data communication -SignalEncodingTechniques

download data communication -SignalEncodingTechniques

of 62

Transcript of data communication -SignalEncodingTechniques

  • 8/3/2019 data communication -SignalEncodingTechniques

    1/62

    Dat a Com m unic a t ion

    Chapt er 5

    Signal Enc oding Tec hniques

  • 8/3/2019 data communication -SignalEncodingTechniques

    2/62

    Enc oding Tec hniques Digital data, digital signal

    Analog data, digital signal

    Digital data, analog signal

    Analog data, analog signal

  • 8/3/2019 data communication -SignalEncodingTechniques

    3/62

    Signal Enc oding Tec hniques

  • 8/3/2019 data communication -SignalEncodingTechniques

    4/62

    Digi t a l Dat a, Dig i t a l Signa l Digital signal

    Discrete, discontinuous voltage pulses

    Each pulse is a signal element

    Binary data encoded into signal elements

  • 8/3/2019 data communication -SignalEncodingTechniques

    5/62

    Term s (1) Unipolar

    All signal elements have same sign

    Polar

    One logic state represented by positive voltage theother by negative voltage

    Data rate

    Rate of data transmission in bits per second

    Duration or length of a bitTime taken for transmitter to emit the bit

  • 8/3/2019 data communication -SignalEncodingTechniques

    6/62

    Term s (2) Modulation rate

    Rate at which the signal level changes

    Measured in baud = signal elements per second

    Mark and Space

    Binary 1 and Binary 0 respectively

  • 8/3/2019 data communication -SignalEncodingTechniques

    7/62

    In t erpret ing Dig i t a l Signals Receiver Need to know

    Timing of bits - when they start and end

    Signal levels

    Factors affecting successful interpreting of

    signalsSignal to noise ratio (SNR).

    Data rate

    BandwidthEncoding scheme.

  • 8/3/2019 data communication -SignalEncodingTechniques

    8/62

    Com par ison of Enc oding

    Sc hem es (1) Signal Spectrum

    Lack of high frequencies reduces required bandwidth

    Lack of dc component allows ac coupling viatransformer, providing isolation, reduce interference.

    Concentrate transmitted power in the middle of the

    channel bandwidth to reduce distortion.

    Clocking

    Synchronizing transmitter and receiverExternal clock

    Sync mechanism based on transmitted signal.

  • 8/3/2019 data communication -SignalEncodingTechniques

    9/62

    Com par ison of Enc oding

    Sc hem es (2) Error detection

    Can be built into signal encoding scheme.

    Signal interference and noise immunity

    Some codes are better than others

    Cost and complexityHigher signal rate (& thus data rate) lead to higher

    costs

    Some codes require signal rate greater than data rate

  • 8/3/2019 data communication -SignalEncodingTechniques

    10/62

    Enc oding Sc hem es Nonreturn to Zero-Level (NRZ-L)

    Nonreturn to Zero Inverted (NRZI)

    Bipolar AMI (Alternate mark inversion)

    Pseudoternary

    Manchester

    Differential Manchester

    B8ZS(bipolar with 8-zeros substitution) HDB3( high density bipolar-3 zeros)

  • 8/3/2019 data communication -SignalEncodingTechniques

    11/62

    Nonre t urn t o Zero -Level (NRZ-L) Two different voltages for 0 and 1 bits

    Voltage constant during bit interval

    no transition I.e. no return to zero voltage

    e.g. Absence of voltage for zero, constant

    positive voltage for one More often, negative voltage for one and

    positive for zero.

    This is NRZ-L

  • 8/3/2019 data communication -SignalEncodingTechniques

    12/62

    Nonret urn t o Zero Inver t ed (NRZI) Nonreturn to zero inverted on ones

    Constant voltage pulse for duration of bit

    Data encoded as presence or absence of signaltransition at beginning of bit time

    Transition (low to high or high to low) denotes abinary 1

    No transition denotes binary 0

    An example of differential encoding

  • 8/3/2019 data communication -SignalEncodingTechniques

    13/62

    NRZ

  • 8/3/2019 data communication -SignalEncodingTechniques

    14/62

    Dif ferent ia l Enc oding Data represented by changes rather than levels

    More reliable detection of transition rather thanlevel

    In complex transmission layouts it is easy to

    lose sense of polarity

  • 8/3/2019 data communication -SignalEncodingTechniques

    15/62

    NRZ pros and c ons Pros

    Easy to engineer

    Make good use of bandwidth (most of energyconcentrated in the middle of transmission BW).

    Cons

    dc component

    Lack of synchronization capability

    Used for magnetic recording (data storage). Not often used for signal transmission.

  • 8/3/2019 data communication -SignalEncodingTechniques

    16/62

    Mul t i leve l B inary Use more than two voltage levels

    Bipolar-AMI

    zero represented by no line signal

    one represented by positive or negative pulse

    one pulses alternate in polarityNo loss of sync if a long string of ones (zeros still a

    problem)

    No net dc componentLower bandwidth than NRZ.

    Easy error detection

  • 8/3/2019 data communication -SignalEncodingTechniques

    17/62

    Pseudoternary

    One represented by absence of line signal

    Zero represented by alternating positive andnegative

    No advantage or disadvantage over bipolar-AMI

  • 8/3/2019 data communication -SignalEncodingTechniques

    18/62

    Bipolar-AMI and Pseudot ernary

    0 1 0 0 1 1 0 0 0 1 1

  • 8/3/2019 data communication -SignalEncodingTechniques

    19/62

    Trade Of f for Mul t i level B inary

    Not as efficient as NRZ

    Each signal element only represents one bit

    In a 3 level system could represent log23 = 1.58 bits

    Receiver must distinguish between three levels(+A, -A, 0)

    Requires approx. 3dB more signal power for sameprobability of bit error

  • 8/3/2019 data communication -SignalEncodingTechniques

    20/62

    Biphase

    Manchester

    Transition in middle of each bit duration

    Transition serves as clock and data Low to high represents one

    High to low represents zero

    Used by IEEE 802.3

    Differential Manchester

    Midbit transition is clocking only

    Transition at start of a bit period represents zero

    No transition at start of a bit period represents one

    Note: this is a differential encoding scheme

    Used by IEEE 802.5

  • 8/3/2019 data communication -SignalEncodingTechniques

    21/62

    Enc oding Sc hem es

  • 8/3/2019 data communication -SignalEncodingTechniques

    22/62

    Manc hest er Enc oding

  • 8/3/2019 data communication -SignalEncodingTechniques

    23/62

    Di f ferent ia l Manc hest er

    Encoding

  • 8/3/2019 data communication -SignalEncodingTechniques

    24/62

    Biphase Cons and Pros

    Cons

    At least one transition per bit time and possibly two

    Maximum modulation rate is twice data rate.

    Requires more bandwidth

    ProsSynchronization on mid bit transition (self clocking)

    No dc component

    Error detection Absence of expected transition

  • 8/3/2019 data communication -SignalEncodingTechniques

    25/62

    Modula t ion Rat e

    2

    R RD

    L Log M = =

  • 8/3/2019 data communication -SignalEncodingTechniques

    26/62

    Scrambl ing

    Use scrambling to replace sequences that wouldproduce constant voltage

    Filling sequence Must produce enough transitions to sync

    Must be recognized by receiver and replace with original

    Same length as original No dc component

    No long sequences of zero level line signal

    No reduction in data rate Error detection capability

  • 8/3/2019 data communication -SignalEncodingTechniques

    27/62

    B8ZS

    Bipolar With 8 Zeros Substitution

    Based on bipolar-AMI

    If octet of all zeros and last voltage pulse preceding was positiveencode as 000+-0-+

    If octet of all zeros and last voltage pulse preceding was negativeencode as 000-+0+-

    Causes two violations of AMI code Unlikely to occur as a result of noise

    Receiver detects and interprets as octet of all zeros

    Polarity of preceding

    pulse

    substitution

    + 000+-0-+

    - 000-+0+-

  • 8/3/2019 data communication -SignalEncodingTechniques

    28/62

    HDB3

    High Density Bipolar 3 Zeros

    Based on bipolar-AMI

    String of four zeros replaced with one or twopulses

    Number of ones since last substitution

    Polarity of preceding

    pulse

    odd even

    - 000- +00+

    + 000+ -00-

  • 8/3/2019 data communication -SignalEncodingTechniques

    29/62

    B8ZS and HDB3

  • 8/3/2019 data communication -SignalEncodingTechniques

    30/62

    Digi t a l Dat a, Analog Signa l

    Public telephone system

    300Hz to 3400Hz

    Use modem (modulator-demodulator)

    Amplitude shift keying (ASK)

    Frequency shift keying (FSK) Phase shift keying (PK)

  • 8/3/2019 data communication -SignalEncodingTechniques

    31/62

    Modula t ion Tec hniques

  • 8/3/2019 data communication -SignalEncodingTechniques

    32/62

    Am pl i t ude Sh i f t K ey ing

    encode 0/1 by different carrier amplitudesusually have one amplitude zero

    susceptible to sudden gain changes inefficient

    used forup to 1200bps on voice grade lines

    very high speeds over optical fiber

    { cos(2 ):binary 10 :binary 0( ) c A f t s t =

  • 8/3/2019 data communication -SignalEncodingTechniques

    33/62

    Binary Frequenc y Shi f t K ey ing

    most common is binary FSK (BFSK)

    two binary values represented by two different

    frequencies (near carrier) less susceptible to error than ASK

    used for

    up to 1200bps on voice grade lines high frequency radio

    even higher frequency on LANs using co-ax

    { 12

    cos(2 ):binary 1

    cos(2 ):binary 0( )A f t

    A f t s t

    =

  • 8/3/2019 data communication -SignalEncodingTechniques

    34/62

    FSK on Voic e Grade L ine

  • 8/3/2019 data communication -SignalEncodingTechniques

    35/62

    Mult ip le FSK

    More than two frequencies used

    More bandwidth efficient than BFSK.

    More susceptible to error Each signal element represents more than one bit.

    2

    ( ) cos 2 , 1

    (2 1 )

    the difference frequancy

    L=# of bits per signal element.

    log

    i i

    i c d

    d

    s t A f t i M

    f f i M f

    f

    M L

    = = +

    =

    =

  • 8/3/2019 data communication -SignalEncodingTechniques

    36/62

    Phase Shi f t K eying

    phase of carrier signal is shifted to represent data

    binary PSK(BPSK)

    two phases represent two binary digits

    differential PSK(DPSK)

    phase shifted relative to previous transmission ratherthan some reference signal

    { cos(2 ):binary 1cos(2 ):binary 0( ) c c A f t

    A f t s t

    =

  • 8/3/2019 data communication -SignalEncodingTechniques

    37/62

    Dif fe rent ia l PSK (DPSK )

  • 8/3/2019 data communication -SignalEncodingTechniques

    38/62

    Quadrat ure PSK (QPSK )

    get more efficient use of BW if each signalelement represents more than one bit

    eg. shifts of/2 (90o)each element represents two bits

    split input data stream in two & modulate onto carrier

    & phase shifted carrier can use 8 phase angles & more than one

    amplitude

    9600bps modem uses 12 angles, four of which havetwo amplitudes

    Offset QPSK (orthogonal OQPSK)

    Delay in Q stream

  • 8/3/2019 data communication -SignalEncodingTechniques

    39/62

    QPSK and OQPSK Modu la t ors

    1 1( ) ( ) cos 2 ( )sin 22 2

    c cs t I t f t Q t f t =

    E l f QPSK d OQPSK

  • 8/3/2019 data communication -SignalEncodingTechniques

    40/62

    Ex am ples of QPSK and OQPSK

    Waveforms

    P f f Di i l A l

  • 8/3/2019 data communication -SignalEncodingTechniques

    41/62

    Per form anc e o f Dig i t a l t o Ana log

    Modu lat ion Sc hem es

    bandwidth

    ASK/PSK bandwidth directly relates to bit rate

    multilevel PSK gives significant improvements

    in presence of noise:

    bit error rate of PSK and QPSK are about 3dBsuperior to ASK and FSK

    for MFSK & MPSK have tradeoff between bandwidthefficiency and error performance

    Q adrat re Am pl i t de

  • 8/3/2019 data communication -SignalEncodingTechniques

    42/62

    Quadrat ure Am pl i t ude

    Modula t ion

    QAM used on asymmetric digital subscriber line(ADSL) and some wireless

    Combination of ASK and PSK

    Logical extension of QPSK

    Send two different signals simultaneously onsame carrier frequency

    Use two copies of carrier, one shifted 90

    Each carrier is ASK modulated

    Two independent signals over same medium

    Demodulate and combine for original binary output

  • 8/3/2019 data communication -SignalEncodingTechniques

    43/62

    QAM Modulat or

    1 2( ) ( ) cos 2 ( )sin 2c cs t d t f t d t f t = +

  • 8/3/2019 data communication -SignalEncodingTechniques

    44/62

    QAM Leve ls

    Two level ASK

    Each of two streams in one of two states

    Four state system

    Essentially QPSK

    Four level ASK

    Combined stream in one of 16 states

    64 and 256 state systems have been

    implemented Improved data rate for given bandwidth

    Increased potential error rate

  • 8/3/2019 data communication -SignalEncodingTechniques

    45/62

    Analog Dat a, Dig i t a l Signa l

    Digitization

    Conversion of analog data into digital data

    Digital data can then be transmitted using NRZ-L

    Digital data can then be transmitted using code otherthan NRZ-L

    Digital data can then be converted to analog signal

    Analog to digital conversion done using a codec

    Pulse code modulation

    Delta modulation

  • 8/3/2019 data communication -SignalEncodingTechniques

    46/62

    Digi t izing Ana log Dat a

  • 8/3/2019 data communication -SignalEncodingTechniques

    47/62

    Pulse Code Modu la t ion(PCM) (1)

    sampling theorem:If a signal is sampled at regular intervals at a rate

    higher than twice the highest signal frequency, thesamples contain all information in original signal

    Voice data limited to below 4000Hz

    Require 8000 sample per second Analog samples (Pulse Amplitude Modulation,

    PAM)

    Each sample assigned digital value

  • 8/3/2019 data communication -SignalEncodingTechniques

    48/62

    Pulse Code Modu la t ion(PCM) (2)

    4 bit system gives 16 levels

    Quantized

    Quantizing error or noise

    Approximations mean it is impossible to recoveroriginal exactly

    8 bit sample gives 256 levels

    Quality comparable with analog transmission

    8000 samples per second of 8 bits each gives64kbps

  • 8/3/2019 data communication -SignalEncodingTechniques

    49/62

    PCM Ex am ple

  • 8/3/2019 data communication -SignalEncodingTechniques

    50/62

    PCM Bloc k Diagram

  • 8/3/2019 data communication -SignalEncodingTechniques

    51/62

    Nonl inear Enc oding

    Quantization levels not evenly spaced

    Reduces overall signal distortion

    Can also be done by companding

  • 8/3/2019 data communication -SignalEncodingTechniques

    52/62

    Effec t of Non-Linear Coding

  • 8/3/2019 data communication -SignalEncodingTechniques

    53/62

    Typic a l Com panding Func t ions

  • 8/3/2019 data communication -SignalEncodingTechniques

    54/62

    Del t a Modula t ion

    Analog input is approximated by a staircasefunction

    Move up or down one level () at each sampleinterval

    Binary behavior

    Function moves up or down at each sample interval

    hence can encode each sample as single bit

    1 for up or 0 for down

  • 8/3/2019 data communication -SignalEncodingTechniques

    55/62

    Del t a Modula t ion Ex am ple

  • 8/3/2019 data communication -SignalEncodingTechniques

    56/62

    Del t a Modulat ion Operat ion

  • 8/3/2019 data communication -SignalEncodingTechniques

    57/62

    PCM verses Del t a Modulat ion

    DM has simplicity compared to PCM but has worse SNR

    issue of bandwidth usedeg. for good voice reproduction with PCM

    want 128 levels (7 bit) & voice bandwidth 4khz need 8000 x 7 = 56kbps

    data compression can improve on this still growing demand for digital signals

    use of repeaters, TDM, efficient switching

    PCM preferred to DM for analog signals

  • 8/3/2019 data communication -SignalEncodingTechniques

    58/62

    Analog Dat a, Analog Signa ls

    Why modulate analog signals?

    Higher frequency can give more efficient transmission

    Permits frequency division multiplexing (chapter 8)

    Types of modulation

    Amplitude

    Frequency

    Phase

    Analog

  • 8/3/2019 data communication -SignalEncodingTechniques

    59/62

    Analog

    Modula t ion

  • 8/3/2019 data communication -SignalEncodingTechniques

    60/62

    Am pl i t ude m odula t ion (AM) The AM signal is

    The transmitted power

    Transmission bandwidth

    DSBSC

    SSB

    ( ) [1 ( )]cos 2 , where ( ) ( )a c as t n x t f t m t n x t = + =

    : modulation indexif 1, then ( ) can be recoverd

    from the envolpe [1 ( )] of ( )

    a

    a

    a

    nn m t

    n x t s t

    +

    2

    12

    at c

    np p

    = +

    2 , where is bandwidth of ( )T B B B m t =

  • 8/3/2019 data communication -SignalEncodingTechniques

    61/62

  • 8/3/2019 data communication -SignalEncodingTechniques

    62/62

    Angle m odulat ion(2)

    Modulation index of FM and PM is

    Carsons rule

    f

    B

    =

    2( 1) 2( )T B B f B= + = +