Development cycle - uaf.edu.pk · Cereal system Initiative for South Asia CONSERVATION AGRICULTURE...

16
Cereal system Initiative for South Asia CONSERVATION AGRICULTURE – a climate friendly approach Dr. M. Aqil Khan Country Coordinator IRRI-CIMMYT, Pakistan 1. Agricultural situation 2. Climate change scenario 3. Agricultural options 4. CSISA role & partnership - Knowledge banks, -CKB -HCP Climate change changing world contours Climate change changing world contours o Population ( 9b in 2050) o Industrialization o Agriculture and its input use o Globalization and market integration o Consumerism Resource base exploitation/deterioration Development cycle Anthropogenic effects more Anthropogenic effects more pronounced today pronounced today CO CO 2 values up from 280 to 390 ppm values up from 280 to 390 ppm Emission up 31%, projection Emission up 31%, projection 2ppm Year 2ppm Year 1 Earth temperature up 0.74 Earth temperature up 0.74 ˚C Poised to increase 2.4 Poised to increase 2.4 ˚C Decreasing water availability Decreasing water availability Receding Himalayan glaciers (20% ) Receding Himalayan glaciers (20% ) Vanishing poles (100 k Vanishing poles (100 km 3 /year) Climate change causes GHGs 1. Water vapors (3366%GHGs) 2. CO 2 (926%) 3. Methane x20(49%) 4. N 2 O x298 5. O 3 x25 6. CFCs

Transcript of Development cycle - uaf.edu.pk · Cereal system Initiative for South Asia CONSERVATION AGRICULTURE...

Cereal system Initiative for South Asia

CONSERVATION AGRICULTURE – a climate friendly approach

Dr. M. Aqil KhanCountry Coordinator

IRRI-CIMMYT, Pakistan

1. Agricultural situation

2. Climate change scenario

3. Agricultural options

4. CSISA role & partnership- Knowledge banks, -CKB -HCP

Climate change         changing world contoursClimate change         changing world contours

o Population (�9b in 2050)o Industrializationo Agriculture and its input useo Globalization and market integration  o Consumerism

Resource base exploitation/deterioration

Development cycle

Anthropogenic effects more Anthropogenic effects more pronounced todaypronounced today

‐‐ COCO22 values up from 280 to 390 ppmvalues up from 280 to 390 ppm‐‐ Emission up  31%, projection Emission up  31%, projection ≈≈ 2ppm Year2ppm Year‐‐11

‐‐ Earth temperature up 0.74 Earth temperature up 0.74 ˚̊CC‐‐ Poised to increase 2.4 Poised to increase 2.4 ˚̊CC‐‐ Decreasing water availabilityDecreasing water availability‐‐ Receding Himalayan glaciers (20%  )Receding Himalayan glaciers (20%  )‐‐ Vanishing poles (100 kVanishing poles (100 km3/year) ) 

Climate change causes   GHGs1. Water vapors (33‐66%GHGs)

2. CO2 (9‐26%)

3. Methane x20(4‐9%)

4. N2O x298

5. O3 x25

6. CFCs

Increasing CO2 concentration in atmosphere Global anthropogenic carbon emission

Carbon footprint of wheat crop in Pakistan

Operation Fuel used (m.lit.) CO2 prod. (m.tons)

2010 2020 2010 2020Cultivation 484.64 530.4 1.31 1.43

Sowing 78.17 85.5 0.21 0.23

Herb. App. 27.45 30.0 0.08 0.08

Threshing 134 146.6 0.36 0.40

Total 724.3 792.6 1.96 2.14

CO2  and solar radiation

Global temperature changes. Left: 1880-89. Right: 2000-09. NASA conducted the analysis using ship-based and satellite observations of sea-surface temperature, and data from Antarctic research stations and 6,300 meteorological stations around the world. Earth's average surface temperature has increased by about 0.7 °C (1.3 °F) since 1880. Two-thirds of the warming has occurred since 1975, at a rate of roughly 0.15 to 0.20 °C per decade.Credit: NASA GISS. Courtesy of the NASA Earth Observatory and Mike Carlowicz.

“The frequency, and intensity of extreme events are expected to change as Earth’s climate changes.”

(IPCC, 2007)

How can crops adapt to:

● Heat waves?

● Delayed rains?

● Temporary flooding?

● Combinations of stresses?

Challenge• At our current rate of consumption, human require equivalent of 1.4 planet to provide the resources we use and absorb our waste. As greenhouse gas emissions increase along with our rate of consumption, the situation will worsen. 

Reduce consumption we have one planet.

Rising world population

9.17.7

5.36.1

0

2

4

6

8

10

1990 2000 2020 2050

Year

Popu

latio

n (b

illio

ns)

108137.5

211.4

267.8

0

50

100

150

200

250

300

1990 2000 2020 2050

Popu

lation

 (Millions)

Year

Population trends in Pakistan

0.42

0.29

0.24

0.160.13

0.11

0.18

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1961 1971 1981 1991 2001 2010 2020

ha P

er C

apita

Dwindling land for agriculture Demand for cereals will double by 2050

Sorgum

8%

Millet

8%

Cassava4%

Potato2%

Rice 34%(149 M ha)

Wheat 23%(99 M ha)

Maize 21%(94 M ha)

Area sown to staples in developing countries

* Human needs+ 10 % seed and feed requirements

YearPopulation

(million)

*WheatRequired (m. ton)

Yield (t/ha)

Area Need

(000 ha)

Area released (000 ha)

2010 173.5 22.90 2.6 9042 -

2015 205.5 27.13 3.5 7750 1292

2020 226.2 29.86 4.0 7464 1578

2025 246.3 32.51 4.3 7560 1482

2030 265.6 35.07 4.6 7624 1418

Projected population and wheat requirement

Challenge to Food SecurityProduction vs. Consumption

0

100

200

300

400

500

600

700

1990 1993 1996 1999 2002 2005

Total Production

Total Consumption

Human

Animal

Surplus

OThers

Mil. T.

Rising temperatures and crop production• Land reclassification by 2050 

• 1 ˚C rise would mean ≈ 7 % wheat yield loss

• 1 ˚C rise  would mean ≈10% yield loss in rice 

• 44% yield loss in rainfed wheat yield

• Significant pests, pathogen and weeds changes

• Deleterious effects on grain quality and nutrients

• 3 IPCC Climate Models• Increasing Heat Stress (wheat)• 17‐38% Reduction in High Potential Zone

Per capita water availability m3/year/person, Pakistan

PER CAPITA WATER AVAILABILITY VS POPULATION GROWTH

0

1000

2000

3000

4000

5000

6000

1951 1961 1972 1981 1992 2000 2003 2012 2020

Per C

apita

Wat

er a

vaila

bilit

y(In

Cub

ic m

eter

)

0

50

100

150

200

250

Popu

latio

n (In

Mill

ions

)

Population Water

Parameters/Years 1951 1961 1972 1981 1992 2000 2003 2012 2020

Water availability Per Capita 5650 4000 2800 1900 1700 1400 1200 1000 885

Population 33.7 42.8 65.3 84.2 132.0 140.0 149.0 176.0 216.8

Water scarcity level: 1700 CM /capita

A disappearing Arctic ice cap

Time, December 6, 2010 

7.0 m sq km

4.9 m sq  km

Future scenario • Challenges

• Compulsions

• Approaches

Present day agriculture would not be the answer to emerging situation

Higher populationHigher food demandHigher temperaturesLess waterScarce & costly inputs- A skewed agricultural

situation

New guiding philosophy

More with lessSave as we growprosperity for all

more productionmore incomebetter health

Translated into actionable propositions it means: 

• Increased food availability

• Reduce cost of crop production

• Maintain momentum of growth

• Promote biodiversity

• Eliminate poverty

• Conserve environmento Soil, water and air

oReduce energy use

Achievable by:Deployment of innovative combination of factors of production using CA platform

Solutions• Simple

• Cheap 

• Effective

Conservation AgricultureResource saving crop production practices which aim at:

• Sustainable high production

• Crop/system profitability

• Natural forces enhancement 

• Input optimization

• Resource conservation

CA (climate smart agriculture) ‐‐ Integrates agri. technology with environment management by promoting:

• Crop rotation

• Maintaining soil cover

• Minimum soil disturbance

‐ improves rain infiltration, reduces erosion and water requirement upto 30%, improves drought tolerance 

Promotes  diverse and healthy produce

Reduces tilling/plowing, cost of production and fuel consumption

Integrated Crop and Resource Management“Ecological crop Intensification”

Crop Management NRMProductivity with optimal  CA based RCTS for efficient

external inputs use of natural resources

Cultivars

FertilizerPesticides

Labor

Energy

Land leveling

Tillage & crop est.

Residue managementWater incl. Rain Water

Climate and soils

Profitable cropping system

Conservation agriculture

RC technologies‐ Laser leveling‐ Zero till‐ Bed planting ‐ DSR‐ Controlled irrigation management in rice ‐ SSNM‐ Balanced /efficient fertilizer use ‐ Residue management ‐ Increased cropping intensity/diversity‐ New seed/cultivars

RC technologies• Laser land leveling  • Direct seeded rice• Unpuddled transplanted rice • Reduced tillage (i.e. strip tillage or fewer tillage passes) • Zero tillage• Raised bed planting• Increased application rates of fertilizer• Decreased application rates of fertilizer• Application of micro‐nutrients • Liming • Improved weed management• Increased irrigation frequency• Decreased irrigation frequency• Change in irrigation timing• AWD ‐ alternating wetting and drying 

RC technologies/cont.• Increased cropping intensity (i.e. more crops per year)• More cropping diversity (i.e. replacing existing crops with different crop types) • New varieties of rice • New varieties of wheat• Improved post‐harvest storage • Seed priming or treatment (fungicide, insecticide)• Split applications of nitrogen• Banded fertilizer application • Deep placement of urea supergranules (USG)• Leaf color chart • Nutrient Manager software• GreenSeeker sensor • Brown manuring• Stale seedbed

Laser leveling – tabletop fieldsEliminates high/low points

Reduces irrigation times

Saves water  (≈ 20 %)

Saves labor

Water use (m3 /ha) in wheat under precision and traditional land leveling

Effect of laser land leveling on water use (m3 /ha) in raised bed planted wheat

0‐til planting• No land preparation• Cost saving• Timely crop planting• Builds soil organic matter• Reduces compaction• Promotes biodiversity• Improves yield• Environment friendly

Haryana, India Indian Punjab

Effect of Residues on Crop Production

Data of K. Sayre from central Mexico

Grain Yield (kg/ha)

0

2000

4000

6000

8000

1996 1997 1998 2000 2001 2002

W‐M, ZT, +Res. W‐M, ZT, ‐Res.

M‐M, ZT, +Res. M‐M, ZT, ‐Res.

W‐M, CT, +Res. W‐M, CT, ‐Res.

World‐wide adoption of Zero‐tillage 2008Millions of hectares

Total = 105.9 million ha.

Australia 

12.0

Ghana: 100.000 small farmers use NT

Canada 13.5

USA 26.6

Brazil 25.5

Paraguay 2.4

Argentina 19.7

IGP 1.2China 1.3

Based on Derpsch and Friedrich, 2009

Kazakhstan 1.2

Bed planting

• Water saving

• Improves crop establishment

• Reduces crop lodging

• Reduces disease incidence

• Improves yield

• Crop establishment in saline/sodic soils

Wheat in gypsum amended sodic soils

DSR and AWD in riceDSR• Saves 75of planting cost• 30 % water• Reduce labor needs•Reduce energy needs•Optimal populationAWD• Saves 30 % water

Weed management a challenge

ZTBP in operation Bed planted wheat

ZT wheat ZT vs CP

Residue Management • Moderates soil temperature• Off‐set terminal heat stresses• Minimizes unproductive loss of water through evaporation

• Cooling effect on plants ( > 1C) – terminal heat stress reduced

• Helps control weeds• Improves soils quality• Alternative for residue burning clean air• Enhanced biodiversity• Root penetration

Brown manuring Extending resource use benefits

Soil

Water

Nutrientsto enhance food availability and income and reduce cost

Relay cropping of wheat in cotton (farmer field) Relay cropping in cotton vs. CP

Cotton Res. Instt., Faisalabad

Mungbean relay planting in wheat

Soil compaction with rotavator• Rotavator Blade Actions

•Rotavator actions – Rotavator has  Blades mounted on the rotar . These L shaped blades hit the soil surface at high speed (depending on machine RPMs > 700 times / min. The blade actions include   a. cutting a soil slice , b. Compacting and c. smearing actions as shown in the picture. This creates a plow pan very close to the soil surface ( 16‐19cm) depending upon  the blade lengths   

Rotavator and Soil Compaction A‐ Average of 600 observations from  3 districts in Punjab ; Konometer  data refers to  Max compaction ratings at 16‐19 cm depth 1Kpa (kilopascal)= 0.14504 Psi

0500

100015002000250030003500

R3 R2 R1 C ZTR

Com

pact

ion

(kPa

)

Tillage options

B _ Data from Villagr Gunsar Kaunke  where fields  were subsoiled/ chiseled after 3 years 

3220

2887

2241

1522

1491

0

500

1000

1500

2000

2500

3000

3500

Com

pact

ion

(kP

a)

R3 R2 R1 C ZTR SS

Tillage options in Gurusar Kaunke

CA and field economy in wheat (2020)CA Technology

Area (m. acres)

Fuel sav.(m. liters)

Water sav.(MAF)

Precision leveling

18.3(75%)

4.87

0-til planting 3.9(50%)

84.6 0.52

Bed planting 12.2(50%)

4.88

Relay cropping

4.2(50%)

91.3

Total 24.45 175.9 8.6

CA benefitsEconomic• Time saving• Reduced labor• Reduced costAgronomic• Organic matter buildup• In‐soil water conservation• Soil structure improvementEnvironmental• Reduced erosion• Improved water quality• Improved air quality• Biodiversity• Carbon sequestration

Comparison of full and short season wheat varieties

6000

5000

4000

3000

2000

1000

0 Oct.05 Nov.10 Nov.25 Dec.10 Dec.25 Jan.10

Full Short

Seed availability≈20%‐Local seed leaders

YIELD LIMITING FACTORS

• Late planting

• Imbalanced fertilizer use – means/price/availability

• Weeds infestation

• Shortage of canal water

• Lack of proper machinery

• Non availability of quality Seed

• Small holding size

CSISA Cereal System Initiative for  South Asia

A joint project of IRRI and CIMMYTOperating  in Bangladesh, India,    Pakistan and NepalObjectives – promote CA to fight    climate change, poverty and hunger

Managed by:•International Rice Research Institute (IRRI) •International Maize and Wheat Improvement Center (CIMMYT)

Cereal Knowledge Bankhttp://www.knowledgebank.irri.org/default.htm

Country Knowledge Banks: Bangladesh, Cambodia, China, India, Indonesia, Lao PDR, Myanmar, Nepal, Pakistan, Philippines, Sri Lanka, Thailand, Vietnam

Extension: Effective communication ‐Creation of extension materials‐Needs and Opportunities Assessment‐ farm management‐ Training manual‐Working with farmers

E-Learning: Biological Control of Insect Pests‐ Grain Quality‐Water Management Course‐ Rice Breeding Course‐ Rice Production Course

Acronyms and glossary of rice terminology

What do you find in CKB?

• What the world is doing in cereals?

• Country Knowledge Banks

• Upload and download site

• Management factors at different growth stages 

• Weed management strategies

• How to conserve the natural resources?

• How poor farmers can be uplifted to good growers?

E‐Learning Materials• Biological Control of Insect Pests

• English for Agriculture workers

• E‐Learning for Development

• Grain Quality Course

• E‐Water Management Course

• Rice Breeding Course

• Rice Production Course

Rice/wheat/maize

Seed to MarketGrowth Stages

Quality Seeds

Agronomy

Post Harvest

Extras

Wheat Doctor

Rice Doctor

Maize Doctor

Additional sites

CSISA Knowledge Bankhttp://www.knowledgebank.irri.org/csisa.htm

Hub Specific Knowledge Bankhttp://www.knowledgebank.irri.org/csisabeta/index.php

Hub Communication Platform (HCP)http://www.awhere.com/CSISA/Homepage.aspx

Combine effort of:• CSISA

• Awhere Inc.

Weather Pin • Maximum temperature• Minimum temperature• Precipitation• Solar radiation• Maximum daily wind• Maximum morning wind• Maximum relative humidity• Minimum relative humidity

Local information

Plug in coordinates of a locality/field and 

• Get previous 5 days met date

• 7 days forecast

• Likely insect/pathogen flare‐ups

‐ helps in planning field operations and plant protection measures

Pakistan AMAP‐ downloadable

Following information in map forms is available:• Political (Admin, country)• Demographic (populated places, urbanized points)• Ecological ( grass type, crop land, tundra and marshland)• Hydrographic (water points, water courses and inland water)• Infrastructure (airports, transportation, mines, pipelines, rail 

roads)• Topographic (elevation points and contours)• IWMI climate data (month wise precipitation, PET, min/max 

temperature) 

AWhere Map- Jan min. temperature

Make maps ‐ changes in water table depth

Per kg water use in selected crops1 kg wheat 1 kg rice 1 kg maize 1kg Sugar cane

1350 L 3,000 – 5,000 L 900 L 170 L

3000 Cal  Daily req.

30000 beaf cal

300 000 Corn Cal

30 000 000 Solar cal

1.5 acre corn Thank you for your attention