CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann,...

37
CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli, T. Risselada, S. Russenschuck, H.-J. Schreiber, D. Schulte, F. Zimmermann, ... parameters & layout optics & performance IR region collimation conclusion & open questions Frank Zimmermann CLIC Beam Delivery System

Transcript of CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann,...

Page 1: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

CLIC Beam Delivery System

M. Aleksa, R. Assmann, G. Blair, H. Burkhardt,A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S.Redaelli, T. Risselada, S. Russenschuck,H.-J. Schreiber, D. Schulte, F. Zimmermann, ...

• parameters & layout

• optics & performance

• IR region

• collimation

• conclusion & open questions

Frank Zimmermann CLIC Beam Delivery System

Page 2: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

parameter symbol 3 TeV c.m. 500 GeV c.m.

final focus length [km] 0.5 (3.1) 0.5

collimation length [km] 2.0 (5.8) 2.0

total BDS length [km] 2.5 (8.9) 2.5

norm. emittance [µm] γεx,y 0.68, 0.01 (0.02) 2.0, 0.01

IP beta functions [mm] β∗

x,y 6.0, 0.07 3, 0.05

(8, 0.15)

rms spot sizes [nm] σ∗

x,y 67, 2.1 180, 4.2

rms bunch length [µm] σ∗

z 30 30

free length to IP l∗ 4.3 (2.0) 4.3

IP crossing angle [mrad] θc 20 20

luminosity w/o pinch L0 4.0 1.9

[1034 cm−2s−1]∗2000 values in parentheses

Frank Zimmermann CLIC Beam Delivery System

Page 3: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

3-TeV Beam Delivery System, June 2001

0.0 1000. 2000. 3000. 4000. 5000. 6000. 7000. 8000. s (m)

L*= 4.3 m, Bx*= 0.8 cm, By*= 0.15 mm Unix version 8.51/05 16/05/01 18.32.36

0.0

20.

40.

60.

80.

100.

120.

140.

160.

180.

200.

β ( m

) [ *

10 * * (

3 ) ]

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

D x (

m )

β x

β y

D x

collimation system scaled from NLC (Tenenbaum),Raimondi compact final focus; IP beta functions: β∗

x = 8mm, β∗

y = 150 µm; l∗ = 4.3 m; I5 ≈ 1.8 × 10−20 m,

∆(γεx) ≈ (4 × 10−8 m2/GeV−6)E6I5 ≈ 9 nm.

Frank Zimmermann CLIC Beam Delivery System

Page 4: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

3-TeV Beam Delivery System, January 2002

0.0 500. 1000. 1500. 2000. 2500. 3000.

s (m)

3 TeV CLIC Beam DeliveryUnix version 8.51/09 27/01/02 02.08.03

0.0

50.

100.

150.

200.

250.

300.

350.

400.

450.

500.

β (k

m )

-0.10

-0.05

0.0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

D x (

m )

β x

β y

D x

collimation system shortened: rescaled lengths (×0.625),and bending angles θb (×2.67); omitted half of energycollimation (T.R.). Raimondi compact final focus; IP betafunctions reduced: β∗

x = 6 mm, β∗y = 70 µm; l∗ = 4.3 m;

I5 ≈ 2 × 10−19 m, ∆(γεx) ≈ 90 nm.

Frank Zimmermann CLIC Beam Delivery System

Page 5: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Is halving the energy collimation acceptable?

Which criteria apply? How do we balance?

• overall length

• tracked luminosity performance

• collimation efficiency (?)

• ...

Frank Zimmermann CLIC Beam Delivery System

Page 6: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

lengths & luminosities for various systems

system length [m] luminosity

w/o pinch [1034] cm−2s−1]

present 2557 3.98

2× energy coll. 4325 3.80

increase length by 1.6 & 3356 3.76

reduce θb by 3/8

2× energy coll. & 6186 4.46

incr. length & red. θb

Frank Zimmermann CLIC Beam Delivery System

Page 7: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Performance of Compact 3-TeV BDS

0

1

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

relative luminosity w/o pinch vs. FW momentum spreadat 3 TeV as simulated by upgraded MAD (cross-checkedwith PTC), for two different values of β∗

x,y and γεy = 10

nm (L0 = 4.6 × 1034 cm−2s−1)

Frank Zimmermann CLIC Beam Delivery System

Page 8: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Performance of Compact 3-TeV BDS Cont’d

Limitations:

• synchrotron radiation in bends: ∼ factor 2

luminosity loss

• momentum spread of the beam: ∼ 30% loss

• synchrotron radiation in final quadrupoles:

∼ 10% loss

Frank Zimmermann CLIC Beam Delivery System

Page 9: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Performance of Compact 3-TeV BDS Cont’d

3.1 3 2.9 2.8 2.7 2.6

4 5 6 7 8 9 10βx [mm] 40

6080

100120

140160

βy [µm]

2.52.62.72.82.9

33.13.2

L1 [1034cm-2s-1]

3-TeV luminosity L1 (Ecm > 99%E0) with pinch,beamstrahlung and pair production vs. β∗

x & β∗y , as

determined by integrated simulations using Guinea-Pig(courtesy D. Schulte)

Frank Zimmermann CLIC Beam Delivery System

Page 10: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

500-GeV Beam Delivery System

0.0 500. 1000. 1500. 2000. 2500. 3000. s (m)

500 GeV CLIC Beam DeliveryUnix version 8.51/09 27/01/02 01.48.26

0.0

100.

200.

300.

400.

500.

600.

β (

km

)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

D x (

m )

β x

β y

D x

modifications to 3-TeV system: same total length, increaseFF bend angles by 4.25 (and reduce sextupoles); increasebending angles in coll. system by 20%; larger squeeze of IPβ∗

x,y possible, down to β∗x = 3 mm, β∗

y = 50 µm (plot)

Frank Zimmermann CLIC Beam Delivery System

Page 11: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Performance Improvement: β Squeeze at 500GeV (at 3 TeV it is less effective)

εy [nm] β∗

y [µm] β∗

x [mm] σx [nm] σy [nm] L [1033 cm−2 s−1]

20 150 10 209 2.65 7.3

10 150 10 209 1.88 10.2

10 110 10 209 1.69 11.5

10 70 10 209 1.55 13.6

10 50 10 209 1.56 15.0

10 50 8 189 1.77 16.0

10 50 6 169 2.17 17.2

10 50 4 160 3.12 18.1

10 50 3 178 4.07 18.5

squeeze only βy to preserve quality of lum. spectrum

Frank Zimmermann CLIC Beam Delivery System

Page 12: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Comments on β Squeeze

• yields higher luminosity;

• facilitated by Raimondi final focus (wide

bandwidth, little chromatic aberrations);

• makes optimum use of short bunch length

• also makes use of decreased vertical emittance

• rms spot sizes become less meaningful

• effective beam size from Gaussian fit (S. R.)

or beam-beam simulation (D. S.)

Frank Zimmermann CLIC Beam Delivery System

Page 13: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Let’s Design a Raimondi Final Focus!

my draft recipe (for discussion), software tools?

• design a linear system

• add 2 FD sextupoles, correct ξy and T166

• adjust the linear optics (x) to cancel ξx as well

• add 2–3 geometric sextupoles, and cancel T122

and T144

• treat higher order aberrations by fine-tuning

of αx,y and phase advances, adding octupoles,

fine-tune dispersion,...

Frank Zimmermann CLIC Beam Delivery System

Page 14: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

18 m

Detector

Solenoidfield

Exit beam (e-)

0.6 m

Quad Quad

Exit beam (e+)

Top view of the CLIC IP region with the detector, the colliding

beams, and the final quadrupoles at 3 TeV. Scales are indicated.

The transverse size of the detector is about 17 m [Courtesy Ralph

Assmann] Crab cavity: Vcrab ≈ 1 MV at 30 GHz (Vcrab ∝ λrf);

∆φlr ≤ 0.1 (∝ 1/λrf)

Frank Zimmermann CLIC Beam Delivery System

Page 15: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Choice of Crossing Angle

• θc ≥ 20 mrad for spent beam (D. Schulte, PAC99)

• θc ≥ 20 mrad for multi-bunch kink instability,

including effect of coherent pairs (O. Napoly

CERN-SL-99-054-AP, D. Schulte, CLIC Note 484)

• θc ≤ 20 mrad for vertical spot size increase due to

synchrotron radiation in solenoid (fringe) field and

vertical dispersion (D. Schulte & F.Z., CLIC Note

484, 2001)

Frank Zimmermann CLIC Beam Delivery System

Page 16: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Vertical spot size

σ∗

y vs. θc (left) and

vs. length of fringe

field (right), con-

sidering solenoid

fields of 4 and 6 T.

[D. Schulte & F.Z.,

CLIC Note 484,

2001]

Frank Zimmermann CLIC Beam Delivery System

Page 17: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

0 12.5 25

0.010 0.111-

0.111 0.212-

0.212 0.313-

0.313 0.415-

0.415 0.516-

0.516 0.617-

0.617 0.718-

0.718 0.819-

0.819 0.920-

0.920 1.021-

1.021 1.123-

1.123 1.224-

1.224 1.325-

1.325 1.426-

1.426 1.527-

1.527 1.628-

1.628 1.729-

1.729 1.831-

1.831 1.932-

|Btot| (T)

Cross section of a final focusing quadrupole with gradient 468 T/m

for the permanent magnet material VACOMAX 225HR Sm2Co17, as

computed for a 16-sector magnet by ROXIE [M. Aleksa,

S. Russenschuck, CLIC Note 506] (note: optics ‘only’ requires 388

T/m at 3 TeV)

∆T = 1 K (9 kJm

) → ∆y = 286 nm! Limit: 6 Jm

(< 1 mK!)

Frank Zimmermann CLIC Beam Delivery System

Page 18: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Final-Quadrupole Parameters

length 4.75 m 3.5 m

field gradient 468 T/m 388 T/m

inner radius 3.3 mm 3.8 mm

outer radius 20 mm 43 mm

weight 50 kg 150 kg

p.m. material Sm2Co17, radiation hardness ∆B/B ≤ 0.4%at 2 MGy, no damage from neutrons up to 1018 n cm−2,temperature stability 3 × 10−4 K−1

Frank Zimmermann CLIC Beam Delivery System

Page 19: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Final-Doublet Issues• multipole errors of p.m. quadrupole

∆σ∗y

σ∗y0

= (n− 1)√

(2n − 5)!!GLQbn

(Bρ)rn−20

β(n−2)/2Q,x ε(n−2)/2

x βQ,y

blow up from b4 less than 0.06%

• resistive-wall wake

< ∆y′ > /σy′

< y > /σy

≡ K = 0.32

π

reNbL

a3γ

(

c

σσz

)1/2

βy

example: σ = 5.4 × 1017 s−1 (Cu), a = 3.3 mm,

E = 1.5 TeV, N = 4 × 109, σz = 30 µm, L = 10 m,

βy = 400 km → K = 0.31 (5% enhancement if y and y′

motion uncorrelated)

Frank Zimmermann CLIC Beam Delivery System

Page 20: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

• vacuum: local pumping via (1) segmented magnets, (2)

slitted magnets, (3) coating with getter material. At

10 nTorr & 5 m, bremsstrahlung → 0.6 events / train.

• jitter tolerances (S.R.)

Frank Zimmermann CLIC Beam Delivery System

Page 21: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Collimation System Functions

• remove beam halo to reduce detector

background

• provide a distance between collimators and

IP for muon suppression

• ensure collimator survival and machine

protection

• not amplify incoming trajectory fluctuations

via the collimator wake fields

Frank Zimmermann CLIC Beam Delivery System

Page 22: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

CLIC 3 TeV (2001)

synchrotron radiation fans at 3 TeV with beam envelopes of 14σx

and 83σy. [Courtesy O. Napoly & CLIC Note 476] → betatron

collimation amplitude

Frank Zimmermann CLIC Beam Delivery System

Page 23: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

1e-06

1e-05

0.0001

0.001

0.01

1e-06 1e-05 0.0001 0.001 0.01

sigm

a y[

m]

sigma x [m]

CuTi

BeC

C_no-ic

Baseline FFCompact FF

Dedicated momentumSacrificial betatron

1e-06

1e-05

0.0001

0.001

0.01

1e-06 1e-05 0.0001 0.001 0.01

sigm

a y[

m]

sigma x [m]

Cu Ti

Be C

C_no-ic Compact FF

Dedicated momentum Sacrificial betatron

Vertical vs. horizontal beam sizes required for spoiler survival

[S. Fartoukh, J.B. Jeanneret, J. Pancin, CLIC Note 477] and values

at spoiler locations. Left: baseline & compact FF, long collimation

optics; right: compact FF and shorter collimation section

Frank Zimmermann CLIC Beam Delivery System

Page 24: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Collimation Depth at 3 TeV

• βx: from SR fan in final quadrupole → about

±12 σx (2σx margin) [O. Napoly, CLIC Note

476]

• βy: from SR fan in final quadrupole → about

±80 σy (3σy margin) [O. Napoly, CLIC Note

476]

• energy: from linac failure modes (see

separate talk, D. Schulte & F.Z., CLIC Note

492) → about ±1.5%

Frank Zimmermann CLIC Beam Delivery System

Page 25: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Collimator Parameterscm energy 3 TeV 500 GeV

energy spoiler gap ±4 mm ±4.8 mm

βx spoiler gap ±95 µm (12 σx) ±300 µm (9 σx)

βy spoiler gap ±104 µm (80 σy) ±215 µm (69 σy)

spoiler material Be (or C) Be (or C)

spoiler length 177 mm (0.5 r.l. Be) 177 mm (0.5 r.l. Be)

or 144 mm (0.5 r.l. C) or 144 mm (0.5 r.l. C)

absorber material Ti (Cu coated) Ti (Cu coated)

absorber length 712 mm (20 r.l.) 712 mm (20 r.l.)

number of energy spoilers 1 1

number of βx,y spoilers 4, 4 4, 4

Frank Zimmermann CLIC Beam Delivery System

Page 26: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Wake Field Effects

Centroid deflection by tapered circular collimator

[K. Yokoya]:

∆y′ =2Nbre

γσz

[

(4λσz)1/4

g3/2+

LF (λσz)1/2

2√

πg3

]

y

where y is the offset from the center of the chamber,λ[m] = ρ[Ωm] /(120π), LF the length of the collimator flatpart, and g the half gap. The taper angle is assumed to beoptimally chosen as θopt ≈ 1.1(λσz/g

2)1/4 [J. Irwin]

Frank Zimmermann CLIC Beam Delivery System

Page 27: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

5 10 150

0.5

1

1.5

2

2.5

3

3.5

4

Bunch population [109]

Max

imum

YIP

/σIP

‘Maximum’ IP orbit displacement for a 1σ change in incoming beam

trajectory as a function of bunch population Nb, at 3 TeV.

[S. Redaelli, CLIC Note 493]

(β∆y′/y)500GeV ≈ 0.8(β∆y′/y)3TeV

Frank Zimmermann CLIC Beam Delivery System

Page 28: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Alternative Nonlinear Collimation System

basic scheme

D x

S x 1 S x 2- I

p r e - S x

s p o i l e r

s k e w s k e ws k e w

Frank Zimmermann CLIC Beam Delivery System

Page 29: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Alternative Nonlinear Collimation SystemCont’d

• even shorter (?)

• use skew sextupole → increase σy at spoiler

• skew sextupole amplifies δ & xβ oscillations → spoiler

at larger amplitude (smaller wake effect)

• (possibly) Dx = 0 at spoiler avoids ∆E → xβ coupling

• 2nd skew sextupole cancels aberration

• single spoiler only (compact, less wake)

• 3rd weak skew sextupole for other phase

• comfortable spot size at absorber behind spoiler

• emittance growth from SR

Frank Zimmermann CLIC Beam Delivery System

Page 30: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Effect of Skew Sextupole

Ks =2BT ls(Bρ)a2

s

.

deflection:

∆x′ = −∂Hs

∂x= Ks(Dδ + x)y

∆y′ = −∂Hs

∂y= −1

2Ks(y

2 − x2 − D2δ2 − 2Dδx).

position at downstream spoiler

xspoiler = x0,spoiler + R12∆x′

yspoiler = y0,spoiler + R34∆y′

Frank Zimmermann CLIC Beam Delivery System

Page 31: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

σx ≈ (βx,spoilerεx)1/2 , σy ≈√

9

5

1

2|R34Ks| D2δ2

rms.

σxσy ≈ 9

5|R34Ks|D2δ2

rms

βx,spoilerεx ≥ σ2r,min (1)

simultaneous δ and y collimation:

βx,sextupole =D2∆2

εxn2x

, βy,sextupole =K2

s R234D

4∆4

εyn2y

(2)

emittance growth from synchrotron radiation:

∆(γεx) ≈ (4 × 10−8 m2GeV−6

) E6I5 εx (3)

solve Eqs. (1), (2), (3) by optimizing length, optics, and positions;

strength of additional ‘pre’ skew sextupole:

Kpres =

2

nIPy

2βpre

y εy

(

2ay,spoiler

KsR34

)1/21

Rpre34

Frank Zimmermann CLIC Beam Delivery System

Page 32: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Example Optics for 3 TeV (A. Faus-Golfe, F.Z.)

0.0 500. 1000. 1500. 2000. 2500. s (m)

Unix version 8.51/07 15/05/02 13.28.48

0.0

100.

200.

300.

400.

500.

600.

β ( k

m )

-0.08

-0.06

-0.04

-0.02

0.0

0.02

0.04

0.06

0.08

D

( m )

β x

β y

D x

D y

beam size at

spoiler:

σr = 120 µm;

spoiler half gap:

a = 16.7 mm;

I5 ≈ 10−19 m →∆(γεx) ≈ 0.05 µm

(7%); blow up from

pre-sextupole →6% increase in IP

divergence; so far

system does not

include chromatic

correction

Frank Zimmermann CLIC Beam Delivery System

Page 33: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

parameters for main skew sextupoles and for spoiler

variable value

length 2.07 km

beta functions (x, y) at skew sext. 175, 82 km

dispersion at skew sext. 61 mm

skew sextupole pole-tip field, radius, length 1.4 T, 4 mm, 3 m

skew sextupole strength Ks 104 m−2

R12, R34 from sext. to spoiler 110, 307 m

beta functions (x, y) at spoiler 20.5, 586 km

dispersion at spoiler ∼0 m

rms spot size (x, y) at spoiler 69, 209 µm

vertical spoiler half gap ay,sp 16.7 mm

Frank Zimmermann CLIC Beam Delivery System

Page 34: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

parameters for ‘pre’ skew sextupole

variable value

hor. beta function at pre skew sext. 5.4 km

vert. beta function at pre skew sext. 19.5 km

pre-skew sextupole pole-tip field, radius, length 23 mT, 20 mm, 3 m

pre-skew sextupole strength Kpres 0.068 m−2

R12 from pre-sext. to sext. 290 m

R34 from pre-sext. to sext. 113 m

Frank Zimmermann CLIC Beam Delivery System

Page 35: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Spin Transport and Depolarization

Thomas-BMT Equation

d~S

dt=

e

γm~S ×

[

(1 + aγ) ~B⊥ + (1 + a) ~B||

]

where a = (g − 2)/2 = 0.00115966

Possibly more spin rotation at higher energy!

Frank Zimmermann CLIC Beam Delivery System

Page 36: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Pz

Px

Base system

Compact system

Rotation of the polarization vector in the x-z plane in the short and

base CLIC final-focus system. The initial (Px = 0, Pz = 1) and final

polarization values are indicated by underlaid boxes. → Initial

polarization vector must be ‘matched’ into the BDS! [R. Assmann &

F.Z., CLIC Note 501]

Frank Zimmermann CLIC Beam Delivery System

Page 37: CLIC Beam Delivery System · 2002. 9. 16. · CERN CLIC Beam Delivery System M. Aleksa, R. Assmann, G. Blair, H. Burkhardt, A. Faus-Golfe, J.-B. Jeanneret, O. Napoly, S. Redaelli,

CERN

Conclusions

• CLIC BDS performs well at both 3 TeV and 500 GeV ;

ideal system exceeds the target luminosity by factor

1.5 at 500 GeV, close to target value at 3 TeV

• several small and subtle effects

• alternative nonlinear collimation system is being

finalized (A. F.-G.)

• can we come up with a concise clear recipe or with a

‘MAD engine’ for designing a compact final focus?

• how do we balance between length and performance?

Frank Zimmermann CLIC Beam Delivery System