D

    Q

    Output may change

    S

    R

    Q

    Q

    D

    C

  • Graphical Symbols

    14

  • Flip-Flop (فلیپ فالپ) 15

    Controlled latches are level-triggered

    Flip-Flops are edge-triggered

    C

    CLK Positive Edge

    CLK Negative Edge

  • 16

    Master-Slave D Flip-Flop

    D Latch (Master)

    D

    C

    Q D Latch (Slave)

    D

    C

    Q Q D

    CLK CLK

    D

    QMaster

    QSlave

    Looks like it is negative edge-triggered

    Master Slave

  • 17

    Edge-Triggered D Flip-Flop

    D

    CLK

    Q

    Q

    D Q

    Q

    D Q

    Q

    Positive Edge

    Negative Edge

    S′

    R′

  • 18

    JK Flip-Flop

    D Q

    Q

    Q

    QCLK

    J

    K

    J Q

    Q K D = JQ’ + K’Q

    J K Q(t+1)

    0 0 Q(t)

    0 1 0

    1 0 1

    1 1 Q’(t)

  • 19

    T Flip-Flop

    D = TQ’ + T’Q = T Q

    J Q

    Q K

    T D Q

    Q

    T

    D = JQ’ + K’Q T Q

    Q

  • Review Flip-Flop Characteristic Tables

    20

    D Q

    Q

    D Q(t+1)

    0 0

    1 1

    Reset

    Set

    J K Q(t+1)

    0 0 Q(t)

    0 1 0

    1 0 1

    1 1 Q’(t)

    No change

    Reset

    Set

    Toggle

    J Q

    Q K

    T Q

    Q

    T Q(t+1)

    0 Q(t)

    1 Q’(t)

    No change

    Toggle

  • Flip-Flop Characteristic Equations

    21

    D Q

    Q

    D Q(t+1)

    0 0

    1 1

    Q(t+1) = D

    J K Q(t+1)

    0 0 Q(t)

    0 1 0

    1 0 1

    1 1 Q’(t)

    Q(t+1) = JQ’ + K’Q

    J Q

    Q K

    T Q

    Q

    T Q(t+1)

    0 Q(t)

    1 Q’(t)

    Q(t+1) = T Q

  • 22

    Analysis / Derivation

    J Q

    Q K

    J K Q(t) Q(t+1)

    0 0 0 0

    0 0 1 1

    0 1 0

    0 1 1

    1 0 0

    1 0 1

    1 1 0

    1 1 1

    No change

    Reset

    Set

    Toggle

  • 23

    Analysis / Derivation

    J Q

    Q K

    J K Q(t) Q(t+1)

    0 0 0 0

    0 0 1 1

    0 1 0 0

    0 1 1 0

    1 0 0

    1 0 1

    1 1 0

    1 1 1

    No change

    Reset

    Set

    Toggle

  • 24

    Analysis / Derivation

    J Q

    Q K

    J K Q(t) Q(t+1)

    0 0 0 0

    0 0 1 1

    0 1 0 0

    0 1 1 0

    1 0 0 1

    1 0 1 1

    1 1 0

    1 1 1

    No change

    Reset

    Set

    Toggle

  • 25

    Analysis / Derivation

    J Q

    Q K

    J K Q(t) Q(t+1)

    0 0 0 0

    0 0 1 1

    0 1 0 0

    0 1 1 0

    1 0 0 1

    1 0 1 1

    1 1 0 1

    1 1 1 0

    No change

    Reset

    Set

    Toggle

  • 26

    Analysis / Derivation

    J Q

    Q K

    J K Q(t) Q(t+1)

    0 0 0 0

    0 0 1 1

    0 1 0 0

    0 1 1 0

    1 0 0 1

    1 0 1 1

    1 1 0 1

    1 1 1 0

    K

    0 1 0 0

    J 1 1 0 1

    Q

    Q(t+1) = JQ’ + K’Q

  • Flip-Flops with Direct Inputs

    27

    Asynchronous Reset

    D Q

    Q

    R

    Reset

    R’ D CLK Q(t+1)

    0 x x 0

  • 28

    Asynchronous Reset

    D Q

    Q

    R

    Reset

    R’ D CLK Q(t+1)

    0 x x 0

    1 0 ↑ 0

    1 1 ↑ 1

  • Flip-Flops with Direct Inputs

    29

  • 30

    Asynchronous Preset and Clear

    PR’ CLR’ D CLK Q(t+1)

    1 0 x x 0

    0 1 x x 1

    1 1 0 ↑ 0

    1 1 1 ↑ 1

    D Q

    Q

    CLR

    Reset

    PR

    Preset

  • دو دسته اساسی مسائل مطرح شدهI. Analysis of Clocked Sequential Circuits

    آنالیز مدارهای ترتیبی I. Design of Clocked Sequential Circuits

    طراحی مدارهای ترتیبی

    31

  • تحلیل یک مدار ترتیبی/ مراحل آنالیز

    شماتیک مدار معادالت حالت، معادالت ورودی و معادالت خروجی جدول حالت نمودار حالت

    32

  • An example for Analysis

    33

    State =Values of all Flip-Flops حالت مدار

    Example

    A B = 0 0

    D Q

    Q

    CLK

    D Q

    Q

    A

    B

    y

    x

  • 34

    State(Transition) Equations حالت( گذر) معادالت

    D Q

    Q

    CLK

    D Q

    Q

    A

    B

    y

    xA(t+1) = DA

    = A(t) x(t)+B(t) x(t)

    = A x + B x

    B(t+1) = DB

    = A’(t) x(t)

    = A’ x

    y(t) = [A(t)+ B(t)] x’(t)

    = (A + B) x’

    Output Equations خروجی معادالت

  • 35

    State Table (Transition Table) جدول حالت

    D Q

    Q

    CLK

    D Q

    Q

    A

    B

    y

    x

    A(t+1) = A x + B x

    B(t+1) = A’ x

    y(t) = (A + B) x’

    Present

    State Input

    Next

    State Output

    A B x A B y

    0 0 0

    0 0 1

    0 1 0

    0 1 1

    1 0 0

    1 0 1

    1 1 0

    1 1 1

    t+1 t t

    0 0 0

    0 1 0

    0 0 1

    1 1 0

    0 0 1

    1 0 0

    0 0 1

    1 0 0

  • 36

    State Table دیگری برای جدول حالت نمایش

    D Q

    Q

    CLK

    D Q

    Q

    A

    B

    y

    x

    A(t+1) = A x + B x

    B(t+1) = A’ x

    y(t) = (A + B) x’

    Present

    State

    Next State Output

    x = 0 x = 1 x = 0 x = 1

    A B A B A B y y

    0 0 0 0 0 1 0 0

    0 1 0 0 1 1 1 0

    1 0 0 0 1 0 1 0

    1 1 0 0 1 0 1 0

    t+1 t t

  • 37

    State Diagram

    حالت دیاگرام/نمودار

    D Q

    Q

    CLK

    D Q

    Q

    A

    B

    y

    x

    0 0 1 0

    0 1 1 1

    0/0

    0/1

    1/0

    1/0

    1/0

    1/0 0/1

    0/1

    AB input/output

    Present

    State

    Next State Output

    x = 0 x = 1 x = 0 x = 1

    A B A B A B y y

    0 0 0 0 0 1 0 0

    0 1 0 0 1 1 1 0

    1 0 0 0 1 0 1 0

    1 1 0 0 1 0 1 0

  • مثال38

    D Flip-Flops D Q

    Q

    x

    CLK

    y A Present

    State Input

    Next

    State

    A x y A

    0 0 0

    0 0 1

    0 1 0

    0 1 1

    1 0 0

    1 0 1

    1 1 0

    1 1 1

    0

    1

    1

    0

    1

    0

    0

    1

    0 1 00,11 00,11

    01,10

    01,10

    A(t+1) = DA = A x y

  • 39

    JK Flip-Flop J Q

    QK

    CLK

    J Q

    QK

    x

    A

    B

    JA = B KA = B x’

    JB = x’ KB = A x

    A(t+1) = JA Q’A + K’A QA = A’B + AB’ + Ax

    B(t+1) = JB Q’B + K’B QB = B’x’ + ABx + A’Bx’

    Present

    State I/P

    Next

    State

    Flip-Flop

    Inputs

    A B x A B JA KA JB KB

    0 0 0

    0 0 1

    0 1 0

    0 1 1

    1 0 0

    1 0 1

    1 1 0

    1 1 1

    0 0 1 0

    0 0 0 1

    1 1 1 0

    1 0 0 1

    0 0 1 1

    0 0 0 0

    1 1 1 1

    1 0 0 0

    0 1

    0 0

    1 1

    1 0

    1 1

    1 0

    0 0

    1 1

    مثال

  • ...ادامه40

    Present

    State I/P

    Next

    State

    Flip-Flop

    Inputs

    A B x A B JA KA JB KB

    0 0 0

    0 0 1

    0 1 0

    0 1 1

    1 0 0

    1 0 1

    1 1 0

    1 1 1

    0 0 1 0

    0 0 0 1

    1 1 1 0

    1 0 0 1

    0 0 1 1

    0 0 0 0

    1 1 1 1

    1 0 0 0

    0 1

    0 0

    1 1

    1 0

    1 1

    1 0

    0 0

    1 1

    0 0 1 1

    0 1 1 0

    1 0 1

    0

    1

    0 0

    1

  • مثال41

    T Flip-Flops

    TA = B x , TB = x , y = A B

    A(t+1) = TA Q’A + T’A QA = AB’ + Ax’ + A’Bx

    B(t+1) = TB Q’B + T’B QB = x B

    A

    B

    T Q

    QR

    T Q

    QR

    CLK Reset

    xy

    Present

    State I/P

    Next

    State

    F.F

    Inputs O/P

    A B x A B TA TB y

    0 0 0

    0 0 1

    0 1 0

    0 1 1

    1 0 0

    1 0 1

    1 1 0

    1 1 1

    0 0

    0 1

    0 0

    1 1

    0 0

    0 1

    0 0

    1 1

    0 0

    0 1

    0 1

    1 0

    1 0

    1 1

    1 1

    0 0

    0

    0

    0

    0

    0

    0

    1

    1

  • 42

    Present

    State I/P

    Next

    State

    F.F

    Inputs O/P

    A B x A B TA TB y

    0 0 0

    0 0 1

    0 1 0

    0 1 1

    1 0 0

    1 0 1

    1 1 0

    1 1 1

    0 0

    0 1

    0 0

    1 1

    0 0

    0 1

    0 0

    1 1

    0 0

    0 1

    0 1

    1 0

    1 0

    1 1

    1 1

    0 0

    0

    0

    0

    0

    0

    0

    1

    1

    00/0 01/0

    11/1 10/0

    0

    1

    0

    1

    1

    1

    0 0

    ...ادامه

  • Mealy and Moore Model (machine) میلی و مور( ماشین)مدل

    43

    مدار حالت و هم هم ورودی ها تابعی از خروجی ها :مدل میلی است برای یک حالت به ازای ورودیهای مختلف خروجی عوض ممکن

    (در طول یک تناوب از کالک پالس. )شود راهکار؟؟. لحظه ای داشته باشندمقادیر خطا خروجی ها ممکنه فقط تابعی از حالت فعلی مدار خروجی ها :مدل مور

    نمی شودیک حالت خروجی عوض برای . خروجی ها با کالک هم زمان هستندواقع در.

  • Mealy and Moore Models

    44

  • Mealy and Moore Models

    45

    Present

    State I/P

    Next

    State O/P

    A B x A B y

    0 0 0 0 0 0

    0 0 1 0 1 0

    0 1 0 0 0 1

    0 1 1 1 1 0

    1 0 0 0 0 1

    1 0 1 1 0 0

    1 1 0 0 0 1

    1 1 1 1 0 0

    Mealy

    For the same state, the output changes with the input

    Present

    State I/P

    Next

    State O/P

    A B x A B y

    0 0 0 0 0 0

    0 0 1 0 1 0

    0 1 0 0 1 0

    0 1 1 1 0 0

    1 0 0 1 0 0

    1 0 1 1 1 0

    1 1 0 1 1 1

    1 1 1 0 0 1

    Moore

    For the same state, the output does not change with the input

  • Moore State Diagram

    46

    State / Output

    0 0 / 0 0 1 / 0

    1 1 / 1 1 0 / 0

    0

    1

    1

    1

    0 0

    0

    1