Contoh Ground Anchor

102
 PROYEK CEMPAKA PUTIH VILLAGE JL. Letjen Suprapto – Cempaka Putih Jakarta Pusat LAPORAN STRUKTUR BAWAH JAKARTA, Maret 2014  

description

asd

Transcript of Contoh Ground Anchor

Page 1: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 1/102

 

PROYEK

CEMPAKA PUTIH VILLAGE

JL. Letjen Suprapto – Cempaka Putih

Jakarta Pusat

LAPORANSTRUKTUR BAWAH

JAKARTA, Maret 2014 

Page 2: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 2/102

Page 3: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 3/102

Daftar Isi

DAFTAR ISI

Bagian A : DESKRIPSI UMUM RENCANA PROYEK

1. Pendahuluan A.2

2. Tinjauan Struktur Atas A.33. Tinjauan Jenis Tanah untuk Perencanaan Gempa A.25

4. Gaya-gaya Reaksi Struktur Atas dan Kombinasi Pembebanan A.26

5. Resume Hasil Analisa Pondasi dan Analisa Galian Dalam A.36

Bagian B : PERHITUNGAN STRUKTUR BAWAH

1. Pendahuluan B.1

2. Kondisi Tanah B.2

2.1 Profil Tanah B.2

2.2 Muka Air Tanah dan Pumping Test B.6

2.3 Parameter Tanah B.7

2.3.1 Parameter Kuat Geser B.9

2.3.2 Parameter Konsolidasi untuk Analisa Settlement B.13

2.3.3 Parameter Deformasi B.16

2.3.3.1 Parameter Deformasi Untuk Analisa Lateral Tiang B.16

2.3.3.2 Parameter Deformasi Untuk Settlement Dengan Modulus

Tanah Es B.17

2.4 Klasifikasi Tanah untuk Beban Gempa B.20

3. Perencanaan Sistem Pondasi B.24

3.1 Umum B.24

3.1.1 Tahapan untuk mendapatkan beban terbesar dan menghitung

gaya aksial dan lateral terbesar B.24

3.2 Daya Dukung Tiang B.26

3.2.1 Analisa Daya Dukung Aksial Tiang Tunggal Bore Pile B.26

3.2.2 Daya Dukung Tarik Tiang B.30

3.2.3 Daya Dukung Lateral Tiang B.31

3.2.3.1 Profil dan Parameter Tanah B.31

3.2.3.2 Kurva p-y B.32

3.2.3.3 Daya Dukung Lateral Tiang Tunggal B.32

3.3 Analisa Daya Dukung Aksial Kelompok Tiang B.36

3.3.1 Pengelompokan Grup Tiang B.36

Page 4: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 4/102

Daftar Isi

3.3.2 Efisiensi Grup Tiang B.37

3.3.2.1 Efisiensi Aksial Grup Tiang B.37

3.3.2.2 Efisiensi Aksial Grup Tiang B.37

3.3.3 Daya Dukung Aksial Kelompok Tiang B.39

3.3.4 Daya Dukung Lateral Kelompok Tiang B.40

3.3.5 Evaluasi Gaya yang Bekerja Pada Pondasi B.47

3.3.5.1 Gaya Tarik akibat Potensi Uplift pada Area Pdoium Luar

yang dipikul oleh Grup Bore Pile dia. 80 tipe PC3 B.47

3.4 Penurunan (Settlement) Kelompok Tiang B.61

3.4.1 Beban Grup Tiang B.61

3.4.2 Parameter Tanah untuk Analisa Settlement B.62

3.4.3 Analisa Penurunan Konsolidasi Grup Tiang dengan Metode Sederhana

Untuk Penyebaran Tegangan B.63

3.4.4 Analisa Penurunan Elastic (Short Term Settlement) B.69

3.4.5 Analisa Lama Penurunan Blok Pondasi B.70

3.5 Rencana Program Uji Pembebanan Tiang B.71

4. Perencanaan Contiguous Pile (L=21m) Dan Galian B.75

4.1 Galian Kombinasi Slope H:V = 2:1 & Contiguous Pile (Area A) B.75

4.1.1. Tahap Perhitungan Manual Menentukan Kedalaman Turap (D)

dan Gaya Anchor serta Panjang Penjangkaran B.75

4.2 Galian Full Contiguous Pile (Area B) B.83

4.2.1 Tahap Perhitungan Manual Menentukan Kedalaman Turap (D)

dan Gaya Anchor serta Panjang Penjangkaran B.83

4.2.2 Tahap Penentuan Gaya-Gaya Dalam dan Deformasi B.92

4.2.2.1 Analisa dengan Program SAP B.92

4.2.2.2 Analisa dengan Program Plaxis B.96

4.2.2.3 Analisa Stabilitas Jangka Panjang (Long Term Stability) B.97

4.3 Dewatering B.109

4.4 Dinding Basement B.114

Lampiran Bab B

Tabel Daya Dukung Pondasi Borepile

Page 5: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 5/102

 

BAGIAN A

DESKIPSI UMUM RENCANA PROYEK

Page 6: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 6/102

BAGIAN A. DESKRIPSI UMUM RENCANA PROYEK

1.  PENDAHULUAN

Nama Gedung  : Cempaka Putih Village

Lokasi Gedung  : Jl. Letjen Suprapto, Cempaka Putih – Jakarta PusaT

Deskripsi Gedung  :

Bangunan Cempaka Putih Village yang terletak di Jl. Letjen Suprapto, Cempaka Putih - Jakarta

Pusat terdiri dari 4 tower dengan 40 lantai Apartment 1, 40 lantai Apartment 2, 30 lantai Office,

Rumah Sakit 18 lantai, dan 3 basement. 

Gambar 3D Bangunan

RUMAH SAKIT

OFFICE

APARTEMENT 2

OFFICE

Page 7: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 7/102

2.  TINJAUAN STRUKTUR ATAS

2.1 KRITERIA PERANCANGAN STRUKTUR

2.1.1 Peraturan

a. Standar Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung (SNI-1726-

2002).

 b. Tata Cara Penghitungan Struktur Beton untuk Bangunan Gedung (SNI-03-2847-2002).

c. Tata Cara Perencanaan Pembebanan untuk Rumah dan Gedung (SNI-1727-1989-F).

d. Tata Cara Perencanaan Bangunan Baja untuk Gedung (SNI-1729-1989-F).

e. Standard dan Tata Cara Perhitungan Struktur untuk Bangunan Gedung, SKSNI T-15-

1991-03.

2.1.2 Peraturan Dan Ketentuan Lain Yang Relevan

a. Pedoman Perencanaan Pembebanan untuk Gedung (SKBI-1.3.53.1987).

 b. Peraturan Beton Bertulang Indonesia 1971 (NI-2).

c. Pedoman Perencanaan Bangunan Baja Indonesia (PPBBI-1987).

d. Pedoman Perencanaan Ketahanan Gempa untuk Gedung, SKBI-1.3.53.1987.

e. Buku Pedoman Perencanaan untuk Struktur Beton Bertulang Biasa dan Struktur Tembok

Bertulang untuk Gedung 1983, Ditjen Cipta karya, Direktorat Penyelidikan Masalah

Bangunan, DPU – 1983.

f. Persyaratan Umum Bahan Bangunan di Indonesia PUBI 1982.

g. ACI 318M-95, Building Code Requirements for Reinforced Concrete, American

Concrete Institute, 1995.

h. ACI 318RM-95, Building Code Requirements for Reinforced Concrete, American

Concrete Commentary, American Concrete Institute, 1995.

i. Manual of Steel Construction, Load & Resistance Faktor Design, AISC, 1994.

 j. American Standard Testing Materials, American Society for Testing and Materials, USA.

k. Uniform Building Code 1997, Vol. 2, Structural Engineering Design Provisions, ICBO

l. American Welding Society (AWS) Structural Welding Code, USA.

2.1.3 Spesifikasi Bahan

a. Mutu Beton

- Bored Pile dan soldier pile = K-250 (f’c = 20,75 MPa)

- Pile Cap, pelat, balok, dan dinding basement = K-350 (f’c = 29,05 MPa)

b.  Mutu Baja Tulangan

Baja tulangan polos U-24 (fy = 240 MPa) = Ø8, Ø10, Ø12

Baja tulangan deform U-40 (fy = 400 MPa) = D10,D13,D16,D19, D22, D25, D28, D32

Page 8: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 8/102

c.  Mutu baja profil : SS41 atau BJ37 (fy = 240 MPa)

d.  Modulus Elastisitas Beton

Mutu Beton (Mpa) Modulus Elastisitas (Mpa)

fc' = 20,75 21409.52

fc' = 29,05 25332.08

fc' = 37,35 28723,88

2.1.4. Pembebanan

a.  Beban Mati

- Beton bertulang : 2400 kg/m3 

- Baja : 7850 kg/m3 

- Pasir : 1800 kg/m3 

- Tanah : 1600 kg/m3 

- Tanah urug : 1700 kg/m3 

- Dinding bata : 250 kg/m2 

- Dinding bata ringan (hebel) : 135 kg/m2 

- Plafond : 18 kg/m2 

- Ducting AC & ME : 15 kg/m2 

- Air : 1000 kg/m3

b.  Beban hidup

Berikut ini ditampilkan besaran beban hidup sebelum direduksi dan setelah direduksi

menurut Pedoman Perencanaan Pembebanan untuk Gedung 1987 :

Ruangan

Beban Hidup

untuk Analisa

Pelat Lantai dan

Balok Anak

(kg/m2)

Beban Hidup untuk

Analisa Beban

Vertikal Balok Portal

(kg/m2)

Beban Hidup

Massa Lantai

untuk Analisa

Beban Gempa

(kg/m2)

Hunian Apartment 200 150 (75%) 60 (30%)

Office 250 187.5 (75%) 75 (30%)

Parkir 400 360 (90%) 200 (50%)

Kolam Renang 1200 1200 (100%) 1200 (100%)

AHU, R. Mesin Lift, R. ME 400 400 (100%) 400 (100%)

Page 9: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 9/102

Khusus dalam perhitungan untuk keperluan analisa kumulatif gaya axial kolom dan

 pembebanan ke pondasi, dilakukan reduksi sebagai berikut :

Beban hidup plat lantai atap = 100 kg/m2, jika tidak ada peralatan M/E.

c.  Beban Gempa

Lokasi bangunan

Lokasi Bangunan terletak pada zona 3 peta wilayah gempa Indonesia dengan percepatan

 puncak batuan dasar = 0,15 x g.

Jenis tanah merupakan “tanah sedang” dengan nilai 15 ≤ N SPT < 50 pada kedalaman 0 -

30 m, sehingga percepatan puncak muka tanah Ao = 0,23 x g.

Percepatan respons maximum :

Am = 2,5 x 0,23 x g = 0,55 x g.

Faktor respons gempa C ditentukan dari persamaan sebagai berikut :

T  1 detik, C = 1 x Am

C = 1 x 0,55 x g = 0,55 x g.

T > 1 detik, Ar = Am x Tc

Ar = 0,55 x g x 0.6

Ar = 0,33 x g

C = Ar = 0,33 x g

T T

Jumlah Lantai Yang

Dipikul

Koefisien Reduksi Yang

Dikalikan Dengan Beban

Hidup Kumulatif

1 1,0

2 1,0

3 0,90

4 0,80

5 0,70

6 0,60

7 0,50

8 atau lebih 0,40

Page 10: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 10/102

Grafik Respon

Peta Wilayah Gempa Indonesia

Beban geser dasar (base shear)

Beban geser dasar nominal statik ekuivalen V yang terjadi di tingkat dasar dihitung

dengan persamaan :

V :R

WtxIxC1 

V : Beban geser dasar nominal static ekuivalen akibat pengaruh gempa rencana.

C1 : Nilai faktor respons gempa yang didapat dari spectrum respons gempa rencana

untuk waktu getar alami fundamental dari struktur gedung.

I : Faktor keutamaan = 1,0 (hunian), 1,4 (rumah sakit)

Wt : Berat total gedung, termasuk beban hidup yang sesuai.

R : Faktor reduksi gempa, yaitu rasio antara beban gempa maximum akibat pengaruh

gempa rencana pada struktur gedung elastik penuh dan beban gempa nominal

akibat pengaruh gempa rencana pada struktur gedung daktail.

Jakarta

Page 11: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 11/102

Untuk perhitungan struktur atas diambil faktor reduksi gempa R = 6,50 (Sistem ganda

dinding geser beton bertulang dengan SRPMM beton bertulang) dan untuk perhitungan

struktur bawah diambil faktor kuat lebih struktur f 2 = 1,51.

Gaya Gempa

Beban gempa nominal statik ekuivalen Fi  yang menangkap pada pusat massa lantai

tingkat ke-i menurut persamaan :

1

1

 zW 

 zW F 

i

n

i

i

ii

i

 

di mana :

Wi : berat lantai tingkat ke-i, termasuk beban hidup yang sesuai.zi  : ketinggian lantai tingkat ke-i diukur dari taraf penjepitan lateral menurut Pasal

5.1.2 dan Pasal 5.1.3.

 N : nomor lantai tingkat paling atas.

Distribusi base shear menjadi gaya geser tingkat Fi

Distribusi beban geser dasar (base shear) menjadi gaya geser tingkat, yaitu :

Analisa statik :

Fi = Vx0,8xhi.wi

hi.Wi

1

n

 

dimana :

wi = berat lantai tingkat ke-i struktur atas suatu gedung, termasuk beban hidup yang

sesuai.

hi = ketinggian lantai tingkat ke-i suatu struktur gedung terhadap taraf penjepitan

lateral.

n = nomor lantai tingkat paling atas (lantai puncak); jumlah lantai tingkat strukturgedung; dalam subskrip menunjukkan besaran nominal.

 

Analisis dinamik berdasarkan grafik spectrum respons gempa wilayah 3. Penjumlahan

respons ragam yang disebut dalam Pasal 7.2.1 SNI 03-1726-2002 untuk struktur

gedung tidak beraturan yang memiliki waktu getar alami berdekatan harus dilakukan

dengan metode yang dikenal Kombinasi Kuadratik Lengkap (Complete Quadratic

Combination atau CQC). Waktu getar alami harus dianggap berdekatan, apabila

selisih nilainya kurang dari 15%. Untuk struktur gedung tidak beraturan yang

memiliki waktu getar alami yang berjauhan, penjumlahan respons ragam tersebut

Page 12: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 12/102

dapat dilakukan dengan metode yang dikenal dengan Akar Jumlah Kuadrat (Square

Root of the Sum of Squares atau SRSS).

Persyaratan menurut Pasal 7.1.3 SNI 03-1726-2002, maka gaya geser tingkat nominal

akibat pengaruh Gempa Rencana sepanjang tinggi struktur gedung hasil analisis

ragam spektrum respons dalam suatu arah tertentu, harus dikalikan nilainya dengan

suatu Faktor Skala :

1V

V80SkalaFaktor 

t

1  ,

 

dimana :

V1  = gaya geser dasar nominal sebagai respons dinamik ragam yang pertama.

Vt =  gaya geser dasar nominal yang didapat dari hasil analisis ragam spektrum

respons.

 

Dari diagram atau kurva gaya geser tingkat nominal akibat pengaruh Gempa Rencana

sepanjang tinggi struktur gedung yang telah disesuaikan nilainya menurut Pasal 7.2.3

SNI 03-1726-2002 ditentukan beban-beban gempa nominal statik ekuivalen yang

 bersangkutan (selisih gaya geser tingkat dari 2 tingkat berturut-turut), yang bila perlu

diagram atau kurvanya dimodifikasi terlebih dulu secara konservatif untuk

mendapatkan pembagian beban-beban gempa nominal statik ekuivalen yang lebih

 baik sepanjang tinggi struktur gedung. Beban-beban gempa nominal statik ekuivalen

ini kemudian dapat dipakai dalam suatu analisis statik ekuivalen 3 dimensi biasa,seperti diagram di bawah ini.

Eksentrisitas pusat massa terhadap pusat rotasi lantai tingkat

Pusat massa lantai tingkat suatu struktur gedung adalah titik rangkap resultante beban

mati, berikut beban hidup yang sesuai, yang bekerja pada lantai tingkat itu. Pada

      T      i     n     g      k     a      t

Gaya geser tingkat

CQC

(disain)CQCV

10.8V

t

dimodifikasi

0.8V1Vt0 V1

respons ragam pertama

Diagram gaya geser tingkat nominal sepanjang tinggi struktur gedung

Page 13: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 13/102

 perencanaan struktur gedung, pusat massa adalah titik tangkap beban gempa static

ekuivalen atau gaya gempa dinamik.

Pusat rotasi lantai tingkat suatu struktur gedung adalah suatu titik pada lantai tingkat itu

yang bila suatu beban horizontal bekerja padanya, lantai tingkat tersebut tidak berotasi,

tetapi hanya bertranslasi, sedangkan lantai-lantai tingkat lainnya yang tidak mengalami

 beban horizontal semuanya berotasi dan bertranslasi.

Antara pusat massa dan pusat rotasi lantai tingkat harus ditinjau suatu eksentrisitas

rencana ed. Apabila ukuran horizontal terbesar denah struktur gedung pada lantai tingkat

itu, diukur tegak lurus pada arah pembebanan gempa, dinyatakan dengan b, maka

eksentrisitas rencana ed harus ditentukan sebagai berikut :

Untuk 0 < e  0,3 b :

ed  = 1,5 e + 0,05 b atau

ed  = e - 0,05 b

Untuk e > 0,3 b :

ed  = 1,33 e + 0,1 b atau

ed  = 1,17 e - 0,1 b

dan dipilih diantara keduanya yang pengaruhnya paling menentukan untuk unsur atau

subsistem struktur gedung yang ditinjau.

Dalam perencanaan struktur gedung terhadap pengaruh gempa rencana eksentristias

rencana ed  antara pusat massa dan pusat rotasi lantai tingkat harus ditinjau baik dalamanalisis static, maupun dalam analisis dinamik 3 dimensi.

 

2.1.5. Kekakuan Struktur

Karena dalam perencanaan struktur gedung terhadap pengaruh gempa rencana harus

memperhitungkan peretakan beton, maka momen inersia penampang unsur struktur dapat

ditentukan sebesar momen inersia penampang utuh dikalikan dengan suatu persentase

efektif.

Berikut ini besaran persentase penampang efektif :

Kolom : 70%

Balok : 35%

-  Torsi balok : 36,5%

-  Dinding geser beton bertulang : 70%

2.1.6. Pembatasan Waktu Getar Alami Fundamental

Untuk mencegah struktur gedung yang terlalu flexible, nilai waktu getar alami fundamental

T1 dibatasi dengan rumus :

Page 14: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 14/102

T1 <  x n

Dimana :

  : 0,18 (wilayah gempa zone 3)

n : jumlah tingkat.

T1 : waktu getar maximum.

2.1.7. Pengaruh P-Delta

Pada waktu analisis model 3 dimensi, diperhitungkan juga pengaruh P-Delta, yaitu suatu

gejala yang terjadi pada struktur gedung yang flexible, dimana simpangan ke samping yang

 besar akibat beban gempa lateral menimbulkan beban lateral tambahan dan momen

tambahan yang terjadi oleh beban gravitasi yang titik tangkapnya bergeser kesamping.

2.1.8 Arah Pembebanan Gempa

Dalam pembebanan gempa, arah utama pengaruh gempa rencana ditentukan sedemikian

rupa, sehingga memberi pengaruh terbesar terhadap unsur-unsur subsistem dan sistem

struktur gedung secara keseluruhan. Untuk mensimulasikan arah pengaruh gempa rencana

yang sembarang terhadap struktur gedung, pengaruh pembebanan gempa dalam arah utama

yang sudah ditentukan, harus dianggap efektif 100% dan harus dianggap terjadi bersamaan

dengan pengaruh pembebanan gempa dalam arah tegak lurus pada arah utama pembebanan

tadi, tetapi dengan efektifitas hanya 30%.

2.1.9. Kinerja Batas Layan

Kinerja batas layan struktur gedung ditentukan oleh simpangan antar tingkat akibat

 pengaruh gempa rencana, untuk membatasi terjadinya pelelehan dan peretakan beton yang

 berlebihan, disamping untuk mencegah kerusakan non struktur dan ketidaknyamanan

 penghuni. Simpangan antar tingkat dihitung dari simpangan struktur gedung akibat

 pengaruh gempa nominal yang telah dibagi factor skala.

Untuk memenuhi persyaratan kinerja batas layan struktur gedung, dalam segala hal

simpangan antar-tingkat yang dihitung dari simpangan struktur gedung menurut Pasal 8.1.1

SNI-1726-2002 tidak boleh melampauiR 

0,03 kali tinggi tingkat yang bersangkutan atau 30

mm, bergantung yang mana yang nilainya terkecil.

Page 15: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 15/102

2.1.10 Kinerja Batas Ultimate

Kinerja batas ultimitee ditentukan oleh simpangan antar tingkat maksimum akibat pengaruh

gempa rencana dalam kondisi sturktur gedung diambang keruntuhan struktur gedung yang

dapat menimbulkan korban jiwa manusia.

Simpangan antar tingkat ini harus dihitung dari simpangan struktur gedung akibat

 pembebanan gempa nominal, dikalikan dengan suatu faktor pengali  sebagai berikut:

SkalaFaktor 

 R

7,0   

Kinerja batas ultimate u =  x .

Untuk memenuhi persyaratan kinerja batas ultimite struktur gedung, dalam segala hal

simpangan antar-tingkat yang dihitung dari simpangan struktur gedung menurut Pasal 8.2.1

SNI-1726-2002 , tidak boleh melampaui 0,02 kali tinggi tingkat yang bersangkutan.

2.1.11 Kombinasi Pembebanan

i. 

Beban tetap

U = 1,0 DL + 1,6 LL

ii.  Beban sementara akibat gempa untuk struktur atas dengan R = 6,50

U = 1,0 DL + LL E

-  U = 1,0 DL + LL + 1,0 EX  + 0,3 EY 

U = 1,0 DL + LL + 1,0 EX  - 0,3 EY 

U = 1,0 DL + LL - 1,0 EX  + 0,3 EY 

-  U = 1,0 DL + LL - 1,0 EX  - 0,3 EY 

-  U = 1,0 DL + LL + 0,3 EX  + 1,0 EY 

U = 1,0 DL + LL + 0,3 EX  - 1,0 EY 

U = 1,0 DL + LL - 0,3 EX  + 1,0 EY 

-  U = 1,0 DL + LL - 0,3 EX  - 1,0 EY 

U = 1,0 DL + LL 2*E

U = 1,0 DL + LL + 2,0 EX  + 0,6 EY 

-  U = 1,0 DL + LL + 2,0 EX  - 0,6 EY 

U = 1,0 DL + LL - 2,0 EX  + 0,6 EY 

U = 1,0 DL + LL - 2,0 EX  - 0,6 EY 

-  U = 1,0 DL + LL + 0,6 EX  + 2,0 EY 

U = 1,0 DL + LL + 0,6 EX  - 2,0 EY 

U = 1,0 DL + LL - 0,6 EX  + 2,0 EY 

U = 1,0 DL + LL - 0,6 EX  - 2,0 EY 

Page 16: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 16/102

iii. 

Beban sementara akibat gempa dengan faktor kuat lebih struktur (f 2 = 1,51)

U = 1,0 DL + LL f 2*E

U = 1,0 DL + LL + 1,51 EX + 0,453 EY 

U = 1,0 DL + LL + 1,51 EX – 0,453 EY 

U = 1,0 DL + LL - 1,51 EX + 0,453 EY 

-  U = 1,0 DL + LL - 1,51 EX – 0,453 EY 

U = 1,0 DL + LL + 0,453 EX + 1,51 EY 

U = 1,0 DL + LL + 0,453 EX – 1,51 EY 

-  U = 1,0 DL + LL - 0,453 EX + 1,51 EY 

U = 1,0 DL + LL - 0,453 EX – 1,51 EY 

iv. Beban uplift

U = 0,9 DL + 1,05 UP

v. 

Beban pondasi

U = 1 DL + 1 LL

vi. Beban sementara akibat gempa untuk Pondasi dengan R = 6,50

U = 1DL + LL E

U = 1,0 DL + LL + 1,0 EX + 0,3 EY

U = 1,0 DL + LL + 1,0 EX - 0,3 EY

-  U = 1,0 DL + LL - 1,0 EX + 0,3 EY

U = 1,0 DL + LL - 10, EX - 0,3 EY-  U = 1,0 DL + LL + 0,3 EX  + 1,0 EY 

U = 1,0 DL + LL + 0,3 EX  - 1,0 EY 

U = 1,0 DL + LL - 0,3 EX  + 1,0 EY 

-  U = 1,0 DL + LL - 0,3 EX  - 1,0 EY 

vii. Beban sementara akibat gempa kuat untuk Pondasi dengan R = 6,50

U = 1DL + LL E

-  U = 1,0 DL + LL + 2,8575 EX+ 0,8573 EY

U = 1,0 DL + LL + 2,8575 EX- 0,8573 EY

U = 1,0 DL + LL - 2,8575 EX+ 0,8573 EY

U = 1,0 DL + LL - 2,8575 EX- 0,8573 EY

-  U = 1,0 DL + LL + 0,8573 EY+ 2,8575 Ey

U = 1,0 DL + LL + 0,8573 EY- 2,8575 Ey

U = 1,0 DL + LL - 0,8573 EY+ 2,8575 Ey

-  U = 1,0 DL + LL - 0,8573 EY- 2,8575 Ey

Page 17: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 17/102

2.1.12 Pemodelan Struktur

Pada perancangan gedung Cempaka Putih Village dilakukan analisis struktur dengan model

3 dimensi dengan menggunakan program ETABS versi 9.7.4. Dimana struktur dimodelkan

sebagai sistem struktur dengan kombinasi balok, kolom, dan shearwall (sistem ganda).

Analisis struktur atas dan bawah dilakukan secara berbeda. Selain menggunakan

 perhitungan menggunakan program ETABS, program-progam lainnya yaitu seperti EXCEL

untuk perhitungan-perhitungan yang lebih umum dan SPCoL digunakan juga untuk

menghitung diagram interaksi kolom

Page 18: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 18/102

Page 19: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 19/102

FX FY FX FY FX FY FX FY FX FY FX FY FX FY

ATAP   92.66193 111.9623 79.86013 96.49404

39   92.7107 111.8454 78.56778 94.78354

38   78.94459 94.7202 67.45102 80.92986

37   70.87875 84.34 60.55949 72.06091

36   62.85638 73.91318 53.7051 63.1521435   55.13827 63.91916 47.11067 54.61315

34   40.64273 42.04965 34.72554 35.92763 57.95836 59.96469

33   42.72699 44.87623 36.83828 38.69132 66.31218 69.64781

32   43.47273 45.94213 37.78759 39.93406 68.45147 72.33975

31   42.72712 45.13544 37.13949 39.23286 67.27744 71.06954

30   41.19243 43.40732 35.8055 37.73073 64.86095 68.34847

29   39.14953 41.20953 34.02976 35.82036 61.64422 64.88786

28   36.79568 38.82171 31.98373 33.74481 57.93789 61.12804

27   34.24455 36.37295 29.76623 31.61628 53.92093 57.27226

26   31.59981 33.95286 27.46735 29.51268 49.75656 53.46163

25   28.94838 31.57222 25.16267 27.44337 45.58166 49.71311

24   26.3538 29.23818 22.90738 25.41457 41.49627 46.03798

23   23.89295 26.92925 20.76835 23.40758 37.62146 42.40236

22   21.59259 24.65616 18.76883 21.43176 33.99935 38.8232

21   19.4895 22.41534 16.94077 19.48398 30.68786 35.29484

20   17.59037 20.2534 15.29 17.60477 27.69752 31.89068

19   15.87848 18.20261 13.80197 15.82216 25.002 28.66153

18   11.52697 11.04289 9.739855 9.330827 18.02795 17.27086 17.09183 16.37405

17   26.26208 26.66169 81.87077 83.11651

16   29.61728 31.17534 111.3895 117.2493

15   30.48534 32.95809 108.3452 117.1334

14   30.08257 33.16842 97.99344 108.0455

13   182.4591 204.4065

12   143.3788 160.6977

11   137.8288 152.7338

10   134.1787 144.881

9   149.5621 160.352

8   150.7366 160.4508

7   177.0127 192.2446

6   192.8337 213.4693

5   189.1605 214.6423

4   163.8286 190.8247

3   105.2773 124.3848

2   42.20072 50.15398

GF   663.1167 663.1167

BS1   344.4975 344.4975

BS2   654.6572 654.6572

D7

Diapraghm

INPUT GAYA GEMPA BERDASARKAN PERBANDINGAN MASSA

Proyek  :  Cempaka Putih Village

Lantai D1 D2 D3 D4 D5 D6

Page 20: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 20/102

x y x y ec (x) ec (y)   b( x) 0 .3 b (x ) e d 1 ed 2 b(x) 0.3 b (x ) e d 1 ed 2 X1 Y1 X2 Y2 vector 1 vector 2   X

(m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)

ATAP D1 66.05 26.97 68.28 27.86   ‐2.23   ‐0.90   19.90   5.97   ‐2.35   ‐3.22   52.90   15 .87 1 .30   ‐3.54 65.93 29.16 65.06 24.32 2.68 4.79 65.06

39 D1 66.16 27.01 68.30 27.96   ‐2.13   ‐0.95   19.90   5.97   ‐2.20   ‐3.13   52.90   15 .87 1 .22   ‐3.60 66.09 29.18 65.17 24.37 2.52 4.77 65.17

38 D1 66.11 26.99 68.29 28.03   ‐2.18   ‐1.04   19.90   5.97   ‐2.28   ‐3.18   52.90   15 .87 1 .08   ‐3.69 66.01 29.11 65.12 24.34 2.52 4.87 65.12

37 D1 66.11 26.99 68.28 28.10   ‐2.17   ‐1.11   19.90   5.97   ‐2.26   ‐3.17   52.90   15 .87 0 .97   ‐3.76 66.02 29.08 65.12 24.34 2.46 4.91 65.12

36 D1 66.11 26.99 68.27 28.18   ‐2.16   ‐1.20   19.90   5.97   ‐2.24   ‐3.16   52.90   15 .87 0 .85   ‐3.84 66.03 29.04 65.12 24.34 2.40 4.97 65.12

35 D1 66.11 26.99 68.26 28.28  ‐

2.15  ‐

1.29   19.90   5.97  ‐

2.23  ‐

3.14   52.90   15. 87 0 .72  ‐

3.93 66.03 28.99 65.12 24.34 2.34 5.03 65.12

34 D1 66.11 26.99 68.25 28.38   ‐2.14   ‐1.39   19.90   5.97   ‐2.21   ‐3.13   52.90   15 .87 0 .56   ‐4.03 66.04 28.94 65.12 24.34 2.28 5.11 65.12

33 D1 66.12 26.99 68.24 28.49   ‐2.12   ‐1.50   19.90   5.97   ‐2.18   ‐3.11   52.90   15 .87 0 .39   ‐4.15 66.06 28.88 65.13 24.34 2.22 5.19 65.13

32 D1 66.14 26.98 68.23 28.62   ‐2.10   ‐1.64   19.90   5.97   ‐2.15   ‐3.09   52.90   15 .87 0 .19   ‐4.28 66.08 28.81 65.14 24.34 2.16 5.28 65.14

31 D1 66.14 26.98 68.22 28.77   ‐2.09   ‐1.79   19.90   5.97   ‐2.13   ‐3.08   52.90   15.87   ‐0.03   ‐4.43 66.09 28.73 65.14 24.34 2.13 5.40 65.14

30 D1 66.14 26.98 68.22 28.94   ‐2.08   ‐1.96   19.90   5.97   ‐2.13   ‐3.08   52.90   15.87   ‐0.29   ‐4.60 66.09 28.65 65.14 24.34 2.15 5.54 65.14

29 D1 66.14 26.98 68.22 29.15   ‐2.08   ‐2.16   19.90   5.97   ‐2.13   ‐3.08   52.90   15.87   ‐0.60   ‐4.81 66.09 28.55 65.14 24.34 2.21 5.71 65.14

28 D1 66.14 26.98 68.23 29.40   ‐2.09   ‐2.41   19.90   5.97   ‐2.14   ‐3.09   52.90   15.87   ‐0.98   ‐5.06 66.08 28.42 65.14 24.34 2.35 5.93 65.14

27 D1 66.14 26.98 68.25 29.70   ‐2.11   ‐2.72   19.90   5.97   ‐2.17   ‐3.11   52.90   15.87   ‐1.44   ‐5.37 66.07 28.27 65.14 24.34 2.60 6.20 65.14

26 D1 66.14 26.98 68.28 30.09   ‐2.15   ‐3.11   19.90   5.97   ‐2.23   ‐3.14   52.90   15.87   ‐2.02   ‐5.75 66.06 28.07 65.14 24.34 3.00 6.56 65.14

25 D1 66.14 26.98 68.34 30.59   ‐2.21   ‐3.61   19.90   5.97   ‐2.31   ‐3.20   52.90   15.87   ‐2.77   ‐6.26 66.03 27.82 65.14 24.34 3.61 7.03 65.14

24 D1 66.14 26.98 68.44 31.26   ‐2.30   ‐4.28   19.90   5.97   ‐2.46   ‐3.30   52.90   15.87   ‐3.78   ‐6.93 65.98 27.49 65.14 24.34 4.50 7.67 65.14

23 D1 66.14 26.98 68.58 32.19   ‐2.45   ‐5.21   19.90   5.97   ‐2.68   ‐3.44   52.90   15.87   ‐5.17   ‐7.85 65.91 27.02 65.14 24.34 5.82 8.58 65.14

22 D1 66.14 26.98 68.82 33.53   ‐2.69   ‐6.55   19.90   5.97   ‐3.04   ‐3.68   52.90   15.87   ‐7.18   ‐9.20 65.79 26.35 65.14 24.34 7.80 9.91 65.14

21 D1 66.14 26.98 69.22 35.59   ‐3.08   ‐8.61   19.90   5.97   ‐3.63   ‐4.08   52.90   15.87   ‐10.27   ‐11.25 65.59 25.32 65.14 24.34 10.89 11.97 65.14

20 D1 66.14 26.98 69.90 38.95   ‐3.77   ‐11.96   19.90   5.97   ‐4.66   ‐4.76   52.90   15.87   ‐15.30   ‐14.61 65.25 23.65 65.14 24.34 15.99 15.37 65.25

19 D1 66.14 26.98 71.14 44.80   ‐5.00   ‐17.82   19.90   5.97   ‐6.51   ‐6.00   52.90   15.87   ‐24.08   ‐20.46 64.63 20.72 65.14 24.34 24.94 21.32 64.63

18 D1 66.16 26.98 73.30 55.18   ‐7.14   ‐28.21   19.90   5.97   ‐9.71   ‐8.13   52.90   15.87   ‐39.67   ‐30.85 63.59 15.52 65.17 24.33 40.84 31.91 63.59

ATAP D2 130.25 27.47 1 28.06 27.92 2.19   ‐0.45   19.53   5.86 4.27 1.22   45.05   1 3. 52 1 .5 7   ‐2.70 132.32 29.50 129.27 25.22 4.55 2.97 132.32

39 D2 130.29 27.46 127.89 28.00 2.40  ‐

0.55   19.53   5.86 4.58 1.42   45.05   13 .52 1 .44  ‐

2.80 132.47 29.44 129.31 25.21 4.80 3.14 132.47 38 D2 130.27 27.46 127.79 28.05 2.48   ‐0.59   19.53   5.86 4.69 1.50   45.05   13 .52 1 .37   ‐2.84 132.49 29.42 129.29 25.21 4.89 3.21 132.49

37 D2 130.27 27.46 127.69 28.10 2.58   ‐0.63   19.53   5.86 4.84 1.60   45.05   13.5 2 1.3 0   ‐2.89 132.54 29.40 129.29 25.21 5.02 3.30 132.54

36 D2 130.27 27.46 127.59 28.15 2.68   ‐0.69   19.53   5.86 4.99 1.70   45.05   13.5 2 1.2 2   ‐2.94 132.59 29.37 129.29 25.21 5.14 3.40 132.59

35 D2 130.27 27.46 127.48 28.21 2.79   ‐0.75   19.53   5.86 5.16 1.81   45.05   13.5 2 1.1 3   ‐3.00 132.64 29.34 129.29 25.21 5.28 3.50 132.64

34 D2 130.27 27.46 127.37 28.28 2.90   ‐0.81   19.53   5.86 5.32 1.92   45.05   13.5 2 1.0 3   ‐3.07 132.70 29.31 129.29 25.21 5.42 3.62 132.70

33 D2 130.26 27.46 127.26 28.35 3.00   ‐0.90   19.53   5.86 5.48 2.03   45.05   13.52 0.91   ‐3.15 132.74 29.26 129.28 25.20 5.55 3.74 132.74

32 D2 130.27 27.45 127.13 28.44 3.14   ‐0.98   19.53   5.86 5.69 2.17   45.05   13.52 0.78   ‐3.24 132.82 29.21 129.30 25.20 5.74 3.90 132.82

31 D2 130.27 27.45 126.98 28.54 3.29   ‐1.08   19.53   5.86 5.91 2.32   45.05   13.52 0.63   ‐3.34 132.90 29.16 129.30 25.20 5.95 4.06 132.90

30 D2 130.27 27.45 126.81 28.65 3.46   ‐1.20   19.53   5.86 6.17 2.49   45.05   1 3. 52 0 .4 5   ‐3.45 132.98 29.10 129.30 25.20 6.19 4.26 132.98

29 D2 130.27 27.45 126.60 28.79 3.67   ‐1.34   19.53   5.86 6.48 2.69   45.05   1 3. 52 0 .2 4   ‐3.59 133.08 29.04 129.30 25.20 6.49 4.49 133.08

28 D2 130.27 27.45 126.35 28.96 3.92   ‐1.51   19.53   5.86 6.85 2.94   45.05   13.52   ‐0.01   ‐3.76 133.21 28.95 129.30 25.20 6.85 4.78 133.21

27 D2 130.27 27.45 126.05 29.17 4.22   ‐1.72   19.53   5.86 7.31 3.25   45.05   13.52   ‐0.32   ‐3.97 133.36 28.85 129.30 25.20 7.32 5.13 133.36

26 D2 130.27 27.45 125.67 29.44 4.60   ‐1.98   19.53   5.86 7.88 3.63   45.05   13.52   ‐0.72   ‐4.24 133.55 28.71 129.30 25.20 7.92 5.58 133.55

25 D2 130.27 27.45 125.18 29.78 5.10   ‐2.33   19.53   5.86 8.62 4.12   45.05   13.52   ‐1.24   ‐4.58 133.80 28.54 129.30 25.20 8.71 6.16 133.80

24 D2 130.27 27.45 124.51 30.25 5.76   ‐2.80   19.53   5.86 9.62 4.79   45.05   13.52   ‐1.95   ‐5.05 134.13 28.30 129.30 25.20 9.82 6.96 134.13

23 D2 130.27 27.45 123.58 30.92 6.70   ‐3.47   19.53   5.86 10.86 5.88   45.05   13.52   ‐2.96   ‐5.72 134.44 27.97 129.46 25.20 11.25 8.21 134.44

22 D2 130.27 27.45 122.19 31.94 8.09   ‐4.48   19.53   5.86 12.71 7.51   45.05   13.52   ‐4.47   ‐6.74 134.89 27.46 1 29.70 2 5.20 13 .47 10 .09 134.8 9

21 D2 130.27 27.45 1 19.94 33.59 10.33   ‐6.14   19.53   5 .8 6 1 5. 69 1 0. 14   45.05   13.52   ‐6.95   ‐8.39 135.64 26.64 13 0.08 25 .20 17. 16 13 .16 135.6 4

20 D2 130.27 27.45 1 15.95 36.57 14.33   ‐9.11   19.53   5 .8 6 2 1. 01 1 4. 81   45.05   13.52   ‐11.42   ‐11.37 136.95 25.15 13 0.76 25 .20 23.9 1 18 .67 136.9 5

19 D2 130.27 27.45 1 08.02 42.51 22.25  ‐

15.06   19.53   5 .8 6 3 1. 55 2 4. 08   45.05   13.52  ‐

20.34  ‐

17.3 1 139.5 7 22.17 132.10 25.20 3 7.53 29.66 13 9.57 18 D2 129.94 27.44 92.02 54.48 37.92   ‐27.03   19.53   5 .8 6 5 2. 38 4 2. 41   45.05   13.52   ‐38.30   ‐29.2 9 144.4 0 16.18 134.43 25.19 6 4.89 51.54 14 4.40

34 D3 86.93 104.94 86.45 102.36 0.48 2.59   33.00   9.90 2.37   ‐1.17   46.90   14.07 6.22 0.24 88.82 108.58 85.28 102.60 6.66 1.19 88.82

33 D3 86.95 104.94 86.41 102.15 0.54 2.80   33.00   9.90 2.47   ‐1.11   46.90   14.07 6.54 0.45 88.88 108.69 85.30 102.60 6.99 1.19 88.88

32 D3 86.96 104.94 86.37 101.94 0.59 3.01   33.00   9.90 2.53   ‐1.06   46.90   14.07 6.85 0.66 88.90 108.79 85.31 102.60 7.30 1.25 88.90

31 D3 86.96 104.94 86.33 101.72 0.63 3.23   33.00   9.90 2.59   ‐1.02   46.90   14.07 7.19 0.88 88.92 108.90 85.31 102.60 7.64 1.35 88.92

30 D3 86.96 104.94 86.29 101.46 0.67 3.48   33.00   9.90 2.66   ‐0.98   46.90   14.07 7.56 1.13 88.95 109.03 85.31 102.60 8.02 1.50 88.95

29 D3 86.96 104.94 86.23 101.17 0.73 3.77   33.00   9.90 2.75   ‐0.92   46.90   14.07 8.01 1.43 88.98 109.17 85.31 102.60 8.47 1.70 88.98

28 D3 86.96 104.94 86.15 100.81 0.81 4.13   33.00   9.90 2.86   ‐0.84   46.90   14.07 8.54 1.78 89.01 109.35 85.31 102.60 9.00 1.97 89.01

27 D3 86.96 104.94 86.06 100.38 0.90 4.56   33.00   9.90 3.00   ‐0.75   46.90   14.07 9.19 2.22 89.06 109.57 85.31 102.60 9.66 2.34 89.06

26 D3 86.96 104.94 85.94 99.84 1.02 5.10   33.00   9.90 3.18   ‐0.63   46.90   14.07 10.00 2.76 89.12 109.84 85.31 102.60 10.49 2.83 89.12

25 D3 86.96 104.94 85.78 99.14 1.18 5.80   33.00   9.90 3.42   ‐0.47   46.90   14.07 11.05 3.46 89.20 110.19 85.31 102.60 11.56 3.49 89.20

24 D3 86.96 104.94 85.56 98.22 1.40 6.72   33.00   9.90 3.75   ‐0.25   46.90   14.07 12.43 4.38 89.31 110.65 85.31 102.60 12.98 4.38 89.31

23 D3 86.96 104.94 85.25 96.96 1.71 7.99   33.00   9.90 4.21 0.06   46.90   14.07 14.32 5.64 89.46 111.28 85.31 102.60 14.93 5.64 89.46

22 D3 86.96 104.94 84.79 95.15 2.17 9.80   33.00   9.90 4.90 0.52   46.90   14.07 17.04 7.45 89.69 112.19 85.31 102.60 17.73 7.47 89.69

21 D3 86.96 104.94 84.08 92.43 2.88 12.52   33.00   9.90 5.97 1.23   46.90   14 .07 21 .12 10 .17 90.0 5 113.55 85.31 1 02.60 21.95 10.25 9 0.05

20 D3 86.96 104.94 82.90 88.17 4.06 16.77   33.00   9.90 7.74 2.41   46.90   14 .07 27 .00 14 .93 90.6 4 115.17 85.31 1 03.10 28.08 15.13 9 0.64

19 D3 86.96 104.94 80.92 81.51 6.04 23.44   33.00   9 .90 1 0.70 4 .39   46.90   14 .07 35 .86 22 .73 91.6 3 117.37 85.31 1 04.24 37.42 23.15 9 1.63

18 D3 86.97 104.94 77.92 72.59 9.05 32.36   33.00   9 .90 1 5.22 7 .40   46.90   14 .07 47 .72 33 .17 93.1 4 120.31 85.32 1 05.75 50.09 33.98 9 3.14

18 D4 25.51 87.44 39.37 80.95   ‐13 .86 6.49   77.00   23.10   ‐16.94   ‐17.71   24.00   7.20 10.94 5.29 22.42 91.89 21.66 86.24 20.17 18.49 22.42

17 D4 25.57 87.55 44.05 78.83  ‐

18 .48 8.72   77.00   23.10  ‐

23.87  ‐

22.33   24.00   7.20 14.00 7.80 20.18 92.83 21.72 86.64 27.67 23.65 20.18

16 D4 25.57 87.55 51.72 75.37   ‐26. 15 12. 18   77.00   23.10   ‐35.38   ‐30.00   24.00   7 .20 18.60 11.85 16.34 93.97 21.72 87.22 39.97 32.26 16.34

15 D4 25.56 87.53 59.28 71.95   ‐33. 72 15. 59   77.00   23.10   ‐46.73   ‐37.57   24.00   7 .20 23.13 15.84 12.55 95.08 21.71 87.78 52.15 40.78 12.55

14 D4 25.56 87.54 66.49 68.66   ‐40. 93 18. 87   77.00   23.10   ‐57.55   ‐44.78   24.00   7 .20 27.50 19.68 8.94 96.16 21.71 88.34 63.78 48.92 8.94

17 D5 94.94 61.18 74.95 66.64 19.99   ‐5.46   104.45   3 1. 34 3 5. 20 1 4. 76   113.50   34.05   ‐2.51   ‐11.1 3 110.1 5 64.13 89.71 55.50 3 5.29 1 8.49 110 .15

16 D5 89.67 60.72 73.18 66.78 16.49   ‐6.06   104.45   3 1. 34 2 9. 95 1 1. 27   113.50   34.05   ‐3.42   ‐11.7 4 103.1 4 63.36 84.45 55.04 3 0.15 16.27 103 .14

15 D5 91.04 60.89 71.87 66.89 19.17   ‐6.00   104.45   3 1. 34 3 3. 98 1 3. 95   113.50   34.05   ‐3.33   ‐11.6 8 105.8 5 63.56 85.82 55.21 3 4.14 1 8.19 105 .85

14 D5 92.29 61.24 70.84 66.93 21.45   ‐5.69   104.45   3 1. 34 3 7. 39 1 6. 22   113.50   34.05   ‐2.86   ‐11.3 7 108.2 3 64.07 87.06 55.57 3 7.50 1 9.81 108 .23

13 D6 72.46 64.95 70.33 66.90 2.13   ‐1.95   111.90   33.57 8.78   ‐3.47   145.34   43 .60 4 .34   ‐9.22 79.12 71.24 66.86 57.68 9.80 9.85 66.86

12 D6 72.00 63.92 70.16 66.90 1.84   ‐2.99   111.90   33 .57 8 .35   ‐3.76   145.34   43 .60 2 .79   ‐10.25 78.51 69.69 66.40 56.65 8.80 10.92 66.40

11 D6 73.16 63.67 70.05 66.94 3.11   ‐3.27   111.90   33. 57 10. 26   ‐2.49   145.34   43 .60 2 .36   ‐10.54 80.31 69.30 67.57 56.40 10.52 10.83 67.57

10 D6 70.84 65.30 69.95 66.98 0.88   ‐1.67   111.90   33 .57 6 .92   ‐4.71   145.34   43 .60 4 .76   ‐8.94 76.87 71.73 65.24 58.04 8.40 10.11 65.24

9 D6 73.05 63.75 69.85 67.03 3.20   ‐3.28   111.90   33. 57 10. 39   ‐2.39   145.34   43. 60 2.3 5   ‐10.55 80.25 69.38 67.46 56.49 10.66 10.82 67.46

8 D6 69.11 66.80 69.76 67.12   ‐0.66   ‐0.32   111.90   33 .57 4 .61   ‐6.25   145.34   43 .60 6 .79   ‐7.59 74.37 73.90 63.51 59.53 8.20 9.83 63.51

7 D6 72.79 63.86 69.67 67.24 3.12   ‐3.38   111.90   33. 57 10. 27   ‐2.47   145.34   43.6 0 2.2 0   ‐10.64 79.95 69.44 67.20 56.60 10.51 10.93 67.20

6 D6 72.42 65.08 69.60 67.37 2.83   ‐2.29   111.90   33.57 9.83   ‐2.77   145.34   43 .60 3 .83   ‐9.56 79.43 71.20 66.83 57.81 10.55 9.95 79.43

5 D6 71.45 64.75 69.29 67.62 2.16   ‐2.87   111.90   33.57 8 .84   ‐3.43   145.34   43 .60 2 .96   ‐10.14 78.13 70.58 65.86 57.48 9.32 10.70 65.86

4 D6 72.54 64.22 68.98 68.13 3.56   ‐3.91   111.90   33. 57 10. 93   ‐2.04   145.34   43 .60 1 .41   ‐11.17 79.91 69.54 66.94 56.96 11.02 11.36 66.94

3 D6 72.40 64.37 68.86 69.07 3.54   ‐4.70   111.90   33. 57 10. 91   ‐2.05   145.34   43 .60 0 .22   ‐11.97 79.77 69.29 66.81 57.10 10.91 12.14 66.81

2 D6 70.91 65.08 69.93 70.13 0.98   ‐5.05   111.90   33.57 7 .07   ‐4.61   145.34   43.60   ‐0.31   ‐12.32 77.00 69.82 65.32 57.82 7.08 13.15 65.32

GF D7 81.77 61.81 82.14 68.21   ‐0.37   ‐6.39   138.43   41.53 6 .37   ‐7.29   171.65   51.49   ‐1.01   ‐14.97 88.51 67.20 74.85 53.23 6.45 16.65 74.85

B1 D7 77.81 85.20 77.37 85.87 0.43   ‐0.66   138.43   41.53 7 .57   ‐6.49   171.65   51 .49 7 .59   ‐9.25 84.95 93.45 70.89 76.62 10.72 11.30 70.89

B2 D7 82.29 63.88 82.34 70.53   ‐0.05   ‐6.65   138.43   41.53 6 .85   ‐6.97   171.65   51.49   ‐1.39   ‐15.23 89.19 69.14 75.37 55.30 6.99 16.75 75.37

2

VECTOR 1 COM D

PERHITUNGAN EKSENTRISITAS DESAIN

Proyek  :  Cempaka Putih Village

Story

center of  mas s c en ter of  rigidity eccentricity GEMPA ARAH X GEMPA ARAH Y Koord 1 Koord 2

D

Page 21: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 21/102

Grafik 

Gaya 

Geser 

Akibat 

Gempa 

RencanaProyek  :  Cempaka Putih Village

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

0 1000 2000 3000

       L      a      n       t      a        i

Gaya Ges

Gaya Geser ‐

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000 7000

       L      a      n       t      a        i

Gaya Geser (KN) 

Gaya Geser ‐ Arah x 

Statik

0.8 

statik

V dynamic

Desain

Page 22: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 22/102

Grafik Gaya Lateral Akibat Gempa RencanaProyek  :  Cempaka Putih Village ‐ Apartment 1 (Diapraghm 1)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 20 40 60

       L      a      n       t      a        i

Gaya Later

Gaya Lateral 

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 20 40 60 80 100

       L      a      n       t      a        i

Gaya Lateral (Ton) 

Gaya Lateral ‐ Arah x 

Fx

Page 23: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 23/102

Grafik 

Gaya 

Lateral 

Akibat 

Gempa 

RencanaProyek  :  Cempaka Putih Village ‐ Apartment 2 (Diapraghm 2)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 20 40 60

       L      a      n       t      a        i

Gaya Later

Gaya Lateral 

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 20 40 60 80 100

       L      a      n       t      a        i

Gaya Lateral (Ton) 

Gaya Lateral ‐ Arah x 

Fx

Page 24: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 24/102

Grafik Gaya Lateral Akibat Gempa RencanaProyek  :  Cempaka Putih Village ‐ Hospital (Diapraghm 3)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 10 20 30 40

       L      a      n       t      a        i

Gaya Later

Gaya Lateral 

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 10 20 30 40 50 60 70 80

       L      a      n       t      a        i

Gaya Lateral (Ton) 

Gaya Lateral ‐ Arah x 

Fx

Page 25: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 25/102

Grafik Gaya Lateral Akibat Gempa RencanaProyek  :  Cempaka Putih Village ‐ Podium 14‐18 (Diapraghm 4)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 5 10 15

       L      a      n       t      a        i

Gaya Later

Gaya Lateral 

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 5 10 15 20 25 30 35

       L      a      n       t      a        i

Gaya Lateral (Ton) 

Gaya Lateral ‐ Arah x 

Fx

Page 26: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 26/102

Grafik Gaya Lateral Akibat Gempa RencanaProyek  :  Cempaka Putih Village ‐ Podium 14‐17 (Diapraghm 5)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 20 40 60

       L      a      n       t      a        i

Gaya Later

Gaya Lateral 

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 20 40 60 80 100 120

       L      a      n       t      a        i

Gaya Lateral (Ton) 

Gaya Lateral ‐ Arah x 

Fx

Page 27: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 27/102

Proyek  :  Cempaka Putih Village ‐ Podium 2‐12 (Diapraghm 6)

Grafik Gaya Lateral Akibat Gempa Rencana

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 50 100

       L      a      n       t      a        i

Gaya Later

Gaya Lateral 

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 50 100 150 200 250

       L      a      n       t      a        i

Gaya Lateral (Ton) 

Gaya Lateral ‐ Arah x 

Fx

Page 28: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 28/102

Grafik Gaya Lateral Akibat Gempa RencanaProyek  :  Cempaka Putih Village ‐ Ground Floor ‐ Basement 2 (Diapraghm 7)

‐4

2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 100 200 300

       L      a      n       t      a        i

Gaya Later

Gaya Lateral 

‐4

‐2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

0 100 200 300 400 500 600 700

       L      a      n       t      a        i

Gaya Lateral (Ton) 

Gaya Lateral ‐ Arah x 

Fx

Page 29: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 29/102

3.TINJAUAN JENIS TANAH UNTUK PERENCANAAN GEMPA

Setelah dilakukan evaluasi terhadap nilai  N  SPT danu

S  rata-rata berbobot, dan penentuan

profil tanah representative dari data boring, yang ditinjau mulai dari level permukaan

hingga kedalaman -30 m diperoleh nilai  N  SPT dan uS  rata-rata sebagai berikut :

 N  SPT =

( )∑

=

=

m

i

ii

m

i

i

 N t 

1

1

/

 =365.4

30 = 6.87, dimana  N  SPT  < 15, Tanah Lunak 

uS    =

( )∑

=

=

m

i

ui

m

i

i

S t 

1

1

/

 =4884.0

30= 61.43 kPa, dimana

uS  > 50 kPa, Tanah Sedang 

Untuk mendapatkan nilai Su pada masing-masing lapisan dipakai formula :

Su = c + σ tan ø

dimana :

c = kohesi

σ = γ h

ø = sudut geser dalam

Mengacu pada peraturan Tata Cara Perencanaan Ketahanan Gempa UntukBangunan Gedung, SNI 03 – 1726 – 2002 disimpulkan bahwa jenis tanah di lokasi

proyek dinyatakan sebagai TANAH LUNAK

Gambar 2 : Respon Spektrum Gempa Rencana

0.75

0.55

0.45

0.30

0.23

0.18

0 0.5 1.0 2.0 3.00.60.2

lunak)(TanahT

0.75C   =

sedang)(TanahT

0.33C   =

keras)(TanahT

0.23C   =

T

Wilayah Gempa 3

C

Page 30: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 30/102

4.  GAYA-GAYA REAKSI STRUKTUR ATAS DAN KOMBINASI PEMBEBANAN

Gaya reaksi dari struktur pada setiap kombinasi pembebanan disajikan pada table-tabel berikut.

Page 31: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 31/102

x y(m) (m) (ton) (ton) (ton) (ton) (ton) (ton) (ton) (ton) (ton)

BASE 107 39.173 16.975 POND   ‐1.38   ‐7.94 828.67 GNLENTUR MAX 0.14   ‐0.68 1268.78 GKLENTUR MAX 0.81 1.64 1421.

BASE 108 42.073 16.975 POND 2.94   ‐6.13 884.08 GNLENTUR MAX 4.67 0.09 1 223.11 GKLENTUR MAX 5.3 3.04 1319.

BASE 110 48.273 16.975 POND 2.97   ‐8.67 1141.67 GNLENTUR MAX 5.28   ‐1.13 1612.83 GKLENTUR MAX 6.19 1.22 1755.

BASE 113 55.198 16.975 POND 2.76   ‐10.13 1160.22 GNLENTUR MAX 5.03   ‐1.95 1637.71 GKLENTUR MAX 5.92   ‐0.06 1783.

BASE 115 61.073 16.975 POND 0.48 1.75 1119.89 GNLENTUR MAX 2.31 8.09 1 631.94 GKLENTUR MAX 3.2 11.19 1796.

BASE 117 67.323 16.975 POND  ‐

4.23  ‐

10.91 1146.37 GNLENTUR MAX

  ‐1.86

  ‐2.47 1720.48 GKLENTUR

 MAX

  ‐1.15

  ‐0.3 1914.

BASE 118 70.548 16.975 POND 1.94 2.1 1088.65 GNLENTUR MAX 3.67 8.71 1 640.93 GKLENTUR MAX 4.38 11.92 1827.

BASE 120 76.323 16.975 POND   ‐1.48   ‐9.07 1142.71 GNLENTUR MAX 0.49   ‐1.71 1631.28 GKLENTUR MAX 1.41 1.56 1783.

BASE 122 83.148 16.975 POND   ‐1.84   ‐8.38 1069.78 GNLENTUR MAX 0.39   ‐0.83 1521.44 GKLENTUR MAX 1.34 2.6 1661.

BASE 124 89.173 16.975 POND   ‐1.57   ‐9.24 865.8 GNL ENTUR MAX 0.4   ‐1.18 1299.48 GKLENTUR MAX 1.14 2.43 1447.

BASE 125 92.073 16.975 POND 0.83 2.03 756.17 GNLENTUR MAX 2.29 9.61 1 131.63 GKLENTUR MAX 2.98 13.33 1258.

BASE 144 37.494 20.718 POND   ‐12 .9 8 7. 15 74 1.8 8 G NLE NTU R MAX   ‐0.36 12.53 957.9 GKLENTUR MAX 3.28 14.7 1008.

BASE 146 39.173 22.075 POND 0.19   ‐1.43 903.91 GNLENTUR MAX 3.39 4.31 1 276.65 GKLENTUR MAX 4.85 6.91 1388.

BASE 147 41.548 22.075 POND 147.67   ‐0.44 228.09 GNLENTUR MAX 187.23   ‐0.07 287.34 GKLENTUR MAX 187.23   ‐0.12 287.

BASE 149 43.373 22.075 POND   ‐141.32   ‐0.35 220.44 GNLENTUR MAX   ‐29.84   ‐0.04 277.5 GKL ENTUR MAX   ‐36.67   ‐0.04 282.

BASE 151 48.273 22.075 POND 5.45 1.49 1645.98 GNLENTUR MAX 9.87 10.81 2111.1 GKLENTUR MAX 11.7 15.43 2198.

BASE 154 55.748 22.075 POND   ‐2. 76 3 .5 8 1 74 6. 53 GNL ENT UR MAX 2.09 13.62 2235.08 GKLENTUR MAX 4.12 18.46 2235.

BASE 156 61.073 22.075 POND   ‐2. 02 3 .4 4 1 64 2. 06 GNL ENT UR MAX 2.42 13.55 2140.52 GKLENTUR MAX 4.35 18.44 2253.

BASE 158 65.248 22.075 POND 180.68 183.39 1385.92 GNLENTUR MAX 252.31 279.44 1991.84 GKL ENTUR MAX 272.95 312.29 2178.

BASE 160 70.898 22.075 POND   ‐179.73 183.38 1386.66 GNLENTUR MAX   ‐40.02 272.41 1959.57 GKLENTUR MAX   ‐46.49 301.68 2129.

BASE 162 76.323 22.075 POND 1.58 3.68 1758.65 GNLENTUR MAX 5.68 14.5 2 253.02 GKLENTUR MAX 7.65 19.72 2300.

BASE 164 83.148 22.075 POND   ‐2. 67 4 .04 1 62 2. 98 GNL ENT UR MAX 2.02 15.32 2095.1 GKLENTUR MAX 3.98 20.75 2095

BASE 166 89.173 22.075 POND  ‐

4.58  ‐

0.06 940.41 GNLENTUR 

MAX 4.62 1.44 1 269.36 GKLENTUR 

MAX 8.61 2.17 1357.

BASE 167 92.073 22.075 POND 1.36   ‐1.16 879.41 GNLENTUR MAX 2.53 6.18 1174.4 GKLENTUR MAX 3.04 9.76 1250.

BASE 204 65.248 25.275 POND 0.3   ‐184.24 500.09 GNLENTUR MAX 0.46   ‐18.36 710.93 GKLENTUR MAX 0.46   ‐47.94 774.

BASE 205 70.898 25.275 POND   ‐0.29   ‐184.41 500.7 GNLENTUR MAX   ‐0.02   ‐48.01 713.01 GKLENTUR MAX   ‐0.09   ‐48.01 777.

BASE 206 40.673 25.45 POND 150.15 146.36 755.53 GNLENTUR MAX 228.66 212.43 1103.13 GKL ENTUR MAX 2 55 .2 2 2 32. 96 12 12.

BASE 208 43.673 25.45 POND   ‐147.29   ‐0.77 379.37 GNLENTUR MAX   ‐18.38   ‐0.14 551.07 GKLENTUR MAX   ‐31.19   ‐0.21 604

BASE 211 89.173 25.525 POND 0.01   ‐0.66 981.46 GNLENTUR MAX 8.93 0.88 1 401.92 GKLENTUR MAX 13.49 1.46 1531.

BASE 229 65.248 27.25 POND 0.3 185.09 501.19 GNLENTUR MAX 0.46 249.25 685.75 GKLENTUR MAX 0.46 265.75 735.

BASE 230 70.898 27.25 POND   ‐0.29 185.43 502.02 GNL ENTUR MAX   ‐0.04 262.33 728.38 GKL ENTUR MAX   ‐0 .0 9 2 85. 31 7 99 .

BASE 233 88.798 27.45 POND 140.17 0.47 398.37 GNLENTUR MAX 180.56 1.13 509.67 GKLENTUR MAX 180.56 1.42 523.

BASE 235 92.073 27.45 POND   ‐145.46 141.51 760.93 GNL ENTUR MAX   ‐35.92 185.7 1001.12 GKL ENTUR MAX   ‐35.92 195.98 1057.

BASE 236 47.448 28.225 POND   ‐0.4 191.95 507.45 GNL ENTUR MAX 0.02 252.31 663.71 GKLENTUR MAX   ‐0 .0 4 2 52. 31 6 63.

BASE 237 49.798 28.225 POND 0.78 193.36 510.14 GNLENTUR MAX 1.03 254.16 667.46 GKLENTUR MAX 1.03 254.16 667.

BASE 242 40.673 28.45 POND 147.92   ‐147.64 598.12 GNLENTUR MAX 216.56   ‐1.92 850.25 GKLENTUR MAX 238.28   ‐31.37 925.

BASE 244 42.448 28.45 POND   ‐146.1   ‐0.13 220.71 GNLENTUR MAX   ‐4.49 0.22 295.98 GKLENTUR MAX   ‐30.79 0.41 314

BASE 269 42.073 30.45 POND 3.52 1.04 1062.29 GNLENTUR MAX 12.13 2.31 1370.13 GKLENTUR MAX 16.19 2.9 1433.

BASE 274 55.748 30.45 POND   ‐0.31   ‐2.4 1789.92 GNLENTUR MAX 3.43 7.82 2 293.91 GKLENTUR MAX 5.29 12.68 2293.

BASE 276 61.073 30.45 POND  ‐

2.3  ‐

2.16 1693.8 GNLENTUR 

MAX 1.98 8.18 2 143.97 GKLENTUR 

MAX 3.78 13.16 2223.BASE 278 65.248 30.45 POND 181.22   ‐182.86 1387.81 GNLENTUR MAX 2 65. 01 1 6. 93 1 96 7. 01 G KL ENT UR MAX 291.84   ‐47.33 2140.

BASE 280 70.898 30.45 POND   ‐180.08   ‐182.48 1388.83 GNLENTUR MAX   ‐16.27   ‐47.2 2042.32 GKLENTUR MAX   ‐46.75   ‐35.5 2253.

BASE 282 76.323 30.45 POND 2.02   ‐2.23 1848.84 GNLENTUR MAX 6.11 8.79 2 386.44 GKLENTUR MAX 8.05 14.1 2411.

BASE 284 83.148 30.45 POND   ‐3.05   ‐3.15 1692.39 GNLENTUR MAX 1.41 8.51 2 198.24 GKLENTUR MAX 3.18 14.03 2198.

BASE 287 88.798 30.45 POND 140.31   ‐0.19 400.1 GNL ENTUR MAX 180.84 0.12 538.17 GKLENTUR MAX 189.23 0.27 573

BASE 289 92.073 30.45 POND   ‐146.49   ‐140.8 762.24 GNLENTUR MAX   ‐36.3   ‐34.08 1036.48 GKLENTUR MAX   ‐36.3   ‐34.08 1110.

BASE 290 39.935 30.508 POND   ‐10.63   ‐0.81 797.25 GNLENTUR MAX 2.21 0.96 1026.8 GKLENTUR MAX 5.98 1.76 1059.

BASE 302 47.448 31.325 POND 193.98   ‐193.31 893.07 GNLENTUR MAX 254.93   ‐21.08 1168.17 GKLENTUR MAX 254.93   ‐48.29 1168.

BASE 304 49.798 31.325 POND   ‐192.06   ‐193.84 893.96 GNLENTUR MAX   ‐40.76   ‐42.11 1169.58 GKLENTUR MAX   ‐47.92   ‐48.76 1169.

BASE 321 39.173 33.55 POND 1.84 0.49 669.32 GNLENTUR MAX 3.69 5.96 971.03 GKLENTUR MAX 4.48 8.72 1066.

BASE 323 89.173 33.55 POND 0.09   ‐1.02 803.28 GNLENTUR MAX 8.06 0.51 1 059.14 GKLENTUR MAX 12.12 1.15 1120.

BASE 324 92.073 33.55 POND 1.1 0.39 736.13 GNLENTUR MAX 2.48 7.26 945.58 GKLENTUR MAX 3.11 10.74 989.

BASE 334 39.173 36.875 POND 0.55   ‐0.41 655.32 GNLENTUR MAX 1.87 5.08 997.95 GKLENTUR MAX 2.5 7.84 1116.

BASE 335 42.073 36.875 POND 3.04   ‐1.87 753.53 GNLENTUR MAX 4.71 4.32 926.56 GKLENTUR MAX 5.33 7.22 926.

BASE 338 48.273 36.875 POND 0.69   ‐1.06 1341.24 GNLENTUR MAX 1.71 14.89 1694.06 GKLENTUR MAX 2.18 22.97 1747.

BASE 341 55.198 36.875 POND   ‐0.88   ‐3.09 1183.49 GNLENTUR MAX 0.97 3.92 1584.2 GKLENTUR MAX 1.78 7 1690.

BASE 343 61.073 36.875 POND 0.42  ‐

2.23 1100.26 GNLENTUR 

MAX 1.81 4.42 1 387.34 GKLENTUR 

MAX 2.49 7.48 1406.BASE 345 67.323 36.875 POND   ‐2.79   ‐2.9 1108.53 GNLENTUR MAX   ‐0. 76 4 .31 1 54 8. 78 G KL ENT UR MAX   ‐0.18 7.52 1 679.

BASE 346 70.173 36.875 POND 2.72   ‐2.98 1101.78 GNLENTUR MAX 4.32 4.32 1 579.96 GKLENTUR MAX 4.93 7.58 1730.

BASE 349 76.323 36.875 POND 0.57   ‐2.15 1073.74 GNLENTUR MAX 2.17 4.89 1 366.16 GKLENTUR MAX 2.94 8.16 1404.

BASE 351 83.148 36.875 POND   ‐0.65   ‐2 1229.51 GNLENTUR MAX 0.47 16.34 1553.52 GKLENTUR MAX 0.95 25.43 1553.

BASE 355 89.173 36.875 POND   ‐2.95   ‐0.81 770.71 GNLENTUR MAX   ‐0 .7 4 6 .27 1 153 .35 G KL ENT UR MAX   ‐0.09 9.77 1 283.

BASE 356 92.073 36.875 POND 1.64   ‐0.51 717.83 GNLENTUR MAX 3.19 6.5 1120.52 GKLENTUR MAX 3.86 10.01 1265.

BASE 386 36.156 39.863 POND   ‐11.4   ‐7.62 887.94 GNLENTUR MAX   ‐1.48   ‐0.45 1176.64 GKLENTUR MAX   ‐1.48   ‐1.33 1176.

BASE 390 42.148 40.425 POND 5.42 7.44 1179.74 GNLENTUR MAX 9.72 11.12 1636.73 GKLENTUR MAX 11.56 11.12 1775.

BASE 391 50.148 40.425 POND 11.06 12.83 1606.61 GNLENTUR MAX 24.24 24.05 2189.07 GKLENTUR MAX 30.03 28.9 2357.

BASE 393 63.448 40.425 POND   ‐6.69 14.09 1611.15 GNL ENTUR MAX 6.36 26.27 2131.23 GKLENTUR MAX 12.08 31.39 2269.

BASE 395 74.148 40.425 POND 0.28 11.32 1583.23 GNLENTUR MAX 11.18 23.1 2044.53 GKLENTUR MAX 16.71 28.25 2116.

BASE 396 84.848 40.425 POND   ‐0.25 11.76 1501.91 GNL ENTUR MAX 10.4 23.42 2040.15 GKLENTUR MAX 15.83 28.48 2196.

COMB : 1D + 1L

Tabel 

Reaksi 

Kaki 

Kolom

PROYEK 

CEMPAKA 

PUTIH 

VILLAGE

Load FX FY FZFY FZ

Apartment 

1

COMB : 1.2DL+1LL±Ex±0.3Ey COMB : 1.2DL+1LL±F2Ex±0.6Ey

Story Point Load FX FY FZCoordinate

Load FX

Page 32: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 32/102

x y(m) (m) (ton) (ton) (ton) (ton) (ton) (ton) (ton) (ton) (ton)

BASE 126 107.623 17.725 POND   ‐8.27   ‐8.67 1052.23 GNLENTUR MAX   ‐2 .5 8 8. 86 16 62 .2 GKLE NT UR MAX   ‐0. 69 17. 53 18 85. 8

BASE 127 111.623 17.725 POND   ‐0. 23 2. 46 9 31 .0 4 GN LENT UR MAX 3.23 20.17 1458.89 GKLENTUR MAX 4.92 29.02 1647.9

BASE 128 115.273 17.725 POND 0.56   ‐10 997.83 GNLENTUR MAX 4.31 8.48 1531.32 GKLENTUR MAX 6.18 17.3 1718.4

BASE 130 120.923 17.725 POND   ‐0.68   ‐8.89 1066.12 GNLENTUR MAX 3.02 9.88 1595.57 GKLENTUR MAX 4.76 19.12 1774.7

BASE 131 123.973 17.725 POND 2.63 2.78 1025.29 GNLENTUR MAX 6.44 21.54 1466.22 GKLENTUR MAX 8.17 30.9 1602.7

BASE 133 129.623 17.725 POND  ‐

2.16  ‐

9.68 1028.09 GNLENTUR MAX 1.65 11.25 1623.7 GKLENTUR

 MAX 3.41 20.89 1840.1

BASE 134 132.573 17.725 POND 1.2 2.37 964.04 GNLENTUR MAX 4.6 21.45 1468.44 GKLENTUR MAX 6.26 31.06 1642.5

BASE 136 137.373 17.725 POND 1.26   ‐13.8 1062.24 GNLENTUR MAX 2.99   ‐1.51 1588.31 GKLENTUR MAX 3.81   ‐1.7 1767.0

BASE 138 143.223 17.725 POND 5.45   ‐15.19 1100.99 GNLENTUR MAX 7.66   ‐2.02 1802.97 GKLENTUR MAX 8.47   ‐2.02 2068.2

BASE 139 149.423 17.725 POND   ‐3. 08 0. 93 92 2. 45 G NLE NT UR MAX   ‐0.33 3.57 1558.39 GKL ENTUR MAX 0.28 4.86 1802.8

BASE 140 152.673 17.725 POND 9.49   ‐15.02 883.3 GNLENTUR MAX 13.54   ‐2.03 1439.84 GKLENTUR MAX 13.54   ‐2.04 1649.6

BASE 168 109.673 22.075 POND 0.3 181.51 252.21 GNLENTUR MAX 0.57 278.22 397.69 GKLENTUR MAX 0.68 312.35 450.7

BASE 170 115.273 22.075 POND 1.46 0.53 1326.52 GNLENTUR MAX 6.16 31.34 1728.29 GKLENTUR MAX 8.45 47.02 1819.

BASE 174 143.223 22.075 POND   ‐1.01   ‐0.21 1266.87 GNLENTUR MAX 1.2 4.93 1 749.73 GKLENTUR MAX 2.06 7.47 1887.6

BASE 175 149.423 22.075 POND   ‐0.41 142.75 306.77 GNL ENTUR MAX 0 193.67 421.31 GKLENTUR MAX 0.14 207.38 453.3

BASE 179 107.623 23.045 POND 179.1   ‐0.02 533.72 GNLENTUR MAX 279.05 0.35 802.41 GKLENTUR MAX 315.01 0.54 894.7

BASE 181 109.673 23.045 POND   ‐187.15   ‐181.33 793.12 GNLENTUR MAX   ‐40.2   ‐11.02 1143.42 GKLENTUR MAX   ‐53.06   ‐50.83 1255.6

BASE 184 120.923 23.575 P OND 199.26 0.87 868.09 GNLENTUR MAX 28 8. 67 1. 48 112 3. 36 GK LENT UR MAX 317.24 1.71 1 172.5

BASE 185 123.973 23.575 POND   ‐196.53 0.98 867.1 GNLENTUR MAX   ‐58 .2 4 1 .6 5 11 22. 1 GKLE NT UR MAX   ‐58.24 1.9 1122.

BASE 187 129.623 23.575 POND   ‐2.52   ‐1.33 1092.14 GNLENTUR MAX 1.38 16.87 1582.17 GKLENTUR MAX 3 25.85 1737.9

BASE 188 132.573 23.575 POND 0.5   ‐1.51 1067.82 GNLENTUR MAX 1.74 18.13 1392.59 GKLENTUR MAX 2.33 27.73 1465.9

BASE 189 134.373 23.575 P OND 161.36 1.02 730.36 GNLENTUR MAX 211.28 1.56 999.35 GKLENTUR MAX 222.93 1.75 1 073.8

BASE 191 137.373 23.575 POND  ‐

17 9. 68 0. 49 7 36. 88 GN LENT UR MAX

  ‐51.02 0.73 1060.11 GKL ENTUR

 MAX

  ‐49.34 0.81 1 161.6

BASE 192 149.423 23.575 POND 141.75   ‐142.56 482.74 GNLENTUR MAX 191 .4 1   ‐36.87 648.4 GKLENTUR MAX 2 04. 54   ‐36.87 691.3

BASE 193 150.303 23.575 POND   ‐1 42. 76 0 .5 1 181 .2 3 GN LEN TUR MAX   ‐3 6. 98 1. 42 25 6. 04 G KLENT UR MAX   ‐36.98 1.85 278.6

BASE 194 152.673 23.575 POND 6.91 2.6 929.12 GNLENTUR MAX 13.29 3.56 1526.72 GKLENTUR MAX 16.16 3.56 1752.7

BASE 213 109.673 25.875 POND   ‐1.75 184.86 853.79 GNL ENTUR MAX   ‐0.63 249.65 1088.35 GKLENTUR MAX   ‐0.35 267.25 1121.5

BASE 215 115.273 25.875 POND 1.8   ‐0.82 1109.47 GNLENTUR MAX 18.53 2.74 1404.37 GKLENTUR MAX 26.92 4.44 1404.3

BASE 220 143.223 25.875 POND   ‐3.25   ‐0.21 970.15 GNLENTUR MAX 3.61 0.73 1321.26 GKLENTUR MAX 6.34 1.14 1416.8

BASE 221 145.653 25.875 POND 141.94   ‐0.02 406.23 GNLENTUR MAX 178.46 0.05 509.25 GKLENTUR MAX 183.89 0.08 526.6

BASE 222 147.653 25.875 POND   ‐141.16   ‐0.02 405.37 GNLENTUR MAX   ‐37 .7 5 0 .4 8 53 7. 83 GKLE NT UR MAX   ‐37.75 0.72 570.

BASE 226 129.623 26.425 POND   ‐0. 55 0. 28 8 53. 25 G NLE NT UR MAX 1.28 11.89 1093.43 GKLENTUR MAX 2.13 17.8 1142.4

BASE 249 129.623 28.55 POND   ‐0.53   ‐0.06 847.52 GNLENTUR MAX 1.26 11.41 1073.13 GKLENTUR MAX 2.11 17.27 1089.3

BASE 253 116.073 28.9 POND   ‐0. 11 1 88 .2 8 03 .6 G NLE NT UR MAX 0 .4 6 248 .4 8 1 028 .7 5 G KLE NTUR MAX 0.71 263.26 1 028.7

BASE 258 109.673 29.1 POND   ‐1.59   ‐183.14 852.5 GNLENTUR MAX   ‐0.49   ‐7.62 1101.11 GKLENTUR MAX   ‐0.19   ‐51.72 1156.4

BASE 262 143.223 29.1 POND   ‐3.18 0.3 977.57 GNLENTUR MAX 3.61 0.88 1308.14 GKLENTUR MAX 6.32 1.16 1392.6

BASE 263 145.653 29.1 POND 142.11   ‐0.01 406.8 GNL ENTUR MAX 178.68 0.08 509.86 GKLENTUR MAX 181.25 0.13 519.0

BASE 264 147.653 29.1 POND   ‐141.43   ‐0.01 406.04 GNLENTUR MAX   ‐3 7. 74 0. 65 53 3. 17 G KLENT UR MAX   ‐37.74 0.99 562.8

BASE 291 120.923 31.1 POND 201.24   ‐0.7 876.72 GNLENTUR MAX 28 6. 69 0. 01 113 5. 21 G KLENT UR MAX 313.14 0.3 1163.2

BASE 292 123.973 31.1 POND  ‐

198.47  ‐

0.87 875.72 GNLENTUR 

MAX  ‐

57.67 0 1133.91 GKLENTUR 

MAX  ‐

57.67 0.17 1 133.9

BASE 294 129.623 31.1 POND   ‐2.52 2.25 1081.27 GNL ENTUR MAX 1.56 20.18 1472.59 GKLENTUR MAX 3.24 29.16 1579.2

BASE 295 132.573 31.1 POND 0.56 2.45 1071.04 GNLENTUR MAX 1.96 21.67 1352.97 GKLENTUR MAX 2.62 31.28 1404.3

BASE 296 134.373 31.1 POND 162.57   ‐0.93 735.36 GNLENTUR MAX 217.4   ‐0.02 1024.84 GKLENTUR MAX 23 1. 48   ‐0.01 1109.4

BASE 298 137.373 31.1 POND   ‐180.84   ‐0.38 741.86 GNLENTUR MAX   ‐51 .6 5 0. 1 1 08 7. 57 GKLE NT UR MAX   ‐42.52 0.12 1 200.2

BASE 299 149.423 31.1 POND 142.22 141.93 544.6 GNLENTUR MAX 19 9. 4 19 8. 78 75 5. 44 GKLE NT UR MAX 216.32 215.55 816.0

BASE 300 150.303 31.1 POND   ‐142.43   ‐0.49 179.99 GNLENTUR MAX   ‐36 .6 2 0. 61 26 0. 15 G KLENT UR MAX   ‐36.62 1.1 285.5

BASE 301 152.673 31.1 POND 6.62   ‐2.19 942.07 GNLENTUR MAX 12.76   ‐0.32 1549.72 GKLENTUR MAX 15.52   ‐0.29 1779.

BASE 305 107.623 31.9 POND 193.11 0.1 515.62 GNLENTUR MAX 281.6 0.32 748.37 GKLENTUR MAX 310.83 0.43 824.6

BASE 307 109.473 31.9 POND   ‐198.5   ‐0.23 521.98 GNLENTUR MAX   ‐19.18   ‐0.09 746.84 GKLENTUR MAX   ‐57.06   ‐0.08 818.5

BASE 309 116.073 31.9 POND   ‐0.31   ‐184.23 801.43 GNLENTUR MAX 0.32   ‐24.62 1025.94 GKLENTUR MAX 0.56   ‐53.35 1069.2

BASE 318 143.223 32.9 POND   ‐1.05   ‐0.35 1035.02 GNLENTUR MAX 0.81 1.56 1395.15 GKLENTUR MAX 1.5 2.42 1490.7

BASE 319 149.423 32.9 POND   ‐0.25   ‐142.4 366.65 GNLENTUR MAX 0.26   ‐36.58 527.17 GKLENTUR MAX 0.48   ‐36.58 577.4

BASE 358 107.623 37.25 POND   ‐5.9   ‐2.27 931.2 GNL ENTUR MAX   ‐0.36 15.17 1191.47 GKL ENTUR MAX 1.5 23.79 1249.6

BASE 359 111.623 37.25 POND   ‐0.08   ‐3.19 917.25 GNLENTUR MAX 3.12 15.18 1232.17 GKLENTUR MAX 4.72 24.05 1316.5

BASE 360 115.273 37.25 POND 1.83   ‐1.83 896.99 GNLENTUR MAX 5.65 14.8 1122.66 GKLENTUR MAX 7.44 23.08 1144.6

BASE 364 120.923 37.25 POND   ‐2.32   ‐2.31 999.2 GNL ENTUR MAX 1.48 16.46 1294.65 GKLENTUR MAX 3.06 25.7 1361.

BASE 366 123.973 37.25 POND 2.11  ‐

1.85 997.5 GNL ENTUR 

MAX 5.55 16.26 1258.48 GKLENTUR 

MAX 7.15 25.25 1295.2

BASE 368 129.623 37.25 POND   ‐2.41   ‐1.53 957.11 GNLENTUR MAX 1.27 16.34 1220.91 GKLENTUR MAX 2.75 25.27 1275.0

BASE 369 132.573 37.25 POND 1.17   ‐2.16 937.45 GNLENTUR MAX 4.23 17.37 1295.96 GKLENTUR MAX 5.69 27.01 1398.

BASE 372 137.373 37.25 POND   ‐0.7   ‐3.9 965.82 GNLENTUR MAX 0.94 1.93 1404.16 GKLENTUR MAX 1.82 4.23 1544.9

BASE 374 143.223 37.25 POND   ‐0.98   ‐2.4 1010.29 GNLENTUR MAX 1.4 1.94 1 666.61 GKLENTUR MAX 2.52 3.74 1914.4

BASE 375 149.423 37.25 POND   ‐1.72   ‐1.56 885.87 GNLENTUR MAX 0.14 1.85 1545.09 GKLENTUR MAX 0.7 3.2 1803.9

BASE 376 152.673 37.25 POND   ‐0.72   ‐6.26 769.01 GNLENTUR MAX 1.39 0.7 1 387.31 GKLENTUR MAX 2.46 3.04 1636.6

BASE 400 106.148 40.425 POND   ‐4.43 10.42 1062.65 GNL ENTUR MAX 7.72 23.3 1530.03 GKLENTUR MAX 13.38 29.08 1 687.4

BASE 401 114.148 40.425 POND 0.53 8.81 1002.41 GNLENTUR MAX 11.82 21.5 1485.33 GKLENTUR MAX 17.45 27.3 1652.8

BASE 403 122.148 40.425 POND   ‐0. 84 8 .9 12 23. 05 G NLE NT UR MAX 2.96 12.13 1733.63 GKLENTUR MAX 4.63 12.13 1895.1

BASE 404 130.148 40.425 POND   ‐1.01 8.07 1212.48 GNL ENTUR MAX 2.59 11 1834.01 GKLENTUR MAX 4.27 11.22 2051.1

BASE 406 138.148 40.425 POND   ‐1.93 6.45 796.5 GNLENTUR MAX 1.88 10.9 1051.42 GKLENTUR MAX 3.88 12.71 1114.

BASE 407 146.148 40.425 POND   ‐2. 18 5 .9 6 202 .4 7 GN LEN TUR MAX 5.06 12.02 259.43 GKLENTUR MAX 8.46 14.78 273.1

BASE 408 154.148 40.425 POND   ‐1. 16 5 .2 4 222 .8 3 GN LEN TUR MAX 5.72 12.68 308.58 GKLENTUR MAX 9.21 16.23 336.2

COMB : 1D + 1L

Tabel 

Reaksi 

Kaki 

Kolom

PROYEK 

CEMPAKA 

PUTIH 

VILLAGE

Load FX FY FZFY FZ

Apartment 

2

COMB : 1.2DL+1LL±Ex±0.3Ey COMB : 1.2DL+1LL±F2Ex±0.6Ey

St ory Point  Coordinate

Load FX FY FZ Load FX

Page 33: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 33/102

x y(m) (m) (ton) (ton) (ton) (ton) (ton) (ton) (ton) (ton) (ton)

BASE 434 13.6 48.425 POND 8.7 0.23 1050.4 GNLENTUR MAX 13.63 2.24 1385.47 GKLENTUR MAX 15.54 3.31 1474.7

BASE 442 21.6 48.425 POND   ‐0.26   ‐24.65 1811.05 GNLENTUR MAX 5.14   ‐0.19 2415 GKL ENTUR MAX 7.47   ‐3.07 241

BASE 443 42.148 48.425 POND 6.25   ‐4.23 1190.5 GNLENTUR MAX 10.92 0.99 1553.59 GKLENTUR MAX 12.94 1.68 1626.2

BASE 468 29.6 51.3 POND 110.66   ‐0.81 1391.48 GNLENTUR MAX 14 8. 33 1. 17 178 0. 48 G KLENT UR MAX 158.76 1.99 1 869.6

BASE 476 37.6 51.3 POND   ‐125.15   ‐0.14 1372.14 GNLENTUR MAX   ‐22 .7 8 1. 02 19 30 .8 GKLE NT UR MAX   ‐22.78 1.55 2 107.8

BASE 501 13.6 56.425 POND 2.01 1.16 1031.07 GNLENTUR MAX 5.84 3.72 1314.08 GKLENTUR

 MAX 7.64 4.95 1379.6

BASE 502 21.6 56.425 POND   ‐0.34   ‐1.3 1521.53 GNLENTUR MAX 3.37 1.94 1979.08 GKLENTUR MAX 5.16 3.32 2092.7

BASE 503 29.6 56.425 POND   ‐0.41 6.41 1059.22 GNL ENTUR MAX 2.73 9.74 1645.45 GKLENTUR MAX 4.25 11.07 1862.8

BASE 504 37.6 56.425 POND   ‐3. 63 4. 71 9 81. 72 GN LENT UR MAX 1.25 7.36 1266.56 GKLENTUR MAX 2.85 8.4 1266.5

BASE 505 42.148 56.425 POND 5.75 0.46 1025.76 GNLENTUR MAX 9.96 2.51 1338.3 GKLENTUR MAX 11.77 3.52 1420.4

BASE 560 13.6 64.425 POND 2.14   ‐0.63 1036.03 GNLENTUR MAX 5.84 2.1 1 330.58 GKLENTUR MAX 7.57 3.36 1357.7

BASE 561 21.6 64.425 POND 0.11   ‐0.13 1466.05 GNLENTUR MAX 3.27 2.31 1919.76 GKLENTUR MAX 4.87 3.54 1919.7

BASE 562 29.6 64.425 POND   ‐0.15   ‐0.05 1442.64 GNLENTUR MAX 3.15 2.31 1892.64 GKLENTUR MAX 4.8 3.51 1892.6

BASE 563 37.6 64.425 POND   ‐3.93   ‐0.13 1143.37 GNLENTUR MAX 1.1 2 1485.75 GKLENTUR MAX 2.72 3.07 1485.7

BASE 564 42.148 64.425 POND 5.17   ‐0.16 1068.61 GNLENTUR MAX 9.04 1.92 1382.27 GKLENTUR MAX 10.72 2.95 1382.2

BASE 618 13.6 7 2.425 POND 2.21   ‐0.21 1023.14 GNLENTUR MAX 5.83 2.31 1318.56 GKLENTUR MAX 7.51 3.57 1331.6

BASE 619 21.6 72.425 POND 0.1   ‐0.33 1440.7 GNLENTUR MAX 3.17 2.2 1 895.77 GKLENTUR MAX 4.73 3.44 1895.7

BASE 620 29.6 72.425 POND   ‐0.11   ‐0.32 1445.02 GNLENTUR MAX 3.1 2.1 1897.78 GKLENTUR MAX 4.71 3.27 1897.7

BASE 621 37.6 72.425 POND   ‐3.93   ‐0.12 1156.66 GNLENTUR MAX 1.05 1.96 1502.38 GKLENTUR MAX 2.65 3.02 1502.3

BASE 622 42.148 72.425 POND 5.08   ‐0.56 1079.31 GNLENTUR MAX 8.89 1.84 1394.24 GKLENTUR MAX 10.53 2.87 1394.2

BASE 677 13.6 8 0.425 POND 1.96   ‐1.03 973.22 GNLENTUR MAX 5.46 1.87 1258.1 GKLENTUR MAX 7.11 3.13 1271.4

BASE 678 21.6 80.425 POND   ‐0.06   ‐7.5 1117.07 GNLENTUR MAX 2.96 0.63 1486.22 GKLENTUR MAX 4.48 0.22 1589.8

BASE 679 29.6 8 0.425 POND 0.05  ‐

7.53 1125.84 GNLENTUR MAX 3.12 0.51 1506.72 GKLENTUR

 MAX 4.68 0.04 1615.9

BASE 680 37.6 80.425 POND   ‐3.73   ‐1.04 1104.65 GNLENTUR MAX 1.11 1.48 1439.34 GKLENTUR MAX 2.68 2.55 1439.3

BASE 681 42.148 80.425 POND 3.9 0.28 1070.2 GNLENTUR MAX 7.46 2.33 1393.61 GKLENTUR MAX 9.04 3.35 1393.6

BASE 719 21.6 85 POND   ‐2.88 118.32 1162.78 GNLENTUR MAX   ‐0.54 155.52 1483.47 GKLENTUR MAX   ‐0. 11 165 .3 15 56. 2

BASE 720 29.6 85 POND 2.95 118.99 1169.39 GNLENTUR MAX 4. 18 15 4. 11 14 88. 48 G KLENT UR MAX 4.64 162.82 1 560.2

BASE 734 13.6 8 8.425 POND 1.98   ‐0.19 960.22 GNLENTUR MAX 5.39 2.25 1245.8 GKLENTUR MAX 6.98 3.47 1257.4

BASE 737 37.6 88.425 POND   ‐3.48   ‐0.23 1072.8 GNLENTUR MAX 1.12 1.86 1405.27 GKLENTUR MAX 2.65 2.89 1405.2

BASE 738 42.148 88.425 POND 3.73 0.34 1016.14 GNLENTUR MAX 7.18 2.41 1332.78 GKLENTUR MAX 8.73 3.45 1332.7

BASE 777 21.6 91.85 POND   ‐2.87   ‐119.58 1157.46 GNLENTUR MAX   ‐0.25   ‐10.76 1483.39 GKLENTUR MAX 0.32   ‐25.45 1559.2

BASE 778 29.6 91.85 POND 2.94   ‐120.28 1163.98 GNLENTUR MAX 4.46   ‐13.32 1482.62 GKLENTUR MAX 5.08   ‐25.38 1554.6

BASE 805 13.6 96.425 POND 1.95 0.64 970.35 GNLENTUR MAX 5.27 3.19 1256.8 GKLENTUR MAX 6.82 4.46 1285.5

BASE 806 21.6 96.425 POND 0.01 7.24 1110.82 GNLENTUR MAX 2.81 11.02 1488.37 GKLENTUR MAX 4.25 12.5 1597.3

BASE 807 29.6 96.425 POND   ‐0.03 7.28 1116.47 GNL ENTUR MAX 2.93 10.92 1500.44 GKLENTUR MAX 4.42 12.33 1612.5

BASE 808 37.6 96.425 POND   ‐3. 75 0. 49 1 079 .4 GNLE NT UR MAX 0.96 2.64 1412.66 GKLENTUR MAX 2.47 3.7 1412.6

BASE 809 42.148 96.425 POND 3.53   ‐0.33 1023.78 GNLENTUR MAX 6.9 1.81 1 343.39 GKLENTUR MAX 8.41 2.83 1343.3

BASE 879 13.6 104.425 POND 2.21   ‐0.18 1017.48 GNLENTUR MAX 5.48 2.35 1314 GKLENTUR MAX 7 3.61 1316.1

BASE 880 21.6 104.425 POND 0.25   ‐0.07 1443.51 GNLENTUR MAX 3.02 2.36 1905.24 GKLENTUR MAX 4.42 3.59 1905.2

BASE 881 29.6 104.425 POND  ‐

0.27  ‐

0.08 1444.66 GNLENTUR 

MAX 2.74 2.24 1903.7 GKLENTUR 

MAX 4.19 3.41 1903.

BASE 882 37.6 104.425 POND   ‐3.92   ‐0.26 1109.06 GNLENTUR MAX 0.74 1.92 1449.88 GKLENTUR MAX 2.2 2.99 1449.8

BASE 883 42.148 104.425 POND 3.48   ‐0.32 1025.01 GNLENTUR MAX 6.76 1.79 1344.54 GKLENTUR MAX 8.23 2.81 1344.5

BASE 945 13.6 112.425 POND 2.2   ‐0.24 1004.77 GNLENTUR MAX 5.4 2.31 1 299.53 GKLENTUR MAX 6.87 3.58 1299.5

BASE 946 21.6 112.425 POND 0.18   ‐0.43 1436.19 GNLENTUR MAX 2.88 2.11 1894.94 GKLENTUR MAX 4.25 3.3 1894.9

BASE 947 29.6 112.425 POND   ‐0.27   ‐0.45 1429.09 GNLENTUR MAX 2.61 1.98 1885.42 GKLENTUR MAX 4.01 3.1 1885.4

BASE 948 37.6 112.425 POND   ‐4.17   ‐0.33 982.61 GNLENTUR MAX 0.52 1.96 1277.05 GKLENTUR MAX 1.94 3.06 1277.0

BASE 949 42.148 112.425 POND 3.26   ‐0.44 801.88 GNLENTUR MAX 6.46 1.79 1033.82 GKLENTUR MAX 7.91 2.85 1058.9

BASE 996 13.6 120.425 POND 1.87   ‐6.37 808.94 GNLENTUR MAX 4.92 0.74 1044.05 GKLENTUR MAX 6.35 0.28 1044.0

BASE 997 21.6 120.425 POND 0.05   ‐7.31 1108.61 GNLENTUR MAX 2.7 0.45 1 459.31 GKLENTUR MAX 4.05   ‐0.54 1459.3

BASE 998 29.6 120.425 POND   ‐0.17   ‐7.82 1060.01 GNLENTUR MAX 2.44 0.01 1404.65 GKLENTUR MAX 3.75   ‐1.06 1404.6

BASE 999 37.6 120.425 POND   ‐4.93   ‐5.62 760.71 GNLENTUR MAX 0.28 0.85 1054.7 GKLENTUR MAX 1.86 0.29 1144.7

BASE 1000 42.148 120.425 POND 2.43   ‐5.85 173.16 GNLENTUR MAX 7.16 1.21 221.59 GKLENTUR MAX 9.45 2.94 221.5

BASE 1025 13.6 125.425 POND 1.87 5.56 673.63 GNLENTUR MAX 4.86 8.83 977 GKLENTUR MAX 6.26 10.19 1079.3

BASE 1026 21.6 125.425 POND 0.14 6.3 858.46 GNLENTUR MAX 2.86 9.44 1153.5 GKLENTUR MAX 4.24 10.69 1238.5

BASE 1027 29.6 125.425 POND 72.16 3.96 899.01 GNLENTUR MAX 97.15 5.96 1206.1 GKLENTUR MAX 104.07 6.76 1 291.3

BASE 1035 37.6 125.425 POND   ‐80 .0 4 2 .8 5 889 .2 2 GN LEN TUR MAX   ‐4.86 4.19 1238.97 GKL ENTUR MAX   ‐0.52 4.5 1346.5

BASE 1036 42.148 125.425 POND 2.88 5.44 173.11 GNLENTUR 

MAX 7.94 10.22 225.72 GKLENTUR 

MAX 10.38 12.33 225.7

COMB : 1D + 1L

Tabel 

Reaksi 

Kaki 

Kolom

PROYEK 

CEMPAKA 

PUTIH 

VILLAGE

Load FX FY FZFY FZ

Hospital

COMB : 1.2DL+1LL±Ex±0.3Ey COMB : 1.2DL+1LL±F2Ex±0.6Ey

St ory Point  Coordinate

Load FX FY FZ Load FX

Page 34: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 34/102

x y(m) (m) (ton) (ton) (ton) (ton) (ton) (ton) (ton) (ton) (ton)

BASE 741 63.448 88.425 POND   ‐0.18   ‐0.22 1052.23 GNLENTUR MAX 3.43 0.56 1481.28 GKLENTUR MAX 5.11 0.91 1603.0

BASE 742 68.048 88.425 POND   ‐0.83 11.36 931.04 GNL ENTUR MAX 1 3. 43 2 0. 81 339 2. 57 G KLENT UR MAX 20.42 24.87 3 392.5

BASE 744 76.098 88.425 POND   ‐4.33 10.89 997.83 GNL ENTUR MAX 1 1. 86 2 0. 44 384 8. 97 G KLENT UR MAX 19.11 24.58 3919.

BASE 746 82.948 88.425 POND 0.7 10.37 1066.12 GNLENTUR MAX 14.9 19.84 3919.53 GKLENTUR MAX 22.08 23.88 3 951.5

BASE 749 90.698 88.425 POND   ‐1.05 15.13 1025.29 GNL ENTUR MAX 1 3. 39 2 4. 85 380 6. 74 GK LENT UR MAX 20.54 28.77 3 806.7

BASE 752 98.698 88.425 POND 0.66 11.99 1028.09 GNLENTUR MAX 1 4. 86 2 1. 21 386 9. 59 GK LENT UR

 MAX 22.04 25.12 3 888.4

BASE 754 106.748 88.425 POND 2.23 6.37 964.04 GNLENTUR MAX 16.2 14.9 3657.45 GKLENTUR MAX 23.21 18.82 3 850.2

BASE 813 65.398 96.425 POND   ‐3.77   ‐0.06 1062.24 GNLENTUR MAX 0.65 1.52 1867.42 GKLENTUR MAX 1.97 2.33 1992.

BASE 832 65.398 98.525 POND 20.4 12.29 1100.99 GNLENTUR MAX 35 .5 8 1 9. 11 407 6. 52 GKLE NT UR MAX 42 21.83 4076.5

BASE 834 76.098 98.525 POND   ‐5.18 287.07 922.45 GNL ENTUR MAX   ‐0.7 404.74 2692.58 GKLENTUR MAX   ‐0.7 441.84 2903.9

BASE 835 81.948 98.525 POND 307.49   ‐1.73 883.3 GNL ENTUR MAX 4 07 .31   ‐0.14 1732.67 GKLENTUR MAX 433.75 0.19 1 833.7

BASE 837 84.948 98.525 POND   ‐311.47   ‐1.84 252.21 GNLENTUR MAX   ‐31.46   ‐0.12 1733.77 GKLENTUR MAX   ‐72.12   ‐0.08 1754.1

BASE 838 88.398 98.525 POND 316.11   ‐2.19 1326.52 GNLENTUR MAX 413.7 0.06 1755.62 GKLENTUR MAX 4 34. 58   ‐0.02 1852.1

BASE 840 91.398 98.525 POND   ‐308.99   ‐2.29 1266.87 GNLENTUR MAX   ‐7 2. 39 0. 09 17 92 .2 GKLE NT UR MAX   ‐72.39   ‐0.33 1915.6

BASE 842 98.698 98.525 POND 4.56 317.83 306.77 GNLENTUR MAX 6.22 462.4 2845.31 GKLENTUR MAX 6.55 510.73 3 093.2

BASE 844 109.398 98.525 POND   ‐23. 58 9 .2 7 5 33 .7 2 GN LEN TUR MAX   ‐0.73 17.83 4663.3 GKL ENTUR MAX 5.83 21.64 4680.

BASE 869 76.098 103.125 POND   ‐5.06   ‐305.74 793.12 GNLENTUR MAX   ‐0.84   ‐26.78 2558.34 GKLENTUR MAX   ‐0.84   ‐76.4 2705.6

BASE 870 98.698 103.125 POND 5.77   ‐289.09 868.09 GNLENTUR MAX 7.89   ‐73.57 2742.94 GKLENTUR MAX 7.89   ‐74.12 2934.5

BASE 892 81.948 104.925 POND 227.1   ‐0.46 867.1 GNL ENTUR MAX 302 .7 7 0.0 6 1 30 4. 82 GKLE NT UR MAX 323.12 0.24 1 385.8

BASE 893 91.398 104.925 POND   ‐210.28 0.34 1092.14 GNL ENTUR MAX   ‐47 .9 4 0 .6 8 131 9. 7 GKLE NTU R MAX   ‐47.94 0.83 1 415.6

BASE 898 76.098 106.725 POND   ‐3.86 300.83 1067.82 GNLENTUR MAX   ‐0.59 396.19 2636.32 GKLENTUR MAX   ‐0.59 421.04 2829.9

BASE 902 98.698 106.725 POND 3.8 304.08 730.36 GNLENTUR MAX 5 .3 7 397 .8 7 2 700 .6 2 G KLE NTUR MAX 5.74 397.87 2 893.4

BASE 926 65.398 111.325 POND 23.27  ‐

7.27 736.88 GNLENTUR MAX 38.22 4.09 5011.41 GKLENTUR

 MAX 44.34 8.26 5011.4

BASE 928 76.098 111.325 POND   ‐6.02   ‐287.55 482.74 GNLENTUR MAX   ‐0.94 2.86 2759.08 GKL ENTUR MAX   ‐0.94   ‐72.64 3014.1

BASE 929 81.948 1 11.325 P OND 297.17 2.85 181.23 GNLENTUR MAX 39 4. 42 4. 14 169 6. 78 G KLENT UR MAX 420.24 4.32 1 805.1

BASE 931 84.948 111.325 POND   ‐3 01. 19 2. 39 9 29 .1 2 GN LEN TUR MAX   ‐14 .1 9 3. 4 169 2. 29 GKL ENT UR MAX   ‐70.18 3.58 1 797.5

BASE 932 88.398 1 11.325 P OND 324.38 2.39 853.79 GNLENTUR MAX 42 5. 22 3. 38 170 9. 98 GK LENT UR MAX 430.78 3.65 1 777.1

BASE 934 91.398 111.325 POND   ‐2 78. 72 2 .8 11 09 .4 7 GN LENT UR MAX   ‐65.74 4.08 1720.31 GKL ENTUR MAX   ‐65.74 4.23 1 836.6

BASE 936 98.698 111.325 POND 4.64   ‐286.44 970.15 GNLENTUR MAX 6.58   ‐50.56 2809.59 GKLENTUR MAX 7.08   ‐26.39 3056.1

BASE 938 109.398 1 11.325 P OND   ‐25.9   ‐8.15 406.23 GNLENTUR MAX   ‐2 .2 8 3 .0 6 4 592 .6 6 GKLE NTU R MAX 4.29 6.8 4592.6

BASE 1008 68.048 1 21.425 P OND   ‐3.51   ‐16.83 405.37 GNLENTUR MAX 27 .1 1 28 .5 7 3 73 7.3 4 GKLE NTU R MAX 41.85 47.59 4 005.5

BASE 1010 76.098 1 21.425 P OND   ‐2.72   ‐15.54 853.25 GNLENTUR MAX 27 .4 9 30 .3 8 3 502 .1 1 GKLE NTU R MAX 42.27 49.98 3 750.0

BASE 1012 82.948 121.425 POND 2.13   ‐15.7 847.52 GNLENTUR MAX 31 .4 8 31 .0 6 3 508 .6 6 GKLE NTU R MAX 46.29 51.38 3 707.7

BASE 1015 90.698 1 21.425 P OND   ‐0.32   ‐16.99 803.6 GNLENTUR MAX 28.9 32.05 3588.66 GKLENTUR MAX 43.8 53.17 379

BASE 1018 98.698 121.425 POND 0.76   ‐17.55 852.5 GNLENTUR MAX 2 9. 98 3 3. 41 36 13. 75 G KLENT UR MAX 44.85 55.13 3 850.1

BASE 1020 106.748 121.425 P OND   ‐0.5   ‐13.08 977.57 GNLENTUR MAX 28.96 37.27 3444 GKLENTUR MAX 43.69 60.18 3 662.7

BASE 1040 66.148 125.425 POND 0.8   ‐2.19 406.8 GNL ENTUR MAX 4.31 5.25 301.09 GKLENTUR MAX 5.96 7.93 301.0

BASE 1041 74.148 125.425 POND 1.62   ‐1.85 406.04 GNLENTUR MAX 5.11 5.51 304.15 GKLENTUR MAX 6.75 8.14 304.1

BASE 1042 82.148 125.425 POND 0.79   ‐3.01 876.72 GNLENTUR MAX 3.79 4.88 309.1 GKLENTUR MAX 5.25 7.69 309.

BASE 1043 90.148 125.425 POND 0.54  ‐

3.27 875.72 GNLENTUR 

MAX 3.46 4.89 311.7 GKLENTUR 

MAX 4.91 7.8 311.

BASE 1044 98.148 125.425 POND 0.53   ‐3.24 1081.27 GNLENTUR MAX 3.46 5.12 311.44 GKLENTUR MAX 4.9 8.12 311.4

BASE 1045 106.148 125.425 POND 0.78   ‐3.1 1071.04 GNLENTUR MAX 3.67 5.18 308.3 GKLENTUR MAX 5.08 8.18 308.

BASE 1266 84.948 1 04.925 POND   ‐234.26 0 735.36 GNLENTUR MAX   ‐7.49 0.25 1292.97 GKL ENTUR MAX   ‐52.54 0.36 1 334.7

BASE 1267 88.398 104.925 POND 245.87   ‐0.23 741.86 GNLENTUR MAX 32 0. 76 0. 18 129 9. 26 GK LENT UR MAX 335.43 0.34 1 377.2

COMB : 1D + 1L

Tabel 

Reaksi 

Kaki 

Kolom

PROYEK 

CEMPAKA 

PUTIH 

VILLAGE

Load FX FY FZFY FZ

Office

COMB : 1.2DL+1LL±Ex±0.3Ey COMB : 1.2DL+1LL±F2Ex±0.6Ey

St ory Point  Coordinate

Load FX FY FZ Load FX

Page 35: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 35/102

x y(m) (m) (ton) (ton) (ton) (ton) (ton) (ton) (ton) (ton) (ton)

BASE 1 0 0 POND 5.29 6.5 118.02 GNLENTUR MAX 52.56 66.46 475.93 GKLENTUR MAX 76.29 96.59 648.4

BASE 2 6.7 0 POND 1.09 4.24 128.57 GNLENTUR MAX 92.94 7 227.89 GKLENTUR MAX 139.74 8.09 268.1

BASE 3 13.6 0 POND 0.86 3.12 142.3 GNLENTUR MAX 110.53 5.48 173.49 GKLENTUR MAX 166.41 6.39 178.0

BASE 4 21.6 0 POND 0.52 4.32 151.71 GNLENTUR MAX 119.21 6.65 177.77 GKLENTUR MAX 179.68 7.4 178.8

BASE 5 29.6 0 POND 0.25 4.17 151.91 GNLENTUR MAX 119.35 7.33 178.93 GKLENTUR MAX 180.06 7.37 180.2

BASE 6 37.6 0 POND  ‐

0. 28 3 .7 1 126 .0 2 GN LEN TUR MAX 94.65 5.98 152.88 GKLENTUR

 MAX 143.02 6.47 156.1

BASE 7 42.148 0 POND 0.92 3.48 125.92 GNLENTUR MAX 95.87 5.86 152.17 GKLENTUR MAX 144.24 6.23 155.

BASE 8 50.148 0 POND 0.56 4.58 151.55 GNLENTUR MAX 119.65 7.47 178.11 GKLENTUR MAX 180.36 7.53 179.1

BASE 9 58.148 0 POND 0.4 4.34 1 51.79 GNLENTUR MAX 119.06 7.23 178.06 GKLENTUR MAX 179.55 7.23 178.9

BASE 10 66.148 0 POND 0.41 4.56 151.76 GNLENTUR MAX 119.05 7.36 178.04 GKLENTUR MAX 179.54 7.36 178.9

BASE 11 74.148 0 POND 0.42 4.38 151.89 GNLENTUR MAX 119.06 7.29 178.2 GKLENTUR MAX 179.54 7.29 179.1

BASE 12 82.148 0 POND 0.41 4.46 151.99 GNLENTUR MAX 119.05 7.34 178.31 GKLENTUR MAX 179.54 7.34 179.2

BASE 13 90.148 0 POND 0.41 4.35 151.99 GNLENTUR MAX 119.04 7.28 178.32 GKLENTUR MAX 179.53 7.28 179.2

BASE 14 98.148 0 POND 0.4 4.5 1 51.94 GNLENTUR MAX 119.04 7.35 178.27 GKLENTUR MAX 179.52 7.35 179.2

BASE 15 106.148 0 POND 0.4 4.36 151.82 GNLENTUR MAX 119.04 7.26 178.13 GKLENTUR MAX 179.52 7.26 179.0

BASE 16 114.148 0 POND 0.41 4.62 151.84 GNLENTUR MAX 119.05 7.39 178.16 GKLENTUR MAX 179.53 7.39 179.

BASE 17 122.148 0 POND 0.4 4.2 151.8 GNLENTUR MAX 119.04 7.17 178.13 GKLENTUR MAX 179.53 7.17 179.0

BASE 18 130.148 0 POND 0.39 4.9 151.72 GNLENTUR MAX 119.01 7.58 178 GKLENTUR MAX 179.49 7.58 178.9

BASE 19 138.148 0 POND 0.31 3.58 151.13 GNLENTUR MAX 118.89 5.73 176.91 GKLENTUR MAX 179.37 5.73 177.8

BASE 20 146.148 0 POND 0.42 5.07 150.49 GNLENTUR MAX 119.04 6.64 176.86 GKLENTUR MAX 179.52 6.83 176.8

BASE 21 154.148 0 POND 0.42 2.31 150.98 GNLENTUR MAX 119.04 3.85 177.61 GKLENTUR MAX 179.51 4.36 177.

BASE 22 162.148 0 POND 0.46 6.47 159.34 GNLENTUR MAX 125.19 8.66 238.85 GKLENTUR MAX 188.75 8.8 266.7

BASE 23 171.648 0 POND  ‐

6. 74 8 .5 8 140 .4 7 GN LEN TUR MAX 63.34 64.77 457.77 GKLENTUR

 MAX 97.77 92.87 607.9

BASE 47 0 7.125 POND 4.77 3.89 147.65 GNLENTUR MAX 7.68 136.8 244.05 GKLENTUR MAX 8.8 204.37 281.3

BASE 48 6.7 7.125 POND 0.45 2.24 159.9 GNLENTUR MAX 1.96 4.01 213.12 GKLENTUR MAX 2.7 4.73 213.1

BASE 49 13.6 7.125 POND   ‐0.81 4.07 182.2 GNLENTUR MAX 0.81 5.94 244.4 GKLENTUR MAX 1.53 6.57 244.

BASE 50 21.6 7.125 POND   ‐0.3   ‐1.9 165.63 GNLENTUR MAX 2.08 0.05 218.62 GKLENTUR MAX 2.78 0.13 218.6

BASE 51 29.6 7.125 POND 0.08   ‐0.86 174.56 GNLENTUR MAX 1.49 0.23 229.17 GKLENTUR MAX 2.2 0.79 229.1

BASE 52 37.6 7.125 POND   ‐1. 52 2. 59 1 56 .1 5 GN LENT UR MAX   ‐0 .0 7 4 .4 6 20 3. 84 GKLE NT UR MAX 0.74 4.58 203.8

BASE 53 42.148 7.125 POND 2.47 2.52 156.45 GNLENTUR MAX 4.63 4.4 204.21 GKLENTUR MAX 5.44 4.42 204.2

BASE 54 50.148 7.125 POND   ‐1.4 2.97 193.27 GNLENTUR MAX   ‐0.1 5.19 255.07 GKLENTUR MAX 0.59 5.19 255.0

BASE 55 58.148 7.125 POND   ‐2. 38 4. 79 2 03. 21 G NLE NT UR MAX   ‐0 .9 5 8 .2 5 268 .8 4 GKLE NTU R MAX   ‐0.42 8.25 268.8

BASE 56 66.148 7.125 POND 0.9 5.18 206.5 GNLENTUR MAX 2.49 8.93 273.33 GKLENTUR MAX 3.19 8.93 273.3

BASE 57 74.148 7.125 POND 1.71 3.65 195.97 GNLENTUR MAX 3.47 6.33 258.79 GKLENTUR MAX 4.17 6.33 258.7

BASE 58 82.148 7.125 POND 0.73 3.04 191.72 GNLENTUR MAX 2.26 5.29 252.94 GKLENTUR MAX 2.96 5.29 252.9

BASE 59 90.148 7.125 POND   ‐0. 61 3 .4 6 193 .4 8 GN LEN TUR MAX 0.7 5.91 255.44 GKLENTUR MAX 1.4 5.91 255.4

BASE 60 98.148 7.125 POND 0.08 3.64 195.38 GNLENTUR MAX 1.46 6.16 258.2 GKLENTUR MAX 2.16 6.16 258.

BASE 61 106.148 7.125 POND 1.33 5.45 203.61 GNLENTUR MAX 3 9.08 269.54 GKLENTUR MAX 3.7 9.08 269.5

BASE 62 114.148 7.125 POND 0.83 4.56 197.9 GNLENTUR MAX 2.39 7.62 261.59 GKLENTUR MAX 3.09 7.62 261.5

BASE 63 122.148 7.125 POND  ‐

0. 86 4 .9 5 200 .3 5 GN LEN TUR 

MAX 0.47 8.39 264.96 GKLENTUR 

MAX 1.17 8.39 264.9

BASE 64 130.148 7.125 POND   ‐0. 75 5 .0 7 203 .8 1 GN LEN TUR MAX 0.34 6.52 271.26 GKLENTUR MAX 1.04 6.52 271.2

BASE 65 138.148 7.125 POND   ‐0. 88 3. 89 1 95 .2 9 GN LEN TUR MAX 0.27 5.48 261.82 GKLENTUR MAX 0.97 5.48 261.8

BASE 66 146.148 7.125 POND   ‐2.19 4.73 198.7 GNLENTUR MAX   ‐0 .1 9 6 .1 7 26 7. 65 GKLE NT UR MAX 0.51 6.17 267.6

BASE 67 154.148 7.125 POND   ‐1. 37 5. 54 2 02. 65 GN LENT UR MAX 0.37 7.23 273.24 GKLENTUR MAX 1.07 7.23 273.2

BASE 68 162.148 7.125 POND 1.08 4.94 207.06 GNLENTUR MAX 2.52 8.48 278.88 GKLENTUR MAX 3.16 10 278.8

BASE 69 171.648 7.125 POND   ‐1 1. 04 6. 51 1 81. 31 GN LENT UR MAX   ‐1.85 132.16 263.27 GKL ENTUR MAX   ‐1.85 195.9 291.4

BASE 96 0 16.425 POND 2.26   ‐0.29 153.51 GNLENTUR MAX 4.5 149.82 192.4 GKLENTUR MAX 5.42 226.31 199.9

BASE 97 6.7 16.425 POND   ‐1.34   ‐5.51 133.38 GNLENTUR MAX 0.2   ‐0.08 174.85 GKLENTUR MAX 0.76   ‐1. 1 17 4. 8

BASE 99 162.148 16.425 POND   ‐2.33   ‐4.39 280.97 GNLENTUR MAX 5.11 2.18 379.95 GKLENTUR MAX   8.33 4.34 379.9

BASE 100 171.648 16.425 POND   ‐14 .4 3 1 .0 1 215 .5 7 GN LEN TUR MAX 0.86 152.86 265.72 GKLENTUR MAX 4.85 230.19 265.7

BASE 195 0 24.425 POND 0.75 3.55 103.74 GNLENTUR MAX 1.63 140.12 138.78 GKLENTUR MAX 2.03 209.57 148.5

BASE 197 162.148 24.425 POND   ‐0.5 0.25 287.83 GNLENTUR MAX 5.97 4.58 388.88 GKLENTUR MAX 9.21 6.77 388.8

BASE 198 171.648 24.425 POND   ‐13 .2 2 1 .4 2 201 .4 6 GN LEN TUR MAX 0.13 142.46 247.69 GKLENTUR MAX 3.54 214.27 247.6

BASE 238 0 28.232 POND 5.51 0.41 63.97 GNLENTUR MAX 11.44 20.89 78.81 GKLENTUR MAX 14.13 31.31 78.8

BASE 312 0 32.425 POND 0.86 1.31 108.58 GNLENTUR MAX 2.17 139.19 141.95 GKLENTUR MAX 2.8 209.42 150.6

BASE 314 162.148 32.425 POND 1.57   ‐0.18 264.86 GNLENTUR MAX 7.87 4.24 356.84 GKLENTUR MAX 11.01 6.44 356.8

BASE 315 171.648 32.425 POND  ‐

1 5. 2 2 .5 7 188 .3 1 G NLEN TUR 

MAX  ‐

2.34 132.07 229.41 GKL ENTUR 

MAX  ‐

0.2 197.96 229.4

BASE 388 0 40.425 POND 3.12   ‐0.03 162.58 GNLENTUR MAX 1 0. 16 14 7. 66 1 93. 89 G KLENT UR MAX 13.57 222.85 195.3

BASE 389 6.7 40.425 POND 0.57 4.99 204.33 GNLENTUR MAX 7.22 9.82 271 GKLENTUR MAX 10.5 12.07 27

BASE 409 162.148 40.425 POND 3.52   ‐2.87 257.18 GNLENTUR MAX 9.61 3 346.83 GKLENTUR MAX 12.52 5.2 346.8

BASE 410 171.648 40.425 POND   ‐15. 92 1 .8 7 195 .1 3 GN LEN TUR MAX   ‐1.62 143.16 238.88 GKL ENTUR MAX 1.56 215.08 238.8

BASE 431 27.6 45.21 POND   ‐2.67   ‐10.17 1001.15 GNLENTUR MAX 0.15   ‐0.17 1348.48 GKLENTUR MAX 1.15   ‐1.33 1348.4

BASE 432 0 48.425 POND 5.31 4.82 171.36 GNLENTUR MAX 1 2. 23 15 0. 14 20 6. 12 G KLENT UR MAX 15.45 223.98 206.1

BASE 433 6.7 48.425 POND 0.74 0.04 228.26 GNLENTUR MAX 6.78 4.53 306.07 GKLENTUR MAX 9.8 6.65 306.0

BASE 458 138.148 48.425 POND   ‐2.38   ‐0.32 969.54 GNLENTUR MAX 0.84 0.8 1 246.52 GKLENTUR MAX 2.59 1.29 1310.5

BASE 459 146.148 48.425 POND   ‐0.53   ‐0.18 227.38 GNLENTUR MAX 5.4 4.11 294.82 GKLENTUR MAX 8.32 6.23 294.8

BASE 460 154.148 48.425 POND 0.14   ‐0.2 233.78 GNLENTUR MAX 5.65 4.18 309.5 GKLENTUR MAX 8.48 6.35 309.

BASE 461 162.148 48.425 POND 2.2   ‐0.11 263.36 GNLENTUR MAX 7.96 4.29 355.52 GKLENTUR MAX 10.77 6.48 355.5

BASE 462 171.648 48.425 POND   ‐13.91   ‐2.14 197.51 GNLENTUR MAX   ‐0.94 139.01 241.77 GKL ENTUR MAX 2.17 210.07 241.7

BASE 499 0 56.425 POND 6.25 0.7 167.86 GNLENTUR MAX 13.06 136.41 246 GKLENTUR MAX 16.18 205.59 272.9

BASE 500 6.7 56.425 POND 1.2 0.67 213.11 GNLENTUR MAX 7.06 4.91 284.46 GKLENTUR MAX 9.97 7.04 284.4

BASE 517 138.148 56.425 POND   ‐0.8 0.77 877.66 GNLENTUR MAX 2.28 2.06 1230.25 GKLENTUR MAX 4.02 2.64 1341.3

BASE 518 146.148 56.425 POND   ‐0.4   ‐0.57 224.24 GNLENTUR MAX 5.38 3.84 290.67 GKLENTUR MAX 8.23 5.97 290.6

BASE 519 154.148 56.425 POND 0.16 0.08 235.37 GNLENTUR 

MAX 5.49 4.35 311.56 GKLENTUR 

MAX 8.23 6.51 311.5BASE 520 162.148 56.425 POND 1.95   ‐1.12 256.48 GNLENTUR MAX 7.49 3.79 345.89 GKLENTUR MAX 10.2 5.99 345.8

BASE 521 171.648 56.425 POND   ‐82.21 125.37 579.39 GNL ENTUR MAX 18 1. 85 64 7. 76 81 3. 97 GK LENT UR MAX 295.42 907.23 887.7

BASE 558 0 64 425 POND 8 31 ‐6 73 139 74 GNLENTUR MAX 54 9 66 76 377 22 GKLENTUR MAX 78 09 102 84 487 2

COMB : 1D + 1L

Tabel 

Reaksi 

Kaki 

Kolom

PROYEK 

CEMPAKA 

PUTIH 

VILLAGE

Load FX FY FZFY FZ

Podium 

Luar

COMB : 1.2DL+1LL±Ex±0.3Ey COMB : 1.2DL+1LL±F2Ex±0.6Ey

St ory Point  Coordinate

Load FX FY FZ Load FX

Page 36: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 36/102

x y(m) (m) (ton) (ton) (ton) (ton) (ton) (ton) (ton) (ton) (ton)

COMB : 1D + 1L

Load FX FY FZFY FZ

COMB : 1.2DL+1LL±Ex±0.3Ey COMB : 1.2DL+1LL±F2Ex±0.6Ey

St ory Point  Coordinate

Load FX FY FZ Load FX

BASE 575 154.148 64.425 POND 0.45 0.56 241.99 GNLENTUR MAX 5.63 4.85 320.64 GKLENTUR MAX 8.28 7.01 320.6

BASE 576 162.148 64.425 POND   ‐2. 01 0 .6 7 217 .4 9 GN LEN TUR MAX 4.39 4.92 291.65 GKLENTUR MAX 7.13 7.06 291.6

BASE 577 167.652 64.425 POND   ‐4.76   ‐7.17 103.55 GNLENTUR MAX 5.29 8.64 173.85 GKLENTUR MAX 9.23 14.79 202.9

BASE 617 6.7 72.425 POND 8.01   ‐0.03 192.84 GNLENTUR MAX 1 5. 03 13 5. 77 27 1. 32 G KLENT UR MAX 18.14 205.03 296.8

BASE 638 130.148 72.425 POND 0.65   ‐8.7 152.25 GNLENTUR MAX 6.32   ‐1.35 191.72 GKLENTUR MAX 9.19 1.19 191.7

BASE 639 138.148 72.425 POND   ‐0.43   ‐8.72 182.14 GNLENTUR MAX 4.39   ‐1.26 233.54 GKLENTUR MAX 6.94 1.02 233.5

BASE 640 146.148 72.425 POND 0.02   ‐7.16 176.5 GNL ENTUR MAX 5 0.57 228.44 GKLENTUR MAX 7.55 2.87 228.4

BASE 641 154.148 72.425 POND 5.3   ‐1.25 263.91 GNLENTUR MAX 10.79 3.5 353.6 GKLENTUR MAX 13.31 5.67 353.

BASE 666 122.148 76.425 POND 3.49 2.42 134.35 GNLENTUR MAX 4.88 3.48 168.29 GKLENTUR

 MAX 4.88 3.48 173.1

BASE 667 130.148 76.425 POND   ‐1.7 6.33 142.6 GNLENTUR MAX 4.2 11.41 181.42 GKLENTUR MAX 6.79 13.6 181.4

BASE 668 138.148 76.425 POND 0.03 5.42 165.06 GNLENTUR MAX 4.94 10.45 211.87 GKLENTUR MAX 7.44 12.67 211.8

BASE 669 146.148 76.425 POND 1.41 5.08 172.03 GNLENTUR MAX 6.31 10.12 224.82 GKLENTUR MAX 8.75 12.38 224.8

BASE 676 6.7 80.425 POND 7.91 1.26 185.63 GNLENTUR MAX 1 4. 52 14 5. 47 22 4. 59 GK LENT UR MAX 17.41 218.93 224.5

BASE 692 154.148 80.425 POND   ‐0. 23 3. 11 2 34 .7 9 GN LENT UR MAX 4.72 7.62 315.73 GKLENTUR MAX 7.19 9.73 315.7

BASE 693 159.661 80.425 POND   ‐3.93   ‐4.24 74.86 GNL ENTUR MAX 5.04 8.56 94.63 GKLENTUR MAX 8.67 13.92 96.7

BASE 712 122.148 83.681 POND   ‐3.42   ‐10.52 163.07 GNLENTUR MAX 3.11   ‐1.05 208.24 GKLENTUR MAX 5.64 1.4 208.2

BASE 713 130.148 83.681 POND   ‐0.74   ‐7.02 161.42 GNLENTUR MAX 4.39 0.33 206.42 GKLENTUR MAX 6.8 2.47 206.4

BASE 714 138.148 83.681 POND 0.12   ‐5.93 180.63 GNLENTUR MAX 4.85 0.92 234.19 GKLENTUR MAX 7.27 3.1 234.1

BASE 715 146.148 83.681 POND 2.8   ‐5.24 202.95 GNLENTUR MAX 7.71 1.46 269.02 GKLENTUR MAX 10.06 3.66 269.0

BASE 733 6.7 88.425 POND 8.42 1.52 188.72 GNLENTUR MAX 1 4. 83 14 6. 55 22 8. 84 G KLENT UR MAX 17.6 220.42 228.8

BASE 756 114.148 88.425 POND   ‐0. 42 6. 12 2 13 .5 1 GN LEN TUR MAX 4.46 11.35 275.94 GKLENTUR MAX 6.99 13.63 275.9

BASE 757 122.148 88.425 POND   ‐0.5 6.88 183.21 GNLENTUR MAX 4.39 12.04 236.69 GKLENTUR MAX 6.75 14.24 236.6

BASE 758 130.148 88.425 POND 0.07 6.78 188.44 GNLENTUR MAX 4.68 11.89 246.01 GKLENTUR MAX 7.05 14.09 246.0

BASE 759 138.148 88.425 POND   ‐0. 02 6. 84 1 97 .1 5 GN LENT UR MAX 4.58 11.98 262.11 GKLENTUR MAX 6.95 14.19 262.1

BASE 760 146.148 88.425 POND 6.2 6.9 225.8 GNLENTUR MAX 11.42 12.15 303.53 GKLENTUR MAX 13.73 14.42 303.5

BASE 804 6.7 96.425 POND 7.97 1.66 185.43 GNLENTUR 

MAX 1 4.0 7 14 6. 67 22 4. 36 GKLE NT UR 

MAX 16.7 220.53 224.3

BASE 823 114.148 96.425 POND 1.5   ‐0.61 227.37 GNLENTUR MAX 6.36 3.54 297.27 GKLENTUR MAX 8.81 5.58 297.2

BASE 824 122.148 96.425 POND   ‐0. 13 0. 89 2 36. 58 GN LENT UR MAX 4.4 4.93 313.36 GKLENTUR MAX 6.68 6.98 313.3

BASE 825 130.148 96.425 POND   ‐0.03   ‐0.04 236.68 GNLENTUR MAX 4.42 3.99 315.54 GKLENTUR MAX 6.7 6.07 315.5

BASE 826 138.148 96.425 POND 0.21 0.52 253.93 GNLENTUR MAX 4.7 4.72 342.18 GKLENTUR MAX 6.98 6.83 342.1

BASE 827 146.148 96.425 POND   ‐2.31   ‐2.91 215.31 GNLENTUR MAX 3.5 2.71 288.4 GKLENTUR MAX 5.87 4.81 288.

BASE 828 151.67 96.425 POND   ‐4.71   ‐2.54 78.74 GNL ENTUR MAX 4.53 9.58 100.05 GKLENTUR MAX 8.12 15.05 102.4

BASE 878 6.7 104.425 POND 8.1 1.5 185.85 GNLENTUR MAX 14 146.55 224.91 GKLENTUR MAX 16.52 220.44 224.9

BASE 886 114.148 1 04.425 POND   ‐1 0.6 222.9 GNLENTUR MAX 3.32 4.71 297.61 GKLENTUR MAX 5.5 6.77 297.6

BASE 887 122.148 104.425 POND 1.52 0.07 223.09 GNLENTUR MAX 6.16 4.12 300.35 GKLENTUR MAX 8.43 6.18 300.3

BASE 888 130.148 1 04.425 POND   ‐0.96 2.2 202.07 GNLENTUR MAX 3.9 6.81 270.97 GKLENTUR MAX 6.18 9.02 270.9

BASE 889 138.148 104.425 POND 1.35   ‐0.2 245.3 GNL ENTUR MAX 5.74 4.13 330.31 GKLENTUR MAX 7.91 6.26 330.3

BASE 890 147.675 1 04.425 POND   ‐8.89   ‐5.36 144.01 GNLENTUR MAX 2.58 9.01 189.95 GKLENTUR MAX 6.32 14.98 197.9

BASE 944 6.7 112.425 POND 8.05 1.43 184.94 GNLENTUR MAX 13.72 146.8 223.67 GKLENTUR MAX 16.15 220.86 223.6

BASE 952 114.148 112.425 POND 0.31 1.13 238.26 GNLENTUR MAX 4.9 5.25 316.11 GKLENTUR MAX 7.3 7.3 316.1

BASE 953 122.148 112.425 POND 1.77   ‐0.29 215.72 GNLENTUR MAX 6.26 3.91 290.56 GKLENTUR MAX 8.45 5.97 290.5

BASE 954 130.148 112.425 POND 0.05 0.01 184.13 GNLENTUR MAX 1.07 0.75 247.21 GKLENTUR MAX 1.59 1.11 247.2

BASE 955 138.148 1 12.425 POND  ‐

4.5  ‐

1.7 169.61 GNLENTUR 

MAX 2.15 3.67 225.8 GKLENTUR 

MAX 4.44 5.91 225.

BASE 956 143.679 1 12.425 P OND   ‐6.31   ‐3.41 97.07 GNL ENTUR MAX 4.5 9.01 187.68 GKLENTUR MAX 8.59 14.42 227.3

BASE 994 141.287 117.214 POND 29.68   ‐69.02 512.72 GNLENTUR MAX 362.2 514.65 773.3 GKLENTUR MAX 530.06 795.38 862.

BASE 995 6.7 120.425 POND 6.15   ‐1.61 154.87 GNLENTUR MAX 1 1. 22 11 7. 81 1 86. 28 G KLENT UR MAX 13.44 178.26 189.1

BASE 1001 50.148 1 20.425 P OND   ‐0.27   ‐7.32 190 GNLENTUR MAX 3.74 0.91 245.44 GKLENTUR MAX 5.74 2.23 245.4

BASE 1002 58.148 120.425 POND 6.15   ‐8.21 180.54 GNLENTUR MAX 10.93 0.51 233.56 GKLENTUR MAX 13 1.85 233.5

BASE 1003 114.148 120.425 P OND   ‐1.86   ‐6.41 177.97 GNLENTUR MAX 2.97 0.78 236.48 GKLENTUR MAX 5.18 2.92 236.4

BASE 1004 122.148 120.425 POND 1.72   ‐8.04 179.94 GNLENTUR MAX 6 0.03 240.37 GKLENTUR MAX 8.09 2.2 240.3

BASE 1005 130.148 120.425 P OND   ‐0.06   ‐4.45 153.24 GNLENTUR MAX 1.02   ‐0.31 204.11 GKLENTUR MAX 1.54   ‐0.85 204.1

BASE 1006 138.39 1 20.425 P OND   ‐8   ‐4. 01 51 .7 GNLE NT UR MAX 5.55 5.72 111.34 GKLENTUR MAX 10.67 9.88 137.5

BASE 1024 6.7 125.425 POND 6.11 3.97 154.05 GNLENTUR MAX 10 .9 5 11 7. 54 22 4. 08 GKLE NT UR MAX 13.07 175.24 247.9

BASE 1037 50.148 1 25.425 P OND   ‐0. 04 7. 33 1 96. 82 GNL ENT UR MAX 3.82 12.25 260.16 GKLENTUR MAX 5.79 14.33 260.1

BASE 1038 58.148 1 25.425 P OND   ‐1. 78 5. 19 2 15. 39 G NLE NT UR MAX 2.98 9.73 373.8 GKLENTUR MAX 4.64 11.64 441.6

BASE 1046 114.148 125.425 P OND   ‐0. 24 1. 76 2 18. 25 G NLE NT UR MAX 2.63 7.43 297.27 GKLENTUR MAX 4.05 9.59 297.2

BASE 1047 122.148 1 25.425 P OND 0.35 1.49 201.07 GNLENTUR MAX 3.15 7.19 273.24 GKLENTUR MAX 4.57 9.4 273.2

BASE 1048 130.148 125.425 P OND   ‐3.58   ‐2.05 117.14 GNLENTUR MAX 0.99 4.02 163.08 GKLENTUR MAX 2.58 6.45 179.1

BASE 1049 133.878 125.425 P OND   ‐4.04   ‐1.35 71.86 GNL ENTUR MAX 7.79 9.02 176.9 GKLENTUR MAX 12.91 14.07 225.3

BASE 1066 130.148 129.559 P OND  ‐

3.29  ‐

1.26 75.76 GNL ENTUR 

MAX 6.84 9.27 101.39 GKLENTUR 

MAX 11.49 14.53 101.3

BASE 1067 6.7 133.425 POND 3.57   ‐5.67 144.58 GNLENTUR MAX 8.79 111.8 317.84 GKLENTUR MAX 11.24 170.42 394.9

BASE 1068 13.6 133.425 POND 1.26   ‐7.46 162.57 GNLENTUR MAX 4.14 1.94 211.89 GKLENTUR MAX 5.54 2.35 213.6

BASE 1069 21.6 133.425 POND   ‐0.15   ‐8.47 190.04 GNLENTUR MAX 2.48 1.72 249.13 GKLENTUR MAX 3.81 2.21 249.1

BASE 1070 29.6 133.425 POND 0.01   ‐9 192.66 GNL ENTUR MAX 2.57 1.66 252.72 GKLENTUR MAX 3.87 1.98 252.7

BASE 1071 37.6 133.425 POND   ‐3.82   ‐6.67 166.48 GNLENTUR MAX 0.79 1.22 216.93 GKLENTUR MAX 2.22 2.69 216.9

BASE 1072 42.148 133.425 POND 3.58   ‐5.96 165.16 GNLENTUR MAX 6.83 1.29 215.35 GKLENTUR MAX 8.28 3.03 215.3

BASE 1073 50.148 133.425 POND 0.19   ‐8.2 191.2 GNL ENTUR MAX 2.88 0.84 252.08 GKLENTUR MAX 4.26 1.65 258.4

BASE 1074 58.148 1 33.425 P OND   ‐3.03   ‐5.96 210.47 GNLENTUR MAX 2.99 0.46 370.82 GKLENTUR MAX 4.65 1.86 440.4

BASE 1075 66.148 1 33.425 P OND   ‐0.09   ‐0.92 206.46 GNLENTUR MAX 2.29 3.04 292.14 GKLENTUR MAX 3.5 3.04 292.1

BASE 1076 74.148 1 33.425 P OND   ‐0.02   ‐0.54 208.09 GNLENTUR MAX 2.33 3.51 294.62 GKLENTUR MAX 3.53 3.51 294.6

BASE 1077 82.148 1 33.425 P OND   ‐0.05   ‐0.63 207.63 GNLENTUR MAX 2.31 3.39 293.92 GKLENTUR MAX 3.52 3.39 293.9

BASE 1078 90.148 1 33.425 POND   ‐0.05   ‐0.61 207.71 GNLENTUR MAX 2.32 3.4 294.04 GKLENTUR MAX 3.52 3.4 294.0

BASE 1079 98.148 1 33.425 POND   ‐0.05   ‐0.61 207.72 GNLENTUR MAX 2.32 3.4 294.06 GKLENTUR MAX 3.52 3.4 294.0

BASE 1080 106.148 133.425 P OND   ‐0.04   ‐0.61 207.56 GNLENTUR MAX 2.32 3.38 293.83 GKLENTUR MAX 3.52 3.38 293.8

BASE 1081 114.148 133.425 P OND   ‐0.12   ‐0.68 208.6 GNL ENTUR MAX 2.32 3.41 295.37 GKLENTUR MAX 3.53 3.41 295.3

BASE 1082 122.148 133.425 P OND   ‐0.32   ‐0.65 172.22 GNLENTUR MAX 1.87 3.26 241.77 GKLENTUR MAX 3.15 3.26 241.7

BASE 1083 126.66 1 33.425 P OND  ‐

1.38  ‐

0.54 49.81 GNL ENTUR 

MAX 7.96 9.87 76.82 GKLENTUR 

MAX 12.57 15.12 87.7BASE 1084 6.7 138.425 POND 3.02   ‐5.63 74.41 GNL ENTUR MAX 49.29 48.96 261.55 GKLENTUR MAX 72.67 75.84 350.5

BASE 1085 13.6 138.425 POND 0.53   ‐1.17 87.31 GNL ENTUR MAX 99.15 3.48 126.1 GKLENTUR MAX 149.42 5.61 138.4

BASE 1086 21.6 138.425 POND 0.02 ‐1.3 93.58 GNL ENTUR MAX 107.41 2.31 112.26 GKLENTUR MAX 162.19 3.88 113.9

Page 37: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 37/102

x y(m) (m) (ton) (ton) (ton) (ton) (ton) (ton) (ton) (ton) (ton)

COMB : 1D + 1L

Load FX FY FZFY FZ

COMB : 1.2DL+1LL±Ex±0.3Ey COMB : 1.2DL+1LL±F2Ex±0.6Ey

St ory Point  Coordinate

Load FX FY FZ Load FX

BASE 1090 50.148 138.425 POND 0.92   ‐1.44 95.28 GNL ENTUR MAX 108.43 1.85 114.81 GKLENTUR MAX 163.25 3.18 116.9

BASE 1091 58.148 138.425 POND 1.34   ‐0.77 97.79 GNL ENTUR MAX 92.61 1.69 115.29 GKLENTUR MAX 139.16 2.92 117.1

BASE 1092 63.448 138.425 POND 0.54   ‐0.04 39.37 GNL ENTUR MAX 52.42 0.23 46.67 GKLENTUR MAX 78.89 0.36 46.6

BASE 1093 66.148 138.425 POND 0.08   ‐0.38 96.95 GNL ENTUR MAX 74.72 1.84 117.91 GKLENTUR MAX 112.8 3.05 117.9

BASE 1094 74.148 138.425 POND 0.09   ‐0.46 125.41 GNLENTUR MAX 107.65 1.83 152.56 GKLENTUR MAX 162.51 3.09 152.5

BASE 1095 82.148 1 38.425 P OND   ‐0.01   ‐0.47 125.7 GNL ENTUR MAX 107.22 1.8 152.98 GKLENTUR MAX 161.92 3.04 152.9

BASE 1096 90.148 1 38.425 POND   ‐0.01   ‐0.47 125.69 GNLENTUR MAX 107.25 1.82 152.96 GKLENTUR MAX 161.96 3.08 152.9

BASE 1097 98.148 1 38.425 POND   ‐0.01   ‐0.47 125.69 GNLENTUR MAX 107.24 1.88 152.96 GKLENTUR MAX 161.95 3.17 152.9

BASE 1098 106.148 138.425 POND 0.11  ‐

0.45 125.95 GNLENTUR MAX 107.51 2.08 153.33 GKLENTUR

 MAX 162.29 3.46 153.3

BASE 1099 114.148 138.425 P OND   ‐2.72   ‐0.39 120.25 GNLENTUR MAX 105 2.9 145.29 GKLENTUR MAX 159.08 4.66 148.9

BASE 1100 122.148 138.425 POND 1.22   ‐0.94 166.83 GNLENTUR MAX 14 5. 84 13 7. 96 36 0. 62 GK LENT UR MAX 219.53 208.96 446.4

Page 38: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 38/102

x y(m) (m) (ton) (ton) (ton) (ton) (ton) (ton) (ton) (ton) (ton)

BASE 92 19.7 13.53 POND 3.36 6.59 802.2 GNLENTUR MAX 5.91 9.65 1057.09 GKLENTUR MAX 6.88 10.7 1126.0

BASE 93 29.765 14.233 POND   ‐4 4.25 807.03 GNLENTUR MAX   ‐0.41 6.76 1053.11 GKL ENTUR MAX   ‐0.41 7.76 1116.

BASE 98 98.148 16.425 POND 5.64 0.25 1023.97 GNLENTUR MAX 18.9 11.04 1423.61 GKLENTUR MAX 25.17 16.75 1 545.2

BASE 143 11.144 18.877 POND 13.46   ‐0.08 851.32 GNLENTUR MAX 17.97 3.15 1119.5 GKLENTUR MAX 19.31 4.28 1193.8

BASE 178 22.07 23.04 POND   ‐2.72   ‐10.78 592.46 GNLENTUR MAX   ‐0.34   ‐0.53 833.69 GKLENTUR MAX 0.34   ‐1.52 910.4

BASE 183 26.092 23.32 POND 4.08  ‐

10.24 590.02 GNLENTUR MAX 6

  ‐0.6 818.98 GKLENTUR

 MAX 6.68

  ‐1.43 889.6

BASE 196 98.148 24.425 POND 4.57 2.71 1339.6 GNLENTUR MAX 16 .9 1 1 4. 39 1 74 2. 57 GKLE NT UR MAX 22.86 20.14 1 742.5

BASE 203 18.651 25.178 POND   ‐8.28   ‐6.89 596.55 GNLENTUR MAX   ‐1.17   ‐0.11 854.16 GKLENTUR MAX   ‐1.17   ‐0.98 939.0

BASE 223 29.182 25.911 POND 9.32   ‐5.84 589.47 GNLENTUR MAX 12.41   ‐0.27 863.84 GKLENTUR MAX 12.66   ‐0.83 957.7

BASE 239 7.365 28.232 POND 10.69 0.25 824.53 GNLENTUR MAX 14.14 1.91 1125.6 GKLENTUR MAX 15.08 2.73 1217.5

BASE 256 17.142 28.917 POND   ‐10.85   ‐0.66 599.02 GNLENTUR MAX   ‐1. 53 1 .4 3 8 96 .3 6 G KLE NTUR MAX   ‐1.53 2.38 1 001.3

BASE 266 30.158 29.823 POND 10.96 0.82 591.49 GNLENTUR MAX 14.75 2.82 881.64 GKLENTUR MAX 14.75 3.78 983.5

BASE 313 98.148 32.425 POND 4.25   ‐10.12 1114.82 GNLENTUR MAX 16.16 3.91 1433.37 GKLENTUR MAX 21.9 9.4 1486.5

BASE 316 18.118 32.829 POND   ‐10. 12 6 .6 7 611 .4 8 GN LEN TUR MAX   ‐1 .4 2 9. 07 89 4. 29 GK LENT UR MAX   ‐1.42 9.82 991.0

BASE 325 28.649 33.562 POND 8.06 6.92 597.69 GNLENTUR MAX 10.69 9.46 847.06 GKLENTUR MAX 11.02 10.27 927.7

BASE 330 21.208 35.42 POND   ‐6. 27 15 .4 6 26 .4 6 GN LENT UR MAX   ‐0 .8 7 2 0. 5 86 1. 17 GKLE NT UR MAX   ‐0.87 20.5 932.

BASE 332 25.23 35.7 POND 2.59 11.73 609.25 GNLENTUR MAX 4.17 15.61 844.15 GKLENTUR MAX 4.79 15.61 916.7

BASE 357 98.148 36.875 POND 4.29   ‐0.07 928.2 GNL ENTUR MAX 15 .9 5 1 0. 81 1 28 2. 09 GKLE NT UR MAX 21.58 16.37 1 389.7

BASE 377 9.806 38.022 POND 24.44   ‐2.86 919.31 GNLENTUR MAX 32.48 1.17 1217.9 GKLENTUR MAX 32.48 1.19 1240.0

BASE 445 50.148 48.425 POND 12.92   ‐0.01 1633.46 GNLENTUR MAX 26.35 9.81 2158.73 GKLENTUR MAX 32.05 14.83 2 158.7

BASE 447 63.448 48.425 POND   ‐7.57 0.13 1568.87 GNL ENTUR MAX 5.57 10.37 2063.14 GKLENTUR MAX 11.18 15.59 2 063.1

BASE 449 74.148 48.425 POND 0.25   ‐0.03 1648.22 GNLENTUR MAX 10.87 10.2 2169.76 GKLENTUR MAX 16.27 15.43 2 169.7

BASE 450 84.848 48.425 POND 0.16 0.93 1561.8 GNLENTUR MAX 10 .7 4 1 1.9 6 2 06 3. 47 GKLE NT UR

 MAX 16.13 17.52 2 063.4

BASE 451 95.548 48.425 POND   ‐1.8   ‐3.28 1321.99 GNLENTUR MAX 9.36 9.16 1742.61 GKLENTUR MAX 14.77 15.02 1 742.6

BASE 452 106.148 48.425 POND   ‐12.22 24.93 1810.2 GNL ENTUR MAX 2.2 40.79 2409.22 GKLENTUR MAX   7 .55 46 .98 2 409. 2

BASE 454 114.148 48.425 POND 0.53   ‐0.26 1195.1 GNLENTUR MAX 11.2 12.32 1568.22 GKLENTUR MAX 16.59 18.7 1568.2

BASE 456 122.148 48.425 POND   ‐2.17   ‐3.36 1283.55 GNLENTUR MAX 2.24   ‐0.93 1669.72 GKLENTUR MAX 3.99   ‐0.23 1669.7

BASE 457 129.148 48.425 POND 4.43 0.41 1384.34 GNLENTUR MAX 8.45 1.78 1816.48 GKLENTUR MAX 10.13 2.44 1816.4

BASE 507 50.148 56.425 POND 13.1   ‐0.06 1618.01 GNLENTUR MAX 26.07 9.74 2137.21 GKLENTUR MAX 31.53 14.7 2137.2

BASE 509 63.448 56.425 POND   ‐7.62 0.01 1586.64 GNL ENTUR MAX 5.08 10.15 2088.81 GKLENTUR MAX 10.45 15.33 2 088.8

BASE 511 74.148 56.425 POND 0.54 1.09 1677.67 GNLENTUR MAX 1 0. 76 1 1. 44 221 1. 34 GK LENT UR MAX 15.93 16.64 2 211.3

BASE 512 84.848 56.425 POND   ‐0.6   ‐4.66 1517.18 GNLENTUR MAX 9.67 7.64 1997.22 GKLENTUR MAX 14.82 13.17 1 997.2

BASE 513 95.548 56.425 POND 29.63   ‐2.57 1794.82 GNLENTUR MAX 44.11 9.35 2384.56 GKLENTUR MAX 49.23 14.89 2 384.5

BASE 514 122.148 56.425 POND   ‐16.44   ‐3.24 1409.17 GNLENTUR MAX   ‐5.82   ‐0.75 1851.99 GKLENTUR MAX   ‐5.66 0.05 1 851.9

BASE 515 130.148 56.425 POND   ‐1.71   ‐6.95 1165.97 GNLENTUR MAX 2.02   ‐2.42 1517.83 GKLENTUR MAX 3.68   ‐3.23 1517.8

BASE 547 92.426 61.054 POND 6.14 31.72 1545.35 GNLENTUR MAX 16 .8 5 47 .4 1 2 02 5.6 3 GKLE NTU R MAX 21.83 52.85 2 025.6

BASE 548 115.054 61.054 POND   ‐13.56   ‐9.11 1941.66 GNLENTUR MAX 1.28 6.7 2 581.18 GKLENTUR MAX 6.55 13.29 2581.1

BASE 549 126.368 61.054 POND 0.48 0.49 944.97 GNLENTUR MAX 3.67 1.72 1204.73 GKLENTUR MAX 5.19 2.31 1204.7

BASE 557 129.196 63.882 POND 1.39 9.08 802.06 GNLENTUR MAX 4.7 12.03 1244.8 GKLENTUR MAX 6.26 12.27 1406.8

BASE 566 50.148 64.425 POND 13.11 0.09 1611.69 GNLENTUR 

MAX 25.59 9.81 2127.56 GKLENTUR 

MAX 30.79 14.77 2 127.5

BASE 568 63.448 64.425 POND   ‐7.63 0.38 1564.13 GNL ENTUR MAX 4.62 10.58 2056.18 GKLENTUR MAX 9.75 15.75 2056.1

BASE 570 74.148 64.425 POND 0.45   ‐1.12 1642.99 GNLENTUR MAX 10.22 9.43 2164.71 GKLENTUR MAX 15.17 14.62 2 164.7

BASE 571 84.848 64.425 POND   ‐7.31   ‐8.18 1259.53 GNLENTUR MAX 4.74 4.88 1626.6 GKLENTUR MAX 9.7 10.21 1702.4

BASE 583 109.397 66.711 POND   ‐15.16   ‐18.54 1929.2 GNLENTUR MAX   ‐0. 5 1. 12 256 3. 73 GKL ENT UR MAX 4.58 6.14 2563.7

BASE 584 120.711 66.711 POND   ‐3.4   ‐3.38 971.16 GNLENTUR MAX 6.7 9.7 1241.96 GKLENTUR MAX 11.3 15.8 1290.

BASE 605 84.848 68.632 POND 23.73 5.23 1455.59 GNLENTUR MAX 36.33 15.84 1921.8 GKLENTUR MAX 40.98 21.05 1921.

BASE 609 123.539 69.539 POND 0.24 3.39 774.74 GNLENTUR MAX 9.05 15.57 1188.48 GKLENTUR MAX 13.45 21.58 1 336.9

BASE 614 103.74 72.367 POND   ‐16.28   ‐13.58 1736.29 GNLENTUR MAX   ‐2 .2 9 0 .6 3 2 28 7. 03 GKLE NT UR MAX 2.39 6.53 2287.0

BASE 615 115.054 72.367 POND   ‐2.8   ‐4.01 990.75 GNLENTUR MAX 7.58 8.28 1269.13 GKLENTUR MAX 12.08 14.28 1 304.9

BASE 624 50.148 72.425 POND 12.96 0.68 1607.05 GNLENTUR MAX 24 .5 8 1 0. 24 2 12 9. 49 GKLE NT UR MAX 29.54 15.26 2 129.4

BASE 626 63.448 72.425 POND   ‐3.26 0.1 1573.4 GNLENTUR MAX 7.13 9.66 2077.91 GKLENTUR MAX 12.04 14.85 2 077.9

BASE 628 74.148 72.425 POND   ‐5.6   ‐2.35 1459.55 GNLENTUR MAX 5.89 7.06 1913.68 GKLENTUR MAX 10.59 12.24 1 913.6

BASE 629 81.17 72.425 POND 14.47 15.9 1326.01 GNLENTUR MAX 2 5. 55 2 8. 67 173 1. 45 G KLENT UR MAX 30.29 34.26 1 790.7

BASE 647 117.882 75.196 POND   ‐2. 09 1. 03 7 63 .7 5 GN LEN TUR MAX 7.52 12.92 1156.17 GKLENTUR MAX 11.87 18.97 1 294.9

BASE 673 98.083 78.024 POND   ‐10.69   ‐18.17 1718.16 GNLENTUR MAX 3.67 0.01 2272.9 GKLENTUR MAX 8.33 5.53 2272.

BASE 674 109.397 78.024 POND   ‐3.46   ‐2.56 1046.86 GNLENTUR MAX 7.17 10.14 1345.68 GKLENTUR MAX 11.6 16.02 1367.9

BASE 682 50.148 80.425 POND 2.02  ‐

7.96 1343.81 GNLENTUR 

MAX 5.64 0.05 1779.91 GKLENTUR 

MAX 7.35  ‐

1.17 1779.9

BASE 683 58.148 80.425 POND   ‐3. 68 9 .3 10 05. 29 GN LENT UR MAX 1.53 12.73 1302.63 GKLENTUR MAX 3.33 12.73 1354.3

BASE 684 63.448 80.425 POND   ‐0. 64 0. 16 8 95. 71 GNL ENT UR MAX 7.29 9.97 1137.78 GKLENTUR MAX 11.1 14.97 1193.0

BASE 685 66.148 80.425 POND 1.63   ‐3.27 1094.44 GNLENTUR MAX 9.26 8.26 1428.25 GKLENTUR MAX 13.05 13.35 1 515.9

BASE 686 74.148 80.425 POND 2.41 0.61 1404.03 GNLENTUR MAX 11.5 11 1843.53 GKLENTUR MAX 16 16.25 1843.5

BASE 687 82.148 80.425 POND 1.59 3.09 1383.73 GNLENTUR MAX 10 .6 5 1 4.1 9 1 80 8. 28 GKLE NT UR MAX 15.17 19.7 1808.2

BASE 696 112.225 80.853 POND 7.28 5.14 872.2 GNLENTUR MAX 16.48 17.03 1263.5 GKLENTUR MAX 20.79 22.82 1 393.5

BASE 709 92.426 83.681 POND   ‐0.29   ‐27.83 1567.44 GNLENTUR MAX 2.85   ‐1.87 2043.85 GKLENTUR MAX 4.49   ‐3.91 2043.8

BASE 710 103.74 83.681 POND   ‐1.99   ‐5.5 1319.54 GNLENTUR MAX 1.77   ‐0.07 1695.14 GKLENTUR MAX 3.26   ‐0.32 1783.1

BASE 739 50.148 88.425 POND   ‐0.09 0.67 1135.98 GNL ENTUR MAX 3.07 2.64 1504.14 GKLENTUR MAX 4.65 3.6 1504.1

BASE 740 58.148 88.425 POND   ‐2.63 0.72 1124.53 GNL ENTUR MAX 2.06 2.56 1477.03 GKLENTUR MAX 3.78 3.45 1481.

BASE 810 50.148 96.425 POND   ‐0.05   ‐0.07 1164.69 GNLENTUR MAX 2.96 1.83 1545.04 GKLENTUR MAX 4.48 2.79 1545.0

BASE 811 58.148 96.425 POND   ‐0.55   ‐0.88 1206.99 GNLENTUR MAX 2.81 1.29 1592.79 GKLENTUR MAX 4.34 2.2 1592.7

BASE 884 50.148 104.425 POND   ‐0.05   ‐0.44 1145.72 GNLENTUR MAX 2.83 1.56 1521.19 GKLENTUR MAX 4.29 2.49 1521.1

BASE 885 58.148 104.425 POND 2.03   ‐0.87 1202.92 GNLENTUR MAX 4.98 1.27 1591.89 GKLENTUR MAX 6.34 2.17 1591.8

BASE 950 50.148 112.425 POND   ‐0.15   ‐0.82 828.48 GNLENTUR MAX 2.73 1.48 1081.63 GKLENTUR MAX 4.17 2.48 1081.6

BASE 951 58.148 112.425 POND 0.7 1.34 929.13 GNLENTUR MAX 3.63 3.3 1206 GKLENTUR MAX 5.07 4.23 1232.4

COMB : 1D + 1L

Tabel 

Reaksi 

Kaki 

Kolom

PROYEK 

CEMPAKA 

PUTIH 

VILLAGE

Load FX FY FZFY FZ

Podium 

tengah

COMB : 1.2DL+1LL±Ex±0.3Ey COMB : 1.2DL+1LL±F2Ex±0.6Ey

St ory Point  Coordinate

Load FX FY FZ Load FX

Page 39: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 39/102

Denah 

Kolom

PROYEK 

CEMPAKA 

PUTIH 

VILLAGE

Hospital

Apartment 1 Apartment 2

Podium tengah

Podium tengah

Podium 

Luar

Podium LuarPodium Luar

     P    o     d     i    u    m

 

     L    u    a    r

Podium Luar

Hospital

Apartment 

1 Apartment 

2

Podium tengah

Podium tengah

Podium Luar

P di LPodium Luar

     P    o     d     i    u    m

 

     L    u    a    r

Podium Luar

Office

Office

Page 40: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 40/102

 

.  RESUME ANALISA PONDASI DAN ANALISA GALIAN DALAM

1. 

Data penyelidikan tanah dilakukan oleh PT. Indeco Prima pada bulan Desember 2012 berupa 15

titik sondir kapasitas 2.5 ton, 2 titik deep boring kedalaman 100 m, 8 titik deep boring kedalaman

60 m, dan 6 titik deep boring kedalaman 40 m serta uji SPT. Muka air tanah (GWL) ditemui pada

kedalaman -1.50 m dari permukaan tes tanah.

2. 

Penentuan Elevasi

 Dalam laporan pondasi ini, elevasi ± 0.00 yang dimaksud adalah elevasi ground.  Elevasi top

lantai Basement 3 adalah -10.50 m. Sedangkan elevasi penyelidikan tanah berada pada -3.00 m

dari elevasi ground.

Page 41: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 41/102

 

3. 

Analisa Pondasi 

Sistem pondasi menggunakan bored pile. Penentuan jumlah bored pile pada setiap kaki kolom

ditentukan berdasarkan beban gravitasi dan uplift. Kemudian reaksi aksial dan lateral setiap tiang

 juga dicek terhadap kombinasi beban Gempa Sedang dan Gempa Kuat sebagai grup tiang maupun

tiang tunggal dengan SF

i. 

Area Podium

Sistem pondasi menggunakan bored pile dia.80 cm. Panjang total tiang direncanakan Lb 25.20

m.

Daya dukung bored pile dia. 80cm :

‐  Tekan : Pijin = 240 ton (Tiang Tunggal)

Efisien grup, ηv = 0.80

‐  Tarik : Pijin = 150 ton

‐  Lateral

Berdasarkan analsis dengan program  L Pile, daya dukung lateral tiang bor dia. 80

yaitu:

Sebagai Tiang Tunggal dalam grup pile (area podium)

Lateral Pijin = 14.4 ton (Gempa sedang/nominal)

Lateral ultimit = 20.8 ton (Gempa kuat)

ii. 

Area Tower

Sistem pondasi menggunakan bored pile dia.100 cm. Panjang total tiang direncanakan Lb

= 44 m.

Daya dukung bored pile dia. 100cm :

‐  Tekan : Pijin = 500 ton (Tiang Tunggal)

Efisien grup, ηv = 0.80

‐  Tarik : Pijin = 340 ton

‐  Lateral :

Berdasarkan analsis dengan program L Pile, daya dukung lateral tiang bor dia. 100

dalam grup tiang yaitu:

Lateral Pijin = 22 ton (Gempa sedang/nominal)

Lateral : Pijin = 32.1 ton (Gempa kuat)

Page 42: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 42/102

 

Analisa Settlement :

Maksimum total settlement pada tiang bor yang terjadi adalah 12.10 cm di titik pile 3446

Maksimum penurunan total adalah 14.08 cm pada Tower Apartement 1

4. 

Analisa Dinding Basement

Dinding basement direncanakan hingga kedalaman -10.50 m dari elevasi arsitek dengan konstruksi

 beton bertulang ketebalan 30 cm (untuk Lt. Basement 3 s/d Lt. 1).

Berdasarkan hasil penyelidikan tanah, didapatkan muka air tanah pada kedalaman

-2.00 m dari permukaan tanah eksisting (elev. -5.00 m dari ± 0.00 Ground). Sedangkan elevasi

Basement 3 pada kedalaman –10.50 m dan elevasi galian (dasar basement) = -13.00 m. Untuk

level banjir ditentukan pada kedalaman ± 0.00 m

5. 

Analisa Soldier Pile

 

Rencana galian basement adalah sedalam -13.00 m dari elevasi eksisting (el. -3.00 yang

rencana arsitektur)

  Digunakan system contiguous pile D.80 cm c/c 1.20 m sepanjang 21,00 m dan bentonite pile

d.60 cm sedalam 15,00 m.

  Pada soldier pile Area – A dipasang ground anchor pada kedalaman -6.00 m (elevasi -9.00 m)

dengan strand 8 tendon type 0.5 inchi dan tensile strength = 270 ksi sehingga diperoleh

kapasitas tarik 192 ton sedangkan gaya tarik pada angkur 146 ton sehingga diperoleh SF =

1.315

  Pada soldier pile Area – B dipasang ground anchor pada kedalaman -3.00 m (elevasi -6.00 m)

dengan strand 8 tendon type 0.5 inchi dan tensile strength = 270 ksi sehingga diperoleh

kapasitas tarik 192 ton sedangkan gaya tarik pada angkur 155 ton sehingga diperoleh SF =

1.238

  Pada soldier pile Area – B dipasang ground anchor pada kedalaman -6.00 m (elevasi -9.00 m)

dengan strand 8 tendon type 0.5 inchi dan tensile strength = 270 ksi sehingga diperoleh

Penurunan Elastik Total Penurunan

Sc   μg μg x Sc   Si St

(m) (m) (m) (m)

Tower Office 0.084 0.7 0.06 0.0577 0.1166

Rumah Sakit 0.121 0.7 0.08 0.0370 0.1217

Apartement 1 0.126 0.7 0.09 0.0524 0.1408

Apartement 2 0.102 0.7 0.07 0.0582 0.1296

Penurunan Konsolidas

Area

Page 43: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 43/102

 

kapasitas tarik 192 ton sedangkan gaya tarik pada angkur 119 ton sehingga diperoleh SF =

1.613

6. 

Analisa Dewatering

Luas area galian sebesar 21869 m2  . Direncanakan dengan 10 buah pompa dewatering dengan

kapasitas @ 400 lt/menit. Selain itu ditambahkan juga 5 buah sumur observasi tanpa pompa dan

3 buah sumur isi (recharge well).

Page 44: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 44/102

 

Laporan PerhitunganStruktur Bawah Cempaka Putih Village 

-

[Pick the date]

Page 45: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 45/102

Bagian B : PERHITUNGAN STRUKTUR BAWAH

1. Pendahuluan

Data penyelidikan tanah dilakukan oleh PT. INDECO PRIMA pada bulanNovember 2012 - Januari 2013 berupa 15 titik sondir kapasitas 2.5 ton dan

boring dalam berupa 8 titik kedalaman @ 60 m (DB2 & DB3) dan 6 titikkedalaman @ 40 m (DB 1 & DB 4) serta uji SPT setiap interval 2.00 m dan mukaair tanah (GWL) ditemui pada kedalaman -2.00 m (dari elevasi eksisting soiltest). Penyelidikan soil test tambahan berupa 2 titik bor @ 100 m (DB15 &DB16), pumping test dengan 1 PW dan 6 OW dan Downhole Seismic Test diDB15 & DB16

Deep Bor +SPT test

Tes Sondir

Deep Bor tambahan (DB 15 & DB 16) s/d 100 m

DB 15

DB 16

Gambar 1 : Denah Titik Bor & Tower Bangunan 

 APARTEMENT 1

(40 LT+3BS)(PC 2.30 M)

PODIUM TENGAHHOTEL(18 LT+3BS)

(PC 1.20 M)

OFFICE (34 LT+3BS)(PC 2.30 M)

DB 12

DB 13

DB 14

DB 2

DB 6

DB 11

DB 5DB 3

DB 4

DB 7

DB 1

DB 8DB 9

DB 10

RUMAH SAKIT(18 LT+3BS)(PC 1.50 M)

 APARTEMENT 2

(40 LT+3BS)(PC 2.30 M)

PODIUM TENGAH(18 LT+3BS)(PC 1.20 M)

PODIUM LUAR(3 BS)

(PC 1.20 M)

PODIUM LUAR(3 BS)

(PC 1.20 M)

PODIUM LUAR(3 BS)

(PC 1.20 M)

Page 46: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 46/102

2. KONDISI TANAH

2.1. Profil Tanah

DB-1 DB-2 DB-3 DB-4

- 3.00

GF ± 0.00

- 13.00

BS1 - 3.50

BS2 - 7.00

BS3 - 10.50

BP ɸ  Lb = 25.2 m

BP ɸ  Lb = 40 m- 42 m 

BP ɸ  Tip Pile -37.00 m (Podium Luar)

BP ɸ  Tip Pile -53.00 m (Rumah Sakit, Apar 1 & 2)

BP ɸ  Tip Pile -55.00 m (Podium Tengah) BP ɸ  Tip Pile -53.00 m (Office) 

Lanau kelempunganHard, N = 30 - 40

Page 47: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 47/102

 

DB-6 DB-7 DB-8 DB-9

- 3.00

GF ± 0.00

- 13.00

BS1 - 3.50

BS2 - 7.00

BS3 - 10.50

BP ɸ  Lb = 25.2 m

BP ɸ  Lb = 40 m - 42 m 

Lanau kelempunganHard, N = 30 - 40

BP ɸ  Tip Pile -37.00 m (Podium Luar)

BP ɸ  Tip Pile -53.00 m (Rumah Sakit, Apar 1 & 2)

BP ɸ  Tip Pile -55.00 m (Podium Tengah) 

BP ɸ  Tip Pile -53.00 m (Office) 

Page 48: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 48/102

DB-12 DB-13 DB-14

- 3.00

GF ± 0.00

- 13.00

BS1 - 3.50

BS2 - 7.00

BS3 - 10.50

BP ɸ  Lb = 25.2 m

BP ɸ  Lb = 40 m - 42 m 

Lanau kelempunganHard, N = 30 - 40

BP ɸ  Tip Pile -37.00 m (Podium Luar)

BP ɸ  Tip Pile -53.00 m (Rumah Sakit, Apar 1 & 2)

BP ɸ  Tip Pile -55.00 m (Podium Tengah) 

BP ɸ  Tip Pile -53.00 m (Office) 

DB-11

Page 49: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 49/102

 

Gambar 2 : Profil Lapisan Tanah

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

0 10 20 30 40 50

NSPT (DB‐16)

‐100

‐90

‐80

‐70

‐60

‐50

‐40

‐30

‐20

‐10

0

0 10 20 30 40 50

NSPT (DB‐15)

Lempung kelanauan, 

soft to medium,  N = 2 ‐ 8

Lanau kepasiran, 

Hard, N > 30

Pasir kelanauan, 

Dense, N =30  ‐ 40

Lempung kelanauan, 

very stiff, N = 15 ‐ 30

DB-15 DB-16

- 3.00

GF ± 0.00

- 13.00

BS1 - 3.50

BS2 - 7.00

BS3 - 10.50

BP ɸ  Lb = 25.2 m

BP ɸ  Lb = 40 m - 42 m 

Lanau kelempunganHard, N = 30 - 40

BP ɸ  Tip Pile -37.00 m (Podium Luar)

BP ɸ  Tip Pile -53.00 m (Rumah Sakit, Apar 1 & 2)

BP ɸ  Tip Pile -55.00 m (Podium Tengah) BP ɸ  Tip Pile -53.00 m (Office) 

Page 50: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 50/102

2.2  Muka Air Tanah & Pumping Test

Muka air tanah (GWL) (GWL) ditemui pada kedalaman -2.00 m dari elevasieksisting soil test pada November 2012 atau elevasi -5.00 m (dari ± 0.00arsitek).

Dalam analisa geoteknik untuk kepelerluan desain galian (dinding basement,

turap dan analisa dewatering) serta analisa daya dukung pondasi (uplift danlateral tiang) elevasi muka air rencana disamakan dengan permukaan tanaheksisting (elevasi -3.00 m dari ± 0.00 arsitek).

Pumping Test dilakukan pada titik bor DB15 & DB16 yang meliputi 1 PW dan 6OW

OW4-8 m

OW5-16 m

OW6-32 m

OW3-4 m

OW2-2 m

OW1-1 m

PW

Gambar 3 : Denah Titik Pumping Test 

Page 51: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 51/102

2.3  Parameter Tanah

-46.00:

Gambar 4 : Profil & Parameter Tanah

Data properties tanah :

wet = 1.45 t/m3  sat = 1.5 t/m3  Cc = 0.20 

cu = 1.44 t/m2  c’ = 0 t/m2  Cr = 0.04Ø = 0 Ø’ = 23  e0 = 1.00 

Ka’ = 0,438 Ka’ = 0,662Ks = 8.14 MN/m3  Ɛ50 = 2 %

Eu = 250 t/m2 E = 150 t/m2

sat = 1.60 kN/m3  Cc = 0.001 

cu = 0.00 t/m2  c’ = 0.00 t/m2  Cr = 0.0001Ø = 35 Ø’ = 35 eo = 0.45

Ka = 0.27 Ka = 0.52 Kp = 3.69Ks = 16.3 MN/m3 Eu = 5000 t/m2 E = 3500 t/m2

-9.00

sat = 16.0 kN/m3  Cc = 0.10cu = 5.30 t/m2  c’ = 0 t/m2  Cr = 0.02Ø = 0 Ø’ = 25  eo = 0.60 

Ka’ = 0405, Ka’ = 0,637 Kp = 2.46Ks = 136 MN/m3  Ɛ50 = 0.70 %

Eu = 1200 t/m2 E = 800 /m2

sat = 1.70 t/m

3

  Cc 0.05

 

cu = 20 t/m2 c’ = 0.00 t/m2  Cr = 0.01Ø = 0 Ø’ = 28 eo = 0.40

Ka’ = 0.36, Ka’ = 0,60 Kp = 2.77Ks = 543 MN/m3  Ɛ50 = 0.40 %

Eu = 3000 t/m2 E = 2100 t/m2

GWL = -5.00 (Soil Test, Nov 2012)

Lempung kelanauan, soft to mediumNilai N-SPT= 2 – 8 blows,konus qc = 5 - 20 kg/cm2 

Lanau kelempungan, stiff.Nilai N-SPT= 8 –15 blows,konus qc = 16 - 80 kg/cm2 

Lanau kepasiran, HardN > 30, konus qc > 250 kg/cm2 

Pasir kelanauan, medium to DenseN = 20 - 50

Lempung kelanauanN = 20 - 30

- 13.00

GF - ± 0.00

BS1 - 3.50

BS2 - 7.00

sat = 1.60 kN/m3  Cc = 0.03 

cu = 13.30 t/m2  c’ = 0.00 t/m2  Cr = 0.006Ø = 0 Ø’ = 26 e0 = 0.60

Ka’ = 0.39 Ka’ = 0,624Kp = 2.56Ks = 271 MN/m3  Ɛ50 = 0.50 %Eu = 4000 t/m2 E = 2800 t/m2

GWL = -3.00 Desain

End Bor -103.00

BS3 - 10.50

-3.00

-20.00

-26.00

-3.00

-14.00

BP ɸ  Lb = 25.2 m

BP ɸ  Lb = 40 m - 42 m 

Lanau kelempungan, HardN = 30 - 40

sat = 1.60 kN/m3  Cc = 0.01 

cu = 20 t/m2  c’ = 0.00 t/m2  Cr = 0.002Ø = 0 Ø’ = 28 eo = 0.50

Ka’ = 0.36 Ka’ = 0,60Kp = 1.66

Ks = 543 MN/m3  Ɛ50 = 0.40 %Eu = 6000 t/m2 E = 4200 t/m2

BP ɸ  Tip Pile -37.00 m (Podium Luar)

BP ɸ  Tip Pile -53.00 m

(Rumah Sakit, Apar 1 & 2)

BP ɸ  Tip Pile -55.00 m (Podium Tengah) BP ɸ  Tip Pile -53.00 m (Office) 

Page 52: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 52/102

2.3.1  Parameter Kuat Geser

Dari uji triaksial diperoleh parameter sudut geser dalam (ɸ) dan kohesi tanah (c), seperti yang tercantum pada data hasil laboratorium sbb. :

Nilai kuat geser undrained (Su) diperoleh dari persamaan berikut. :

Su = c + σ tan Ø

Dimana :

Kohesif, Su = cu

Sand, Su = σ tan Ø

1.5 0-2 .0 0 3 .5 0-4 .0 0 1 .50 -2.00 3 .50 -4.0 0 5 .50 -6.0 0 1 .5 0-2 .0 0 3 .5 0-4 .0 0 5.50 -6 .0 0 7.5 0-8.00 1 .5 0-2 .00 3 .5 0-4 .0 0

UCT (U) cu, kg/cm 0.44 0.43 0.20 0.16

(R) cu, kg/cm 0.38 0.13

Total c, kg/cm 0.24 0.32 0.13 0.54 0.19 0.19 0.23

UU Test/   22.37 23.60 10.00 24.23 18.59 4.06 22.28

CU Test Eff c', kg/cm

'Unconfined 0.44 0.43 0.20 0.16

UU Test 0.24 0.32 0.13 0.54 0.19 0.19 0.23

2 3 6 2 5 12 5 10 18 2 4

1.5 0-2 .0 0 3 .5 0-4 .0 0 1 .50 -2.00 3 .50 -4.0 0 5 .50 -6.0 0 1 .5 0-2 .0 0 3 .5 0-4 .0 0 5.50 -6 .0 0 1.5 0-2.00 3 .5 0-4 .00 5 .5 0-6 .0 0

UCT (U) cu, kg/cm 0.27 0.20 0.18

(R) cu, kg/cm 0.21 0.28 0.15

Total c, kg/cm 0.25 0.21 0.20 0.14 0.16 0.18 0.21 0.17 0.14

UU Test/   3.94 21.27 20.95 3.78 5.55 20.86 7.76 20.72 3.78

CU Test Eff c', kg/cm

'Unconfined 0.27 0.20 0.18

UU Test 0.25 0.21 0.20 0.14 0.16 0.18 0.21 0.17 0.14

3.00 4.00 4.00 4.00 12.00 4.00 2.00 37.00 2.00 3.00 6.00

DB - 11 DB - 12

1.5 0-2 .0 0 3 .5 0-4 .0 0 5 .50 -6 .00 7 .50 -8.0 0 1 .50 -2.0 0 3 .5 0-4 .0 0 5 .5 0-6 .0 0 3.50 -4 .0 0 3.5 0-4.00

UCT (U) cu, kg/cm 0.22 0.37 0.25

(R) cu, kg/cm 0.36 0.22Total c, kg/cm 0.23 0.16 0.09 0.12 0.23 0.11

UU Test/   22.78 8.61 4.22 18.52 21.42 17.76

CU Test Eff c', kg/cm

'Unconfined 0.22 0.37 0.25

UU Test 0.23 0.16 0.09 0.12 0.23 0.11

4 4 2 3 7 2 3 4 2

1.50-2.00 3.50-4.00 5.50-6.00 7.50-8.00 3.50-4.00 5.50-6.00

UCT (U) cu, kg/cm 0.38 0.23 0.50

(R) cu, kg/cm 0.17

Total c, kg/cm 0.43 0.13 0.12

UU Test/   15.33 17.97 18.52

CU Test Eff c', kg/cm 0.12

' 18.32

Unconfined 0.38 0.23 0.50

UU Test 0.43 0.13 0.12

7 2 1 11 3 3

2.00-2.50 4.00-4.50 6.00-6.50 8.00-8.50 10.00-10.50 14.00-14.50 18.00-18.50 22.00-22.50 26.00-26.50 36.00-36.50 56.00-56.50 76.00-76.50 86.00-86.50 96.0

UCT (U) cu, kg/cm 0.806 0.411 1.545 1.570 2.468 4.471 0.441

(R) cu , kg/cm

Total c, kg/cm

UU Test/   CU Test Eff c', kg/cm

'Unconfined 0.81 0.41 1.54 1.57 2.47 4.47 0.44

UU Test

Vp (m/sec) 386.10 929.30 1112.80 1334.90 1459.20 1572.00 1615.4 1635.3 1967.9

Vs (m/sec) 119.40 127.00 139.40 158.90 238.20 320.00 367.8 374.6 328.7

2 2 2 25 27 28 41 50 27 30 26 31 27

3.00-3.50 5.00-5.50 7.00-7.50 9.00-9.50 11.00-11.50 16.00-16.50 21.00-21.50 27.00-28.00 41.00-41.50 51.00-51.50 61.00-61.50 71.00-71.50 81.00-81.50 91.0

UCT (U) cu, kg/cm2 1.058 0.276 0.815 2.255 3.602

(R) cu , kg/cm 2

Total c, kg/cm2 0.900 1.800

UU Test/   5.500 6.500CU Tes t Eff c', kg/cm2

'Unconfined 1.06 0.28 0.81 2.26

UU Test 0.90 1.80

Vp (m/sec) 340.30 1338.80 15110.00 1374.90 1479.30 1590.60 1628 1968.5

Vs (m/sec) 141.70 133.40 148.60 147.60 276.50 326.70 373.1 267.6

1 2 2 8 22 38 48 22 23 24 27 31 28

DB - 16

Sample Depth, m

Strength

Test

Nilai SuSu = cu (kg/cm2)

Su = c (kg /cm2)

NSPT

Sample Depth, m

Strength

Test

NSPT

Nilai SuSu = cu (kg/cm2)

Su = c (kg /cm2)

Seismic Downhole

Test

Seismic Downhole

Test

Deep Boring No.

DB - 15

NSPT

Deep Boring No. DB - 13 DB - 14

Sample Depth, m

Strength

Test

Nilai SuSu = cu (kg/cm2)

Su = c (kg /cm2)

NSPT

Deep Boring No.

DB - 10

Sample Depth, m

Strength

Test

Nilai SuSu = cu (kg/cm2)

Su = c (kg /cm2)

DB - 9

Nilai SuSu = cu (kg/cm2)

Su = c (kg /cm2)

NSPT

Deep Boring No.

DB - 4

Strength

Test

Strength

Test

Nilai SuSu = cu (kg/cm2)

Su = c (kg /cm2)

NSPT

Deep Boring No. DB - 5 DB - 6 DB - 7 DB - 8

Sample Depth, m

Sample Depth, m

Deep Boring No. DB - 1 DB - 2 DB - 3

Page 53: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 53/102

Kohesi tanah, cu pada tanah lempung dan lanau

Plot nilai Su = cu (dari uji unconfined & UU Test) terhadap nilai NSPT, diperolehhubungan cu = 2/3 NSPT (ton/m2) atau cu = 0.07 NSPT (kg/cm2)

Gambar 5 : Korelasi cu data laboratorium vs NSPT 

Nilai tersebut relevan dengan korelasi yang diusulkan oleh Terzaghi & Peck yaitunilai cu = 2/3 NSPT (ton/m2)

Gambar 6 : Referensi korelasi cu data laboratorium vs NSPT 

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

  c  u   (   t  o  n   /  m   2   )

NSPT

Korelasi cu vs NSPT

UU Test Unconfined Test

Page 54: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 54/102

Phi (sudut geser dalam)

- pada tanah pasir, phi undrained, umumnya diperoleh dari uji directshear test sedangkan untuk kedalaman yang tidak terambil sampelnyamaka nilai nya diperoleh dari referensi umum mengenai hubungankepadatan tanah non kohesif (pasir) terhadap nilai phi

- phi drained, tanah kohesif, niali phi diperoleh dari uji triaksial CU test

dan referensi hubungan Plastic Indeks uji laboratorium dan Ø’ (USNavy, 1971 and Ladd, 1977)

Ø ‘ 

Gambar 7 : Korelasi Penentuan Nilai Sudut Geser DalamDrained ( Ø’) terhadap nilai PI (%) 

Page 55: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 55/102

Page 56: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 56/102

 

2.3.2  Parameter Konsolidasi untuk Analisa Settlement

  Data Uji Laboratorium dengan konsolidasi test dan indeks properties tanah 

Kedalaman eo Cc Cr     γsat   σv' Pc OCR

(m) (t/m3) (t/m2) (kg/cm2)

1.50-2.00 Silty Clay , Soft 2 1.399 1.690

3.50-4.00 Silty Clay , Soft 4 1.658 0.745 0.075 1.620 2.171 1.050 1.909

1.50-2.00 Silty Clay , Soft 2 0.833 0.220 0.022 1.908 1.362 2.300 8.214

3.50-4.00 Silty Clay , Soft 3 1.549 1.652

5.50-6.00 Silty Clay , St iff   12 2.410 0.810 0.081 1.496 2.727

7.50-8.00 Silty Clay , St iff   16 2.123 1.534

1.50-2.00 Silty Clay , St iff   12 1.372 0.256 0.026 1.702 1.053 1.850 7.400

3.50-4.00 Sil ty Clay, Medium Sti ff   5 1.569 1.636

5.50-6.00 Silty Clay , St iff   10 2.195 0.820 0.082 1.519 2.854

7.50-8.00 Silty Clay , St iff   18 1.950 1.561

1.50-2.00 Silty Clay , Soft 2 1.683 0.550 0.055 1.618 0.927 1.750 7.609

3.50-4.00 Silty Clay , Soft 4 2.196 0.820 0.082 1.522 1.827 2.100 3.962

5.50-6.00 Silty Clay , St iff   9 1.753 1.604

1.50‐2.00 Silty Clay, Soft 3 1.113 0.280 0.028 1.793 1.189 1.950 7.500

3.50‐4.00 Silty Clay, Soft 4 2.005 0.540 0.054 1.549 1.922 1.900 3.393

5.50‐6.00 Silty Clay, Stiff  10 2.088 1.537

1.50‐2.00 Silty Clay, Soft 4 1.034 0.260 0.026 1.820 1.230 0.790 2.926

3.50‐4.00 Silty Clay, Soft 4 2.048 0.920 0.092 1.548 1.919 1.950 3.482

5.50‐6.00 Silty Clay, Stiff  12 1.807 1.601

1.50‐2.00 Silty Clay, Soft 4 1.066 1.791

3.50‐4.00 Silty Clay, Soft 2 1.538 0.640 0.064 1.652 2.284 2.560 4.571

5.50‐6.00 Silty Clay, Very Stiff  37 2.175 1.030 0.103 1.525 8.300 1.850 2.229

1.50‐2.00 Silty Clay, Soft 2 1.315 0.365 0.037 1.722 1.083 2.500 10.417

3.50‐4.00 Silty Clay, Soft 3 1.923 1.568

5.50‐6.00 Silty Clay, Medium Stiff  6 1.949 0.790 0.079 1.566 3.113 1.980 2.386

1.50‐2.00 Silty Clay, Soft 4 1.014 0.490 0.049 1.817 1.226 1.300 5.000

3.50‐4.00 Silty Clay, Soft 4 1.247 0.370 0.037 1.738 2.584 1.950 3.250

5.50‐6.00 Silty Clay, Soft 2 2.204 1.522

7.50‐8.00 Silty Clay, Soft 3 2.486 1.475

1.50‐2.00 Silty Clay, Medium Stiff  7 1.413 0.465 0.047 1.686 1.029 0.710 2.958

3.50‐4.00 Silty Clay, Soft 2 1.652 1.628

5.50‐6.00 Silty Clay, Soft 3 1.947 1.560

1.50‐2.00 Silty Clay, Medium Stiff  5 1.062 0.330 0.033 1.799 1.198 0.710 2.958

3.50‐4.00 Silty Clay, Soft 4 1.524 0.540 0.054 1.649 2.270

5.50‐6.00 Silty Clay, Soft 3 1.620 1.643

1.50‐2.00 Silty Clay, Stiff  10 0.929 1.855 1.282

3.50‐4.00 Silty Clay, Soft 2 1.770 0.720 0.072 1.597 2.089 1.750 3.241

5.50‐6.00 Silty Clay, Medium Stiff  7 1.650 1.625

1.50‐2.00 Silty Clay, Medium Stiff  7 0.982 0.240 0.024 1.827 1.241 0.907 7.308

3.50‐4.00 Silty Clay, Very Soft 2 1.785 0.645 0.065 1.592 2.072

5.50‐6.00Silty Clay, Very Soft

1 1.9351.556

7.50‐8.00 Silty Clay, Stiff  11 2.298 1.495

1.50‐2.00 Silty Clay, Stiff  11 0.811 0.175 0.018 1.908 1.363 0.980 3.630

3.50‐4.00 Silty Clay, Very Soft 2 1.471 0.395 0.040 1.662 2.316 2.450 4.375

5.50‐6.00 Silty Clay, Soft 3 1.971 1.550

DB 3

Nilai

Uji SPT

No. Tipe Tanah NSPT

DB 13

DB 14

Korelasi Laboratorium

Konsolidasi

DB 7

DB 8

DB 9

DB 10

DB 11

DB 12

DB 1

DB 2

DB 4

DB 5

DB 6

Data

Page 57: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 57/102

 

4. PERENCANAAN  CONTIGUOUS PILE (L=21m) DAN GALIAN

Berdasarkan data jarak antar dinding basement dan property line dengan tetangga(denah site plan arsitek di bawah) maka pekerjaan pengaman galian dapat dibagimenjadi 2 metode yaitu untuk daerah dimana jarak antara batas lahan dengantetangga masih cukup lebar untuk dibuat sebagian dengan open cut dan daerahdengan sepenuhnya menggunakan soldier pile.

a. Area A : Kombinasi galian open cut sedalam -4 m yang berada di atas contiguouspile untuk area yang space basement-property line > 8 m (Slope + Contiqous Pile)

b. Area B  : Metode galian dengan full contiguous pile untuk area yang spacebasement-property line < 8 m

SURCHARGE LOAD 20 kN/m2

    1    0 .    0

    0   m 

Soldierpile

Dasar galian tahap 3Elevasi = -13.00 m

    1    1 .    0

    0   m 

-3.00 m

 Anchor-2

-6.00 m

-9.00 m

SURCHARGE LOAD 20 kN/m2

    1    0 .    0

    0   m 

Soldierpile

Dasar galianElevasi = -13.00 m Anchor-1

    1    1 .    0

    0   m 

-3.00 m

- 24.00 m

-9.00 m

Slope H : V = 2 : 1

-7.00 m26 º

 Anchor-1

Page 58: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 58/102

 

Denah Site

Gambar 31 : Denah penempatan Area Sistem Turap

HOTEL

12.54 m

18.22 m 31.77 m

3.53 m

7.92 m9.68 m 3.17 m 7.60 m 20.63 m

24.51 m

32.05 m

11.40 m

10.88 m

11.10 m

8.71 m

14.71 m

5.42 m

NORTH

Full Contiqous Pile

Sloep + Contiqous Pile

Slope + Contiqous Pile

Slope + Contiqous Pile

Slope + Contiqous Pile

- 24.00 m

Page 59: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 59/102

 

 Area Arah Bangunan Tetangga Jarak Min (m) Sistem Galian A Utara Lahan Pemda (Pedagang Tanaman) 12.54 Slope + Contiqous PIle

 A & B Selatan Carefour 3.17 Full Contiqous PIle

 A Barat Hotel 8.71 Slope + Contiqous PIle A Timur Jalan Umum 10.88 Slope + Contiqous PIle

Beban surcharge bangunan sekeliling dalam desain galian adalah 2 t/m2 yangmerupakan beban dinamis kendaraan baik selama konstruksi maupun bebanservice yang cukup mewakili kondisi eksisting karena :

- Sisi selatan (Carefour) dan sisi Barat (Hotel) dimana beban bangunan tetangga inidapat diabaikan karena bangunan menggunakan pondasi tiang

- Sisi utara (Lahan Pemda) dan sisi Timur (Jalan umum) hanya sebagai jalan akseskendaraan umum dan area taman umum

Perencanaan Galian Dalam

Pekerjaan galian basement dari elevasi tanah eksisting -3.00 ke elevasi dasar galain

meliputi :Area Top

BasementTebal PC Lantai

KerjaElev. Dasar

GalianTinggi Galian

(m)

Hospital -10.50 1.50 0.10 -12.10 9.10

Apartement 1 -10.50 2.30 0.20 -13.00 10.00

Apartement 2 -10.50 2.30 0.20 -13.00 10.00

Office -10.50 2.30 0.20 -13.00 10.00

Podium Tengah

(Mall + Hotel)

-10.50 1.20 0.10 -11.80 8.80

Podium Luar

(sekeliling)

-10.50 PC = 1.20

Slab = 0.60

0.10 -11.80 8.80

Dalam evaluasi pekerjaan galian, Perencana melakukan tahapan perhitungan sbb. :1.  Perhitungan manual untuk menentukan : kedalaman turap (D), gaya yang bekerja

pada ground anhor (Fh1 dan Fh2) serta menentukan panjang pengangkuran (freelength dan bond length)

2.  Berdasarkan perhitungan tahap 1 di atas diperoleh geometri dan gaya angkur yangselanjutnya sebagai gaya prestress. Perhitungan dengan bantuan Program SAP danPlaxis 2D 2010 untuk menentukan : gaya-gaya dalam (bending momen, geser danaksial) dengan tahapan galian secara manual (SAP) dan stage construction (Plaxis)serta memperoleh deformasi, bending momen dan gaya geser pada turap.

Data Teknik

- Diameter = 80 cm- Jarak As/as = 1.20 m- Panjang Area A = 21,00 m

 Area B = 17.00 m- Mutu Beton K – 300

Page 60: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 60/102

 

4.1. GALIAN KOMBINASI SLOPE H:V = 2:1 & CONTIQOUS PILE (AREA A)

4.1.1. Tahap Perhi tungan Manual Menentukan Kedalaman Turap (D) dan Gaya Anchorserta Panjang Penjangkaran

TAHAP I : surcharge load 2 t/m2 dan pekerjaan turap -4.00 m s/d -24.00 m

TAHAP II : Penggalian dilaksanakan hingga kedalaman -3,50 m dibawah elevasi eksistingdan dilanjutkan dengan pemasangan ground anchor dikedalaman -3.00 m daripermukaan tanah eksisting.

SURCHARGE LOAD 20 kN/m2

    4 .    0

    0   m 

Dasar galian tahap-1Elevasi = -7.00 m

    1    7 .    0

    0   m 

-3.00 m

-3.00 m

-7.00 m

H:V = 2:1

26º

SURCHARGE LOAD 20 kN/m2

- 24.00 m

-7.00 m

Page 61: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 61/102

 

TAHAP III : Penggalian tahap 2 hingga kedalaman -7.00 m atau elevasi -10.00 m

TAHAP IV : Pemasangan ground anchor elev. -9.00 m

SURCHARGE LOAD 20 kN/m2

    7 .    0

    0   m 

Dasar galian tahap 2Elevasi = -10.50 m

    1    4 .    0

    0   m

 

-3.00 m

- 24.00 m

-7.00 m

H:V = 2:1 26º

-10.00

SURCHARGE LOAD 20 kN/m2

    7 .    0

    0   m 

Dasar galian tahap 2Elevasi = -10.50 m

    1

    0 .    0

    0   m 

-3.00 m

-7.00 mH:V = 2:1 26º

-10.00 Anchor-1

-9.00 m

Page 62: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 62/102

 

TAHAP V : Penggalian tahap 3 hingga kedalaman -10.00 m atau elevasi -13.00 m

Parameter Tanah 

Data properties tanah :

wet = 14.5 kN/m3  sat = 15 kN/m3 cu = 14.40 kN/m2  c’ = 0 kN/m2 Ø = 4 Ø’ = 23 

Ka’ = tan2

(45 - /2) = 0,438Ka’ = 0,662

-3.00SURCHARGE 2,00 t/m2

sat = 16.00 kN/m3 cu = 0 kN/m2  c’ = 0.00 kN/m2 Ø = 35 Ø’ = 35

Ka = tan2 (45 - /2) Ka =0.52= 0.27

-9.00sat = 16.0 kN/m3 cu = 53 kN/m2  c’ = 0 kN/m2 Ø = 0 Ø’ = 25 

Ka’ = tan2 (45 - /2) = 0405, Ka’ = 0,637-14.00

sat = 17.0 kN/m3 cu = 200 c’ = 0.00 kN/m2 Ø = 0 Ø’ = 28

Ka’ = tan2 (45 - /2) = 0.36, Ka’ = 0,60

Kp = tan2 (45 - /2) = 2.77 -20.00

Lempung kelanauan, soft to mediumNilai N-SPT= 2 – 8 blows,

konus qc = 5 - 20 kg/cm2 

Lanau kelempungan, stiff.Nilai N-SPT= 8 –15 blows,konus qc = 16 - 80 kg/cm2 

Lanau kepasiran, HardN > 30, konus qc > 250 kg/cm2 

Pasir kelanauan, medium to DenseN = 20 - 50

-26.00

Lempung kelanauanVery StiffN = 20 - 30

-9.50

GWL = -4.20 (Soil Test, Nov 2012)

GWL = -3.00 Desain

sat = 16.00 kN/m3 cu = 133 kN/m2  c’ = 0.00 kN/m2 Ø = 0 Ø’ = 26

Ka’ = tan2 (45 - /2) = 0.39

Ka’ = 0,624

Kp = tan2 (45 - /2) = 2.56

SURCHARGE LOAD 20 kN/m2

    1    0 .    0

    0   m 

Dasar galian tahap 3Elevasi = -13.00 m

    1    1 .

    0    0   m 

-3.00 m

-7.00 mH:V = 2:1 26º

-13.00

 Anchor-1

-9.00 m

Page 63: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 63/102

 

Permodelan struktur

-13.00 m

-7.00 m

Diagram Tek. Lateral superposisi

ks-1

-3.00 m

-10.00 m

13.00 t/m2 m

ks-2

ks-3

5.141 t/m2 m

-14.5 m

C C1

D D1

D2

E  E1

F2

9.623 t/m2 m

9.892 t/m2 m

 Anchor-1

Tahap galian-3Elev. -13.00 m

-6.00 m

-7.00 m

-9.00 m

-10.00 m

Page 64: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 64/102

 

Analisa Anchor

Kapasitas Anchor -1

Tendon Properties

- Jumlah strands per tendon = 8- Strand type = 0.5 inchi- Area Tendon = 1.57 inchi2 = 10.13 cm2 - Tensile Strength = 270 ksi

= 18980 kg/cm2 - Tension Capacity 8 Ø 0.5” = 192.25 ton- Panjang ground anchor

Free Length = L1 = 7.07 mBonding Length = L2 + L3 + L4 = 8.48 + 8.48 + 7 = 23.96 m

- Diameter = 20 cm

Lapis-2 (clayey silt, L1 = 7.07 m: (elev. -9.00 s/d -14.00 )

Pult. = π.d.l.(Ca + γ.h.k.tan Ø)= 3.14 x 0.2 x 7.07 x 0.7 (5.3) + (1.5x6+1.6x5) x tan 0))= 16.47 ton --------- layer 2 (ked. -9.00 s/d -14.00 m)

Lapis-3 (sandy silt, hard), L2 = 8.48 m: (elev. -14.00 s/d -20.00 )Pult. = π.d.l.(Ca + γ.χ.k.tan Ø)

= 3.14 x 0.2 x 8.48 x 0.7 (20) + (1.50x6+1.60x5+1.70x 6) tan 0))= 74.56 ton

Lapis-4 (silty sand, hard), L3 = 8.48 m (elev. -20.00 s/d -26.00 )Pult. = π.d.l.(Ca + γ.χ.k.tan Ø)

= 3.14 x 0.2 x 8.48 x 0.7 (0) + (1.50x6+1.60x5+1.70x 6+1.60x6)tan 35

= 25.77 ton

Lapis-5 (silty clay, very stiff), L4 = 7 m (elev. -26.00 s/d end bor )Pult. = π.d.l.(Ca + γ.χ.k.tan Ø)

= 3.14 x 0.2 x 7 x 0.7 ((13.3) + (1.50x6+1.60x5+1.70x 6+1.60x6+1.6x5)tan 35= 40.93 ton

Faktor Keamanan material SF = Ø ."

 =

.

. = 1.31

Faktor Keamanan tanah, SF =

 

SF = ..   = 1.22 (tahap galian sedalam -10 m, elev. -13.00) 

Page 65: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 65/102

TEKANAN TANAH AKTIF

Elevasi   Parameter Tanah

‐3.00 Lapis 1 : elevasi ‐3.00 m s/d ‐9.00 m)

c' : 0.000 kg/cm2 Ø' : 23 c : 0.144 kg/cm2   Ø :   4

γwet :   t/m3

‐6.5   γsat :   1.50 t/m3 q : 2 t/

γw :   1.00 t/m3

Lapis 2 : elevasi ‐9.00 m s/d ‐13.00 m

‐10.00 c' : 0.000 kg/cm2   Ø' :   25

c : 0.52 kg/cm2   Ø :   0

γwet :   t/m3

‐10.5   γsat :   1.60 t/m3 q : 2 t/

γw :   1.00 t/m3

h1 : 2.00 m h3 : 4.00 m

h2 : 4.00 m h4 : 2.00 m

0.00 0.88   ‐13.00 H : 10.00 m h5 : 1.00 m  (a) (b) (c) (d) z : 0 m h6 : 3.00 m

1. Gaya‐gaya yang bekerja pada DPT   P (t/m')

a. Kohesi tanah   σ11 = ‐2c (Ka1')^0.5   0.00 t/m2   σ12 = ‐2c (Ka2')^0.5   0.00 t/m2

P11 = σ1.(h4)   0.00 t/m'   P12 = σ12.(h5+h6)   0.00 t/m' P1 =

b. Surcharge   σ21 = q.Ka1' 0.88 t/m2   σ22 = q.Ka2' 0.81 t/m2

P21 = σ21.(h4) 1.75 t/m' P22 = σ22.(h5+h6) 3.24 t/m' P2 =

c. Tekanan air   σ31 = γw.(h1)   4.00 t/m2   σ32 = γw.H   10.00 t/m2

P31 = 0.5.σ3.h1 0.00 t/m' P32 = σ31.(h5+h6) 16.00 t/m' P3 =

P33 = 0.5.(σ32‐σ32).h 12.00 t/m'

d. Tekanan tanah

σ4 =  (γsat‐γw).h3.Ka1'   = 0.77 t/m2

‐4.00 m P4 = 0.5.σ4.h3 = 0.00 t/m' (diabaikan) P4 =

σ5 =  (γsat‐γw).(h3+h4).Ka1' = 1.31 t/m2

‐6.00 m P5 = σ4.h4 = 2.63 t/m' P5 = P5' = 0.5(σ5‐σ4).h4 = 0.55 t/m' P5' =

σ6 = ((γsat1‐γw).(h3+h4)+ (γsat2‐γw)(h5)).Ka2' = 1.46 t/m2 P6 =

‐7.00 m P6 = σ5.h5 = 1.31 t/m' P6' =

P6' = 0.5(σ6‐σ5).h5 = 0.07 t/m' P7 =

z : h3+h4+h5+h6   σ7 = ((γsat1‐γw).(h3+h4)+ (γsat2‐γw)(h5+h6)).Ka2' = 2.19 t/m2 P7' =

‐10.00 m P7 = σ6.h4 = 4.38 t/m' P8 =

P7' = 0.5.(σ6‐σ6).h6 = 0.73 t/m' R =

y =

z : h3

z : h3+h4

z : h3+h4+h5

2

1

       h       2

P1   P2

P3

P5'

P5       h       1

       H

P4

       h       4

       h       3

       h       6

       h       5

P6'

P6

P7'

P7

Page 66: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 66/102

Menentukan kedalaman D

z (m) Elevasi   σ (t/m2) q' = (γsat1‐γw).(h3+h4)+ (γsat2‐γw)(h5+h6)

A 0   ‐3.00 0.000 q' = 5.4 t/m2

a =  

(γsat‐γw)(Kp‐Ka)  

‐4.00   ‐7.00 5.641 a = 1.78 m  

zo = 11.78 m (Jadi kondisi zero stress t

B   ‐6.00   ‐9.00 9.123   Ʃ H = 0

R = DEE1 + z.E1E2

43.25 = 0.5*z((13.273+1.232D)+1.232(D‐a

‐7.00   ‐10.00 9.270 = 0.5*z(13.273+2.464D‐2.193)‐0.61

43.25 = z(5.54+1.232D)‐(0.616D^2 ‐ 1.097

z = 0.616D^2‐1.097D+70. 98 (p

(5.54+1.232D)

C   ‐10.00   ‐13.00 13.000Ʃ ME = 0

D1   σEE2 =  q.Kp2' + (sat‐w).D (Kp2' ‐ Ka2') R(y+D)+0.5.E1E2.z (1/3.z) = 0.5.D1EE1.(D‐a)(1/3(D‐a))

= 5.4*2.458+(1.6‐1)*D*(2.458‐0.405) 70.98(D+5.33)+0.5*z((13.273+1.232D)+1.232(D‐a))(1/3.z)

= 13.273+1.232D 70.98(D+5.33)+0.5*((13.273+1.232D)+1.232(D‐a))(1/3.z^2

= 23.277 t/m2 1/6*(z^2)((13.273+1.232D)+1.232(D‐1.78)) = 1/6.(1.232)(

σEE1 =  (sat‐w).(D‐a) (Kp2' ‐ Ka2')   (13.273+2.464D‐2.193)(z^2) = 6*[1/6.(1.232)(D‐a)^3‐70.9

= (1.6‐1)*(D‐1.78)*(2.458‐0.405) (11.08+2.464D)(z^2) = 6*[1/6.(1.232)(D‐a)^3‐70.98(D+5.3

= 1.232(D‐a) z^2 = 1.232(D‐1.78)^3‐70.98(D+5.33)*6 (pers.2)

= 7.8147 t/m2 (11.08+2.464D)

E1 E E2

Pers 1 = Pers 2

0.616D^2‐1.78D+70.40 = 1.232(D‐1.78)^3

(5.54+1.232D) (11.08+2.464D)

(0.616D^2‐1.78D+70.40)(11.08+2.464D) = [1.232(D‐1D perlu =   8.12 m

Digunakan, D = 11 m, sehingga total panjang contiqous p

z = 0.616D^2‐1.78D+70.40 = 6.21 m

(5.54+1.232D)

q'.Ka

 h  

 h   3  

 h   6  

 h   5  

 a

z  o

R

  y 

Page 67: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 67/102

Menentukan Gaya Angkur 

‐3.00 A 0.000

‐7.00 4.875

‐9.00 B 9.123 Fh1 Gaya anchor-1 : menahan tekanan tanah, kedalaman galian s/d 10.00 m atau elevasi -13.0

Tahap Galian 3

Anchor 1

‐10.00 9.270 Fh1 = R   = 43.25 ton/m’

Fanchor-1 = Fh/sin α   = 61.04 ton/m’

Dipasang setiap jarak 2.40 m - Ftotal =2.4 x 61.04 ton = 146.5 ton

13.000

‐13.00 C

‐14.78 D1

Ked. Galian ‐10.00 m (Elev. ‐13.00)

z  o

 h   4  

 h   3  

 h   6  

 h   5  

 a

z  o

R

  y 

Page 68: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 68/102

 

4.2. GALIAN FULL CONTIGOUS PILE (AREA B)

4.2.1. Tahap Perhi tungan Manual Menentukan Kedalaman Turap (D) dan Gaya Anchorserta Panjang Penjangkaran

TAHAP I : surcharge load bekerja dan konstruksi soldier pile dilaksanakan

TAHAP II : Penggalian dilaksanakan hingga kedalaman -3,50 m dibawah elevasi eksistingdan dilanjutkan dengan pemasangan ground anchor dikedalaman -3.00 m daripermukaan tanah eksisting.

SURCHARGE LOAD 20 kN/m2

Contiguous pile

SURCHARGE LOAD 20

    3 .    5

    0   m 

Soldierpile

Dasar galian tahap-1Elevasi = -6.50 m

 Anchor-1

    1    7 .    5

    0   m 

- 24.00 m

-3.00 m

-3.00 m

- 24.00 m

Page 69: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 69/102

 

TAHAP III : Penggalian tahap 2 hingga kedalaman -6.50 m atau elevasi -9.50 m

TAHAP IV : Penggalian tahap 2 hingga kedalaman -10 m atau elevasi -13.00 m

SURCHARGE LOAD 20 kN/m2

    6 .    5

    0   m 

Soldierpile

Dasar galian tahap 2Elevasi = -9.50 m

 Anchor-1

    1    4 .    5

    0   m

 

-3.00 m

SURCHARGE LOAD 20 kN/m2

    1    0 .    0

    0   m 

Soldierpile

Dasar galian tahap 3Elevasi = -13.00 m

 Anchor-1

    1    1 .    0

    0   m 

-3.00 m

 Anchor-2

- 24.00 m

-6.00 m

-6.00 m

-9.00 m

Page 70: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 70/102

 

Parameter Tanah

:

Data properties tanah :

wet = 14.5 kN/m3  sat = 15 kN/m3 

cu = 14.40 kN/m2  c’ = 0 kN/m2 Ø = 4 Ø’ = 23 

Ka’ = tan2 (45 - /2)= 0,438

Ka’ = 0,662

-3.00SURCHARGE 2 00 t/m2

sat = 16.00 kN/m3 cu = 0 kN/m2  c’ = 0.00 kN/m2 Ø = 35 Ø’ = 35

Ka = tan2 (45 - /2) Ka =0.52= 0.27

-9.00sat = 16.0 kN/m3 cu = 53 kN/m2  c’ = 0 kN/m2 Ø = 0 Ø’ = 25 

Ka’ = tan2 (45 - /2) = 0405, Ka’ = 0,637-14.00

sat = 17.0 kN/m3 cu = 200 c’ = 0.00 kN/m2 Ø = 0 Ø’ = 28

Ka’ = tan2 (45 - /2) = 0.36, Ka’ = 0,60Kp = tan2 (45 - /2) = 2.77 -20.00

Lempung kelanauan, soft to mediumNilai N-SPT= 2 – 8 blows,konus qc = 5 - 20 kg/cm2 

Lanau kelempungan, stiff.Nilai N-SPT= 8 –15 blows,konus qc = 16 - 80 kg/cm2 

Lanau kepasiran, HardN > 30, konus qc > 250 kg/cm2 

Pasir kelanauan, medium to DenseN = 20 - 50

-26.00

Lempung kelanauanVery StiffN = 20 - 30

-9.50

GWL = -4.20 (Soil Test, Nov 2012)

GWL = -3.00 Desain

sat = 16.00 kN/m3 cu = 133 kN/m2  c’ = 0.00 kN/m2 Ø = 0 Ø’ = 26

Ka’ = tan2 (45 - /2) = 0.39

Ka’ = 0,624Kp = tan2 (45 - /2) = 2.56

Page 71: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 71/102

 

Permodelan struktur

-13.00 m

-6.50 m

Diagram Tek. Lateral superposisi Tahap galian-1Elev. -6.50 m

Tahap galian-2Elev. -9.50 m

ks-1

-3.00 m

-9.50 m

13.00 t/m2 m

ks-2

ks-3

5.141 t/m2 m

-14.5 m

 A A1

B B1

C C1

D D1

D2

E  E1

F2

9.623 t/m2 m

9.892 t/m2 m

 Anchor-1

 Anchor-2

 Anchor-1

0.876 /m2 m

 Anchor-1

Tahap galian-3Elev. -13.00 m

-6.00 m-6.00 m

-9.00 m

Page 72: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 72/102

 

Analisa Anchor

Kapasitas Anchor -1Tendon Properties- Jumlah strands per tendon = 8 type 0.5 inchi- Area Tendon = 1.57 inchi2 = 10.13 cm2 

- Tensile Strength = 270 ksi =18980 kg/cm2

 - Tension Capacity 8 Ø 0.5” = 192.25 ton- Panjang ground anchor

Free Length = L1 + L2 = 4.25 + 7.07 = 11.32 mBonding Length = L3 + L4 + L5 = 8.48 + 8.48 + 7 = 23.96 m

- Diameter = 20 cm

Lapis-1 (silty clay), L1 = 4.25 m: (elev. -6.00 s/d -9.00 )Pult. = π.d.l.(Ca + γ.h.k.tan Ø)

= 3.14 x 0.2 x 4.25 x 0.7 ((1.44) + (1.5x6) x 0.438 tan 4)=2.69 ton --------- layer 1 (ked. -3.00 s/d -9.00 m)

Lapis-2 (clayey silt, L2 = 7.07 m: (elev. -9.00 s/d -14.00 )

Pult. = π.d.l.(Ca + γ.h.k.tan Ø)= 3.14 x 0.2 x 7.07 x 0.7 (5.3) + (1.5x6+1.6x5) x tan 0))= 16.47 ton --------- layer 2 (ked. -9.00 s/d -14.00 m)

Lapis-3 (sandy silt, hard), L3 = 8.48 m: (elev. -14.00 s/d -20.00 )Pult. = π.d.l.(Ca + γ.χ.k.tan Ø)

= 3.14 x 0.2 x 8.48 x 0.7 (20) + (1.50x6+1.60x5+1.70x 6) tan 0))= 74.56 ton

Lapis-4 (silty sand, hard), L4 = 8.48 m (elev. -20.00 s/d -26.00 )Pult. = π.d.l.(Ca + γ.χ.k.tan Ø)

= 3.14 x 0.2 x 8.48 x 0.7 (0) + (1.50x6+1.60x5+1.70x 6+1.60x6)tan 35

= 25.77 tonLapis-5 (silty clay, very stiff), L5 = 10 m (elev. -26.00 s/d end bor )Pult. = π.d.l.(Ca + γ.χ.k.tan Ø)

= 3.14 x 0.2 x 7 x 0.7 ((13.3) + (1.50x6+1.60x5+1.70x 6+1.60x6+1.6x5)tan 35= 40.93 ton

Kapasitas Pult. Total = 177.96 ton Dipasang setiap jarak 2.40 m - Ftotal = 155.75 ton (tahap galian sedalam -3.50 m)

Ftotal = 125.64 ton (tahap galian sedalam -6.50 m)

Faktor Keamanan material SF = Ø ."

 

=

.

. = 1.24 (tahap galian sedalam -6.50 m, elev. -9.50) 

Faktor Keamanan tanah, SF =

 

SF =.

,  = 1.15 (tahap galian sedalam -6.50 m, elev. -9.50) 

SF =.

.  = 1.42 (tahap galian sedalam -10.00 m, elev.-13.00) 

Page 73: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 73/102

 

Kapasitas Anchor -2

Tendon Properties- Jumlah strands per tendon = 8- Strand type = 0.5 inchi- Area Tendon = 1.57 inchi2 = 10.13 cm2 

- Tensile Strength = 270 ksi= 18980 kg/cm2 

- Tension Capacity 8 Ø 0.5” = 192.25 ton- Panjang ground anchor

Free Length = L1 = 7.07 mBonding Length = L2 + L3 + L4 = 8.48 + 8.48 + 7 = 23.96 m

- Diameter = 20 cm

Lapis-2 (clayey silt, L1 = 7.07 m: (elev. -9.00 s/d -14.00 )Pult. = π.d.l.(Ca + γ.h.k.tan Ø)

= 3.14 x 0.2 x 7.07 x 0.7 (5.3) + (1.5x6+1.6x5) x tan 0))= 16.47 ton --------- layer 2 (ked. -9.00 s/d -14.00 m)

Lapis-3 (sandy silt, hard), L2 = 8.48 m: (elev. -14.00 s/d -20.00 )Pult. = π.d.l.(Ca + γ.χ.k.tan Ø)

= 3.14 x 0.2 x 8.48 x 0.7 (20) + (1.50x6+1.60x5+1.70x 6) tan 0))= 74.56 ton

Lapis-4 (silty sand, hard), L3 = 8.48 m (elev. -20.00 s/d -26.00 )Pult. = π.d.l.(Ca + γ.χ.k.tan Ø)

= 3.14 x 0.2 x 8.48 x 0.7 (0) + (1.50x6+1.60x5+1.70x 6+1.60x6)tan 35= 25.77 ton

Lapis-5 (silty clay, very stiff), L4 = 7 m (elev. -26.00 s/d end bor )Pult. = π.d.l.(Ca + γ.χ.k.tan Ø)

= 3.14 x 0.2 x 7 x 0.7 ((13.3) + (1.50x6+1.60x5+1.70x 6+1.60x6+1.6x5)tan 35= 40.93 ton

Faktor Keamanan material SF = Ø ."

 =

.

. = 1.53

Faktor Keamanan tanah, SF =

 

SF =.

,  = 1.15 (tahap galian sedalam -6.50 m, elev. -9.50) 

Page 74: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 74/102

TEKANAN TANAH AKTIFElevasi   Parameter Tanah

‐3.00 Lapis 1 : elevasi ‐3.00 m s/d ‐9.00 m)

c' : 0.000 kg/cm2   Ø' :   23 Ka1' : 0.

c : 0.144 kg/cm2   Ø :   4 Ka1 : 0.γwet :   t/m3 Kp1' : 2.

‐6.5   γsat :   1.50 t/m3 q : 2 t/m' K‐  300

γw :   1.00 t/m3

Lapis 2 : elevasi ‐9.00 m s/d ‐13.00 m

‐10.00 c' : 0.000 kg/cm2   Ø' :   25 Ka2' : 0.

c : 0.52 kg /cm2   Ø :   0 Ka2 : 0.

γwet :   t/m3 Kp2' : 2.

‐10.5   γsat :   1.60 t/m3 q : 2 t/m'

γw :   1.00 t/m3

h1 : 6.00 m h3 : 3.50 m

h2 : 4.00 m h4 : 2.50 m

0.00 0.88   ‐13.00 H : 10.00 m h5 : 1.50 m

  (a) (b) (c) (d) z : 0 m h6 : 2.50 m

1. Gaya‐gaya yang bekerja pada DPT   P (t/m')

a. Kohesi tanah   σ11 = ‐2c (Ka1')^0.5   0.00 t/m2   σ12 = ‐2c (Ka2')^0.5   0.00 t/m2

P11 = σ1.(h3+h4)   0.00 t/m'   P12 = σ12.(h5+h6)   0.00 t/m' P1 = 0

b. Surcharge   σ21 = q.Ka1' 0.88 t/m2   σ22 = q.Ka2' 0.81 t/m2

P21 = σ21.(h3+h4) 5.25 t/m' P22 = σ22.(h5+h6) 3.24 t/m' P2 = 8

c. Tekanan air   σ31 = γw.(h3+h4)   6.00 t/m2   σ32 = γw.H   10.00 t/m2

P31 = 0.5.σ3.h1 18.00 t/m' P32 = σ31.(h5+h6) 24.00 t/m' P3 = 50

P33 = 0.5.(σ32‐σ32).h 8.00 t/m'

d. Tekanan tanah

σ4 =  (γsat‐γw).h3.Ka1'   = 0.77 t/m2

‐3.50 m P4 = 0.5.σ4.h3 = 1.34 t/m' P4 = 1

σ5 =  (γsat‐γw).(h3+h4).Ka1' = 1.31 t/m2

‐6.00 m P5 = σ4.h4 = 1.91 t/m' P5 = 1

P5' = 0.5(σ5‐σ4).h4 = 0.68 t/m' P5' = 0

σ6 = ((γsat1‐γw).(h3+h4)+ (γsat2‐γw)(h5)).Ka2' = 1.58 t/m2 P6 = 1

‐7.50 m P6 = σ5.h5 = 1.97 t/m' P6' = 0

P6' = 0.5(σ6‐σ5).h5 = 0.20 t/m' P7 = 3

z : h3+h4+h5+h6   σ7 = ((γsat1‐γw).(h3+h4)+ (γsat2‐γw)(h5+h6)).Ka2' = 2.19 t/m2 P7' = 0

‐10.00 m P7 = σ6.h4 = 3.95 t/m' P8 = 1

P7' = 0.5.(σ6‐σ6).h6 = 0.76 t/m' R = 69

y = 5

z : h3

z : h3+h4

z : h3+h4+h5

       h       2

P1   P2

P3

P5'

P5       h       1

       H

P4

       h       4

       h

       3

       h       6

       h       5

P6'

P6

P7'

P7

Page 75: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 75/102

Menentukan kedalaman D

z (m) Elevasi   σ (t/m2) q' = (γsat1‐γw).(h3+h4)+ (γsat2‐γw)(h5+h6)

A 0   ‐3.00 0.875 q' = 5.4 t/m2

a =  

(γsat‐γw)(Kp‐Ka)  

‐3.50   ‐6.5 5.141 a = 1.78 m  

zo = 11.78 m (Jadi kondisi zero stress terc

B   ‐6.00   ‐10.00 9.623   Ʃ H = 0

R = DEE1 + z.E1E2

69.61 = 0.5*z((13.273+1.232D)+1.232(D‐a))‐0

‐7.50   ‐10.5 9.892 = 0.5*z(13.273+2.464D‐2.193)‐0.616*D

69.61 = z(5.54+1.232D)‐(0.616D^2 ‐ 1.097D)

z = 0.616D^2‐1.097D+70.98 (per

(5.54+1.232D)

C   ‐10.00   ‐13.00 13.000Ʃ ME = 0

D1   σEE2 =  q.Kp2' + (sat‐w).D (Kp2' ‐ Ka2')   R(y+D)+0.5.E1E2.z (1/3.z) = 0.5.D1EE1.(D‐a)(1/3(D‐a))

= 5.4*2.458+(1.6‐1)*D*(2.458‐0.405) 70.98(D+5.33)+0.5*z((13.273+1.232D)+1.232(D‐a))(1/3.z) = 0

= 13.273+1.232D 70.98(D+5.33)+0.5*((13.273+1.232D)+1.232(D‐a))(1/3.z^2) =

= 25.137 t/m2 1/6*(z^2)((13.273+1.232D)+1.232(D‐1.78)) = 1/6.(1.232)(D‐a

σEE1 =  (sat‐w).(D‐a) (Kp2' ‐ Ka2')   (13.273+2.464D‐2.193)(z^2) = 6*[1/6.(1.232)(D‐a)^3‐70.98(D

= (1.6‐1)*(D‐1.78)*(2.458‐0.405) (11.08+2.464D)(z 2) = 6*[1/6.(1.232)(D‐a)^3‐70.98(D+5.33)]

= 1.232(D‐a) z^2 = 1.232(D‐1.78)^3‐70.98(D+5.33)*6 (pers.2)

= 9.675 t/m2 (11.08+2.464D)

E1 E E2

Pers 1 = Pers 2

0.616D^2‐1.78D+70.40 = 1.232(D‐1.78)^3‐7

(5.54+1.232D) (11.08+2.464D)

(0.616D^2‐1.78D+70.40)(11.08+2.464D) = [1.232(D‐1.78D perlu =   9.63 m

Digunakan, D = 11 m, sehingga total panjang contiqous pile

z = 0.616D^2‐1.78D+70.40 = 6.34 m

(5.54+1.232D)

q'.Ka

 h  

 h   3  

 h   6  

 h   5  

 a

z  o

R

  y 

Page 76: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 76/102

Menentukan Gaya Angkur  Gaya anchor-1 : menahan tekanan tanah, kedalaman galian s/d 6.50 m

Tahap Galian 2

‐3.00 A 0.875 A 0.875 q' = (γsat1‐γw).(h3+h4)+ (γsat2‐γw)(h5)

q' = 3.9 t/m2

‐6.00 Fh1 Fh1 a1 = q'.Ka = 1.28 m

‐6.50 5.141 5.141 (γsat‐γw)(Kp‐Ka)

Fh1 = 0.5 x 9.892 x (7.50+1.78)   = 45.90 ton/m

‐9.00 B 9.623 B 9.623 Fh2 Fanchor- = Fh/sinα   = 64.77 ton/m

Dipasang setiap jarak 2.40 m - Ftotal = 2.40 x 64.89 ton = 155.75 to

‐9.50 9.892 9.892

Gaya anchor-2 : menahan tekanan tanah, kedalaman galian s/d 10.00

Tahap Galian 3

Anchor 1

13.000 Fh1 = 0.5 x 9.892 x (7.50)   = 37.10 ton/m

‐13.00 C C Fanchor- = Fh/sinα   = 52.35 ton/m

Dipasang setiap jarak 2.40 m - Ftotal = 2.40 x 52.35 ton = 125.64 to

‐14.78 D1 D1

Anchor 2

Ked. Galian ‐6.50 m Ked. Galian ‐10.00 m   Ʃ H = 0

R = Fh1+Fh2

Fh2 = R ‐ Fh1 = 32.52 ton/m’

Fanchor- = Fh/sinα   = 45.89 ton/m’

Dipasang setiap jarak 2.40 m - Ftotal = 2.40 x 47.82 ton = 114.77 to

 h   4  

 h   3  

 h   6  

 h   5  

 a

z  o

 a1  

 h   4  

 h   3  

 h   6  

 h   5  

 a

z  o

R

 a1  

Page 77: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 77/102

 

4.2.2. Tahap Penentuan Gaya-Gaya Dalam dan Deformasi

4.2.2.1 Analisa dengan Program SAP

KONDISI I : Penggalian dilaksanakan hingga kedalaman -3,50 m (eleve. -6.50) dibawahelevasi eksisting tanah (-3.00) dan dilanjutkan dengan pemasangan ground

anchor di kedalaman -3.00 m (elev. -6.00 m)

Defl.max = 0.07 cm

Soldier pile = 80 cm;c/c 1.20 m ;L=21.00 m

M.max = 1.38 Ton-m

Soldier pile = 80 cm;c/c 1.20 m ;L=21.00 m

Elv. -14.00 m

Elv. -3.00 m

Elv. -6.50 m

Elv. -9.00 m

Data properties tanah :

wet = 14.5 kN/m3  sat = 15 kN/m3 cu = 14.40 kN/m2  c’ = 0 kN/m2 Ø = 4 Ø’ = 23 

Ka’ = tan2 (45 - /2)= 0,438

Ka’ = 0,662

sat = 16.0 kN/m3 cu = 53 kN/m2  c’ = 0 kN/m2 Ø = 0 Ø’ = 25 

Ka’ = tan2 (45 - /2) = 0405, Ka’ = 0,637

Elv. -3.00 m

Elv. 6.00 m

Elv. -9.00 m

Data properties tanah :

wet = 14.5 kN/m3  sat = 15 kN/m3 cu = 14.40 kN/m2  c’ = 0 kN/m2 Ø = 4 Ø’ = 23 

Ka’ = tan2 (45 - /2)

= 0,438Ka’ = 0,662

sat = 16.0 kN/m3 cu = 53 kN/m2  c’ = 0 kN/m2 Ø = 0 Ø’ = 25 

Ka’ = tan2 (45 - /2) = 0405, Ka’ = 0,637

Elv. -14.00 m

Page 78: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 78/102

 

KONDISI 2 : Penggalian dilaksanakan hingga kedalaman -6,50 m (elev. -9.50) dibawah elevasieksisting dan anchor-1 terpasang dikedalaman -3.50 m (elev. -6.50)

Defl.max = 0.067 cm

Soldier pile =80 cm;c/c 1.20 m ;L=21.00 m

 Anchor-1; F=60.56ton/m’

Mmax = 8.88 ton-m

Soldier pile =80 cm;c/c 1.20 m ;L=21. m

 Anchor-1; F=60.56ton/m’

Data properties tanah :

wet = 14.5 kN/m3  sat = 15 kN/m3 cu = 14.40 kN/m2  c’ = 0 kN/m2 Ø = 4 Ø’ = 23 

Ka’ = tan2 (45 - /2)= 0,438

Ka’ = 0,662

sat = 16.0 kN/m3 cu = 53 kN/m2  c’ = 0 kN/m2 Ø = 0 Ø’ = 25 

Ka’ = tan2 (45 - /2) = 0405, Ka’ = 0,637

Elv. -9.50 m

Elv. -3.00 m

Elv. -7.20 m

El-14.00

Data properties tanah :

wet = 14.5 kN/m3  sat = 15 kN/m3 cu = 14.40 kN/m2  c’ = 0 kN/m2 Ø = 4 Ø’ = 23 

Ka’ = tan2 (45 - /2)= 0,438

Ka’ = 0,662

sat = 16.0 kN/m3 cu = 53 kN/m2  c’ = 0 kN/m2 Ø = 0 Ø’ = 25 

Ka’ = tan2

(45 - /2) = 0405, Ka’ = 0,637

Elv. -9.50 m

Elv. -3.00 m

Elv. -7.20 m

El-14.00

Page 79: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 79/102

 

KONDISI 3 : Penggalian dilaksanakan hingga kedalaman elv -13,00 m dan anchor-1 & 2terpasang dikedalaman -3.00 m (elev. -6.00 m) dan -6.00 m (elev. -9.00 m)

Elv. -13.00 m

Defl.max = 0.07 cm

Elv. -9.50 m

Elv. -14.00 m

Soldier pile =80 cm;c/c 1.20 m ;L = 21 m

Mmax = 17.62 ton-m

Soldier pile =80 cm;c/c 1.20 m ;L = 21 m

Data properties tanah :

sat = 16 kN/m3 cu = 50.00 kN/m2  c’ = 0 kN/m2 Ø = 0 Ø’ = 25

Ka’ = tan2 (45 - /2)= 0,405

Ka’ = 0,63

Data properties tanah :

wet = 14.5 kN/m3  sat = 15 kN/m3 cu = 14.40 kN/m2  c’ = 0 kN/m2 Ø = 4 Ø’ = 23 

Ka’ = tan2 (45 - /2)= 0,438

Ka’ = 0,662

sat = 16.0 kN/m3 cu = 53 kN/m2  c’ = 0 kN/m2 Ø = 0 Ø’ = 25 

Ka’ = tan2 (45 - /2) = 0405, Ka’ = 0,637

Elv. -13.00 m

Elv. -9.50 m

Elv. -14.00 m

sat = 16.0 kN/m3 cu = 53 kN/m2  c’ = 0 kN/m2 Ø = 0 Ø’ = 25 

Ka’ = tan2 (45 - /2) = 0405, Ka’ = 0,637

Page 80: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 80/102

 

Berdasarkan input gaya – gaya lateral hingga menghasilkan karakteristik pergerakan dan gaya – gaya dalam struktur contiguous pile, diperoleh resume gaya – gaya dalam yang terjadidengan perincian sebagai berikut :

ANALISA

GAYA – GAYA DALAM SOLDIER PILE

Gaya Prestress Anchor

(ton/m’)

M.max

(Ton-m)

M.min

(Ton-m)

Deformasi Max(cm)

KONDISI 1 - 1,38 -0,16 0,70

KONDISI 2 Anchor-1 = 64.77 2,23 -8,88 0,07

KONDISI 3 Anchor-1 = 52.35

Anchor-2 = 47.82

17,62 -10,89 0,07

Untuk selanjutnya gaya – gaya dalam tersebut dipergunakan sebagai dasar bagi penentuan

pembesian soldier pile.

Page 81: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 81/102

 

4.2.2.2 Analisa dengan Program Plaxis

Parameter Tanah untuk Analisa Settlement 

 Analisis pergerakan tanah dan gaya-gaya yang bekerja pada sistem contiguous piledilakukan dengan bantuan program komputer berdasarkan gaya horisontal akibat daritekanan lateral tanah selama penggalian. Tahapan konstruksi di bagi dalam 4 (empat)kondisi sebagai berikut :

Kondisi 1 : Penempatan Contiguous Pile dan pemberian beban Surcharge 2 t/m2.Kondisi 2 : Contiguous Pile dalam kondisi free standing dengan kedalaman galian -3.50

m dari permukaan tanah eksisting.Kondisi 3 : Ground anchor-1 terpasang dikedalaman -3.00 m dan galian mencapai

kedalaman -6.50 m dari permukaan tanah eksisting.Kondisi 4: Ground anchor-2 terpasang dikedalaman -6.00 m dan galian mencapai

kedalaman -10.00 m dari permukaan tanah eksisting.

 Analisisnya mengasumsikan muka air tanah di luar  galian tidak boleh turun(dengan Phreatic Analysis).

Ec = 23 452 953 kN/m2  A = 0,5024 m2 I = 0.020096 m4

Data properties tanah :

wet = 14.5 kN/m3  sat = 15 kN/m3 

cu = 14.40 kN/m2  c’ = 0 kN/m2 Ø = 4 Ø’ = 23 

Eu = 25 kg/cm2  k = 10-8 m/secEd = 15 kg/cm2 

sat = 16.00 kN/m3 cu = 0 kN/m2  c’ = 0.00 kN/m2 Ø = 35 Ø’ = 35

Eu = 500 kg/cm2  k = 10-5 m/secEd = 350 kg/cm2 

sat = 16.0 kN/m3 cu = 53 kN/m2  c’ = 0 kN/m2 Ø = 0 Ø’ = 25 

Eu = 120 kg/cm2 Ed = 80 kg/cm2

k = 10-7 m/sec

sat = 17.0 kN/m3 cu = 200 c’ = 0.00 kN/m2 Ø = 0 Ø’ = 28

Eu = 250 kg/cm2  k = 10-6 m/secEd = 180 kg/cm2 

Lempung kelanauan, soft to mediumNilai N-SPT= 2 – 8 blows,konus qc = 5 - 20 kg/cm2 

Lanau kelempungan, stiff.Nilai N-SPT= 8 –15blows,

Lanau kepasiran, HardN > 30, konus qc > 250 kg/cm2 

Pasir kelanauan, medium to DenseN = 20 - 50

Lempung kelanauanN = 20 - 30

sat = 16.00 kN/m3 cu = 133 kN/m2  c’ = 0.00 kN/m2 Ø = 0 Ø’ = 26

Eu = 200 kg/cm2  k = 10-8 m/secEd = 140 kg/cm2 

GWL = -5.00 (Soil Test, Nov 2013)

GWL = -3.00 Desain

Galian 1 : - 6.50

-9.00

-3.00

-20.00

-26.00

-14.00

Tip - 24.00

Galian 2: - 9.50

Galian 3 : - 13.00

q = 2 t/m2

Page 82: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 82/102

 

4.2.2.3.1 Analisis Stabilitas Jangka Panjang (Long Term Stability)

 Analisa galian dilakukan dengan bantuan Program Plaxis dengan parameterkondisi drained (long term stability) dengan pemberian gaya prestress anchoradalah sbb.:

Gaya Prestress Ground Anchor 1 (level -6.00 m) : 150 kN/m’

Gaya Prestress Ground Anchor 2 (level -9.00 m) : 100 kN/m’

Resume hasil analisa dengan program Plaxis adalah sebagai berikut:

Tahapan Konstruksi

Soldier PileDefleksi

Horisontal(cm)

SF Shear

(kN/m’)

BendingMomen

(kN-m/m’)Tahap 1 :Pemasangan Soldier Pile &Surcharge 2 t/m2 (top ground level -3.00 m)

- - -19.43

Tahap 2 :Galian Level -6.50 m 1.15 -28.03

Tahap 3 & 4 : Anchor 1 level -3.00 m,Galian level -9.50 m

4.25 77.48 218.00

Tahap 5 & 6 : Anchor 2 level -6.00 m,Galian level -13.00 m

4.26 87.23 209.20

Tahap 7:Global Stability

1.41

Tahapan Analisa dengan Program Plaxis diuraikan sebagai berikut:

Tahap 1 : Pekerjaan Beban sekeli ling proyek 2 t/m2 dan ins talasi turap elev. -3.00 m

Elev. -3.00 Elev. -3.00Surcharge load 2 t/m2

Page 83: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 83/102

 

Tahap 2 : Pekerjaan Galian pada elevas i -6.50 m

Elev. -6.50

Elev. -3.00

Page 84: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 84/102

 

Pada tahap 2, yaitu galian sedalam 3.5, memberikan deformasi maksimum pada dindingadalah 1.15 cm.

Tahap 3 : Akti vasi Anchor 1, dengan gaya prestress 150 kN/m

Elev. -3.00

Elev. -6.50

Page 85: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 85/102

 

Page 86: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 86/102

 

Pada tahap 3 dimana ground anchor 1 diaktivekan, displacement, shear dan bending momentmaksimum pada dinding berturut-turut adalah 4.25 cm, 77.48 kN/m dan 218 kN-m/m.

Tahap 4 : Galian pada elevasi -9.50 m (galian sedalam 6.5 m)

Elev. -9.50

Elev. -3.00

Page 87: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 87/102

 

Tahap 5 : Aktivasi Ground Anchor 2

Page 88: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 88/102

 

Pada tahap 5 dimana ground anchor 2 diaktivekan, displacement, shear dan bending momentmaksimum pada dinding berturut-turut adalah 4.27 cm, 87.20 kN/m dan 209.6 kN-m/m.

Page 89: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 89/102

 

Tahap 6 : Pekerjaan pada elevasi -13.00 m (Galian 10 m)

Elev. -13.0

Page 90: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 90/102

 

Pada tahap 5 dimana ground anchor 2 diaktivekan, displacement, shear dan bending momentmaksimum pada dinding berturut-turut adalah 4.26 cm, 87.23 kN/m dan 209.2 kN-m/m.

Page 91: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 91/102

 

Tahap Final: Perhitungan Global Stabilitas

Stabilitas global, FS = 1.41, dimana bounding length masih berada di luar daerah keruntuhan,sehingga dapat dianggap memberikan cukup perlawanan tarik.

Hasil analisa dinding pengaman galian dengan menggunakan Program SAP sedikit lebihoptimistik dibandingkan dengan hasil dengan Program Plaxis, namun memberikan hasil yangmasih berdekatan, yaitu Momen maksimum dengan Program SAP adalah 17.62 t-m/m = 176kN-m/m dibandingkan dengan hasil dari Program Plaxis sebesar 209.20 kN-m/m.

Page 92: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 92/102

 

4.2.2.2.2 Analisis Stabilitas Jangka Pendek (Short Term Stability)

 Analisis stabilitas jangka pendek dilakukan dengan menggunakan Plaxis dengan input dataparameter tanah undrained (Undrained C dalam Program Plaxis). Prestressed ground anchoryang digunakan sama dengan analisis drained berikut:

Gaya Prestress Ground Anchor 1 (level -6.00 m) : 150 kN/m’Gaya Prestress Ground Anchor 2 (level -9.00 m) : 100 kN/m’

Resume hasil analisa dengan program Plaxis adalah sebagai berikut:

Tahapan Konstruksi

Soldier PileDefleksi

Horisontal(cm)

SF Shear

(kN/m’)

BendingMomen

(kN-m/m’)Tahap 1 :Pemasangan Soldier Pile &Surcharge 2 t/m2 (top ground level -3.00 m)

- - 23.51

Tahap 2 :Galian Level -6.50 m

1.35 34.36

Tahap 3 & 4 : Anchor 1 level -3.00 m,Galian level -9.50 m

0.74 63.40 91.53

Tahap 5 & 6 : Anchor 2 level -6.00 m,Galian level -13.00 m

0.68 63.85 84.87

Tahap 7:Global Stability

2.85

Page 93: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 93/102

 

Page 94: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 94/102

4.3 Dewatering

 Analisa dewatering dilakukan dengan prosedur Hausmann dengan penentuan jumlah sumur dewatering sebagai berikut :

Profil penampang rencana galian terhadap muka air tanah :

Gambar 33 : Potongan Sketsa Pekerjaan Dewatering 

Dasar galian rencana elv. – 13.00 m

Soldier pile L= 20 m

elv. - 14.00

Dewateringwell;ked.-21.00 m

ho

H

he

M.a.t setelahdewatering

elv. - 21.00 m

elv. - 9.00m

elv. - 20.00 m

M.a.t Desain-3.00 m

M.a.t(Novi 2012)-5.00 m

elv. - 14.00

elv. - 24.00 m

Lempung kelanauan,soft to medium 

Nilai N-SPT= 2 – 8 blows,konus qc = 5 - 20 kg/cm2 

Lanau kelempungan, stiff.Nilai N-SPT= 8 –15 blows,konus qc = 16 - 80 kg/cm2 

Lanau kepasiran, HardN > 30, konus qc > 250 kg/cm2 

Pasir kelanauan,medium to DenseN = 20 - 50

-26.00Lempung kelanauanN = 20 - 30

Page 95: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 95/102

PENENTUAN JUMLAH DEBIT AIR

Luas area rencana galian adalah sebesar 21869 m2 dengan nilai equivalent well danradius equivalent untuk multiple well (metode Haussmann,1990) dengan penjelasandibawah ini.

a =  

 A  

dimana A = luas galian = 21869 m2

a = radius equivalentmaka :

Radius equivalent a=14.3

21869= 83.45 m

Nilai Equivalent radius influence Ro = 3000 (H – he) k   

Dimana nilai koefisien permeabilitas lapisan aquifer adalah sebesar 0,0001 m/det

H = El. -20.00 – El.-3.00 = 17.00 m

he = El. -21.00 – El. -14.00 = 7.00 m

Ro = 3000 (H – he) k   

= 3000.(17.00 – 7.00).   0001.0  

= 300 m

Jumlah air yang harus dipompa dari seluruh galian adalah :

Q =)ln()ln(

)(.   22

a Ro

he H k 

  

 

=)45.83ln()300ln(

)700.17.(0001.0.  22

    

= 0.058 m3/det

= 3480 lt/menit.

Page 96: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 96/102

PENENTUAN KAPASITAS POMPA DEWATERING

Setiap pompa dewatering direncanakan dengan radius minimum (rw) sebesar 15 cm.Debit pompa untuk 1 buah sumur dewatering adalah

Q = 2. rw.ho.

15

5.0k 

 

Dimana ho = tinggi well screen dari dasar sumurSehingga ho = El.-21.00 – El. -14.00

= 7 m.

Maka Q = 2. 0.15.7.

15

0001.0  5.0

 

= 0.004396 m3/det

= 265 lt/menit.

Direncanakan digunaakn pompa dengan kapasitas 400 lt/menit

PENENTUAN JUMLAH POMPA DEWATERING

Jumlah pompa yang diperlukan adalah

N = pompa Debit 

air  Debit 

.

=400

3840 

= 9.60 buah= 10 buah

Direncanakan dengan 10 buah pompa dewateringSelain itu ditambahkan juga 5 buah sumur observasi tanpa pompa dan 5 buahsumur isi (recharge well).

Page 97: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 97/102

STABILITAS DASAR GALIAN

Kestabilan dasar galian basement ditin jau terhadap du afaktor, yaitu :  

a.  Kestablian terhadap HeavingHeave adalah mengalirnya tanah ke dalam galian sebagai akibat terganggunya

keseimbangan daya dukung tanah pada ujung dinding penahan tanah. Jadi heave iniumumnya akan terjadi bila tanah pada dasar galian adalah berupa soft clay.

Jenis tanah pada dasar galian rencana pada El. -13,00 m atau kedalaman -10.00 m adalahstiff. Ujung bawah dinding penahan tanah terletak pada -21.00 m dari elevasi galian yangmerupakan lapisan pasir kelanauan

Berdasarkan analisis kestabilan dasar galian terhadap heaving diperoleh nilai factorkeamanan terhadap heave sebesar SF = 4.45 > 1,20. Dengan demikian dasar galian amanterhadap resiko heave.

b. Kestabilan terhadap “Blow in”

Blow-in terjadi bila tanah pada dasar galian merupakan lapisan impermeable dan dibawahnya terdapat lapisan sand yang merupakan confined aquifer. Jenis tanah pada dasargalian adalah lempung kelanauan stiff (-9.00 s/d -14.00) dan lanau kepasiran hard (-14.00s/d -20.00)

Dari analisis kestabilan dasar galian terhadap blow-in, diperoleh nilai faktor keamananterhadap blow-in sebesar SF = 2,03 ≥ 1,25. sehingga dasar galian aman terhadap blow-in.

-3.00

-14.00 

Gambar 34 : Model Analisa Stabilitas Galian dan Parameter Tanah 

Data properties tanah :

wet = 14.5 kN/m3

  sat = 15 kN/m3

 cu = 14.40 kN/m2  c’ = 0 kN/m2 Ø = 4 Ø’ = 23 

sat = 16.00 kN/m3 cu = 0 kN/m2  c’ = 0.00 kN/m2 Ø = 35 Ø’ = 35

sat = 16.0 kN/m3 cu = 53 kN/m2  c’ = 0 kN/m2 Ø = 0 Ø’ = 25 

sat = 17.0 kN/m3 cu = 200 c’ = 0.00 kN/m2 Ø = 0 Ø’ = 28

Lempung kelanauan, soft to mediumNilai N-SPT= 2 – 8 blows,konus qc = 5 - 20 kg/cm2 

Lanau kelempungan, stiff.Nilai N-SPT= 8 –15blows,

Lanau kepasiran, HardN > 30, konus qc > 250 kg/cm2 

Pasir kelanauan, medium to DenseN = 20 - 50

GWL = -5.00 (Soil Test, Nov 2013)

GWL = -3.00 Desain

Base BS3 - 13.00

-9.00

20.00

H

hhs

hw

Page 98: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 98/102

 

Elevasi muka tanah rata - rata = -3.00 m

Elevasi dasar galian rencana = - 13.00 m

Elevasi rata - rata GWL = - 5.00 m

Tinggi galian H = 10.00 mKedalaman retaining wall h = 11.00 m (dibawah dasar galian)

1 Kestabilan Dasar Galian Terhadap Heaving

Safety Factor :

2.h + 4.Su

1.H

1= 1avr  = 1.5 t/m3

2= 2avr  = 1.6 t/m3

Su av r  = 12.30 t/m

Safety factor kestabilan dasar galian terhadap heaving :

SF = 4.45 > 1.20

2 Kestabilan Dasar Galian Terhadap "Blow In"

Safety Factor :

s.hs + Ca

w.hw

Depth of 'sandy' layer = 20.00 m

H = 10.00 mGWL = 0.00 m

h = 14.00 m

hs = 20.00 m

hw = 20.00 m

w = 1.00 t/m

s.avg = 1.60 t/m Dari dasar galian

Cu.avg = 12.30 t/m Sepanjang retaining wall

= 0.70

Ca = cu.avg = 8.61 t/m2

Safety factor kestabilan dasar galian terhadap "Blow In" :

Sf = 2.03 > 1.25

CEMPAKA PUTIH VILLEGE

 ANALISA KESTABILAN DASAR GALIAN

SF = > 1.20 (for H/B < 1)

> 1.25SF =

Page 99: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 99/102

4.4 Dinding Basement

a. Parameter Tanah Analisa Galian dan Tekanan Dinding Basement

Gambar 35 : Parameter Tanah untuk Analisa Dinding Basemet 

Data properties tanah :

wet = 14.5 kN/m3  sat = 15 kN/m3 cu = 14.40 kN/m2  c’ = 0 kN/m2 Ø = 4 Ø’ = 23 

Ka’ = tan2 (45 - /2) = 0,438

Ka’ = 0,662

-3.00

sat = 16.00 kN/m3 cu = 0 kN/m2  c’ = 0.00 kN/m2 Ø = 35 Ø’ = 35

Ka = tan2 (45 - /2) Ka =0.52= 0.27

-.9.00

sat = 16.0 kN/m3 cu = 53 kN/m2  c’ = 0 kN/m2 Ø = 0 Ø’ = 25 

Ka’ = tan2 (45 - /2) = 0405, Ka’ = 0,637

sat = 17.0 kN/m3

 cu = 200 c’ = 0.00 kN/m2 Ø = 0 Ø’ = 28

Ka’ = tan2 (45 - /2) = 0.36, Ka’ = 0,60

Kp = tan2 (45 - /2) = 2.77

GWL = -3.20 (Soil Test, Nov 2012)

-20.20

Lempung kelanauan, soft to mediumNilai N-SPT= 2 – 8 blows,konus qc = 5 - 20 kg/cm2 

Lanau kelempungan, stiff.Nilai N-SPT= 8 –15 blows,konus qc = 16 - 80 kg/cm2 

Lanau kepasiran, HardN > 30, konus qc > 250 kg/cm2 

Pasir kelanauan, medium to DenseN = 20 - 50

-26.00

Lempung kelanauanN = 20 - 30

-3.00

- 10.50

GF - ± 0.00

BS1 - 3.50

BS2 - 7.00

-14.00

sat = 16.00 kN/m3 

cu = 133 kN/m2

  c’ = 0.00 kN/m2

 Ø = 0 Ø’ = 26

Ka’ = tan2 (45 - /2) = 0.39

Ka’ = 0,624

Kp = tan2 (45 - /2) = 2.56

GWL = -1.20 Desain

BS3 - 10.50

- 13.00

Page 100: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 100/102

b. Perhitungan Dinding Basement

i. Data :- Tebal dinding : 0.30 m- Kedalaman galian : -8.30 m- Mutu Beton : K-400

ii. Gaya yang bekerja pada Dinding Basement

  Beban SurchargePa = q Ka = 2 t/m2 

  Tekanan lateral tanah

Z = 0.00 1 = s.h1.Ka1. – 2.C.Ka1

(elev. -3.00) = 0

Z = -0.50 1 = s.h1.Ka1. – 2.C.Ka1

(elev. -3.50) = (0,5 x 0.5 x 0.438) – 0

= 0.11 t/m2 

Z = -4.00 2 = s.h1.Ka1. – 2.C2.Ka1

(elev. -7.00) = (0,5 x 4 x 0.438) – 0

= 0.88 t/m2

Z = -7.50 3 = s.h1.Ka1. – 2.C2.Ka1

(elev. -10.5) = (0,5 x 7.5 x 0.438) – 0

= 1.64 t/m2

  Tekanan lateral Air

Z = 0.00 1 = 0

Z = -0.50 2 = w.h = 0.50 t/m2

Z = -4.00 3 = w.h = 4.00 t/m2

Z = -7.50 3 = w.h = 7.50 t/m2

  Beban dinamik

Metode Ostadan & White, 1997

F = m.Sa

m = 0.50 ρ H2 ψv

ψv =

 ˅˅ = 1.89

dimana :

F = Seismic Lateral Force

Sa = Spectral acceleration

Page 101: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 101/102

m = total mass of soil

γ  = mass density of soil = 1.50

˅  = poisson ration = 0.33

ψv = veletsos factor

H = embedment depth of the building

Metode Seed & Whitman

∆Peq = γ H 2  ah/g x Fp

dimana :

∆Peq = tekanan tanah aktif tambahan akibat gempa

γ  = mass density of soil

ah = 0.15 g (wilayah gempa 3)

g = gravitional acceleration

Peq = 3/8 x 0.15 x H2 γ 

L/H = 150/10 = 15

Fp [L/H] = 0.90

Page 102: Contoh Ground Anchor

7/17/2019 Contoh Ground Anchor

http://slidepdf.com/reader/full/contoh-ground-anchor 102/102

 

PERHITUNGAN TEKANAN TANAH AK IBAT PENGARUH GEMPA

v = 0.33

H = 7.5

γ = 1.5

H P(y) Ostadan & White Seed & Whitman

0.00 0.0015 0.01 0.00

0.50 0.2757 0.98 0.31

1.00 0.4528 1.61 0.51

2.00 0.6441 2.30 0.73

2.50 0.7010 2.50 0.79

3.50 0.7935 2.83 0.90

4.50 0.8772 3.13 0.99

6.00 0.9632 3.43 1.09

7.00 0.9901 3.53 1.12

7.50 1.0115 3.61 1.14

6.7106 23.93 7.59

PE(h)

0.01

0.98

1.61

2.30

2.50

2.83

3.13

3.433.53

0.0015

0.2757

0.4528

0.6441

0.7010

0.7935

0.8772

0.96320.9901

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 1.00 2.00 3.00 4.00

       P 

        (     y        )

Tekanan Dinamik  Tanah

Grafik Distribusi Tekanan Tanah

(Ostadan  & White, 1997)

 

BB A ASSEEMMEENNTT 

GF ± 0.00 B. Dinamik Tek. Tanah Tekanan Air Surcharge3.61 t/m2

Top -10.50 

7.50 m

-3.00 

7.50 m

0.00 m

-7.00 m

-3.50 m