(CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF),...

20
単結晶X線回折によるラダーSQオリゴマーの構造解析 M. Unno et al., J. Am. Chem. Soc. 2002, 124, 1574. ORTEP drawing of 6b. Thermal ellipsoids are drawn at the 50%

Transcript of (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF),...

Page 1: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

単結晶X線回折によるラダーSQオリゴマーの構造解析

M. Unno et al., J. Am. Chem. Soc. 2002, 124, 1574.

included, and two molecules of 5a are connected via water withhydrogen bonding. It is noted that tetraol 5 and tetrachloride 4 arethe first examples of the sila-functional tricyclic laddersiloxanes.The dehydrochlorinative condensation of 5 (a mixture of stereo-

isomers) with 2 was achieved as in the case of 3, resulting in theisolation of five isomers 6a-e (Scheme 3). The HPLC chart at theend of the reaction is shown in Figure 3. Separation by recycle-type HPLC (ODS, MeOH/THF ) 7/3) gave 6a (12%), 6b (9%),6c (8%), 6d (7%), and 6e (3%).Among the five isomers, we obtained single crystals of 6b, and

as a result, we present the first structure of pentacyclic laddersi-loxane.17 In addition, the spectroscopic data18 supported the structureof 6b. As shown in Figure 4, the pentacyclic rings assume a anti,syn,syn-conformation, and each eight-membered ring is significantlytwisted, resulting in the double-helix structure.19 Thus, the dihedralangles were 38.6° for Si1-Si2-Si7-Si8, 9.2° for Si2-Si3-Si6-Si7, 37.3° for Si3-Si4-Si5-Si6, and 28.9° for Si1-Si8-Si9-Si12 rings. Our laboratory has previously reported the double-helixstructure of the ladder polysilane.20 In this study, 6b showed asimilar structure (see Figure 4).Important to note are the results of the thermal analysis of 6b in

a N2 atmosphere; TG-DTA analysis showed that 6b sublimed at422.6 °C, without loss of any substituents below that temperature.Clearly, this result indicates the high thermal stability of thepentacyclic laddersiloxane.

In summary, we have explored a novel method to extend laddersilsesquioxanes, and synthesized the pentacyclic laddersiloxane forthe first time. The crystallographic analysis unequivocally showedits unique structure, and the thermal analysis showed its highstability.

Acknowledgment. M.U. was supported by a grant from theMinistry of Education, Culture, Sports, Science and Technologyof Japan (Grant-in-Aid 12640510).

Supporting Information Available: Details of experimentalprocedure, spectra of all compounds (PDF), and data for crystallographicanalysis for 5a and 6b (CIF). This material is available free of chargevia the Internet at http://pubs.acs.org.

References

(1) Lee, E.-C.; Kimura, Y. Polym. J. 1997, 29, 678-684. Lee, E.-C.; Kimura,Y. Polym. J. 1998, 30, 234-242. Chen, W.-Y.; Lin, Y.; Pramoda, K. P.;Ma, K. X.; Shung, T. S. J. Polym. Sci., Part B: Polym. Phys. 2000, 38,138-147. Hayashida, S.; Imamura, S. J. Polym. Sci., Part A: Polym.Chem. 1995, 33, 55-62.

(2) Brown, J. F., Jr.; Vogt, L. H., Jr.; Katchman, A.; Eustance, J. W.; Kaiser,K. M.; Krantz, K. W. J. Am. Chem. Soc. 1960, 82, 6194-6195.

(3) Frye, C. L.; Klosowski, J. M. J. Am. Chem. Soc. 1971, 93, 4599-4601.Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry;John Willey & Sons: New York, 2000; p 322.

(4) Unno, M.; Shamsul, B. A.; Saito, H.; Matsumoto, H. Organometallics1996, 15, 2413-2414. Unno, M.; Shamsul, B. A.; Arai, M.; Takada, K.;Tanaka, R.; Matsumoto, H. Appl. Organomet. Chem. 1999, 13, 1-8.

(5) Unno, M.; Takada, K.; Matsumoto, H. Chem. Lett. 1998, 489-490.(6) In this paper, we term ‘laddersiloxane’ for the silsesquioxanes with defined

ladder structure.(7) Unno, M.; Suto, A.; Takada, K.; Matsumoto, H. Bull. Chem. Soc. Jpn.

2000, 73, 215-220.(8) Unno, M.; Takada, K.; Matsumoto, H. Chem. Lett. 2000, 242-243.(9) Previously reported laddersiloxanes are as follows. Bicyclic: Feher, F.

J.; Raquel, T.; Ren-Zhi, J. Chem. Commun. 1999, 2513-2514. Feher, F.J.; Raquel, T.; Ziller, J. W. Chem. Commun. 1999, 2153-2154. Feher, F.J.; Budzichowski, T. A.; Blanski, R. L.; Weller, K. J.; Ziller, J. W.Organometallics 1991, 10, 2526-2528. Shklover, V. E.; Struchkov, Y.T.; Makarova, N. N.; Zhdanov, A. A. Cryst. Struct. Commun. 1980, 9,1-5. syn-Tricyclic: Feher, F. J.; Raquel, T.; Ziller, J. W. Chem. Commun.1999, 2309-2310. Shklover, V. E.; Chekhlov, A. N.; Struchkov, Y. T.;Makarova, N. N.; Andrianov, K. A. Zh. Strukt. Khim. 1978, 19, 1091-1106. anti-Tricyclic: Shklover, V. E.; Klement’ev, I. Y.; Struchkov, Y.T. Dokl. Akad. Nauk SSSR 1981, 259, 131-134.

(10) Shklover, V. E.; Struchkov, Y. T. Usp. Khim. 1980, 49, 518-556.(11) Wu, T. C.; Hirt, C. A. J. Organomet. Chem. 1968, 11, 17-25.(12) Murugavel, R.; Voigt, A.; Chandrasekhar, V.; Roesky, H. W.; Schmidt,

H.-G.; Noltemeyer, M. Chem. Ber. 1996, 129, 391-395.(13) Brown, J. F., Jr.; Vogt, L. H., Jr. J. Am. Chem. Soc. 1965, 82, 4313-

4317.(14) Voronkov, M. G.; Dolgov, B. N.; Dmitrieva, N. A. Doklady Akad. Nauk

SSSR 1952, 84, 959-961.(15) Sakurai, H.; Kyushin, S.; Matsumoto, H. Unpublished results.(16) Crystallographic data of 5a: colorless plate, C24H56O14Si8‚0.5H2O, T )

209 K, Mr ) 806.42, monoclinic, C2/c, a ) 33.670(4) Å, b ) 14.448(1)Å, c ) 18.511(1) Å, ! ) 109.013(1)°, V ) 8414(1) Å3, Z ) 8, R )0.0655, Rw ) 0.0617 for 6117 data with 441 parameters.

(17) Crystallographic data of 6b: colorless plate, C60H104O16Si12, T ) 195 K,Mr ) 1418.50, triclinic, P-1, a ) 14.6572(5) Å, b ) 21.730(1) Å, c )12.7694(5) Å, R ) 90.326(1)°, ! ) 102.540(3)°, " ) 97.132(1)°, V )3937.1(2) Å3, Z ) 2, R1 ) 0.0569, wR2 ) 0.1793 for all 10970 datawith 794 parameters.

(18) Spectral data of 6b: 1H NMR (CDCl3) # 0.54-1.15 (m, 84H), 7.18-7.70 (m, 20H). 13C NMR (CDCl3) # 11.24, 11.46, 11.59, 11.89, 12.03,12.13, 12.24, 12.33, 12.40, 12.56, 12.68, 12.86, 12.92, 13.03, 13.13, 14.08,14.25, 14.43, 14.48, 14.59, 14.68, 14.84, 14.96, 15.14, 16.29, 16.40, 16.49,16.57, 16.61, 16.74, 16.77, 16.81, 16.85, 16.90, 16.95, 17.04, 127.25,127.37, 127.41, 127.47, 129.62, 134.04, 134.07, 134.14, 134.21, 134.49,134.53, 134.67, 134.73, 134.89, 135.02, 135.13. 29Si NMR (CDCl3) #-65.99, -65.69, -65.30, -64.92, -64.08, -63.68, -63.37, -33.54,-32.78, -32.70, -31.97, -31.86. MS (35 eV) m/z (%) 1374 (M+ -i-Pr, 100). IR (NaCl) $ 3071, 2949, 2868, 1954, 1884, 1819, 1466, 1429,1385, 1366, 1258, 1107, 1063, 1038, 995, 920, 889, 785, 764, 700, 646,573. Anal. Calcd for C60H104O16Si12: C, 50.80; H, 7.39. Found: C, 50.82;H, 7.28.

(19) The torsion angles of Si-(O)-Si-(O)-Si-(O)-Si in the rings were 26.8°, 6.8°,-27.5°, -20.0°, and 11.1° from Si4-Si5 to Si10-Si11.

(20) Matsumoto, H.; Kyushin, S.; Unno, M.; Tanaka, R. J. Organomet. Chem.2000, 611, 52-63.

JA0173876

Figure 3. HPL chromatogram (ODS, MeOH/THF ) 7/3).

Figure 4. ORTEP drawing of 6b. Thermal ellipsoids are drawn at the 50%probability level. Hydrogen atoms are omitted for clarity.

Scheme 3

C O M M U N I C A T I O N S

J. AM. CHEM. SOC. 9 VOL. 124, NO. 8, 2002 1575

included, and two molecules of 5a are connected via water withhydrogen bonding. It is noted that tetraol 5 and tetrachloride 4 arethe first examples of the sila-functional tricyclic laddersiloxanes.The dehydrochlorinative condensation of 5 (a mixture of stereo-

isomers) with 2 was achieved as in the case of 3, resulting in theisolation of five isomers 6a-e (Scheme 3). The HPLC chart at theend of the reaction is shown in Figure 3. Separation by recycle-type HPLC (ODS, MeOH/THF ) 7/3) gave 6a (12%), 6b (9%),6c (8%), 6d (7%), and 6e (3%).Among the five isomers, we obtained single crystals of 6b, and

as a result, we present the first structure of pentacyclic laddersi-loxane.17 In addition, the spectroscopic data18 supported the structureof 6b. As shown in Figure 4, the pentacyclic rings assume a anti,syn,syn-conformation, and each eight-membered ring is significantlytwisted, resulting in the double-helix structure.19 Thus, the dihedralangles were 38.6° for Si1-Si2-Si7-Si8, 9.2° for Si2-Si3-Si6-Si7, 37.3° for Si3-Si4-Si5-Si6, and 28.9° for Si1-Si8-Si9-Si12 rings. Our laboratory has previously reported the double-helixstructure of the ladder polysilane.20 In this study, 6b showed asimilar structure (see Figure 4).Important to note are the results of the thermal analysis of 6b in

a N2 atmosphere; TG-DTA analysis showed that 6b sublimed at422.6 °C, without loss of any substituents below that temperature.Clearly, this result indicates the high thermal stability of thepentacyclic laddersiloxane.

In summary, we have explored a novel method to extend laddersilsesquioxanes, and synthesized the pentacyclic laddersiloxane forthe first time. The crystallographic analysis unequivocally showedits unique structure, and the thermal analysis showed its highstability.

Acknowledgment. M.U. was supported by a grant from theMinistry of Education, Culture, Sports, Science and Technologyof Japan (Grant-in-Aid 12640510).

Supporting Information Available: Details of experimentalprocedure, spectra of all compounds (PDF), and data for crystallographicanalysis for 5a and 6b (CIF). This material is available free of chargevia the Internet at http://pubs.acs.org.

References

(1) Lee, E.-C.; Kimura, Y. Polym. J. 1997, 29, 678-684. Lee, E.-C.; Kimura,Y. Polym. J. 1998, 30, 234-242. Chen, W.-Y.; Lin, Y.; Pramoda, K. P.;Ma, K. X.; Shung, T. S. J. Polym. Sci., Part B: Polym. Phys. 2000, 38,138-147. Hayashida, S.; Imamura, S. J. Polym. Sci., Part A: Polym.Chem. 1995, 33, 55-62.

(2) Brown, J. F., Jr.; Vogt, L. H., Jr.; Katchman, A.; Eustance, J. W.; Kaiser,K. M.; Krantz, K. W. J. Am. Chem. Soc. 1960, 82, 6194-6195.

(3) Frye, C. L.; Klosowski, J. M. J. Am. Chem. Soc. 1971, 93, 4599-4601.Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry;John Willey & Sons: New York, 2000; p 322.

(4) Unno, M.; Shamsul, B. A.; Saito, H.; Matsumoto, H. Organometallics1996, 15, 2413-2414. Unno, M.; Shamsul, B. A.; Arai, M.; Takada, K.;Tanaka, R.; Matsumoto, H. Appl. Organomet. Chem. 1999, 13, 1-8.

(5) Unno, M.; Takada, K.; Matsumoto, H. Chem. Lett. 1998, 489-490.(6) In this paper, we term ‘laddersiloxane’ for the silsesquioxanes with defined

ladder structure.(7) Unno, M.; Suto, A.; Takada, K.; Matsumoto, H. Bull. Chem. Soc. Jpn.

2000, 73, 215-220.(8) Unno, M.; Takada, K.; Matsumoto, H. Chem. Lett. 2000, 242-243.(9) Previously reported laddersiloxanes are as follows. Bicyclic: Feher, F.

J.; Raquel, T.; Ren-Zhi, J. Chem. Commun. 1999, 2513-2514. Feher, F.J.; Raquel, T.; Ziller, J. W. Chem. Commun. 1999, 2153-2154. Feher, F.J.; Budzichowski, T. A.; Blanski, R. L.; Weller, K. J.; Ziller, J. W.Organometallics 1991, 10, 2526-2528. Shklover, V. E.; Struchkov, Y.T.; Makarova, N. N.; Zhdanov, A. A. Cryst. Struct. Commun. 1980, 9,1-5. syn-Tricyclic: Feher, F. J.; Raquel, T.; Ziller, J. W. Chem. Commun.1999, 2309-2310. Shklover, V. E.; Chekhlov, A. N.; Struchkov, Y. T.;Makarova, N. N.; Andrianov, K. A. Zh. Strukt. Khim. 1978, 19, 1091-1106. anti-Tricyclic: Shklover, V. E.; Klement’ev, I. Y.; Struchkov, Y.T. Dokl. Akad. Nauk SSSR 1981, 259, 131-134.

(10) Shklover, V. E.; Struchkov, Y. T. Usp. Khim. 1980, 49, 518-556.(11) Wu, T. C.; Hirt, C. A. J. Organomet. Chem. 1968, 11, 17-25.(12) Murugavel, R.; Voigt, A.; Chandrasekhar, V.; Roesky, H. W.; Schmidt,

H.-G.; Noltemeyer, M. Chem. Ber. 1996, 129, 391-395.(13) Brown, J. F., Jr.; Vogt, L. H., Jr. J. Am. Chem. Soc. 1965, 82, 4313-

4317.(14) Voronkov, M. G.; Dolgov, B. N.; Dmitrieva, N. A. Doklady Akad. Nauk

SSSR 1952, 84, 959-961.(15) Sakurai, H.; Kyushin, S.; Matsumoto, H. Unpublished results.(16) Crystallographic data of 5a: colorless plate, C24H56O14Si8‚0.5H2O, T )

209 K, Mr ) 806.42, monoclinic, C2/c, a ) 33.670(4) Å, b ) 14.448(1)Å, c ) 18.511(1) Å, ! ) 109.013(1)°, V ) 8414(1) Å3, Z ) 8, R )0.0655, Rw ) 0.0617 for 6117 data with 441 parameters.

(17) Crystallographic data of 6b: colorless plate, C60H104O16Si12, T ) 195 K,Mr ) 1418.50, triclinic, P-1, a ) 14.6572(5) Å, b ) 21.730(1) Å, c )12.7694(5) Å, R ) 90.326(1)°, ! ) 102.540(3)°, " ) 97.132(1)°, V )3937.1(2) Å3, Z ) 2, R1 ) 0.0569, wR2 ) 0.1793 for all 10970 datawith 794 parameters.

(18) Spectral data of 6b: 1H NMR (CDCl3) # 0.54-1.15 (m, 84H), 7.18-7.70 (m, 20H). 13C NMR (CDCl3) # 11.24, 11.46, 11.59, 11.89, 12.03,12.13, 12.24, 12.33, 12.40, 12.56, 12.68, 12.86, 12.92, 13.03, 13.13, 14.08,14.25, 14.43, 14.48, 14.59, 14.68, 14.84, 14.96, 15.14, 16.29, 16.40, 16.49,16.57, 16.61, 16.74, 16.77, 16.81, 16.85, 16.90, 16.95, 17.04, 127.25,127.37, 127.41, 127.47, 129.62, 134.04, 134.07, 134.14, 134.21, 134.49,134.53, 134.67, 134.73, 134.89, 135.02, 135.13. 29Si NMR (CDCl3) #-65.99, -65.69, -65.30, -64.92, -64.08, -63.68, -63.37, -33.54,-32.78, -32.70, -31.97, -31.86. MS (35 eV) m/z (%) 1374 (M+ -i-Pr, 100). IR (NaCl) $ 3071, 2949, 2868, 1954, 1884, 1819, 1466, 1429,1385, 1366, 1258, 1107, 1063, 1038, 995, 920, 889, 785, 764, 700, 646,573. Anal. Calcd for C60H104O16Si12: C, 50.80; H, 7.39. Found: C, 50.82;H, 7.28.

(19) The torsion angles of Si-(O)-Si-(O)-Si-(O)-Si in the rings were 26.8°, 6.8°,-27.5°, -20.0°, and 11.1° from Si4-Si5 to Si10-Si11.

(20) Matsumoto, H.; Kyushin, S.; Unno, M.; Tanaka, R. J. Organomet. Chem.2000, 611, 52-63.

JA0173876

Figure 3. HPL chromatogram (ODS, MeOH/THF ) 7/3).

Figure 4. ORTEP drawing of 6b. Thermal ellipsoids are drawn at the 50%probability level. Hydrogen atoms are omitted for clarity.

Scheme 3

C O M M U N I C A T I O N S

J. AM. CHEM. SOC. 9 VOL. 124, NO. 8, 2002 1575

Page 2: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

29Si NMRによるSQのキャラクタリゼーション

29Si  NMRによって、Si原子がもつシロキサン結合の数が分かる。

H

SiOO

OHSi

Si

H

SiOO

OSi

Si

Si

Me

SiOHO

OHSi

Me

SiOO

OHSi

Si

Me

SiOO

OSi

Si

Si

SiOO

OHSi

SiSiO

OO

Si

Si

Si

–76.0〜–81.7 ppm(固体)

–69.0〜–70.4 ppm(固体)

L.A.S.D.A. Prado et al., J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 1580.�

–82.1〜–83 ppm (トルエン-d8)

–75 ppm (トルエン-d8)

E. C. Lee et al., Polym. J. 1998, 30, 234.�

T1 T2 T3

–50.9 ppm(固体)

–57.0〜–58.8 ppm(固体)

–65.2〜–65.3 ppm(固体)

–74.6 ppm (固体) –84.7〜–84.9

ppm(固体)

D. A. Loy et al., Chem. Mater. 2000, 12, 3624.�–71 ppm

(クロロホルム-d)

–80 ppm (クロロホルム-d)

Tn (n = シロキサン結合の数)

C. Ma et al., Polym. J. 2002, 34, 709.�

※例えば、かご型SQではT3構造しか存在しない。

Page 3: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

29Si NMRにおけるSQの代表的な化学シフト

–30 –40 –50 –60 –70 –80 –90

(ppm)

* (置換基の種類, Si–O–Si結合数)

(Me, T1) (Me, T2) (Me, T3)

(Octadecyl, T1)

(Octadecyl, T2)

(Octadecyl, T3)

(H, T2) (H, T3)

(Vinyl, T2) (Vinyl, T3)

(Ph, T2) (Ph, T3)

置換基が同じ場合は、Si–O–Si結合の数が1つ異なるごとに約10  ppmシフトする。

L.A.S.D.A. Prado et al., J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 1580.�E. C. Lee et al., Polym. J. 1998, 30, 234.�D. A. Loy et al., Chem. Mater. 2000, 12, 3624.�

C. Ma et al., Polym. J. 2002, 34, 709.�

【以下の文献を参照】

Page 4: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

29Si NMRにおけるかご型オリゴSQ(POSS)の化学シフト

かご型オリゴSQ(POSS)は、T3領域にのみピークが現れるが、かごの大きさ(重合度)によって化学シフトが異なる。

V. Ervithayasuporn et al., Dalton Trans., 2015, 44, 916.�

O

NO2

R =

R

Si O Si

O

Si O Si

OSi O Si

O

Si O Si

O

O O

OO

R R

RR

R R

RR R

Si O Si

O

Si O Si

OSi O Si

O

SiO Si

O

O

O

R O

OR

R R

O

O

SiR

R

O

Si RR

Si R

RO

Si Si

Si

Si

Si

SiSi

Si

SiSi

Si

O O

OO

O

O O

O

OO O O

OOO

O

O

R R

RRR

R

RR

RR

T8 � T10 �

T12 �

T3 �

Page 5: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

マススペクトルによるかご型SQ(POSS)の分子量測定 J. Gidden et al. / International Journal of Mass Spectrometry 222 (2003) 63–73 69

Fig. 4. ESI (a) and MALDI (b) mass spectra of a mixture of Vi10T10 and Vi12T12 (see Table 1) cationized by sodium. Clean spectra wereobtained for all of the POSS compounds. The peaks below m/z = 300 in the MALDI spectrum are matrix peaks.

Table 2Collision cross-sections (Å2) of the POSS compounds

Name X-raya ESI(Na+)

MALDI(Na+)

Theory(Na+)

Cy6T6 224 221 225 222Bz8T8 265Ph8T8 260 263 257Vi10T10 189 193 192Vi12T12 212 214 216 216H14T14 137 139bCp4D4(OH)4 154 157 153Cy6T4D2(OH)2 222 220 222 222Cy7T4D3(OH)3 248 247 254 251

a Structures obtained from Dr. Tim Haddad at ERC Inc., AirForce Research Laboratory.

b Calculated value for the neutral species.

all of the Na+POSS compounds. Similar experimen-tal cross-sections (!2% difference) are obtained forthe Na+POSS ions generated by ESI and those gen-erated by MALDI. ATDs for the protonated speciesof VinTn and Cy6T6 yielded similar cross-sections asthe sodiated species as well.Also shown in Table 2 are the calculated cross-

sections of POSS structures obtained from X-raycrystallography. Normally, X-ray data is not availablefor comparison to the ion mobility experiments anddetailed conformational information about the ions isobtained from theoretical models. However, the goalsof this study are to determine whether POSS retainsits shape in the gas phase and to check the new Siparameters used in the theoretical modeling. There-fore, “known” structures were needed to serve as

J. Gidden et al., Int. J. Mass Spectrom. 2003, 222, 63.

Matrix�

Vi10T10とVi12T12の混合物のESIおよびMALDIマススペクトルによる分子量測定

Electrospray ionization (ESI)�

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)�

Vi10T10; (CH=CH2)10(Si10O15) �

Vi12T12; (CH=CH2)12(Si12O18) �

マトリクス支援レーザー脱離イオン化飛行時間型

エレクトロスプレイイオン化

Page 6: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

粉末X線回折によるPSQの積層構造解析

Y. Kaneko et al., Chem. Mater. 2004, 16, 3417.; Int. J. Polym. Sci. 2012, 684278.

1

1/2

1/√3

(RH = ca. 50%)

(100) (110) 1.43 nm

1.64 nm

Si

Si

O

O Si

O Si

O

O Si

O Si

O

O Si

O Si

O

NH3 NH3 NH3 NH3

NH3 NH3 NH3 NH3

O

O

Cl Cl Cl Cl

Cl Cl Cl Cl

MW = ca. 12k!

Page 7: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

IRによるSQのキャラクタリゼーション

νring-asym νring-sym ca. 1150 cm-1 ca. 1050-1115 cm-1

O

Si O Si

OSiOSi

RR

R R

O

Si O Si

OSiOSi

RR

R R

O

Si O Si

OSiOSi

RR

R R

Si–O–Si 非対称伸縮振動

E. S. Park, D. Y. Yoon et al., Chem. Mater. 2008, 20, 1548.

●対称性の低い構造のSQ  (例:ランダム型など) →1100  cm-1よりも高波数と低波数側に2本ピークが観測

●対称性の高い構造のSQ  (例:かご型など) →1100  cm-1よりも高波数側に1本のみピークが観測

ca. 1100 cm-1

Page 8: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

SQのIRスペクトル(Gaussian98により計算されたモデル) T8 MSQ exhibits absorption bands associated with theSi-CH3 stretching mode at about 1340 cm-1. In addition,the T8 cage MSQ spectrum also contains other Si-CH3

bands, at about 780 cm-1 and 860 cm-1, associated withwagging modes. Moreover, these theoretically derived spectrafor the T8 HSQ and MSQ match those of the experimentalIR spectra (insets in Figure 4a,b). For the Si-O-Si stretchingbands in the two highly symmetrical T8 HSQ and MSQstructures, it is important to note that the IR spectra exhibitthe higher energy !ring-asym band at about 1150 cm-1, whereasthe lower energy !ring-sym band is not detected. Consistentwith the assignment for the symmetrical !ring-sym stretchingbands, it is expected that this band will not be present dueto the cancellation of the dipole moments in the highlysymmetrical cubic T8 structure. In contrast, the parallel!ring-asym stretching would exhibit a high absorption intensityas a result of the six (Si-O)4 ring subunits associated withthis cubic structure.

Model compounds with opened T7 cages of HSQ and MSQare also calculated to further verify the assignment of thevibration modes associated with Si-O bonding. Suffice itto say that these two open cage structures have lowersymmetry than the cubic T8structure and contain fewer(Si-O)4 ring subunits; therefore, it is expected that the IRspectra should contain both Si-O-Si stretching bands. Indeed,the calculated IR spectra (see Figure 5a,b and Table 1) doexhibit both !ring-asym and !ring-sym absorption bands. Furthermore,the Si6 ladder structure (R6Si6O7(OH)4 with R ) CH3, Figure5c), which has lower symmetry than the opened cage, showsthat the intensity of the 1150 cm-1 band is weaker as comparedwith that of the open cage, while the intensity of the 1050 cm-1

band is increased. The results presented here demonstrate thatthe microstructure of PSSQs can be elucidated to a large degreeby IR spectroscopy. In brief, the presence of the !ring-asym bandindicates a highly symmetrical structure with (Si-O)4 ringsubunits which are found in closed cages and partially opencage structures. The relative intensity of the !ring-sym absorptionaround 1050 cm-1 reflects the local symmetry around theSi-O-Si unit, with the higher intensity indicating a lesssymmetric, random network structure.

Figure 2. Calculated IR spectra of model compounds of (a) HSQ T6 cage (H6Si6O9) and (b) HSQ Si8 ladder structure (R8Si8O10(OH)4 with R ) H).

Figure 3. (a) !ring-asym mode and (b) !ring-sym modes of (Si-O)4 ring subunits.The !ring-asym has a high intensity absorption band at about 1150 cm-1,whereas the !ring-sym modes have an absorption band in the range 1050-1115cm-1.

Figure 4. Calculated IR spectra of (a) T8 of HSQ (H8Si8O12) (the insetshows experimental data from ref 21) and (b) T8 of MSQ ((CH3)8Si8O12)(the inset shows experimental data obtained for the sample purchased fromAldrich Co.).

1551Chem. Mater., Vol. 20, No. 4, 2008Microstructures of Poly(silsesquioxanes)

Experimental IR spectra for thin PMSQ films cured atvarious temperatures are presented in Figure 6. The majorabsorption bands for the initial sample cured at 120 °C matchthose of the simulated IR spectra, including the Si-CH3

stretching and wagging bands as well as the !ring-asym and!ring-sym bands (see Table 1). The bands of Si-CH3 associatedwith the stretching mode and wagging modes are shown atabout 1274 cm-1 and at 773 and 825 cm-1, respectively.

They are in good agreement with the calculated results,although the band positions are not exactly matched. On thebasis of the assignment from our theoretical calculation,examination of the IR spectra in Figure 6 shows that theinitial PMSQ structure cured at 120 °C is comprised of amore symmetrical structure (cage/open cage), but this istransformed toward a random network structure when curedto the maximum temperature of 430 °C. The initial samplereveals a lower intensity at the !ring-sym absorption band ascompared to the intensity of the higher energy !ring-asym band.When cured at 250 °C, the !ring-sym band at 1030 cm-1 showsan increase in intensity and the !ring-asym at 1118 cm-1 showsa slight decrease in intensity, making the intensities of thesetwo modes comparable. However, upon increasing the curingtemperature to 430 °C, the IR spectra of PMSQ show furtherchanges of intensity in the !ring-sym and !ring-asym bands, makingthe 1030 cm-1 band much stronger than the 1118 cm-1 band.The increase in intensity of the !ring-sym absorption bandindicates that the molecular structure formed in the PMSQfilm favors a lower symmetry random network-like structure.At the same time, the weakening of the !ring-asym band givesevidence for the disappearance of the (Si-O)4 ring subunitsof the highly symmetrical cage/open cage structures. There-fore, these IR data show (1) the occurrence of solid-statechemical reaction, primarily by secondary condensation ofhydroxyl and alkoxy groups, resulting in highly asymmetricSi-O-Si bond structure devoid of (Si-O)4 ring units and(2) volatilization of highly symmetric low molecular weightPMSQ molecules comprising cage/open cage structures,17

leading to the overall decrease of symmetry toward a randomnetwork-like structure.

For comparison with PMSQ, we also investigated the IRspectra of PiBSQ powder (Figure 7) as polymerized andcured at 190 °C and the IR spectra of PPhSQ thin films(Figure 9) as polymerized and cured at 250 and 450 °C,respectively. Even though the IR spectra of various PiBSQand PPhSQ structures were not calculated here, the micro-structures of these materials can be deduced from the IRspectra. The spectrum of PiBSQ at room temperature (Figure7, curve a) shows, in the frequency range 1000–1200 cm-1,a single strong band at around 1115 cm-1 associated with!ring-asym band from the asymmetric Si-O-Si stretch mode

Figure 5. Calculated IR spectra of (a) open T7 of HSQ (R7Si7O12H3 withR ) H), (b) open T7 of MSQ (R7Si7O12H3 with R ) CH3), and (c) MSQSi6 ladder structure (R6Si6O7(OH)4 with R ) CH3).

Figure 6. Experimental IR spectra of PMSQ samples cured at varioustemperatures. The spectra were normalized to keep the same area of theSi-C stretching peak at about 1280 cm-1.

1552 Chem. Mater., Vol. 20, No. 4, 2008 Park et al.

Experimental IR spectra for thin PMSQ films cured atvarious temperatures are presented in Figure 6. The majorabsorption bands for the initial sample cured at 120 °C matchthose of the simulated IR spectra, including the Si-CH3

stretching and wagging bands as well as the !ring-asym and!ring-sym bands (see Table 1). The bands of Si-CH3 associatedwith the stretching mode and wagging modes are shown atabout 1274 cm-1 and at 773 and 825 cm-1, respectively.

They are in good agreement with the calculated results,although the band positions are not exactly matched. On thebasis of the assignment from our theoretical calculation,examination of the IR spectra in Figure 6 shows that theinitial PMSQ structure cured at 120 °C is comprised of amore symmetrical structure (cage/open cage), but this istransformed toward a random network structure when curedto the maximum temperature of 430 °C. The initial samplereveals a lower intensity at the !ring-sym absorption band ascompared to the intensity of the higher energy !ring-asym band.When cured at 250 °C, the !ring-sym band at 1030 cm-1 showsan increase in intensity and the !ring-asym at 1118 cm-1 showsa slight decrease in intensity, making the intensities of thesetwo modes comparable. However, upon increasing the curingtemperature to 430 °C, the IR spectra of PMSQ show furtherchanges of intensity in the !ring-sym and !ring-asym bands, makingthe 1030 cm-1 band much stronger than the 1118 cm-1 band.The increase in intensity of the !ring-sym absorption bandindicates that the molecular structure formed in the PMSQfilm favors a lower symmetry random network-like structure.At the same time, the weakening of the !ring-asym band givesevidence for the disappearance of the (Si-O)4 ring subunitsof the highly symmetrical cage/open cage structures. There-fore, these IR data show (1) the occurrence of solid-statechemical reaction, primarily by secondary condensation ofhydroxyl and alkoxy groups, resulting in highly asymmetricSi-O-Si bond structure devoid of (Si-O)4 ring units and(2) volatilization of highly symmetric low molecular weightPMSQ molecules comprising cage/open cage structures,17

leading to the overall decrease of symmetry toward a randomnetwork-like structure.

For comparison with PMSQ, we also investigated the IRspectra of PiBSQ powder (Figure 7) as polymerized andcured at 190 °C and the IR spectra of PPhSQ thin films(Figure 9) as polymerized and cured at 250 and 450 °C,respectively. Even though the IR spectra of various PiBSQand PPhSQ structures were not calculated here, the micro-structures of these materials can be deduced from the IRspectra. The spectrum of PiBSQ at room temperature (Figure7, curve a) shows, in the frequency range 1000–1200 cm-1,a single strong band at around 1115 cm-1 associated with!ring-asym band from the asymmetric Si-O-Si stretch mode

Figure 5. Calculated IR spectra of (a) open T7 of HSQ (R7Si7O12H3 withR ) H), (b) open T7 of MSQ (R7Si7O12H3 with R ) CH3), and (c) MSQSi6 ladder structure (R6Si6O7(OH)4 with R ) CH3).

Figure 6. Experimental IR spectra of PMSQ samples cured at varioustemperatures. The spectra were normalized to keep the same area of theSi-C stretching peak at about 1280 cm-1.

1552 Chem. Mater., Vol. 20, No. 4, 2008 Park et al.

IR spectra of model SQ molecules were obtained from quantum chemistry calculations using the Gaussian98 computer program.�

1100 cm-1

1100 cm-1

1100 cm-1

E. S. Park, D. Y. Yoon et al., Chem. Mater. 2008, 20, 1548.

Page 9: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

セミナー内容

1 はじめに 1.1 シルセスキオキサンとは 1.2 今なぜシルセスキオキサンが注目され

るのか 1.3 シルセスキオキサンの分類

2 シルセスキオキサンの合成に用いる原料および反応

3 シルセスキオキサンの分析手法 3.1 29Si  NMRスペクトル

 3.2 IRスペクトル 3.3 X線回折 3.4 分子量測定 3.5 その他

4 シルセスキオキサンの合成および構造制御 4.1 かご型オリゴシルセスキオキサン 4.2 ラダー型オリゴシルセスキオキサン 4.3 様々な構造をもつオリゴシルセスキオ

キサン

 4.4 ラダー型ポリシルセスキオキサン 4.5 規則的なナノ構造をもつポリシルセスキ

オキサン 4.6 架橋型ポリシルセスキオキサン 4.7 ランダム型ポリシルセスキオキサン

5 シルセスキオキサンを用いるハイブリッド材料創製・応用技術

 5.1 シルセスキオキサンを含むポリマー材料  (1) 側鎖型  (2) 主鎖型

  (3) 分岐型 5.2 シルセスキオキサンの機能化 5.3 シルセスキオキサンと機能性化合物との

ハイブリッド化

 5.4 シルセスキオキサン/金属酸化物複合ナノ粒子

  (1) シルセスキオキサン/シリカ  (2) シルセスキオキサン/酸化チタン  (3) シルセスキオキサン/酸化ジルコニウム

 5.5 種々のハイブリッド技術

Page 10: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

かご型オリゴSQ(POSS)の特徴

D. B. Cordes, P. D. Lickiss et al., Chem. Rev. 2010, 110, 2081.

However, some discussion of how molecular POSS com-pounds can be applied in composites and other polymericmaterials and the effects that the POSS species have isprovided in the Properties and Applications sections (section4). The applications of POSS-containing materials havepreviously been reviewed extensively. Thus, general reviewson the incorporation and effects of POSS on polymericmaterial properties have been published,3–24 as well as morespecialized reviews on cross-linked resins containing POSSspecies,25–27 the flammability of POSS-containing nano-composites,28–34 modification of polyolefins using POSSspecies,35 viscoelastic and thermal properties of POSS-fillednanocomposites,36–38 silsesquioxane-based catalysts,39,40 syn-thesis of POSS compounds,37,41 POSS-substituted polyure-thanes used for high-performance applications,42 POSSnanocomposites for biomedical applications,43 POSS materi-als for dental nanocomposites,44 POSS compounds as addi-tives in cosmetics,45 POSS cages as building blocks forzeolite-like materials,46 the presence of POSS cages in thewider field of sol-gel processing of polysilsesquioxanes,47

optical properties of POSS-containing materials,48,49 flowproperties of polymers,50 and the effects of aryl-substitutedPOSS species on the reinforcement of composite materials.51

Earlier studies on polymers and copolymers containing POSSpolyhedra have been reviewed.52

It should also be noted that the use of incompletelycondensed silsesquioxanes such as T7R7(OH)3 and relatedmetallasiloxanes as mimics for silica surfaces and catalystsupports has also been reviewed.53–59

2. Synthesis of POSS CompoundsThis section is focused on the synthesis of T8 POSS, both

previously unknown species and new syntheses of knownspecies. The wide variety of polymeric and compositematerials with POSS species as components will be discussedin section 4, while this section will concentrate primarily ondiscrete molecular species. For older synthetic routes to T8POSS species, see ref 1.

While there are many specific routes for the synthesis ofPOSS compounds, they can be simplified to two types ofreactions, making POSS species by preparing a T8 core fromprecursors containing fewer than eight silicon atoms andchemically modifying the functional groups of an alreadyexisting T8 core to give a new POSS derivative. Each ofthese types of reaction can then be broken down further intotwo subcategories (Scheme 1). Within the making of T8

Figure 1. The general features of a cubic polyhedral silsesquioxane.

Scheme 1

Cubic Polyhedral Oligosilsesquioxanes Chemical Reviews, 2010, Vol. 110, No. 4 2083

POSS: polyhedral oligosilsesquioxane or polyhedral oligomeric silsesquioxane �(多面体オリゴシルセスキオキサン)

TRn�置換基の種類

ユニット数

ポリマーやコンポジット材料中に導入するための規制された構造

ナノスケールの大きさSi…Si対角線  =  ca.  0.5  nmR…R対角線  =  ca.  1  nm    (R  =  Me)

安定性、溶解性、相溶性のための置換基(R:  主に有機基)

熱的・化学的に強固な有機/無機骨格

化学修飾、グラフト化、重合などのための反応性基(X)

Page 11: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

かご型オリゴSQ(POSS)の種類(1)

Table 1. T8R8 Derivatives Prepared by Solvolysis of Alkoxy- or Chlorosilanes

entry R, T8R8, or compound number starting materialsyield(%) refs

1 -H HSiCl3 + FeCl3, HCl, K2CO3, CaCl2, MeOH, hexane 18 69, 702 -H HSiCl3 + FeCl3, HCl, K2CO3, CaCl2, MeOH, petroleum ether, toluene 20 71, 723 -H HSiCl3 + FeCl3, HCl, K2CO3, CaCl2, MeOH, hexane, toluene 23 73–754 -Me MeSi(OEt)3 + poly(2-hydroxyethyl methacrylate), NH3, H2O, MeOH 23 765 -Me MeSi(OEt)3 + poly(2-hydroxyethyl methacrylate), HCl, H2O, MeOH 23 766 -Me MeSi(OEt)3 + NEt4OH, H2O, MeOH, toluene, ether 66 777 -Me MeSi(OMe)3 + NEt4OH, H2O, MeOH, toluene, ether 84 778 -Me MeSi(OEt)3 + NEt3, HCl, AcOH, H2O, acetone, MeCN 88 789 -CH2Ph PhCH2SiCl3 + basic Amberlite, EtOH 68 7910 -CH2NHPh PhNHCH2Si(OMe)3 + HCl, NEt3 8011 -CHdCH2 CH2dCHSi(OEt)3 + HCl, H2O, EtOH 18 81–8412 -CHdCH2 CH2dCHSiCl3 + acid Amberlite, MeOH 24 7913 -CHdCH2 CH2dCHSiCl3 + FeCl3, HCl, H2O, MeOH, CH2Cl2, petroleum ether 35 8514 -CHdCH2 CH2dCHSi(OEt)3 + NMe4OH, MeOH 80 8615 -n-Pr n-PrSiCl3 + HCl, MeOH 8716 -(CH2)2CF3 CF3(CH2)2Si(OEt)3 + KOH, H2O, EtOH 8817 -(CH2)2CF3 CF3(CH2)2SiCl3 + H2O, acetone 10 8918 -(CH2)2C6F5 C6F5(CH2)2Si(OEt)3 + KOH, H2O, EtOH 8819 -CH2CHdCH2 CH2dCHCH2Si(OMe)3 + HNO3, H2O, DMSO 2 9020 -i-Bu i-BuSi(OMe)3 + KOH, H2O, acetone 96 91–9321 -(CH2)3Cp Cp(CH2)3Si(OEt)3 + HCl, H2O, acetone 59 94, 9522 -(CH2)3C6H4-4-OMe MeOC6H4-4-(CH2)3Si(OEt)3 + NBu4F, H2O, CHCl3 17 9623 T8[1-(CH2)3-2-Me-1,2-closo-C2B10H10]8 1-Cl3Si(CH2)3-2-Me-closo-C2B10H10 + DMSO, CHCl3 23 9724 T8[1-(CH2)3-2-

Me-1,2-closo-C2B10H10]8

1-(EtO)3Si(CH2)3-2-Me-closo-C2B10H10 + NBu4F, H2O, THF 70 97

25 T8[1-(CH2)3-2-Me-1,2-closo-C2B10H10]8

1-(EtO)3Si(CH2)3-2-Me-closo-C2B10H10 + NaOH, H2O, THF 55 97

26 T8[1-(CH2)3-2-Ph-1,2-closo-C2B10H10]8

1-Cl3Si(CH2)3-2-Ph-closo-C2B10H10 + DMSO, CHCl3 21 97

27 T8[1-(CH2)3-2-Ph-1,2-closo-C2B10H10]8

1-(EtO)3Si(CH2)3-2-Ph-closo-C2B10H10 + NBu4F, H2O, THF 28 97

28 -(CH2)3NH2 H2N(CH2)3Si(OEt)3 + NEt4OH, H2O, n-PrOH, MeCN 72 98, 9929 -(CH2)3NH2 H2N(CH2)3Si(OEt)3 + NMe4OH, MeOH 93 10030 -(CH2)3NH2 H2N(CH2)3Si(OEt)3 + NEt4OH, n-PrOH, H2O, MeCN 10131 {T8[(CH2)3NH3]8}Cl8 H2N(CH2)3Si(OEt)3 + HCl, PtCl4, MeOH 30 102, 10332 {T8[(CH2)3NH3]8}Cl8 H2N(CH2)3Si(OEt)3 + HCl, MeOH 30 68, 104–10933 {T8[(CH2)3NH3]8}[ZnCl4]2.8Cl2.4 H2N(CH2)3Si(OEt)3 + ZnCl2, HCl, MeOH 4 11034 -(CH2)3NHCH2CH(OH)CH2OPh PhOCH2CH(OH)CH2NH(CH2)3Si(OEt)3 + NaOH, H2O, THF 11135 -(CH2)3N[CH2CH(OH)CH2OPh]2 [PhOCH2CH(OH)CH2]2N(CH2)3Si(OEt)3 + NaOH, H2O, THF 11136 -(CH2)3N[CH2CH(OH)CH2OPh]2 [PhOCH2CH(OH)CH2]2N(CH2)3Si(OEt)3 + catalyst, H2O, THF 11237 -(CH2)3N[CH2CH(OH)CH2OPh]{(CH2)2N[CH2CH(OH)CH2OPh]2} {[PhOCH2CH(OH)CH2]2N(CH2)2}[PhOCH2CH(OH)CH2]N(CH2)3Si(OMe)3 +

NaOH, THF113

38 -(CH2)3OCH2CH(O)CH2 CH2(O)CHCH2O(CH2)3Si(OMe)3 + NEt4OH, H2O, Ac-i-Bu 11439 -(CH2)3SH HS(CH2)3Si(OEt)3 + HCl, H2O 11540 -(CH2)3Cl Cl(CH2)3Si(OMe)3 + HCl, PtCl4, MeOH 10341 -(CH2)3Cl Cl(CH2)3Si(OMe)3 + HCl, MeOH 31 116–11842 -(CH2)3Cl Cl(CH2)3Si(OMe)3 + HCl, Sn(n-Bu)2[O2C(CH2)10Me]2, MeOH 35 119, 12043 -(CH2)3Cl Cl(CH2)3Si(OEt)3 + HCl, MeOH 37 121–12444 -(CH2)2CHMe2 Me2CH(CH2)2Si(OEt)3 + NBu4F, H2O, CH2Cl2, THF 26 6345 -(CH2)2CMe2CO2Me MeOC(dO)CMe2(CH2)2Si(OEt)3 + NBu4F, H2O, CH2Cl2, THF 20 6346 -(CH2)2(CF2)3CF3 CF3(CF2)3(CH2)2Si(OEt)3 + KOH, H2O, EtOH 99 12547 -n-C6H13 n-C6H13Si(OEt)3 + NBu4F, H2O, CH2Cl2, THF 44 6348 -CH2CH(Et)(CH2)3Me Me(CH2)3CH(Et)CH2Si(OMe)3 + NBu4F, H2O, CH2Cl2 43 9649 -n-Oct n-C8H17Si(OEt)3 + NBu4F, H2O, CH2Cl2, THF 65 6350 -(CH2)2(CF2)5CF3 CF3(CF2)5(CH2)2Si(OEt)3 + KOH, H2O, EtOH 88, 12551 -(CH2)2(CF2)7CF3 CF3(CF2)7(CH2)2Si(OEt)3 + KOH, H2O, EtOH 88, 12552 -c-C5H9 c-C5H9Si(OEt)3 + NMe3, HCl, AcOH, H2O, n-PrCN, acetone, 86 7853 -c-C5H9 c-C5H9Si(OEt)3 + NBu4F, H2O, CH2Cl2, THF 95 6354 -Cy CySi(OEt)3 + NBu4F, H2O, CH2Cl2, THF 84 6355 -Cy CySi(OEt)3 + NEt3, HCl, D-aspartic acid, H2O, MeCN, Ac-n-Pr 87 7856 -Cy CySi(OEt)3 + HCl, H2O, MeC(dO)-i-Bu, EtOH 43 12657 exo-1a exo-2-bicyclo[2.2.1]hept-5-en-2-yltriethoxysilane + NBu4F, H2O, CH2Cl2 47 6358 endo-1a endo-2-bicyclo[2.2.1]hept-5-en-2-yltriethoxysilane + NBu4F, H2O, CH2Cl2 56 6359 2 3 + KOH, (COOH)2, H2O 12760 4 5 + KOH, (COOH)2, H2O 12761 -Ph PhSi(OMe)3 + PhCH2NMe3OH, H2O, benzene 12862 -Ph PhSi(OEt)3 + NEt4OH, H2O, MeOH, toluene, ether 30 7763 -Ph PhSi(OEt)3 + NBu4F, H2O, CH2Cl2, THF 49 6364 -Ph PhSiCl3 + H2O, EtOAc 70 12965 -Ph PhSi(OMe)3 + NEt4OH, H2O, MeOH, toluene, ether 70 7766 -Ph PhSiCl3 + basic Amberlite, EtOH 74 7967 -Ph PhSiCl3 + KOH, H2O, EtOH 80 13068 -Ph PhSiCl3 + H2O, trace KOH !90 13169 -Ph PhSiCl3 + PhCH2NMe3OH, H2O, benzene 98 132–13470 -C6H4-2-Me MeC6H4-2-Si(OMe)3 + PhCH2NMe3OH, H2O, benzene 82 13571 -C6H4-3-Me MeC6H4-3-SiCl3 + H2O, EtOH 6 13572 -C6H4-4-Me MeC6H4-4-SiCl3 + H2O, EtOH 7 13573 -C6H4-4-Cl ClC6H4-4-SiCl3 + PhCH2NMe3OH, H2O, benzene 13674 -C6H4-2-Et EtC6H4-2-Si(OMe)3 + PhCH2NMe3OH H2O, benzene 73 13575 -C6H4-2-NHNHPh O(SiH2C6H4-2-NdNPh)2 + NBu4F, H2O, CHCl3 90 13776 [NMe4]8[T8O8] Si(OEt)4 + NMe4OH, H2O 13877 [NMe4]8[T8O8] Si(OEt)4 + NMe4OH, MeOH, H2O 99 139–14478 6 7 + NMe4OH, H2O 71 145

a These compounds were referred to in ref 63 as octa(exo- and endo-2-bicycloheptyl)silsesquioxane; however the presented 1H and 13C NMRindicate the bicycloheptenyl structure to be the correct one.

Cubic Polyhedral Oligosilsesquioxanes Chemical Reviews, 2010, Vol. 110, No. 4 2085

Page 12: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

Table 1. T8R8 Derivatives Prepared by Solvolysis of Alkoxy- or Chlorosilanes

entry R, T8R8, or compound number starting materialsyield(%) refs

1 -H HSiCl3 + FeCl3, HCl, K2CO3, CaCl2, MeOH, hexane 18 69, 702 -H HSiCl3 + FeCl3, HCl, K2CO3, CaCl2, MeOH, petroleum ether, toluene 20 71, 723 -H HSiCl3 + FeCl3, HCl, K2CO3, CaCl2, MeOH, hexane, toluene 23 73–754 -Me MeSi(OEt)3 + poly(2-hydroxyethyl methacrylate), NH3, H2O, MeOH 23 765 -Me MeSi(OEt)3 + poly(2-hydroxyethyl methacrylate), HCl, H2O, MeOH 23 766 -Me MeSi(OEt)3 + NEt4OH, H2O, MeOH, toluene, ether 66 777 -Me MeSi(OMe)3 + NEt4OH, H2O, MeOH, toluene, ether 84 778 -Me MeSi(OEt)3 + NEt3, HCl, AcOH, H2O, acetone, MeCN 88 789 -CH2Ph PhCH2SiCl3 + basic Amberlite, EtOH 68 7910 -CH2NHPh PhNHCH2Si(OMe)3 + HCl, NEt3 8011 -CHdCH2 CH2dCHSi(OEt)3 + HCl, H2O, EtOH 18 81–8412 -CHdCH2 CH2dCHSiCl3 + acid Amberlite, MeOH 24 7913 -CHdCH2 CH2dCHSiCl3 + FeCl3, HCl, H2O, MeOH, CH2Cl2, petroleum ether 35 8514 -CHdCH2 CH2dCHSi(OEt)3 + NMe4OH, MeOH 80 8615 -n-Pr n-PrSiCl3 + HCl, MeOH 8716 -(CH2)2CF3 CF3(CH2)2Si(OEt)3 + KOH, H2O, EtOH 8817 -(CH2)2CF3 CF3(CH2)2SiCl3 + H2O, acetone 10 8918 -(CH2)2C6F5 C6F5(CH2)2Si(OEt)3 + KOH, H2O, EtOH 8819 -CH2CHdCH2 CH2dCHCH2Si(OMe)3 + HNO3, H2O, DMSO 2 9020 -i-Bu i-BuSi(OMe)3 + KOH, H2O, acetone 96 91–9321 -(CH2)3Cp Cp(CH2)3Si(OEt)3 + HCl, H2O, acetone 59 94, 9522 -(CH2)3C6H4-4-OMe MeOC6H4-4-(CH2)3Si(OEt)3 + NBu4F, H2O, CHCl3 17 9623 T8[1-(CH2)3-2-Me-1,2-closo-C2B10H10]8 1-Cl3Si(CH2)3-2-Me-closo-C2B10H10 + DMSO, CHCl3 23 9724 T8[1-(CH2)3-2-

Me-1,2-closo-C2B10H10]8

1-(EtO)3Si(CH2)3-2-Me-closo-C2B10H10 + NBu4F, H2O, THF 70 97

25 T8[1-(CH2)3-2-Me-1,2-closo-C2B10H10]8

1-(EtO)3Si(CH2)3-2-Me-closo-C2B10H10 + NaOH, H2O, THF 55 97

26 T8[1-(CH2)3-2-Ph-1,2-closo-C2B10H10]8

1-Cl3Si(CH2)3-2-Ph-closo-C2B10H10 + DMSO, CHCl3 21 97

27 T8[1-(CH2)3-2-Ph-1,2-closo-C2B10H10]8

1-(EtO)3Si(CH2)3-2-Ph-closo-C2B10H10 + NBu4F, H2O, THF 28 97

28 -(CH2)3NH2 H2N(CH2)3Si(OEt)3 + NEt4OH, H2O, n-PrOH, MeCN 72 98, 9929 -(CH2)3NH2 H2N(CH2)3Si(OEt)3 + NMe4OH, MeOH 93 10030 -(CH2)3NH2 H2N(CH2)3Si(OEt)3 + NEt4OH, n-PrOH, H2O, MeCN 10131 {T8[(CH2)3NH3]8}Cl8 H2N(CH2)3Si(OEt)3 + HCl, PtCl4, MeOH 30 102, 10332 {T8[(CH2)3NH3]8}Cl8 H2N(CH2)3Si(OEt)3 + HCl, MeOH 30 68, 104–10933 {T8[(CH2)3NH3]8}[ZnCl4]2.8Cl2.4 H2N(CH2)3Si(OEt)3 + ZnCl2, HCl, MeOH 4 11034 -(CH2)3NHCH2CH(OH)CH2OPh PhOCH2CH(OH)CH2NH(CH2)3Si(OEt)3 + NaOH, H2O, THF 11135 -(CH2)3N[CH2CH(OH)CH2OPh]2 [PhOCH2CH(OH)CH2]2N(CH2)3Si(OEt)3 + NaOH, H2O, THF 11136 -(CH2)3N[CH2CH(OH)CH2OPh]2 [PhOCH2CH(OH)CH2]2N(CH2)3Si(OEt)3 + catalyst, H2O, THF 11237 -(CH2)3N[CH2CH(OH)CH2OPh]{(CH2)2N[CH2CH(OH)CH2OPh]2} {[PhOCH2CH(OH)CH2]2N(CH2)2}[PhOCH2CH(OH)CH2]N(CH2)3Si(OMe)3 +

NaOH, THF113

38 -(CH2)3OCH2CH(O)CH2 CH2(O)CHCH2O(CH2)3Si(OMe)3 + NEt4OH, H2O, Ac-i-Bu 11439 -(CH2)3SH HS(CH2)3Si(OEt)3 + HCl, H2O 11540 -(CH2)3Cl Cl(CH2)3Si(OMe)3 + HCl, PtCl4, MeOH 10341 -(CH2)3Cl Cl(CH2)3Si(OMe)3 + HCl, MeOH 31 116–11842 -(CH2)3Cl Cl(CH2)3Si(OMe)3 + HCl, Sn(n-Bu)2[O2C(CH2)10Me]2, MeOH 35 119, 12043 -(CH2)3Cl Cl(CH2)3Si(OEt)3 + HCl, MeOH 37 121–12444 -(CH2)2CHMe2 Me2CH(CH2)2Si(OEt)3 + NBu4F, H2O, CH2Cl2, THF 26 6345 -(CH2)2CMe2CO2Me MeOC(dO)CMe2(CH2)2Si(OEt)3 + NBu4F, H2O, CH2Cl2, THF 20 6346 -(CH2)2(CF2)3CF3 CF3(CF2)3(CH2)2Si(OEt)3 + KOH, H2O, EtOH 99 12547 -n-C6H13 n-C6H13Si(OEt)3 + NBu4F, H2O, CH2Cl2, THF 44 6348 -CH2CH(Et)(CH2)3Me Me(CH2)3CH(Et)CH2Si(OMe)3 + NBu4F, H2O, CH2Cl2 43 9649 -n-Oct n-C8H17Si(OEt)3 + NBu4F, H2O, CH2Cl2, THF 65 6350 -(CH2)2(CF2)5CF3 CF3(CF2)5(CH2)2Si(OEt)3 + KOH, H2O, EtOH 88, 12551 -(CH2)2(CF2)7CF3 CF3(CF2)7(CH2)2Si(OEt)3 + KOH, H2O, EtOH 88, 12552 -c-C5H9 c-C5H9Si(OEt)3 + NMe3, HCl, AcOH, H2O, n-PrCN, acetone, 86 7853 -c-C5H9 c-C5H9Si(OEt)3 + NBu4F, H2O, CH2Cl2, THF 95 6354 -Cy CySi(OEt)3 + NBu4F, H2O, CH2Cl2, THF 84 6355 -Cy CySi(OEt)3 + NEt3, HCl, D-aspartic acid, H2O, MeCN, Ac-n-Pr 87 7856 -Cy CySi(OEt)3 + HCl, H2O, MeC(dO)-i-Bu, EtOH 43 12657 exo-1a exo-2-bicyclo[2.2.1]hept-5-en-2-yltriethoxysilane + NBu4F, H2O, CH2Cl2 47 6358 endo-1a endo-2-bicyclo[2.2.1]hept-5-en-2-yltriethoxysilane + NBu4F, H2O, CH2Cl2 56 6359 2 3 + KOH, (COOH)2, H2O 12760 4 5 + KOH, (COOH)2, H2O 12761 -Ph PhSi(OMe)3 + PhCH2NMe3OH, H2O, benzene 12862 -Ph PhSi(OEt)3 + NEt4OH, H2O, MeOH, toluene, ether 30 7763 -Ph PhSi(OEt)3 + NBu4F, H2O, CH2Cl2, THF 49 6364 -Ph PhSiCl3 + H2O, EtOAc 70 12965 -Ph PhSi(OMe)3 + NEt4OH, H2O, MeOH, toluene, ether 70 7766 -Ph PhSiCl3 + basic Amberlite, EtOH 74 7967 -Ph PhSiCl3 + KOH, H2O, EtOH 80 13068 -Ph PhSiCl3 + H2O, trace KOH !90 13169 -Ph PhSiCl3 + PhCH2NMe3OH, H2O, benzene 98 132–13470 -C6H4-2-Me MeC6H4-2-Si(OMe)3 + PhCH2NMe3OH, H2O, benzene 82 13571 -C6H4-3-Me MeC6H4-3-SiCl3 + H2O, EtOH 6 13572 -C6H4-4-Me MeC6H4-4-SiCl3 + H2O, EtOH 7 13573 -C6H4-4-Cl ClC6H4-4-SiCl3 + PhCH2NMe3OH, H2O, benzene 13674 -C6H4-2-Et EtC6H4-2-Si(OMe)3 + PhCH2NMe3OH H2O, benzene 73 13575 -C6H4-2-NHNHPh O(SiH2C6H4-2-NdNPh)2 + NBu4F, H2O, CHCl3 90 13776 [NMe4]8[T8O8] Si(OEt)4 + NMe4OH, H2O 13877 [NMe4]8[T8O8] Si(OEt)4 + NMe4OH, MeOH, H2O 99 139–14478 6 7 + NMe4OH, H2O 71 145

a These compounds were referred to in ref 63 as octa(exo- and endo-2-bicycloheptyl)silsesquioxane; however the presented 1H and 13C NMRindicate the bicycloheptenyl structure to be the correct one.

Cubic Polyhedral Oligosilsesquioxanes Chemical Reviews, 2010, Vol. 110, No. 4 2085

D. B. Cordes, P. D. Lickiss et al., Chem. Rev. 2010, 110, 2081.

かご型オリゴSQ(POSS)の種類(2)

Page 13: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

オクタ水素化POSS(TH8)の合成

P. A. Agaskar et al., Inorg. Chem. 1991, 30, 2707.

Ø  TH8は、塩化鉄存在下、トリクロロシランの加水分解/縮合反応により合成される(TH10も含まれる)。

Ø  ヘキサンでの洗浄によりTH8のみを単離できる。

H

SiClCl

Cl

Si O Si

O

Si O Si

OSi O Si

O

Si O Si

O

O O

OO

H H

HH

H H

H H

FeCl3,� Conc. HCl �

in MeOH, Hexane, Toluene�

オクタ水素化POSS(TH8)(主生成物)

Yield: 17.5% �

H

Si O Si

O

Si O Si

OSi O Si

O

SiO Si

O

O

O

H O

OH

H H

HO

OSi

HH

O

Si HH

デカ水素化POSS(TH10)(副生成物)

Total yield: 27.2%�

トリクロロシラン

Page 14: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

ヘキサ(シクロヘキシル)POSS(TCy6)の合成

H. Behbehani et al., J. Organomet. Chem. 1994, 469, 19.

Ø  置換基が大きくなることで、6量体が形成される。Ø  単結晶X線回折により、構造決定している。

ヘキサシクロヘキシルPOSS(TCy6)

Yield: 10% �

シクロヘキシル トリクロロシラン

SiClCl

Cl

Si

O

Si O

Si Si

O

Si O Si

O

O

O

OOWater�

in Acetone,� for 4 months�

Extraction with dry pyridine and recrystallization�

Page 15: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

オクタ(3-アミノプロピル)POSSの合成

F. J. Feher et al., Chem. Commun. 1998, 323.

Ø  主に、29Si  NMRおよびMALDI-TOF  MS測定により、構造決定している。Ø  反応性の置換基であるアミノ基が存在しているため、様々な有機置換基を修飾することができる。

オクタ(3-アミノプロピル)POSS塩酸塩

Yield: 30% �

3-アミノプロピル トリエトキシシラン

conc. HCl �

in MeOH, �at 25 ºC for 6 weeks�

Recrystallization from MeOH �

SiEtOEtO

OEt

NH2 Si O Si

O

Si O Si

OSi O Si

O

Si O Si

O

O O

OO

NH3

NH3

NH3

H3N

H3N

H3NNH3

H3N

Cl Cl

Cl

Cl

ClCl

Cl

Cl

Page 16: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

Si O Si

O

Si O Si

OSi O Si

O

Si O Si

O

O O

OO

R R

RR

R R

R R

3-アミノプロピルPOSSの高収率・短時間合成

Ø  主に、29Si  NMRおよびMALDI-TOF  MS測定により、構造決定している。Ø  アミノ基含有SQを、高収率・短時間で合成できる。Ø  わずかに10量体POSS  (T10)も含まれる。

3-アミノプロピルPOSS トリフルオロメタンスルホン酸塩

3-アミノプロピル トリメトキシシラン

i) Stirring in CF3SO3H aq. (0.5 mol/L) at r.t for 2 h.

ii) Heating at ca. 50 ºC

in an open system until the solvent completely evaporates.

iii) Heating at ca. 100 ºC for 1 h.

iv) Washing with acetone and drying under reduced pressure.�

SiMeOMeO

OMe

NH2

Cage-like SQ (AP-POSS)�

Y. Kaneko, M. Shoiriki, and T. Mizumo, J. Mater. Chem. 2012, 22, 14475.

R

Si O Si

O

Si O Si

OSi O Si

O

SiO Si

O

O

O

R O

OR

R R

RO

OSi

RR

O

Si RR

T8 (Main product)�

+�

T10 (Minor product)�

R = (CH2)3NH3+ CF3SO3

– �

Yield: 93% Total reaction time: 5~6 h�

Page 17: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

29Si NMR in DMSO-d6 �

MW of T8 = 880.3 g/mol (R = -(CH2)3NH2) �

m/z 881.9 [M+H]+

MALDI-TOF MS �

Si O Si

O

Si O Si

OSi O Si

O

Si O Si

O

O O

OO

R R

RR

R R

R R

Cage-like octamer (T8) �Cage-like

decamer (T10) �

T3 �

R

Si O Si

O

Si O Si

OSi O Si

O

SiO Si

O

O

O

R O

OR

R R

RO

OSi

RR

O

Si RR

AP-POSSのキャラクタリゼーション

(−66.4 ppm)�

(−68.3 ppm)�

Page 18: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

Si O Si

O

Si O Si

OSi O Si

O

Si O Si

O

O O

OO

R R

RR

R R

R R

Ø  主に、29Si  NMRおよびMALDI-TOF  MS測定により、構造決定している。Ø  アミノ基含有SQを、高収率・短時間で合成できる。Ø  わずかに10量体POSS  (T10)も含まれる。

3-アミノプロピルPOSS トリフルオロメタンスルホン酸塩

3-アミノプロピル トリメトキシシラン

i) Stirring in CF3SO3H aq. (0.5 mol/L) at r.t for 2 h.

ii) Heating at ca. 50 ºC

in an open system until the solvent completely evaporates.

iii) Heating at ca. 100 ºC for 1 h.

iv) Washing with acetone and drying under reduced pressure.�

SiMeOMeO

OMe

NH2

Cage-like SQ (AP-POSS)�

Y. Kaneko, M. Shoiriki, and T. Mizumo, J. Mater. Chem. 2012, 22, 14475.

R

Si O Si

O

Si O Si

OSi O Si

O

SiO Si

O

O

O

R O

OR

R R

RO

OSi

RR

O

Si RR

T8 (Main product)�

+�

T10 (Minor product)�

R = (CH2)3NH3+ CF3SO3

– �

Yield: 93% Total reaction time: 5~6 h�

加熱や濃縮しているのに、なぜ重合(ゲル化)しないのか?

3-アミノプロピルPOSSの高収率・短時間合成

Page 19: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

Si NH2ROOR

ORHO S CF3

O

O

Si NH3ROOR

ORO S CF3

O

O

+�

+�

縮合電荷の反発

側鎖間距離がより離れた構造が有利になる。

POSS構造の予想される形成メカニズム

Si O Si

O

Si O Si

OSi O Si

O

Si O Si

O

O O

OO

R R

RR

R R

R R

Page 20: (CIF). This material is available free of charge ......procedure, spectra of all compounds (PDF), and data for crystallographic analysis for 5a and 6b (CIF). This material is available

R or R'

Si O Si

O

Si O Si

OSi O Si

O

Si O Si

O

O O

OO

R or R' R or R'

R or R'R or R'

R or R' R or R'

R or R'

APTMS

+�

Yield: 91% �Total reaction time: 7~8 h�

CF3SO3H / Amine = 2.5 �

3-(2-aminoethylamino)-propyltrimethoxysilane

(AEAPTMS)

SiMeOOMe

OMe

NH

H2N

SiMeOOMe

OMe

NH2R or R' R or R'

Si O Si

O

Si O Si

OSi O Si

O

SiO Si

O

O

O

R or R' O

OR or R'

R or R' R or R'

O

OSi

R or R'

R or R'

O

Si R or R'R or R'

R = (CH2)3NH2+(CH2)2NH3+

(CF3SO3–)2

R' = (CH2)3NH3+ CF3SO3–

i) Stirring in aqueous CF3SO3H (0.5 mol/L) at r.t. for 2 h.�

ii) Heating at ca. 50 ºC in an open system until the solvent completely evaporates.�iii) Heating at 100 ºC for ca. 2 h. �

iv) Washing with acetone/chloroform mixed solvent (1:1 v/v) and chloroform, then drying under the reduced pressure.�

Low-C POSS (T8) � (Main product)�

Low-C POSS (T10) � (Minor product)�

+�

POSSの対称性が低下⇒  結晶化を抑制⇒  透明膜

2種のアミノ基含有トリアルコキシシラン混合物の超強酸を用いる加水分解/縮合反応による非晶質POSS(Low-C POSS)の合成

T. Tokunaga, M. Shoiriki, T. Mizumo, and Y. Kaneko, J. Mater. Chem. C 2014, 2, 2496.