Chuyen de 02 PT BPT HPT N.M.hieu Mathvn.com

33
Chuyên đ• 2 Phương Trình - B§t Phương Trình & H» Phương Trình Đ/i SL §1. Phương Trình - B§t Phương Trình Không Chøa Căn Bài t“p 2.1. Gi£i các b§t phương trình sau a) x 2 - 6x +6 > 0. b) -4x 2 + x - 2 0. c) x 4 - 4x 3 +3x 2 +8x - 10 0. d) x 4 + x 2 +4x - 3 0. Li gi£i. a) Ta có x 2 - 6x +6 > 0 x> 3+ 3 x< 3 - 3 . V“y t“p nghi»m S = ( -∞;3 - 3 ) ( 3+ 3; +) . b) Ta có Δ= -31 < 0 ⇒-4x 2 + x - 2 < 0, x R. V“y b§t phương trình vô nghi»m. c) B§t phương trình tương đương vi x 4 +3x 2 - 10 - 4x 3 +8x 0 ( x 2 - 2 )( x 2 +5 ) - 4x ( x 2 - 2 ) 0 ( x 2 - 2 )( x 2 - 4x +5 ) 0 x 2 - 2 0 ⇔- 2 x 2 V“y b§t phương trình có t“p nghi»m S = - 2; 2 . d) B§t phương trình tương đương vi x 4 +2x 2 +1 x 2 - 4x +4 ( x 2 +1 ) 2 (x - 2) 2 ( x 2 + x - 1 )( x 2 - x +3 ) 0 x 2 + x - 1 0 " x -1+ 5 2 x -1- 5 2 V“y b§t phương trình có t“p nghi»m S = -∞; -1- 5 2 i h -1+ 5 2 ;+ . Bài t“p 2.2. Gi£i các b§t phương trình sau a) x - 2 x 2 - 9x +8 0. b) x 2 - 3x - 2 x - 1 2x +2. c) x +5 2x - 1 + 2x - 1 x +5 > 2. d) 1 x 2 - 5x +4 < 1 x 2 - 7x + 10 . Li gi£i. a) Ta có b£ng xét d§u x -∞ 1 2 8 +x - 2 - | - 0 + | + x 2 - 9x +8 + 0 - | - 0 + VT - || + 0 - || + V“y b§t phương trình có t“p nghi»m S = (1; 2] (8; +). b) B§t phương trình tương đương vi x 2 - 3x - 2 - (x - 1) (2x + 2) x - 1 0 -x 2 - 3x x - 1 0. Ta có b£ng xét d§u 1 www.MATHVN.com www.MATHVN.com

Transcript of Chuyen de 02 PT BPT HPT N.M.hieu Mathvn.com

  • Chuyn 2

    Phng Trnh - Bt Phng Trnh & HPhng Trnh i S

    1. Phng Trnh - Bt Phng Trnh Khng Cha CnBi tp 2.1. Gii cc bt phng trnh sau

    a) x2 6x + 6 > 0. b) 4x2 + x 2 0.c) x4 4x3 + 3x2 + 8x 10 0. d) x4 + x2 + 4x 3 0.

    Li gii.

    a) Ta c x2 6x + 6 > 0[x > 3 +

    3

    x < 33 . Vy tp nghim S =(; 33) (3 +3; +).

    b) Ta c = 31 < 0 4x2 + x 2 < 0,x R. Vy bt phng trnh v nghim.c) Bt phng trnh tng ng vi

    x4 + 3x2 10 4x3 + 8x 0 (x2 2) (x2 + 5) 4x (x2 2) 0 (x2 2) (x2 4x + 5) 0 x2 2 0 2 x 2

    Vy bt phng trnh c tp nghim S =[2;2].

    d) Bt phng trnh tng ng vi

    x4 + 2x2 + 1 x2 4x + 4 (x2 + 1)2 (x 2)2 (x2 + x 1) (x2 x + 3) 0 x2 + x 1 0 [ x 1+52

    x 15

    2

    Vy bt phng trnh c tp nghim S =(; 1

    5

    2

    ][1+5

    2 ; +).

    Bi tp 2.2. Gii cc bt phng trnh sau

    a)x 2

    x2 9x + 8 0. b)x2 3x 2

    x 1 2x + 2.

    c)x + 5

    2x 1 +2x 1x + 5

    > 2. d)1

    x2 5x + 4 0

    x2 12x + 362x2 + 9x 5 > 0.

    Ta c bng xt du

    x 5 12 6 +x2 12x + 36 + | + | + 0 +2x2 + 9x 5 + 0 0 + | +

    VT + || || + 0 +Vy bt phng trnh c tp nghim S = (;5) ( 12 ; 6) (6; +).d) Bt phng trnh tng ng vi

    x2 7x + 10 x2 + 5x 4(x2 5x + 4) (x2 7x + 10) < 0

    2x + 6(x2 5x + 4) (x2 7x + 10) < 0.

    Ta c bng xt du

    x 1 2 3 4 5 +2x + 6 + | + | + 0 | |

    x2 5x + 4 + 0 | | 0 + | +x2 7x + 10 + | + 0 | | 0 +

    VT + || || + 0 || + || Vy bt phng trnh c tp nghim S = (1; 2) (3; 4) (5; +).

    Bi tp 2.3. Gii cc phng trnh saua) x3 5x2 + 5x 1 = 0. b) x3 33x2 + 7x3 = 0.c) x4 4x3 x2 + 16x 12 = 0. d) (x 3)3 + (2x + 3)3 = 18x3.e)(x2 + 1

    )3+ (1 3x)3 = (x2 3x + 2)3. f) (4 + x)2 (x 1)3 = (1 x) (x2 2x + 17).

    Li gii.

    a) Ta c x3 5x2 + 5x 1 = 0 (x 1) (x2 4x + 1) = 0 [ x = 1x = 23 .

    Vy phng trnh c ba nghim x = 1, x = 23.b) Ta c x3 33x2 + 7x3 = 0 (x3) (x2 23x + 1) = 0 [ x = 3

    x =

    32 .Vy phng trnh c ba nghim x =

    3, x =

    32.

    c) Ta c x4 4x3 x2 + 16x 12 = 0 (x 1) (x3 3x2 4x + 12) = 0 x = 1x = 3x = 2

    .

    Vy phng trnh c ba nghim x = 1, x = 3, x = 2.d) Phng trnh tng ng vi

    (x 3 + 2x + 3)3 3(x 3)(2x + 3)(x 3 + 2x + 3) = 18x3 9x3 9x (2x2 3x 9) = 0 9x (7x2 + 3x + 9) = 0 x = 0

    Vy phng trnh c nghim duy nht x = 0.e) Phng trnh tng ng vi(

    x2 + 1 + 1 3x)3 3(x2 + 1)(1 3x)(x2 + 1 + 1 3x) = (x2 3x + 2)3 3(x2 + 1)(1 3x)(x2 3x + 2) = 0

    x = 13x = 1x = 2

    Vy phng trnh c ba nghim x = 13 , x = 1, x = 2.f) Phng trnh tng ng vi

    (4 + x)2

    = (x 1)3 (x 1) (x2 2x + 17) (4 + x)2 = (x 1) (x2 2x + 1 x2 + 2x 17) = 0 x2 + 8x + 16 = 16x + 16 x2 + 24x = 0

    [x = 0x = 24

    Vy phng trnh c hai nghim x = 0, x = 24.

    2

    www.MATHVN.com

    www.MATHVN.com

  • Chuyn 2. Phng Trnh - Bt Phng Trnh & H Phng Trnh i S

    Bi tp 2.4. Gii cc phng trnh saua)(x2 4x + 3)2 (x2 6x + 5)2 = 0. b) x4 = (2x 5)2.

    c) x4 + 3x2 + 3 = 2x. d) x4 4x 1 = 0.e) x4 = 6x2 12x + 8. f) x4 = 2x3 + 3x2 4x + 1.

    Li gii.

    a) Ta c(x2 4x + 3)2 (x2 6x + 5)2 = 0 (2x2 10x + 8) (2x 2) = 0 [ x = 1

    x = 4.

    Vy phng trnh c hai nghim x = 1, x = 4.b) Ta c x4 = (2x 5)2 (x2 + 2x 5) (x2 2x + 5) = 0 x = 16.Vy phng trnh c hai nghim x = 16.c) Ta c x4 + 3x2 + 3 = 2x (x2 + 2)2 = (x + 1)2 (x2 + x + 3) (x2 x + 1) = 0.Vy phng trnh v nghim.d) Ta c x4 4x 1 = 0 (x2 + 1)2 = 2(x + 1)2 (x2 +2x + 1 +2) (x2 2x + 12) = 0.Vy phng trnh c hai nghim x =

    2

    4

    2 22

    .

    e) Ta c x4 = 6x2 12x + 8 (x2 1)2 = (2x 3)2 (x2 + 2x 4) (x2 2x + 2) = 0 x = 15.Vy phng trnh c hai nghim x = 15.f) Ta c x4 = 2x3 + 3x2 4x + 1 (x2 x)2 = (2x 1)2 (x2 + x 1) (x2 3x + 1) = 0 [ x = 152

    x = 35

    2

    .

    Vy phng trnh c bn nghim x =15

    2, x =

    352

    .

    Bi tp 2.5. Gii cc phng trnh saua) (x + 3)4 + (x + 5)4 = 2. b) (x + 1)4 + (x + 3)4 = 16.c) (x + 3)4 + (x 1)4 = 82. d) x4 + (x 1)4 = 418 .

    Li gii.a) t x + 4 = t. Phng trnh tr thnh

    (t 1)4 + (t + 1)4 = 2 2t4 + 12t2 = 0[t2 = 0t2 = 6 (loi) t = 0

    Vi t = 0 x = 4. Vy phng trnh c nghim duy nht x = 4.b) t x + 2 = t. Phng trnh tr thnh

    (t 1)4 + (t + 1)4 = 16 2t4 + 12t2 14 = 0[t2 = 1t2 = 7 (loi) t = 1

    Vi t = 1 x = 1; t = 1 x = 3. Vy phng trnh c hai nghim x = 1, x = 3.c) t x + 1 = t. Phng trnh tr thnh

    (t + 2)4

    + (t 2)4 = 16 2t4 + 48t2 50 = 0[t2 = 1t2 = 25 (loi) t = 1

    Vi t = 1 x = 0; t = 1 x = 2. Vy phng trnh c hai nghim x = 0, x = 2.d) t x 12 = t. Phng trnh tr thnh(

    t +1

    2

    )4+

    (t 1

    2

    )4=

    41

    8 2t4 + 3t2 5 = 0

    [t2 = 1t2 = 52 (loi)

    t = 1

    Vi t = 1 x = 32 ; t = 1 x = 12 . Vy phng trnh c hai nghim x = 32 , x = 12 .Bi tp 2.6. Gii cc phng trnh sau

    a) (x + 1) (x + 2) (x + 3) (x + 4) = 3. b)(x2 1) (x + 3) (x + 5) + 16 = 0.

    c) (x 1) (x 2) (x 3) (x 6) = 3x2. d) (x2 2x + 4) (x2 + 3x + 4) = 14x2.Li gii.

    a) Phng trnh tng ng vi

    (x + 1) (x + 4) (x + 2) (x + 3) = 3 (x2 + 5x + 4) (x2 + 5x + 6) = 3t x2 + 5x + 4 = t. Phng trnh tr thnh t (t + 2) = 3

    [t = 1t = 3 .

    3

    www.MATHVN.com

    www.MATHVN.com

  • Nguyn Minh Hiu

    Vi t = 1 x2 + 5x + 4 = 1 x = 5

    13

    2; t = 3 x2 + 5x + 4 = 3 (v nghim).

    Vy phng trnh c hai nghim x =513

    2.

    b) Phng trnh tng ng vi

    (x 1) (x + 5) (x + 1) (x + 3) + 16 = 0 (x2 + 4x 5) (x2 + 4x + 3)+ 16 = 0t x2 + 4x 5 = t. Phng trnh tr thnh t (t + 8) + 16 = 0 t = 4.Vi t = 4 x2 + 4x 5 = 4 x = 25. Vy phng trnh c hai nghim x = 25.c) Nhn thy x = 0 khng phi l nghim phng trnh. Vi x 6= 0, phng trnh tng ng vi

    (x 1) (x 6) (x 2) (x 3) = 3x2 (x2 7x + 6) (x2 5x + 6) = 3x2(x 7 + 6

    x

    )(x 5 + 6

    x

    )= 3

    t x 7 + 6x = t. Phng trnh tr thnh t (t + 2) = 3[t = 1t = 3 .

    Vi t = 1 x 7 + 6x = 1 x2 8x + 6 = 0 x = 4

    10;t = 3 x 7 + 6x = 3 x2 4x + 6 = 0 (v nghim).

    Vy phng trnh c hai nghim x = 410.d) Nhn thy x = 0 khng phi l nghim phng trnh. Vi x 6= 0, phng trnh tng ng vi(

    x 2 + 4x

    )(x + 3 +

    4

    x

    )= 14

    t x 2 + 4x = t. Phng trnh tr thnh t (t + 5) = 14[t = 2t = 7 .

    Vi t = 2 x 2 + 4x = 2 x2 4x+ 4 = 0 x = 2; t = 7 x 2 + 4x = 7 x2 + 5x+ 4[x = 1x = 4 .

    Vy phng trnh c ba nghim x = 2, x = 1, x = 4.Bi tp 2.7. Gii cc phng trnh sau

    a) x4 4x3 + 6x2 4x + 1 = 0. b) 2x4 + 3x3 9x2 3x + 2 = 0.c) 2x4 + 3x3 27x2 + 6x + 8 = 0. d) x4 5x3 + 8x2 10x + 4 = 0.

    Li gii.a) Nhn thy x = 0 khng phi l nghim phng trnh. Vi x 6= 0, phng trnh tng ng vi

    x2 4x + 6 4x

    +1

    x2= 0 x2 + 1

    x2 4

    (x +

    1

    x

    )+ 6 = 0

    t x +1

    x= t x2 + 1

    x2= t2 2. Phng trnh tr thnh t2 2 4t + 6 = 0 t = 2.

    Vi t = 2 x + 1x

    = 2 x2 2x + 1 = 0 x = 1.Vy phng trnh c nghim duy nht x = 1.b) Nhn thy x = 0 khng phi l nghim phng trnh. Vi x 6= 0, phng trnh tng ng vi

    2x2 + 3x 9 3x

    +2

    x2= 0 2

    (x2 +

    1

    x2

    )+ 3

    (x 1

    x

    ) 9 = 0

    t x 1x

    = t x2 + 1x2

    = t2 + 2. Phng trnh tr thnh 2(t2 + 2

    )+ 3t 9 = 0

    [t = 1t = 52

    .

    Vi t = 1 x 1x

    = 1 x2 x 1 = 0 x = 1

    5

    2.

    Vi t = 52 x 1

    x= 5

    2 2x2 + 5x 2 = 0 x = 5

    41

    4

    Vy phng trnh c bn nghim x =15

    2, x =

    5414

    .

    c) Nhn thy x = 0 khng phi l nghim phng trnh. Vi x 6= 0, phng trnh tng ng vi

    2x2 + 3x 27 + 6x

    +8

    x2= 0 2

    (x2 +

    4

    x2

    )+ 3

    (x +

    2

    x

    ) 27 = 0

    4

    www.MATHVN.com

    www.MATHVN.com

  • Chuyn 2. Phng Trnh - Bt Phng Trnh & H Phng Trnh i S

    t x +2

    x= t x2 + 4

    x2= t2 4. Phng trnh tr thnh 2 (t2 4)+ 3t 27 = 0 [ t = 5

    t = 72.

    Vi t = 5 x + 2x

    = 5 x2 + 5x + 2 = 0 x = 5

    17

    2.

    Vi t =7

    2 x + 2

    x=

    7

    2 2x2 7x + 4 = 0 x = 7

    17

    4.

    Vy phng trnh c bn nghim x =517

    2, x =

    7174

    .

    d) Nhn thy x = 0 khng phi l nghim phng trnh. Vi x 6= 0, phng trnh tng ng vi

    x2 5x + 8 10x

    +4

    x2= 0 x2 + 4

    x2 5

    (x +

    2

    x

    )+ 8 = 0

    t x +2

    x= t x2 + 4

    x2= t2 4. Phng trnh tr thnh t2 4 5t + 8 = 0

    [t = 4t = 1

    .

    Vi t = 4 x + 2x

    = 4 x2 4x + 2 = 0 x = 2

    2.

    Vi t = 1 x + 2x

    = 1 x2 x + 2 = 0 (v nghim).Vy phng trnh c hai nghim x = 22.

    Bi tp 2.8. Gii cc phng trnh saua)(x2 + 5x

    )2 2 (x2 + 5x) 24 = 0. b) (x2 + x + 1) (x2 + x + 2) = 12.c)(x2 2x 2)2 2x2 + 3x + 2 = 0. d) (4x + 3)2 (x + 1) (2x + 1) = 810.

    Li gii.

    a) t x2 + 5x = t. Phng trnh tr thnh t2 2t 24 = 0[t = 6t = 4 .

    Vi t = 6 x2 + 5x = 6[x = 1x = 6 . Vi t = 4 x

    2 + 5x = 4[x = 1x = 4 .

    Vy phng trnh c bn nghim x = 1, x = 4, x = 6.b) t x2 + x + 1 = t. Phng trnh tr thnh t(t + 1) = 12

    [t = 3t = 4 .

    Vi t = 3 x2 + x + 1 = 3[x = 1x = 2 . Vi t = 4 x

    2 + x + 1 = 4 (v nghim).Vy phng trnh c hai nghim x = 1, x = 2.c) Phng trnh tng ng vi (x2 2x 2)2 (x2 2x 2) x2 + x = 0.t x2 2x 2 = t. Phng trnh tr thnh

    t2 t x2 + x = 0 (t x)(t + x) (t x) = 0 (t x)(t + x 1) = 0[t = xt = 1 x

    Vi t = x x2 2x 2 = x x = 3

    17

    2; t = 1 x x2 2x 2 = 1 x x = 1

    13

    2.

    Vy phng trnh c bn nghim x =317

    2, x =

    1132

    .

    d) Phng trnh tng ng vi(16x2 + 24x + 9

    ) (2x2 + 3x + 1

    )= 810 [8(2x2 + 3x + 1) + 1] (2x2 + 3x + 1) = 810

    t 2x2 + 3x + 1 = t. Phng trnh tr thnh (8t + 1) t = 810[t = 10t = 818

    .

    Vi t = 10 2x2 + 3x + 1 = 10[x = 3x = 32

    . Vi t = 818 2x2 + 3x + 1 = 818 (v nghim).Vy phng trnh c hai nghim x = 3, x = 32 .

    Bi tp 2.9. Gii cc phng trnh sau

    a)1

    2x2 x + 1 +1

    2x2 x + 3 =6

    2x2 x + 7 . b)4x

    4x2 8x + 7 +3x

    4x2 10x + 7 = 1.

    c)x2 + 1

    x+

    x

    x2 + 1= 5

    2. d)

    (x 1x + 2

    )2+x 3x + 2

    2(x 3x 1

    )2= 0.

    e) x2 +(

    x

    x + 1

    )2= 3. f)

    (1

    x2 + x + 1

    )2+

    (1

    x2 + x + 2

    )2=

    13

    36.

    5

    www.MATHVN.com

    www.MATHVN.com

  • Nguyn Minh Hiu

    Li gii.a) t 2x2 x + 1 = t (t > 0). Phng trnh tr thnh

    1

    t+

    1

    t + 2=

    6

    t + 6 (t + 2) (t + 6) + t (t + 6) = 6t (t + 2) 4t2 2t 12 = 0

    [t = 2t = 32 (loi)

    Vi t = 2 2x2 x + 1 = 2[x = 1x = 12

    .

    Vy phng trnh c hai nghim x = 1, x = 12 .b) Nhn thy x = 0 khng phi l nghim phng trnh. Vi x 6= 0, phng trnh tng ng vi

    4

    4x 8 + 7x+

    3

    4x 10 + 7x= 1

    t 4x 8 + 7x = t. Phng trnh tr thnh

    4

    t+

    3

    t 2 = 1 4 (t 2) + 3t = t (t 2) t2 9t + 8 = 0

    [t = 1t = 8

    Vi t = 1 4x 8 + 7x = 1 4x2 9x + 7 = 0 (v nghim).Vi t = 8 4x 8 + 7x = 8 4x2 16x + 7 = 0

    [x = 12x = 72

    .

    Vy phng trnh c hai nghim x = 12 , x =72 .

    c) iu kin: x 6= 0.t

    x2 + 1

    x= t. Phng trnh tr thnh t + 1t = 52

    [t = 2t = 12

    .

    Vi t = 2 x2 + 1

    x= 2 x2 + 2x + 1 = 0 x = 1.

    Vi t = 12 x

    2 + 1

    x= 1

    2 2x2 + x + 2 = 0 (v nghim).

    Vy phng trnh c nghim x = 1.d) iu kin: x 6= 1, x 6= 2.t

    x 1x + 2

    = u,x 3x 1 = v. Phng trnh tr thnh u

    2 + uv 2v2 = 0[u = vu = 2v .

    Vi u = v x 1x + 2

    =x 3x 1 x

    2 2x + 1 = x2 x 6 x = 7.

    Vi u = 2v x 1x + 2

    = 2.x 3x 1 x

    2 2x + 1 = 2x2 + 2x + 12 3x2 4x 11 = 0 x = 2

    37

    3.

    Vy phng trnh c ba nghim x = 7, x =237

    3.

    e) iu kin: x 6= 1. Phng trnh tng ng vi(x x

    x + 1

    )2+ 2x.

    x

    x + 1= 3

    (x2

    x + 1

    )2+ 2

    x2

    x + 1 3 = 0

    tx2

    x + 1= t. Phng trnh tr thnh t2 + 2t 3 = 0

    [t = 1t = 3 .

    Vi t = 1 x2

    x + 1= 1 x2 x 1 = 0 x = 1

    5

    2.

    Vi t = 3 x2

    x + 1= 3 x2 + 3x + 3 = 0 (v nghim).

    Vy phng trnh c hai nghim x =15

    2.

    f) Phng trnh tng ng vi(1

    x2 + x + 1 1x2 + x + 2

    )2+ 2.

    1

    x2 + x + 1.

    1

    x2 + x + 2=

    13

    36

    (

    1

    (x2 + x + 1) (x2 + x + 2)

    )2+

    2

    (x2 + x + 1) (x2 + x + 2) 13

    36= 0

    t1

    (x2 + x + 1) (x2 + x + 2)= t (t > 0). Phng trnh tr thnh t2 + 2t 13

    36= 0

    [t = 16t = 136 (loi)

    .

    6

    www.MATHVN.com

    www.MATHVN.com

  • Chuyn 2. Phng Trnh - Bt Phng Trnh & H Phng Trnh i S

    Vi t =1

    6 1

    (x2 + x + 1) (x2 + x + 2)=

    1

    6 (x2 + x + 1) (x2 + x + 2) = 6.

    t x2 + x + 1 = u (u > 0). Phng trnh tr thnh u (u + 1) = 6[u = 2u = 3 (loi) .

    Vi u = 2 x2 + x + 1 = 2 x = 1

    5

    2.

    Vy phng trnh c hai nghim x =15

    2.

    Bi tp 2.10. Gii cc phng trnh saua) |x 1| = x2 3x + 1. b) x2 + 4x 5 = x2 + 5.c)x2 5x + 4 x = 4. d) x2 + 4x + 4 = 5 x2.

    e)x2 5x + 4 = x2 + 6x + 5. f) x2 5x + 5 = 2x2 + 10x 11.

    Li gii.

    a) Ta c |x 1| = x2 3x + 1 [ x 1 = x2 3x + 1x 1 = x2 + 3x 1

    x = 22x = 0x = 2

    .

    Vy phng trnh c bn nghim x = 22, x = 0, x = 2.

    b) Ta cx2 + 4x 5 = x2 + 5 [ x2 + 4x 5 = x2 + 5

    x2 + 4x 5 = x2 5 x = 52x = 0x = 2

    .

    Vy phng trnh c ba nghim x = 52 , x = 0, x = 2.c) Vi x2 5x + 4 0

    [x 4x 1 , phng trnh tr thnh x

    2 5x + 4 x = 4[x = 0x = 6

    (tha mn).

    Vi x2 5x+ 4 < 0 1 < x < 4, phng trnh tr thnh x2 + 5x 4 x = 4 x2 4x+ 8 = 0 (v nghim).Vy phng trnh c hai nghim x = 0, x = 6.d) Phng trnh tng ng vi |x + 2| = 5 x2.Vi x + 2 0 x 2, phng trnh tr thnh x + 2 = 5 x2 x2 + x 3 = 0

    [x = 1+

    13

    2

    x = 113

    2 (loi)

    Vi x + 2 < 0 x < 2, phng trnh tr thnh x 2 = 5 x2 x2 x 7 = 0[x = 1+

    29

    2 (loi)x = 1

    29

    2

    Vy phng trnh c hai nghim x =1 +13

    2, x =

    1292

    .

    e) Vi x2 5x + 4 0[x 4x 1 , phng trnh tr thnh x

    2 5x + 4 = x2 + 6x + 5 x = 111 (tha mn).Vi x2 5x + 4 < 0 1 < x < 4, PT tr thnh x2 + 5x 4 = x2 + 6x + 5 2x2 + x + 9 = 0 (v nghim).Vy phng trnh c hai nghim x = 111 .

    f) Vi x2 5x+ 5 0[x 5+

    5

    2

    x 55

    2

    , PT tr thnh x2 5x+ 5 = 2x2 + 10x 11 x = 1533

    2 (tha mn).

    Vi x2 5x + 5 < 0 55

    2 < x 0). Phng trnh tr thnh3

    t2 t 2 = 0 t3 + 2t 3 = 0 t = 1.

    Vi t = 1 x + 12x 1

    = 1 |x + 1| = |2x 1| [ x + 1 = 2x 1x + 1 = 2x + 1 [x = 2x = 0

    .

    7

    www.MATHVN.com

    www.MATHVN.com

  • Nguyn Minh Hiu

    Vy phng trnh c hai nghim x = 2, x = 0.

    c) Ta cx2 + 3x 10+ x2 4 = 0 { x2 + 3x 10 = 0

    x2 4 = 0 [x = 2x 5

    x = 2 x = 2.

    Vy phng trnh c nghim duy nht x = 2.

    d) Ta cx2 + 3x 4+x2011 + 2011x 2012 = 0 { x2 + 3x 4 = 0

    x2011 + 2011x 2012 = 0 [x = 1 (tha mn)x = 4 (loi)

    x2011 + 2011x 2012 = 0.

    Vy phng trnh c nghim duy nht x = 1.

    Bi tp 2.12. Gii cc bt phng trnh sau

    a) |x 2| < |2x + 1|. b)2x 3x 3

    1.c)x2 5x + 4 x2 + 6x + 5. d) x2 2x+ x2 4 > 0.

    Li gii.

    a) Ta c |x 2| < |2x + 1| (x 2)2 < (2x + 1)2 3x2 + 8x 3 > 0[x > 13x < 3 .

    Vy bt phng trnh c tp nghim S = (;3) ( 13 ; +).b) iu kin: x 6= 3. Bt phng trnh tng ng vi

    |2x 3| |x 3| (2x 3)2 (x 3)2 3x2 6x 0 0 x 2 (tha mn)Vy bt phng trnh c tp nghim S = [0; 2].

    c) Vi x2 5x + 4 0[x 4x 1 , bt phng trnh tr thnh

    x2 5x + 4 x2 + 6x + 5 x 111 S1 =

    [ 1

    11; 1

    ] [4; +)

    Vi x2 5x + 4 < 0 1 < x < 4, bt phng trnh tr thnhx2 + 5x 4 x2 + 6x + 5 2x2 + x + 9 0 (ng x (1; 4)) S2 = (1; 4)

    Vy bt phng trnh c tp nghim S = S1 S2 =[ 111 ; +).

    d) Vi x2 2x 0[x 2x 0 , bt phng trnh tr thnh

    x2 2x + x2 4 > 0[x > 2x < 1 (tha mn) S1 = (;1) (2; +)

    Vi x2 2x < 0 0 < x < 2, bt phng trnh tr thnhx2 + 2x + x2 4 > 0 x > 2 (loi) S2 =

    Vy bt phng trnh c tp nghim S = S1 S2 = (;1) (2; +).Bi tp 2.13. Gii cc phng trnh sau

    a) |9 x| = |6 5x|+ |4x + 3|. b) x2 5x + 4+ x2 5x = 4.c) |7 2x| = |5 3x|+ |x + 2|. d) |x 1| 2 |x 2|+ 3 |x 3| = 4.e)x2 2x + 1 +x2 + 4x + 4 = 5. f)

    x + 2

    x 1 +

    x 2x 1 = 2.

    Li gii.a) Ta c bng xt du

    x 34 65 9 +9 x + | + | + 0 6 5x + | + 0 | 4x + 3 0 + | + | +

    Vi x (; 34], phng trnh tr thnh 9 x = 6 5x 4x 3 x = 34 (tha mn).Vi x ( 34 ; 65], phng trnh tr thnh 9 x = 6 5x + 4x + 3 9 = 9 (ng ,x ( 34 ; 65]).Vi x ( 65 ; 9], phng trnh tr thnh 9 x = 6 + 5x + 4x + 3 x = 65 (loi).Vi x (9; +), phng trnh tr thnh 9 + x = 6 + 5x + 4x + 3 x = 34 (loi).Vy phng trnh c tp nghim S =

    [ 34 ; 65].b) Ta c bng xt du

    8

    www.MATHVN.com

    www.MATHVN.com

  • Chuyn 2. Phng Trnh - Bt Phng Trnh & H Phng Trnh i S

    x 0 1 4 5 +x2 5x + 4 + | + 0 0 + | +x2 5x + 0 | | 0 +

    Vi x (; 0], phng trnh tr thnh x2 5x + 4 + x2 5x = 4[x = 0 (tha mn)x = 5 (loi)

    .

    Vi x (0; 1], phng trnh tr thnh x2 5x + 4 x2 + 5x = 4 4 = 4 (ng ,x (0; 1]).Vi x (1; 4], phng trnh tr thnh x2 + 5x 4 x2 + 5x = 4

    [x = 4 (tha mn)x = 1 (loi)

    .

    Vi x (4; 5], phng trnh tr thnh x2 5x + 4 x2 + 5x = 4 4 = 4 (ng ,x (4; 5]).Vi x (5; +), phng trnh tr thnh x2 5x + 4 + x2 5x = 4

    [x = 0 (loi)x = 5 (loi) .

    Vy phng trnh c tp nghim S = [0; 1] [4; 5].c) Ta c bng xt du

    x 2 53 72 +7 2x + | + | + 0 5 3x + | + 0 | x + 2 0 + | + | +

    Vi x (;2], phng trnh tr thnh 7 2x = 5 3x x 2 x = 2 (tha mn).Vi x (2; 53], phng trnh tr thnh 7 2x = 5 3x + x + 2 7 = 7 (ng ,x (2; 53]).Vi x ( 53 ; 72], phng trnh tr thnh 7 2x = 5 + 3x + x + 2 x = 53 (loi).Vi x ( 72 ; +), phng trnh tr thnh 7 + 2x = 5 + 3x + x + 2 x = 2 (loi).Vy phng trnh c tp nghim S =

    [2; 53].d) Ta c bng xt du

    x 1 2 3 +x 1 0 + | + | +x 2 | 0 + | +x 3 | | 0 +

    Vi x (; 1], phng trnh tr thnh x + 1 2 (x + 2) + 3 (x + 3) = 4 x = 1 (tha mn).Vi x (1; 2], phng trnh tr thnh x 1 2 (x + 2) + 3 (x + 3) = 4 4 = 4 (ng ,x (1; 2]).Vi x (2; 3], phng trnh tr thnh x 1 2 (x 2) + 3 (x + 3) = 4 x = 2 (loi).Vi x (3; +), phng trnh tr thnh x 1 2 (x 2) + 3 (x 3) = 4 x = 5 (tha mn).Vy phng trnh c tp nghim S = [1; 2] {5}.e) Phng trnh tng ng vi |x 1|+ |x + 2| = 5.Ta c bng xt du

    x 2 1 +x 1 | 0 +x + 2 0 + | +

    Vi x (;2], phng trnh tr thnh x + 1 x 2 = 5 x = 3 (loi).Vi x (2; 1], phng trnh tr thnh x + 1 + x + 2 = 5 3 = 5 (v l).Vi x (1; +), phng trnh tr thnh x 1 + x + 2 = 5 x = 2 (tha mn).Vy phng trnh c nghim x = 2.f) Phng trnh tng ng vi

    x 1 + 1 + x 1 1 = 2.

    Vix 1 1 0 x 2, PT tr thnh x 1 + 1 +x 1 1 = 2 x 1 = 1 x = 2 (tha mn).

    Vix 1 1 < 0 1 x < 2, PT tr thnh x 1 + 1x 1 + 1 = 2 2 = 2 (ng x [1; 2)).

    Vy phng trnh c tp nghim S = [1; 2].

    2. Phng Trnh - Bt Phng Trnh Cha CnBi tp 2.14. Gii cc phng trnh sau

    a) xx 1 7 = 0. b) 2x + 9 = 4 x +3x + 1.c)

    3x 35 x = 2x 4. d)

    2x +

    6x2 + 1 = x + 1.e) 3

    2x 1 + 3x 1 = 33x + 1. f) 3x + 1 + 3x + 2 + 3x + 3 = 0.

    9

    www.MATHVN.com

    www.MATHVN.com

  • Nguyn Minh Hiu

    Li gii.a) Phng trnh tng ng vi

    x 1 = x 7

    {x 7x 1 = x2 14x + 49

    x 7[ x = 5 (loi)x = 10

    x = 10

    Vy phng trnh c nghim duy nht x = 5.b) iu kin: 13 x 4. Phng trnh tng ng vi

    2x + 9 = 4 x + 3x + 1 + 2

    (4 x) (3x + 1) 4 = 23x2 + 11x + 4

    3x2 + 11x + 4 = 4[x = 0x = 113

    (tha mn).

    Vy phng trnh c hai nghim x = 0, x = 113 .c) iu kin: 2 x 5. Phng trnh tng ng vi

    3x 3 = 5 x +2x 4 3x 3 = 5 x + 2x 4 + 2

    (5 x) (2x 4)

    2x 4 = 2

    (5 x) (2x 4) (2x 4)2 = 4 (5 x) (2x 4)

    (2x 4) (2x 4 20 + 4x) = 0[x = 2x = 4

    (tha mn).

    Vy phng trnh c hai nghim x = 2, x = 4.d) Phng trnh tng ng vi

    {x + 1 02x +

    6x2 + 1 = x2 + 2x + 1

    {

    x 16x2 + 1 = x4 + 2x2 + 1

    x 1 x = 0x = 2x = 2 (loi)

    [x = 0x = 2

    Vy phng trnh c hai nghim x = 0, x = 2.e) Phng trnh tng ng vi

    2x 1 + x 1 + 3 3

    (2x 1) (x 1) ( 32x 1 + 3x 1) = 3x + 1 3

    (2x 1) (x 1) (3x + 1) = 1 6x3 7x2 = 0[x = 0x = 76

    Th li ta thy x = 0 khng phi l nghim phng trnh. Vy phng trnh c nghim duy nht x = 76 .f) Phng trnh tng ng vi

    3x + 1 + 3

    x + 2 = 3x + 3 x + 1 + x + 2 + 3 3

    (x + 1) (x + 2)

    (3x + 1 + 3

    x + 2

    )= x 3

    3

    (x + 1) (x + 2) (x + 3) = x + 2 (x + 1) (x + 2) (x + 3) = x + 2 x = 2Th li ta thy x = 2 l nghim phng trnh. Vy phng trnh c nghim duy nht x = 2.

    Bi tp 2.15. Gii cc bt phng trnh saua)x2 4x 12 > 2x + 3. b) x2 4x 12 x 4.

    c) 3

    6x 9x2 < 3x. d) x3 + 1 x + 1.Li gii.

    a) Bt phng trnh tng ng vi{

    2x + 3 < 0x2 4x 12 0{2x + 3 0x2 4x 12 > 4x2 + 12x + 9

    x <

    32[

    x 6x 2{

    x 323 < x < 73

    x 2

    Vy bt phng trnh c tp nghim S = (;2].b) Bt phng trnh tng ng vi x 4 0x2 4x 12 0

    x2 4x 12 x2 8x + 16

    x 4[x 6x 2

    x 7 6 x 7

    Vy bt phng trnh c tp nghim S = [6; 7].c) Bt phng trnh tng ng vi 6x 9x2 < 27x3 27x3 + 9x2 6x > 0. Ta c bng xt du

    10

    www.MATHVN.com

    www.MATHVN.com

  • Chuyn 2. Phng Trnh - Bt Phng Trnh & H Phng Trnh i S

    x 23 0 13 +VT 0 + 0 0 +

    Vy bt phng trnh c tp nghim S =( 23 ; 0) ( 13 ; +).

    d) Bt phng trnh tng ng vi

    {

    x + 1 < 0x3 + 1 0{x + 1 0x3 + 1 x2 + 2x + 1

    {

    x < 1x3 1 (v nghim) x 1[ 1 x 0x 2

    [ 1 x 0x 2

    Vy bt phng trnh c tp nghim S = [1; 0] [2; +).Bi tp 2.16. Gii cc bt phng trnh sau

    a) (C-09)x + 1 + 2

    x 2 5x + 1. b) (A-05) 5x 1x 1 > 2x 4.

    c)

    2x +

    6x2 + 1 > x + 1. d) (A-04)

    2 (x2 16)x 3 +

    x 3 > 7 x

    x 3 .

    Li gii.a) iu kin: x 2. Bt phng trnh tng ng vi

    x + 1 + 4 (x 2) + 4

    (x + 1) (x 2) 5x + 1 x2 x 2 4 2 x 3Kt hp iu kin bt phng trnh c tp nghim S = [2; 3].b) iu kin: x 2. Bt phng trnh tng ng vi

    5x 1 > x 1 +2x 4 5x 1 > x 1 + 2x 4 + 2

    (x 1) (2x 4)

    x + 2 >

    (x 1) (2x 4) x2 + 4x + 4 > 2x2 6x + 4 0 < x < 10

    Kt hp iu kin bt phng trnh c tp nghim S = [2; 10).c) Bt phng trnh tng ng vi

    {x + 1 < 0

    2x +

    6x2 + 1 0{x + 1 02x +

    6x2 + 1 > x2 + 2x + 1

    {

    x < 16x2 + 1 2x{

    x 16x2 + 1 > x4 + 2x2 + 1

    {

    x < 16x2 + 1 4x2 (ng,x R) x 1[ x < 2

    0 < x < 2

    [x < 10 < x < 2

    Vy bt phng trnh c tp nghim S = (;1) (0; 2).d) iu kin: x 4. Bt phng trnh tng ng vi

    2 (x2 16) + x 3 > 7 x

    2 (x2 16) > 10 2x

    10 2x < 0{ 10 2x 02x2 32 > 100 40x + 4x2

    x > 5{ x 5

    1034 < x < 10 +34[x > 5

    1034 < x 5 x > 10

    34

    Kt hp iu kin bt phng trnh c tp nghim S =(1034; +).

    Bi tp 2.17. Gii cc phng trnh saua) (D-05) 2

    x + 2 + 2

    x + 1x + 1 = 4. b)

    x 1 + 2x 2

    x 1 2x 2 = 1.

    c) x +x + 12 +

    x + 14 = 9. d)

    x + 2

    x 1 +

    x 2x 1 = x + 3

    3.

    Li gii.a) Phng trnh tng ng vi 2

    (x + 1 + 1

    )x + 1 = 4 x + 1 = 2 x = 3.Vy phng trnh c nghim x = 3.

    11

    www.MATHVN.com

    www.MATHVN.com

  • Nguyn Minh Hiu

    b) Phng trnh tng ng vix 2 + 1 x 2 1 = 1 x 2 x 2 1 = 0

    Vix 2 1 0 x 3, PT tr thnh x 2x 2 + 1 = 0 1 = 0 (v l).

    Vix 2 1 < 0 2 x < 3, PT tr thnh x 2 +x 2 1 = 0 4(x 2) = 1 x = 94 (tha mn).

    Vy phng trnh c nghim x = 94 .c) Phng trnh tng ng vi

    x +

    x +

    1

    4+

    1

    2= 9

    x +

    1

    4=

    17

    2 x

    {

    172 x 0x + 14 =

    2894 17x + x2

    x

    172[

    x = 12 (loi)x = 6

    x = 6

    d) Phng trnh tng ng vix 1 + 1 + x 1 1 = x+33 .

    Vix 1 1 0 x 2, phng trnh tr thnh

    x 1 + 1 +x 1 1 = x + 3

    3 6x 1 = x + 3

    {

    x + 3 036(x 1) = x2 + 6x + 9

    {x 3x = 15 65 x = 15 6

    5

    Vix 1 1 < 0 1 x < 2, phng trnh tr thnh

    x 1 + 1x 1 + 1 = x + 3

    3 6 = x + 3 x = 3 (loi)

    Vy phng trnh c nghim x = 15 65.Bi tp 2.18. Gii cc bt phng trnh sau

    a)

    x4 +x 4 8 x. b) (D-02) (x2 3x)2x2 3x 2 0.

    c) (x 2)x2 + 4 < x2 4. d) (x + 2)9 x2 x2 2x 8.e)x2 3x + 2 +x2 4x + 3 2x2 5x + 4. f) x2 + x 2 +x2 + 2x 3 x2 + 4x 5.

    Li gii.a) Bt phng trnh tng ng vi

    x + 4x 4 16 2x x 4 + 2 16 2x x 4 14 2x

    {

    14 2x < 0x 4 0{14 2x 0x 4 196 56x + 4x2

    {

    x > 7x 4{x 7254 x 8

    [x > 7254 x 7

    x 254

    Vy bt phng trnh c tp nghim S =[254 ; +

    ).

    b) Bt phng trnh tng ng vi

    2x2 3x 2 = 0{ 2x2 3x 2 > 0x2 3x 0

    x = 2x = 12[x > 2x < 12[x 3x 0

    x = 2x = 12x 3x < 12

    x = 2x 3x 12

    Vy bt phng trnh c tp nghim S =(; 12] [3; +) {2}.

    c) Bt phng trnh tng ng vi

    (x 2)x2 + 4 < (x 2) (x + 2) (x 2)

    (x2 + 4 x 2

    )< 0

    {

    x 2 > 0x2 + 4 < x + 2{

    x 2 < 0x2 + 4 > x + 2

    {

    x > 2x2 + 4 < x2 + 4x + 4{x < 2x2 + 4 > x2 + 4x + 4

    [x > 2x < 0

    12

    www.MATHVN.com

    www.MATHVN.com

  • Chuyn 2. Phng Trnh - Bt Phng Trnh & H Phng Trnh i S

    Vy bt phng trnh c tp nghim S = (; 0) (2; +).d) Bt phng trnh tng ng vi

    (x + 2)

    9 x2 (x + 2) (x 4) (x + 2)(

    9 x2 x + 4) 0

    {

    x + 2 09 x2 x 4{

    x + 2 09 x2 x 4

    x 2x 4 09 x2 09 x2 x2 8x + 16

    (v nghim)

    {x 29 x2 0

    3 x 2

    Vy bt phng trnh c tp nghim S = [3;2].e) iu kin:

    [x 4x 1 . BPT tng ng vi

    (x 1) (x 2) +(x 1) (x 3) 2(x 1) (x 4).

    Nhn thy x = 1 l nghim ca bt phng trnh.Vi x 4, bt phng trnh tr thnh x 1 (x 2 +x 3 2x 4) 0 x 2+x 3 2x 4.Vx 2 > x 4 v x 3 > x 4 nn bt phng trnh nghim ng x [4; +).

    Vi x < 1, bt phng trnh tr thnh

    1 x (2 x +3 x 24 x) 0 2 x+3 x 24 x.V

    2 x < 4 x v 3 x > 4 x nn bt phng trnh v nghim.Vy bt phng trnh cho c tp nghim S = [4; +) {1}.f) iu kin:

    [x 1x 5 . BPT tng ng vi

    (x 1) (x + 2) +(x 1) (x + 3) 2(x 1) (x + 5).

    Nhn thy x = 1 l nghim ca bt phng trnh.Vi x > 1, bt phng trnh tr thnh

    x 1 (x + 2 +x + 3x + 5) 0 x + 2 +x + 3 x + 5

    x + 2 + x + 3 + 2

    (x + 2) (x + 3) x + 5 2

    (x + 2) (x + 3) x (v nghim)

    Vi x 5, bt phng trnh tr thnh

    1 x (x 2 +x 3x 5) 0 x 2 +x 3 x 5 x 2 x 3 + 2

    (x + 2) (x + 3) x 5 2

    (x + 2) (x + 3) x

    Vy bt phng trnh cho c nghim x = 1.

    Bi tp 2.19. Gii cc phng trnh saua) (D-06)

    2x 1 + x2 3x + 1 = 0. b)

    7 x2 + xx + 5 = 3 2x x2.

    c)

    2x2 + 8x + 6 +x2 1 = 2x + 2. d) 3

    (2 +x 2) = 2x +x + 6.

    e) x2 + 3x + 1 = (x + 3)x2 + 1. f)

    x2 7

    x2+

    x 7

    x2= x.

    Li gii.a) Phng trnh tng ng vi

    2x 1 = x2 + 3x 1

    { x2 + 3x 1 02x 1 = x4 + 9x2 + 1 6x3 + 2x2 6x

    { x2 + 3x 1 0

    x4 6x3 + 11x2 8x + 2 = 0 { x2 + 3x 1 0

    (x 1)2 (x2 4x + 2) = 0

    x2 + 3x 1 0 x = 1x = 2 +2 (loi)x = 22

    [x = 0

    x = 22

    Vy phng trnh c hai nghim x = 0, x = 22.b) Ta c

    7 x2 + xx + 5 =

    3 2x x2 7 x2 + xx + 5 = 3 2x x2

    xx + 5 = 2x 4 x2 (x + 5) = 4x2 + 16x + 16[x = 1x = 4

    13

    www.MATHVN.com

    www.MATHVN.com

  • Nguyn Minh Hiu

    Th li ta thy x = 4 khng phi l nghim phng trnh. Vy phng trnh c nghim x = 1.

    c) iu kin:

    x 1x = 1x 3

    . Phng trnh tng ng vi

    2 (x + 1) (x + 3) +

    (x 1) (x + 1) = 2(x + 1)

    Nhn thy x = 1 l nghim ca phng trnh.Vi x 1, phng trnh tr thnh

    x + 1

    (2x + 6 +

    x 1 2x + 1) = 0 2x + 6 +x 1 = 2x + 1

    2x + 6 + x 1 + 2

    (2x + 6) (x 1) = 4 (x + 1) 2

    2x2 + 4x 6 = x 1

    4 (2x2 + 4x 6) = x2 2x + 1 7x2 + 18x 25 = 0 [ x = 1x = 257 (loi)

    Vi x 3, phng trnh tr thnhx 1 (2x 6 +1 x 2x 1) = 0 2x 6 +1 x = 2x 1

    2x 6 + 1 x + 2

    (2x + 6) (x 1) = 4 (x 1) 2

    2x2 + 4x 6 = 1 x

    4 (2x2 + 4x 6) = x2 2x + 1 7x2 + 18x 25 = 0 [ x = 1 (loi)x = 257

    d) iu kin: x 2. Phng trnh tng ng vi

    3x 2x + 6 = 2x 6 9 (x 2) (x + 6)

    3x 2 +x + 6 = 2x 6

    8 (x 3) = 2 (x 3) (3x 2 +x + 6) 2 (x 3) (3x 2 +x + 6 4) = 0[x = 33x 2 +x + 6 = 4

    [x = 3

    9 (x 2) + x + 6 + 6(x 2) (x + 6) = 16[x = 3

    3x2 + 4x 12 = 14 5x

    x = 314 5x 09(x2 + 4x 12) = 196 160x + 25x2

    x = 3x 145

    16x2 196x + 304 = 0[x = 3

    x = 4920972 (loi)

    Vy phng trnh c nghim duy nht x = 3.e) Ta c phng trnh h qu

    x4 + 9x2 + 1 + 6x3 + 2x2 + 6x =(x2 + 6x + 9

    ) (x2 + 1

    ) x4 + 6x3 + 11x2 + 6x + 1 = x4 + 6x3 + 10x2 + 6x + 9 x = 2

    2

    Th li ta thy x = 22 l nghim phng trnh. Vy phng trnh c hai nghim x = 22.f) Ta c phng trnh h qu

    x2 7x2

    = xx 7

    x2 x2 7

    x2= x2 + x 7

    x2 2x

    x 7

    x2

    x(

    1 2x 7

    x2

    )= 0 2

    x 7

    x2= 1 4

    (x 7

    x2

    )= 1

    4x3 x2 28 = 0 x = 2

    Th li ta thy x = 2 l nghim phng trnh. Vy phng trnh c nghim duy nht x = 2.

    Bi tp 2.20. Gii cc bt phng trnh sau

    a)11 4x2

    x< 3. b)

    121 4x + x2x + 1

    0.

    c)2x

    2x + 1 1 > 2x + 2. d)x2(

    1 +

    1 + x)2 > x 4.

    14

    www.MATHVN.com

    www.MATHVN.com

  • Chuyn 2. Phng Trnh - Bt Phng Trnh & H Phng Trnh i S

    Li gii.a) iu kin x [ 12 ; 12] \ {0}. Phng trnh tng ng vi

    1 (1 4x2)x(1 +

    1 4x2) < 3 4x < 3 + 31 4x2 31 4x2 > 4x 3V 4x 3 < 0,x [ 12 ; 12] \ {0} nn bt phng trnh nghim ng x [ 12 ; 12] \ {0}.Vy bt phng trnh c tp nghim S =

    [ 12 ; 12] \ {0}.b) iu kin: x 6= 1. Bt phng trnh tng ng vi

    1 (21 4x + x2)(x + 1)

    (1 +

    21 4x + x2) 0 x2 + 4x 20x + 1 0 x + 1 < 0 x < 1Kt hp iu kin bt phng trnh c tp nghim S = (;1).c) iu kin: x 12 , x 6= 0. Bt phng trnh tng ng vi

    2x + 1 + 1 > 2x + 2 2x + 1 > 2x + 1 2x + 1 > 4x2 + 4x + 1 1

    2< x < 0

    Kt hp iu kin bt phng trnh c tp nghim S =( 12 ; 0).

    d) iu kin: x 1. Nhn thy x = 0 l nghim ca bt phng trnh.Vi x 6= 0, bt phng trnh tng ng vi(

    1x + 1)2 > x 4 1 + x + 1 2x + 1 > x 4 x + 1 < 3 x < 8Kt hp iu kin bt phng trnh c tp nghim S = [1; 8).

    Bi tp 2.21. Gii cc phng trnh saua) (x + 5) (2 x) = 3x2 + 3x. b)

    (x + 1) (2 x) = 1 + 2x 2x2.

    c)x + 1 +

    4 x +(x + 1) (4 x) = 5. d) 3x 2 +x 1 = 4x 9 + 23x2 5x + 2.

    Li gii.a) Phng trnh tng ng vi x2 3x + 10 = 3x2 + 3x x2 + 3x + 3x2 + 3x 10 = 0.tx2 + 3x = t (t 0). Phng trnh tr thnh t2 + 3t 10 = 0

    [t = 2t = 5 (loi) .

    Vi t = 2 x2 + 3x = 2 x2 + 3x 4 = 0[x = 1x = 4 .

    Vy phng trnh c hai nghim x = 1, x = 4.b) Phng trnh tng ng vi

    2 + x x2 = 1 + 2 (x x2).

    t

    2 + x x2 = t (t 0). Phng trnh tr thnh t = 1 + 2 (t2 2) 2t2 t 3 = 0 [ t = 1 (loi)x = 32

    Vi t = 32

    2 + x x2 = 32 4(2 + x x2) = 9 4x2 4x + 1 = 0 x = 12 .

    Vy phng trnh c nghim duy nht x = 12 .c) iu kin: 1 x 4. t x + 1 +4 x = t (t 0)(x + 1) (4 x) = t252 . Phng trnh tr thnh

    t +t2 5

    2= 5 t2 + 2t 15 = 0

    [t = 3t = 5 (loi)

    Vi t = 3 x2 + 3x + 4 = 2 x2 + 3x + 4 = 4[x = 0x = 3

    (tha mn).

    Vy phng trnh c nghim x = 0, x = 3.d) iu kin: t 1. t 3x 2 +x 1 = t (t 0) 4x+ 23x2 5x + 2 = t2 + 3. Phng trnh tr thnh

    t = t2 + 3 9 t2 t 6 = 0[t = 3t = 2 (loi)

    Vi t = 3

    3x2 5x + 2 = 3 2x{

    x 323x2 5x + 2 = 9 12x + 4x2 x =

    7212

    (tha mn).

    Vy phng trnh c nghim x =721

    2.

    15

    www.MATHVN.com

    www.MATHVN.com

  • Nguyn Minh Hiu

    Bi tp 2.22. Gii cc phng trnh sau

    a) x +

    4 x2 = 2 + 3x4 x2. b) (x 3) (x + 1) + 4 (x 3)

    x+1x3 = 3.

    c)4

    x2+

    x2

    4 x2 +5

    2

    (4 x2x

    +x

    4 x2

    )+ 2 = 0. d) (B-2011) 3

    2 + x62 x+44 x2 = 103x.

    Li gii.a) iu kin: 2 x 2. t x +4 x2 = t x4 x2 = t242 . Phng trnh tr thnh

    t = 2 +3(t2 4)

    2 3t2 2t 8 = 0

    [t = 2t = 43

    Vi t = 2 4 x2 = 2 x 4 x2 = 4 4x + x2 [x = 0x = 2

    (tha mn).

    Vi t = 43

    4 x2 = 43 x{

    x 439(4 x2) = (4 + 3x)2

    {x 43x = 2

    14

    3

    x = 214

    3 (tha mn).

    b) iu kin:[x > 3x 1 . t (x 3)

    x+1x3 = t (x 3) (x + 1) = t2.

    Phng trnh tr thnh t2 + 4t + 3 = 0[t = 1t = 3 .

    Vi t = 1 (x 3)

    x+1x3 = 1

    {x < 3(x 3) (x + 1) = 1

    {x < 3

    x = 15 x = 1

    5 (tha mn).

    Vi t = 3 (x 3)

    x+1x3 = 3

    {x < 3(x 3) (x + 1) = 9

    {x < 3

    x = 113 x = 1

    13 (tha mn).

    Vy phng trnh c hai nghim x = 15, x = 113.c) iu kin: 2 < x < 2, x 6= 0. t

    4 x2x

    +x

    4 x2 = t4 x2x2

    +x2

    4 x2 = t22 4

    x2+

    x2

    4 x2 = t21.

    Phng trnh tr thnh t2 1 + 52t + 2 = 0

    [t = 2t = 12

    .

    Vi t = 2

    4 x2x

    +x

    4 x2 = 2 4 = 2x

    4 x2 {

    x < 0

    x = 2 x =

    2 (tha mn).

    Vi t = 12

    4 x2x

    +x

    4 x2 = 1

    2 4 = 1

    2x

    4 x2 {

    x < 0x4 4x2 + 64 = 0 (v nghim).

    d) iu kin: 2 x 2. Phng trnh tng ng vi 3 (2 + x 22 x)+ 44 x2 = 10 3x.t

    2 + x 22 x = t 44 x2 = 10 3x t2. Phng trnh tr thnh 3t t2 = 0[t = 0t = 3

    .

    Vi t = 0 2 + x = 22 x 2 + x = 4 (2 x) x = 65 (tha mn).Vi t = 3 2 + x = 22 x + 3 122 x = 5x 15 (v nghim v 5x 15 < 0,x [2; 2]).Vy phng trnh c nghim duy nht x = 65 .

    Bi tp 2.23. Gii cc phng trnh saua) x2 + 3x + 2 2x2 + 3x + 5. b) x2 +2x2 + 4x + 3 6 2x.c) x (x + 1)x2 + x + 4 + 2 0. d) x2 2x + 8 6

    (4 x) (2 + x) 0.

    e)x

    x + 1 2x + 1

    x> 3. f)

    x + 2 +

    x 1 + 2x2 + x 2 11 2x.

    Li gii.

    a) tx2 + 3x + 5 = t (t 0). Bt phng trnh tr thnh t2 3 2t

    [t 3t 1 (loi) .

    Vi t 3 x2 + 3x + 5 9[x 1x 4 . Vy bt phng trnh c tp nghim S = (;4] [1; +).

    b) t

    2x2 + 4x + 3 = t (t 0). Bt phng trnh tr thnh t232 + t 6[t 3t 5 (loi) .

    Vi t 3 2x2 + 4x + 3 9[x 1x 3 . Vy bt phng trnh c tp nghim S = (;3] [1; +).

    c) tx2 + x + 4 = t (t 0). Bt phng trnh tr thnh t2 4 t + 2 0

    [t 2t 1 (loi) .

    Vi t 2 x2 + x + 4 4[x 0x 1 . Vy bt phng trnh c tp nghim S = (;1] [0; +).

    d) Bt phng trnh tng ng vi x2 2x + 8 68 + 2x x2 0.

    16

    www.MATHVN.com

    www.MATHVN.com

  • Chuyn 2. Phng Trnh - Bt Phng Trnh & H Phng Trnh i S

    t

    8 + 2x x2 = t (t 0). Bt phng trnh tr thnh 8 t2 + 8 6t 0[t 2t 8 (loi) .

    Vi t 2 8 + 2x x2 4 15 < x < 1 +5.Vy bt phng trnh c tp nghim S =

    (15; 1 +5).

    e) iu kin:[x > 0x < 1 . t

    x + 1

    x= t (t > 0). Bt phng trnh tr thnh

    1

    t2 2t > 3 2t3 + 3t2 1 < 0 (t + 1)2 (2x 1) < 0 t < 1

    2

    Vi t 0) v2 u2 = x2 3x + 2. Phng trnh tr thnh

    2(v2 u2) = 3uv 2u2 + 3uv 2v2 = 0 [ u = 2v (loi)

    v = 2u

    Vi v = 2u x2 2x + 4 = 2x + 2 x2 2x + 4 = 4 (x + 2) x = 313.Vy phng trnh c hai nghim x = 313.

    Bi tp 2.26. Gii cc phng trnh saua) x2 +

    x + 5 = 5. b) x3 + 2 = 3 3

    3x 2.

    c) x3 + 1 = 2 3

    2x 1. d) x 335 x3 (x + 335 x3) = 30.Li gii.

    a) tx + 5 = t (t 0). Phng trnh tr thnh

    {x2 = t + 5 (1)t2 = x + 5 (2) .

    Tr theo v (2) v (1) ta c t2 x2 = x + t (x + t) (t x 1) = 0[t = xt = x + 1

    .

    Vi t = x x + 5 = x{ x 0

    x + 5 = x2{

    x 0x = 1

    21

    2

    x = 1

    21

    2.

    Vi t = x + 1 x + 5 = x + 1{

    x + 1 0x + 5 = x2 + 2x + 1

    {

    x 1x = 1

    17

    2

    x = 1 +

    17

    2.

    Vy phng trnh c hai nghim x =121

    2, x =

    1 +172

    .

    b) t 3

    3x 2 = t. Phng trnh tr thnh{

    x3 + 2 = 3t (1)t3 + 2 = 3x (2) .

    Tr theo v (1) v (2) ta c

    x3 t3 = 3t 3x (x t) (x2 + xt + t2) = 3 (t x) (x t) (x2 + xt + t2 + 3) = 0 [ x = t

    x2 + xt + t2 + 3 = 0 (v nghim)

    Vi t = x 33x 2 = x 3x 2 = x3 [x = 1x = 2 . Vy phng trnh c hai nghim x = 1, x = 2.

    c) t 3

    2x 1 = t. Phng trnh tr thnh{

    x3 + 1 = 2t (1)t3 + 1 = 2x (2) .

    18

    www.MATHVN.com

    www.MATHVN.com

  • Chuyn 2. Phng Trnh - Bt Phng Trnh & H Phng Trnh i S

    Tr theo v (1) v (2) ta c

    x3 t3 = 2t 2x (x t) (x2 + xt + t2) = 2 (t x) (x t) (x2 + xt + t2 + 2) = 0 [ x = t

    x2 + xt + t2 + 2 = 0 (v nghim)

    Vi t = x 32x 1 = x 2x 1 = x3 [x = 1

    x = 15

    2

    .

    Vy phng trnh c ba nghim x = 1, x =15

    2.

    d) t 3

    35 x3 = t. Phng trnh tr thnh{xt(x + t) = 30t3 + x3 = 35

    {

    xt(x + t) = 30

    (t + x)3 3xt (x + t) = 35

    {xt(x + t) = 30

    (t + x)3

    = 125{

    xt = 6t + x = 5

    [x = 2x = 3

    Vy phng trnh c hai nghim x = 2, x = 3.

    Bi tp 2.27. Gii cc phng trnh, bt phng trnh sau

    a) (B-2012) x + 1 +x2 4x + 1 3x. b) (A-2010) x

    x

    12 (x2 x + 1) 1.c) 3x2 2 = 2 x3. d) x +

    3 (1 x2) = 2 (1 2x2).

    Li gii.

    a) iu kin:[

    0 x 23x 2 +3 . Nhn thy x = 0 l mt nghim ca bt phng trnh.

    Vi x > 0, bt phng trnh tng ng vix +

    1x

    +

    x +

    1

    x 4 3.

    tx +

    1x

    = t (t > 0) x + 1x = t2 2, bt phng trnh tr thnh

    t2 6 3 t

    3 t < 0{ 3 t 0t2 6 9 6t + t2

    [t > 352 t 3

    t 52

    Vi t 52 x + 1

    x 5

    2 2x 5x + 2 0

    [ x 2x 12

    [x 40 < x 14

    .

    Kt hp ta c tp nghim ca bt phng trnh l S =[0; 14] [4; +).

    b) iu kin: x 0. Nhn thy x2 x + 1 34

    2 (x2 x + 1) > 1. Do PT tng ng vi

    xx 1

    2 (x2 x + 1)

    2x2 2x + 2 1 +x x

    {

    1 +x x 0

    2x2 2x + 2 1 + x + x2 + 2x 2x 2xx {

    x x 11 + x + x2 2x 2x + 2xx 0

    {

    x x 1(1x x)2 0

    { x x 1

    1x x = 0 {

    x x 1x = 1 x

    x x 1

    1 x 0x = 1 2x + x2

    {

    x 1x = 3

    5

    2

    x = 3

    5

    2

    c) iu kin: x 32. Nhn thy 2 x3 0 3x2 2 0[x 2x 2 .

    T iu kin ta c x 2. Khi phng trnh tng ng vi (x2 2)2 = (2 x3)3 x4 4x2 + 4 = 8 12x3 + 6x6 x9 = 0 x9 6x6 + x4 + 12x3 4x2 4 = 0

    x9 5x6 (x3 1

    2x

    )2+ 12x3 15

    4x2 4 = 0 (v nghim).

    Vy phng trnh v nghim.

    Bi tp 2.28. Gii cc phng trnh saua)

    4x 1 +4x2 1 = 1. b) x 1 = x3 4x + 5.c)

    2x 1 +x2 + 3 = 4 x. d) x5 + x3 1 3x + 4 = 0.e) x3 + 4x (2x + 7)2x + 3 = 0. f) (C-2012) 4x3 + x (x + 1)2x + 1 = 0.

    19

    www.MATHVN.com

    www.MATHVN.com

  • Nguyn Minh Hiu

    Li gii.a) iu kin: x 12 . Nhn thy x = 12 l mt nghim ca phng trnh.Xt hm s y =

    4x 1 +4x2 1 trn [ 12 ; +) c y = 24x1 + 4x4x21 > 0,x ( 12 ; +).

    Do hm s ng bin trn[12 ; +

    )suy ra x = 12 l nghim duy nht ca phng trnh.

    Vy phng trnh c nghim duy nht x = 12 .b) iu kin: x 1. Phng trnh tng ng vi x 1 + x3 + 4x = 5.Nhn thy x = 1 l mt nghim ca phng trnh.Xt hm s y =

    x 1 + x3 + 4x trn [1; +) c y = 1

    2x1 + 3x

    2 + 4 > 0,x (1; +).Do hm s ng bin trn [1; +) suy ra x = 1 l nghim duy nht ca phng trnh.Vy phng trnh c nghim duy nht x = 1.c) iu kin: x 12 . Phng trnh tng ng vi

    2x 1 +x2 + 3 + x = 4.

    Nhn thy x = 1 l mt nghim ca phng trnh.Xt hm s y =

    2x 1 +x2 + 3 + x trn [ 12 ; +) c y = 12x1 + xx2+3 + 1 > 0,x ( 12 ; +).

    Do hm s ng bin trn[12 ; +

    )suy ra x = 1 l nghim duy nht ca phng trnh.

    Vy phng trnh c nghim duy nht x = 1.d) iu kin: x 13 . Nhn thy x = 1 l mt nghim ca phng trnh.Xt hm s y = x5 + x3 1 3x + 4 trn (; 13] c y = 5x4 + 3x2 + 3213x > 0,x (; 13).Do hm s ng bin trn

    (; 13] suy ra x = 1 l nghim duy nht ca phng trnh.Vy phng trnh c nghim duy nht x = 1.e) t

    2x + 3 = u (u 0). Phng trnh tr thnh x3 + 4x (u2 + 4)u = 0 x3 + 4x = u3 + 4u.

    Xt hm s f(t) = t3 + 4t trn [0; +) c f (t) = 3t2 + 4 > 0,t [0; +).Do phng trnh tng ng vi

    u = x 2x + 3 = x{

    x 02x + 3 = x2

    x = 3

    Vy phng trnh c nghim duy nht x = 3.f) iu kin: x 12 . Phng trnh tng ng vi 8x3 + 2x = (2x + 2)

    2x + 1.

    t

    2x + 1 = u (u 0). Phng trnh tr thnh 8x3 + 2x = (u2 + 1)u (2x)3 + 2x = u3 + u.Xt hm s f(t) = t3 + t trn [0; +) c f (t) = 3t2 + 1 > 0,t [0; +).Do phng trnh tng ng vi

    u = 2x 2x + 1 = 2x{

    x 02x + 1 = 4x2

    x = 1 +

    5

    4

    Vy phng trnh c nghim duy nht x =1 +

    5

    4.

    Bi tp 2.29. Gii cc phng trnh saua)x2 2x + 5 +x 1 = 2. b) x 2 +4 x = x2 6x + 11.

    c) 2(

    x 2 1)2 +x + 6 +x 2 2 = 0. d) 5x3 + 3x2 + 3x 2 = 12x2 + 3x 12 .Li gii.

    a) Phng trnh tng ng vi

    (x 1)2 + 4 +x 1 = 2.

    Ta c

    { (x 1)2 + 4 2x 1 0

    (x 1)2 + 4 +x 1 2.

    Du bng xy ra khi v ch khi

    { (x 1)2 + 4 = 2x 1 = 0

    x = 1.

    Vy phng trnh c nghim duy nht x = 1.b) Ta c x2 6x + 11 = (x 3)2 + 2 2 (1).Xt hm s y =

    x 2 +4 x trn [2; 4] c y = 1

    2x 2

    1

    2

    4 x ; y = 0 x = 3.

    Ta c y(2) =

    2, y(4) =

    2, y(3) = 2 max[2;4]

    y = y(3) = 2 x 2 +4 x 2 (2).

    T (1) v (2) ta c phng trnh tng ng vi{

    x2 6x + 11 = 2x 2 +4 x = 2 x = 3.

    Vy phng trnh c nghim duy nht x = 3.

    c) iu kin: x 2. Khi 2

    (x 2 1)2 0

    x + 6 > 2x 2 0

    2(x 2 1)2 +x + 6 +x 2 > 2.20

    www.MATHVN.com

    www.MATHVN.com

  • Chuyn 2. Phng Trnh - Bt Phng Trnh & H Phng Trnh i S

    Do phng trnh cho v nghim.d) Phng trnh tng ng vi

    (5x 2) (x2 + x + 1) = 12

    (x2 + 6x 1).

    Theo bt ng thc Cauchy ta c

    (5x 2) (x2 + x + 1) 12(x2 + 6x 1).

    Du bng xy ra khi v ch khi

    5x 2 = x2 + x + 1 x2 4x + 3 = 0[x = 1x = 3

    .

    Vy phng trnh c hai nghim x = 1, x = 3.

    3. H Phng Trnh i SBi tp 2.30. Gii cc h phng trnh sau

    a){

    x2 + y2 + xy = 7x + y + xy = 5

    . b){

    x + y + xy = 1

    x3 + y3 + 3(x y)2 4 = 0 .

    c) (DB-05){

    x2 + y2 + x + y = 4x (x + y + 1) + y (y + 1) = 2

    . d){

    x2 xy + y2 = 3 (x y)x2 + xy + y2 = 7(x y)2 .

    Li gii.

    a) H cho tng ng vi{

    (x + y)2 xy = 7

    x + y + xy = 5.

    t x + y = S, xy = P (S2 4P ). H tr thnh{

    S2 P = 7 (1)S + P = 5 (2) .

    T (2) P = 5 S thay vo (1) ta c S2 + S 12 = 0[S = 3S = 4 .

    Vi S = 3 P = 2{

    x + y = 3xy = 2

    {

    x = 2y = 1

    hoc{

    x = 1y = 2

    . Vi S = 4 P = 9 (loi).Vy h c hai nghim (x; y) = (2; 1) v (x; y) = (1; 2).

    b) H cho tng ng vi{

    x + y + xy = 1

    (x + y)3 3xy (x + y) + 3(x + y)2 12xy 4 = 0 .

    t x + y = S, xy = P (S2 4P ). H tr thnh{

    S + P = 1 (1)S3 3PS + 3S2 12P 4 = 0 (2) .

    T (1) P = 1 S thay vo (2) ta c S3 3S (1 S) + 3S2 12 (1 S) 4 = 0 S = 1.Vi S = 1 P = 0

    {x + y = 1xy = 0

    {

    x = 0y = 1

    hoc{

    x = 1y = 0

    .

    Vy h c hai nghim (x; y) = (0; 1) v (x; y) = (1; 0).

    c) H cho tng ng vi{

    (x + y)2 2xy + x + y = 4

    (x + y)2 xy + x + y = 2 . t x + y = S, xy = P (S

    2 4P ).

    H tr thnh{

    S2 2P + S = 4S2 P + S = 2

    {P = 2S2 + S = 0

    {

    S = 0P = 2 hoc

    {S = 1P = 2 .

    Vi{

    S = 0P = 2

    {x + y = 0xy = 2

    {x =

    2

    y = 2 hoc{

    x = 2y =

    2.

    Vi{

    S = 1P = 2

    {x + y = 1xy = 2

    {x = 1y = 2 hoc

    {x = 2y = 1

    .

    Vy h c bn nghim (x; y) =(

    2;2) , (x; y) = (2;2) , (x; y) = (1;2) v (x; y) = (2; 1).d) H cho tng ng vi

    {(x y)2 + xy = 3 (x y)(x y)2 + 3xy = 7(x y)2

    {(x y)2 + xy = 3 (x y)xy = 2(x y)2 .

    t x y = S, xy = P . H tr thnh{S2 + P = 3SP = 2S2

    {

    3S2 3S = 0P = 2S2

    {

    S = 0P = 0

    hoc{

    S = 1P = 2

    Vi{

    S = 0P = 0

    {

    x y = 0xy = 0

    {

    x = 0y = 0

    ; vi{

    S = 1P = 2

    {

    x y = 1xy = 2

    {

    x = 2y = 1

    hoc{

    x = 1y = 2 .

    Vy h c ba nghim (x; y) = (0; 0) , (x; y) = (2; 1) v (x; y) = (1;2).

    Bi tp 2.31. Gii cc h phng trnh sau

    a){

    x2 2y2 = 2x + yy2 2x2 = 2y + x . b)

    x 3y = 4y

    x

    y 3x = 4xy

    .

    21

    www.MATHVN.com

    www.MATHVN.com

  • Nguyn Minh Hiu

    c)

    2x + y =

    3

    x2

    2y + x =3

    y2

    . d) (B-03)

    3y =

    y2 + 2

    x2

    3x =x2 + 2

    y2

    .

    Li gii.

    a) Xt h{

    x2 2y2 = 2x + y (1)y2 2x2 = 2y + x (2) .

    Tr theo v (1) v (2) ta c 3x2 3y2 = x y (x y) (3x + 3y 1) = 0[x = yy = 13x3

    .

    Vi x = y thay vo (1) ta c x2 = 3x[x = 0x = 3 h c nghim (x; y) = (0; 0) hoc (x; y) = (3;3).

    Vi y = 13x3 thay vo (1) ta c x2 2(1 3x)

    2

    9= 2x +

    1 3x3

    9x2 3x + 5 = 0 (v nghim).Vy h c hai nghim (x; y) = (0; 0) v (x; y) = (3;3).b) H cho tng ng vi

    {x2 3xy = 4y (1)y2 3xy = 4x (2) .

    Tr theo v (1) v (2) ta c x2 y2 = 4y 4x (x y) (x + y + 4) = 0[x = yy = x 4 .

    Vi x = y thay vo (1) ta c 2x2 = 4x[x = 0x = 2 h c nghim (x; y) = (0; 0) hoc (x; y) = (2;2).

    Vi y = x 4 thay vo (1) ta c x2 3x (x 4) = 4 (x 4) x = 2 h c nghim (x; y) = (2;2).Vy h c hai nghim (x; y) = (0; 0) v (x; y) = (2;2).c) H cho tng ng vi

    {2x3 + x2y = 3 (1)2y3 + xy2 = 3 (2) .

    Tr theo v (1) v (2) ta c 2x3 2y3 + x2y xy2 = 0 (x y) (2x2 + 3xy + 2y2) = 0 x = y.Vi x = y thay vo (1) ta c 3x3 = 3 x = 1. Vy h c nghim duy nht (x; y) = (1; 1).d) T v phi ca cc phng trnh ta c x, y > 0. H cho tng ng vi

    {3x2y = y2 + 2 (1)3xy2 = x2 + 2 (2) .

    Tr theo v (1) v (2) ta c 3x2y 3xy2 = y2 x2 (x y) (3xy + x + y) = 0 x = y.Vi x = y thay vo (1) ta c 3x3 = x2 + 2 x = 1. Vy h c nghim duy nht (x; y) = (1; 1).

    Bi tp 2.32. Gii cc h phng trnh sau

    a){

    x2 xy = 22x2 + 4xy 2y2 = 14 . b)

    {x2 2xy + 3y2 = 9x2 4xy + 5y2 = 5 .

    c){

    x3 + y3 = 1x2y + 2xy2 + y3 = 2

    . d) (DB-06){

    (x y) (x2 + y2) = 13(x + y)

    (x2 y2) = 25 .

    Li gii.

    a) H cho tng ng vi{

    7x2 7xy = 14 (1)2x2 + 4xy 2y2 = 14 (2) .

    Tr theo v (1) v (2) ta c 5x2 11xy + 2y2 = 0[x = 2yy = 5x

    .

    Vi x = 2y thay vo (1) ta c 14y2 = 14 y = 1 h c nghim (x; y) = (2; 1) hoc (x; y) = (2;1).Vi y = 5x thay vo (1) ta c 28x2 = 14 (v nghim).Vy h c hai nghim (x; y) = (2; 1) v (x; y) = (2;1).b) H cho tng ng vi

    {5x2 10xy + 15y2 = 45 (1)9x2 36xy + 45y2 = 45 (2) .

    Tr theo v (1) v (2) ta c 4x2 + 26xy 30y2 = 0[x = 5yx = 32y

    .

    Vi x = 5y thay vo (1) ta c 90y2 = 45 y = 12 h c nghim (x; y) =

    ( 5

    2; 1

    2

    ).

    Vi y = 32x thay vo (1) ta c954 x

    2 = 45 x = 619 h c nghim (x; y) =

    ( 6

    19; 9

    19

    ).

    Vy h c bn nghim (x; y) =(

    52; 1

    2

    ), (x; y) =

    ( 5

    2; 1

    2

    ), (x; y) =

    (619

    ; 919

    )v (x; y) =

    ( 6

    19; 9

    19

    ).

    c) H cho tng ng vi{

    2x3 + 2y3 = 2 (1)x2y + 2xy2 + y3 = 2 (2) .

    Tr theo v (1) v (2) ta c 2x3 x2y 2xy2 + y3 = 0 x = yx = yy = 2x

    .

    Vi x = y thay vo (1) ta c 4x3 = 2 x = 132 h c nghim (x; y) =(

    132 ;

    132

    ).

    22

    www.MATHVN.com

    www.MATHVN.com

  • Chuyn 2. Phng Trnh - Bt Phng Trnh & H Phng Trnh i S

    Vi x = y thay vo (1) ta c 0 = 2 (v nghim).Vi y = 2x thay vo (1) ta c 18x3 = 2 x = 139 h c nghim (x; y) =

    (139 ;

    239

    ).

    Vy h c hai nghim (x; y) =(

    132 ;

    132

    )v (x; y) =

    (139 ;

    239

    ).

    d) H cho tng ng vi{

    x3 x2y + xy2 y3 = 13x3 + x2y xy2 y3 = 25

    {25x3 25x2y + 25xy2 25y3 = 325 (1)13x3 + 13x2y 13xy2 13y3 = 325 (2) .

    Tr theo v (1) v (2) ta c 12x3 38x2y + 38xy2 12y3 = 0 x = yx = 32yx = 23y

    .

    Vi x = y thay vo (1) ta c 0 = 325 (v nghim).Vi x = 32y thay vo (1) ta c

    3258 y

    3 = 325 y = 2 h c nghim (x; y) = (3; 2).Vi x = 23y thay vo (1) ta c 32527 y3 = 325 y = 3 h c nghim (x; y) = (2;3).Vy h c hai nghim (x; y) = (3; 2) v (x; y) = (2;3).

    Bi tp 2.33. Gii cc h phng trnh sau

    a){

    x + y = 1x3 3x = y3 3y . b) (DB-06)

    {x2 + 1 + y (y + x) = 4y(x2 + 1

    )(y + x 2) = y .

    c) (B-08){

    x4 + 2x3y + x2y2 = 2x + 9x2 + 2xy = 6x + 6

    . d) (D-09){

    x (x + y + 1) 3 = 0(x + y)

    2 5x2 + 1 = 0.

    Li gii.

    a) Xt h{

    x + y = 1 (1)x3 3x = y3 3y (2) . T (1) y = x 1 thay vo (2) ta c

    x3 3x = (x 1)3 3 (x 1) 2x3 + 3x2 3x 2 = 0 x = 2x = 1x = 12

    Vy h c ba nghim (x; y) = (2; 1) , (x; y) = (1;2) v (x; y) = ( 12 ; 12).b) Xt h

    {x2 + 1 + y(y + x) = 4y (1)(x2 + 1)(y + x 2) = y (2) . T (1) x

    2 + 1 = y(4 y x) thay vo (2) ta c

    y (4 y x) (x + y 2) = y y(

    (x + y)2 6(x + y) + 9

    )= 0

    [y = 0y = 3 x

    Vi y = 0 thay vo (1) ta c x2 + 1 = 0 (v nghim).

    Vi y = 3 x thay vo (1) ta c x2 + x 2 = 0[x = 1x = 2 .

    Vy h c hai nghim (x; y) = (1; 2) v (x; y) = (2; 5).c) H cho tng ng vi

    {(x2 + xy)2 = 2x + 9 (1)x2 + 2xy = 6x + 6 (2) . T (2) xy =

    6x + 6 x22

    thay vo (1) ta c

    (x2 +

    6x + 6 x22

    )2= 2x + 9 x4 + 12x3 + 48x2 + 64x = 0

    [x = 0x = 4

    Vi x = 0 thay vo (2) ta c 0 = 6 (v nghim).Vi x = 4 thay vo (2) ta c y = 174 .Vy h c nghim duy nht (x; y) =

    (4; 174 ).d) Xt h

    {x(x + y + 1) 3 = 0 (1)(x + y)2 5x2 + 1 = 0 (2)

    . T (1) x + y = 3x 1 thay vo (2) ta c

    (3

    x 1)2 5x2

    + 1 = 0 4x2 6x

    + 2 = 0{

    x 6= 02x2 6x + 4 = 0

    [x = 1x = 2

    Vi x = 1 thay vo (1) ta c y = 1; x = 2 thay vo (1) ta c y = 32 .Vy h c hai nghim (x; y) = (1; 1) v (x; y) =

    (2; 32

    ).

    Bi tp 2.34. Gii cc h phng trnh sau

    a) (B-02){

    3x y = x y

    x + y =x + y + 2

    . b) (A-03){

    x 1x = y 1y2y = x3 + 1

    .

    c){

    x2 + y2 + 2xyx+y = 1x + y = x2 y . d)

    {6x2 3xy + x + y = 1x2 + y2 = 1

    .

    23

    www.MATHVN.com

    www.MATHVN.com

  • Nguyn Minh Hiu

    Li gii.

    a) Xt h{

    3x y = x y (1)

    x + y =x + y + 2 (2) . iu kin: x y 0, x + y + 2 0.

    Ta c (1) (x y)2 = (x y)3 (x y)2 (x y 1) = 0[x = yx = y + 1

    .

    Vi x = y thay vo (2) ta c 2y =

    2y + 2{

    y 04y2 = 2y + 2

    y = 1 x = 1 (tha mn).

    Vi x = y + 1 thay vo (2) ta c 2y + 1 =

    2y + 3{

    2y + 1 04y2 + 4y + 1 = 2y + 3

    y = 12 x = 32 (tha mn).Vy h c hai nghim (x; y) = (1; 1) v (x; y) =

    (32 ;

    12

    ).

    b) Xt h{

    x 1x = y 1y (1)2y = x3 + 1 (2)

    . iu kin: x 6= 0, y 6= 0.

    Ta c (1) x2y y = xy2 x xy (x y) + x y = 0 (x y) (xy + 1) = 0[y = xy = 1x

    .

    Vi y = x thay vo (2) ta c 2x = x3 + 1[x = 1

    x = 15

    2

    .

    Suy ra h c nghim (x; y) = (1; 1) hoc (x; y) =(15

    2 ;15

    2

    ).

    Vi y = 1x thay vo (2) ta c 2x = x3 + 1 x4 + x + 2 = 0(x2 12

    )2+(x + 12

    )2+ 32 = 0 (v nghim).

    Vy h c ba nghim (x; y) = (1; 1) v (x; y) =(15

    2 ;15

    2

    ).

    c) Xt h{

    x2 + y2 + 2xyx+y = 1 (1)x + y = x2 y (2) . iu kin: x + y > 0. Ta c

    (1)[(x + y)

    2 2xy]

    (x + y) + 2xy = x + y

    (x + y)[(x + y)

    2 1] 2xy (x + y 1) = 0

    (x + y 1) [(x + y) (x + y + 1) 2xy] = 0

    (x + y 1) (x2 + y2 + x + y) = 0 [ y = 1 xx2 + y2 + x + y = 0 (v nghim)

    Vi y = 1 x thay vo (2) ta c x2 + x 2 = 0[x = 1x = 2 .

    Vy h c hai nghim (1; 0) v (2; 3).d) H cho tng ng vi

    {6x2 (3y 1)x + y 1 = 0 (1)x2 + y2 = 1 (2) .

    Xt phng trnh (1) c = (3y 1)2 24 (y 1) = 9y2 30y + 25 = (3y 5)2.Do (1)

    [x = 3y13y+512x = 3y1+3y512

    [x = 13x = 12 (y 1)

    .

    Vi x = 13 thay vo (2) ta c19 + y

    2 = 1 y = 22

    3 .

    Vi x = 12 (y 1) thay vo (2) ta c 14(y2 2y + 1)+ y2 = 1 [ y = 1

    y = 35.

    Vy h c bn nghim (x; y) =(13 ;

    22

    3

    ), (x; y) =

    (13 ; 2

    2

    3

    ), (x; y) = (0; 1) v (x; y) =

    ( 45 ; 35).Bi tp 2.35. Gii cc h phng trnh sau

    a) (DB-07){

    x4 x3y x2y2 = 1x3y x2 xy = 1 . b) (D-08)

    {xy + x + y = x2 2y2x

    2y yx 1 = 2x 2y .

    c) (D-2012){

    xy + x 2 = 02x3 x2y + x2 + y2 2xy y = 0 . d)

    {x3 + 2y2 = x2y + 2xy

    2x2 2y 1 + 3

    y3 14 = x 2 .

    Li gii.

    a) Xt h{

    x4 x3y x2y2 = 1 (1)x3y x2 xy = 1 (2) .

    Ta c (2) x2 (xy 1) = xy 1 (xy 1) (x2 1) = 0 [ x = 1y = 1x

    .

    Vi x = 1 thay vo (1) ta c y2 + y = 0[y = 0y = 1 . Vi x = 1 thay vo (1) ta c y

    2 y = 0[y = 0y = 1

    .

    Vi y = 1x thay vo (1) ta c x4 x2 2 = 0 x2 = 2 x = 2 y = 1

    2.

    24

    www.MATHVN.com

    www.MATHVN.com

  • Chuyn 2. Phng Trnh - Bt Phng Trnh & H Phng Trnh i S

    Vy h c su nghim{

    x = 1y = 0

    ,

    {x = 1y = 1 ,

    {x = 1y = 0

    ,

    {x = 1y = 1

    ,

    {x =

    2

    y =

    2v

    {x = 1

    2

    y = 12

    .

    b) Xt h{

    xy + x + y = x2 2y2 (1)x

    2y yx 1 = 2x 2y (2) . iu kin: x 1, y 0.Ta c (1) y (x + y) + x + y = (x y) (x + y) (x + y) (y + 1 x + y) = 0 x = 2y + 1.Vi x = 2y + 1 thay vo (2) ta c

    (2y + 1)

    2y y

    2y = 2y + 2 (y + 1)

    2y = 2 (y + 1)

    2y = 2 y = 2 x = 5Vy h c nghim duy nht (x; y) = (5; 2).

    c) Xt h{

    xy + x 2 = 0 (1)2x3 x2y + x2 + y2 2xy y = 0 (2) .

    Ta c (2) 2x (x2 y) y (x2 y)+ x2 y = 0 (x2 y) (2x y + 1) = 0 [ y = x2y = 2x + 1

    .

    Vi y = x2 thay vo (1) ta c x3 + x 2 = 0 x = 1 y = 1.Vi y = 2x + 1 thay vo (1) ta c 2x2 + 2x 2 = 0 x = 1

    5

    2 y =

    5.

    Vy h c ba nghim (x; y) = (1; 1) , (x; y) =(1+5

    2 ;

    5)

    v (x; y) =(15

    2 ;

    5).

    d) Xt h{

    x3 + 2y2 = x2y + 2xy (1)2x2 2y 1 + 3

    y3 14 = x 2 (2) . iu kin: x

    2 2y + 1.

    Ta c (1) x2 (x y) = 2y (x y) (x y) (x2 2y) = 0 [ x = yx2 = 2y (loi) .

    Vi x = y thay vo (2) ta c 2x2 2x 1 + 3x3 14 = x 2 (*).

    tx2 2x 1 = u 0, 3x3 14 = v v3 6u2 = (x 2)3.

    Phng trnh (*) tr thnh v3 6u2 = (2u + v)3 2u(u2 + 3(u + v)

    2+ 3u

    )= 0 u = 0 x = 12.

    Vy h c hai nghim (x; y) =(1 +

    2; 1 +

    2)v (x; y) =

    (12; 12).

    Bi tp 2.36. Gii cc h phng trnh sau

    a){

    x2 + y2 + xy = 1x3 + y3 = x + 3y

    . b){

    x3 + 2xy2 + 12y = 08y2 + x2 = 12

    .

    c) (DB-06){

    x3 8x = y3 + 2yx2 3 = 3 (y2 + 1) . d) (A-2011)

    {5x2y 4xy2 + 3y3 2 (x + y) = 0xy(x2 + y2

    )+ 2 = (x + y)

    2 .

    Li gii.

    a) Xt h{

    x2 + y2 + xy = 1 (1)x3 + y3 = x + 3y (2) .

    Thay (1) vo (2) ta c x3 + y3 =(x2 + y2 + xy

    )(x + 3y) 4x2y + 4xy2 + 2y3 = 0 y = 0.

    Vi y = 0 thay vo h ta c{

    x2 = 1x3 = x

    x = 1. Vy h c hai nghim (x; y) = (1; 0) v (x; y) = (1; 0).

    b) Xt h{

    x3 + 2xy2 + 12y = 0 (1)8y2 + x2 = 12 (2) .

    Thay (2) vo (1) ta c x3 + 2xy2 +(8y2 + x2

    )y = 0 x3 + x2y + 2xy2 + 8y3 = 0 (*)

    Nhn thy y = 0 khng phi nghim ca h. Vi y 6= 0, chia hai v phng trnh (*) cho y3 ta c(x

    y

    )3+

    (x

    y

    )2+ 2

    x

    y+ 8 = 0 x

    y= 2 x = 2y

    Vi x = 2y thay vo (2) ta c 12y2 = 12 y = 1 x = 2.Vy h c hai nghim (x; y) = (2;1) v (x; y) = (2; 1).c) H cho tng ng vi

    {x3 y3 = 2 (4x + y)x2 3y2 = 6

    {3x3 3y3 = 6 (4x + y) (1)x2 3y2 = 6 (2) .

    Thay (2) vo (1) ta c 3x3 3y3 = (x2 3y2) (4x + y) x3 + x2y 12xy2 = 0 (*)Nhn thy x = 0 khng phi nghim ca h. Vi x 6= 0, chia hai v phng trnh (*) cho x3 ta c

    1 +y

    x 12

    (yx

    )2= 0

    [yx =

    13

    yx = 14

    [x = 3yx = 4y

    Vi x = 3y thay vo (2) ta c 6y2 = 6 y = 1 x = 3.Vi x = 4y thay vo (2) ta c 13y2 = 6 y =

    613 x = 4

    614 .

    Vy h c bn nghim (x; y) = (1; 3) , (x; y) = (1;3) , (x; y) =(

    613 ;4

    613

    )v (x; y) =

    (

    613 ; 4

    613

    ).

    25

    www.MATHVN.com

    www.MATHVN.com

  • Nguyn Minh Hiu

    d) Xt h{

    5x2y 4xy2 + 3y3 2 (x + y) = 0 (1)xy(x2 + y2

    )+ 2 = (x + y)

    2 (2).

    Ta c (2) xy (x2 + y2)+ 2 = x2 + y2 + 2xy (x2 + y2) (xy 1) = 2 (xy 1) [ x = 1yx2 + y2 = 2

    .

    Vi x = 1y thay vo (1) ta c3y 6y + 3y3 = 0 3y4 6y2 + 3 = 0 y2 = 1 y = 1 x = 1.

    Vi x2 + y2 = 2 (3) thay vo (1) ta c

    5x2y 4xy2 + 3y3 (x2 + y2) (x + y) = 0 x3 4x2y + 5xy2 2y3 = 0 (*)Nhn thy y = 0 khng phi nghim ca h. Vi y 6= 0, chia hai v phng trnh (*) cho y3 ta c(

    x

    y

    )3 4(x

    y

    )2+ 5

    x

    y 2 = 0

    [ xy = 1xy = 2

    [x = yx = 2y

    Vi x = y thay vo (3) ta c 2y2 = 2 y = 1 x = 1.Vi x = 2y thay vo (3) ta c 5y2 = 2 y =

    25 x = 2

    25 .

    Vy h c bn nghim (x; y) = (1; 1), (x; y) = (1;1), (x; y) =(

    2

    25 ;

    25

    )v (x; y) =

    (2

    25 ;

    25

    ).

    Bi tp 2.37. Gii cc h phng trnh sau

    a) (B-09){

    xy + x + 1 = 7yx2y2 + xy + 1 = 13y2

    . b){

    2x2 + x 1y = 2y y2x 2y2 = 2 .

    c){

    8x3y3 + 27 = 9y3

    4x2y + 6x + y2 = 0. d)

    {x3 y3 = 9x2 + 2y2 = x 4y .

    Li gii.a) Nhn thy y = 0 khng phi nghim ca h. Vi y 6= 0, h cho tng ng vi

    {x + xy +

    1y = 7

    x2 + xy +1y2 = 13

    {

    x + 1y +xy = 7(

    x + 1y

    )2 xy = 13

    t x + 1y = S,xy = P (S

    2 4P ). H tr thnh{

    S + P = 7 (1)S2 P = 13 (2) .

    T (1) P = 7 S thay vo (2) ta c S2 (7 S) = 13[S = 4S = 5 .

    Vi S = 4 P = 3{

    x + 1y = 4xy = 3

    {

    x = 1y = 13

    hoc{

    x = 3y = 1

    .

    Vi S = 5 P = 12 (khng tha mn). Vy h c hai nghim (x; y) = (1; 13) v (x; y) = (3; 1).b) iu kin: y 6= 0. H cho tng ng vi

    {2x2 + x 1y = 21y x 2 = 2y2

    {

    2x2 + x 1y = 2 (1)2y2 +

    1y x = 2 (2)

    .

    Tr theo v (1) v (2) ta c 2x2 2y2 + 2x 2y = 0(x 1y

    )(x + 1y + 1

    )= 0

    [ 1y = x1y = x 1

    .

    Vi 1y = x thay vo (1) ta c 2x2 = 2 x = 1 y = 1.

    Vi 1y = x 1 thay vo (1) ta c 2x2 + 2x 1 = 0 x = 13

    2 y = 13

    2 .

    Vy h c bn nghim (x; y) = (1; 1) , (x; y) = (1;1) , (x; y) =(1+3

    2 ;13

    2

    )v (x; y) =

    (13

    2 ;1+3

    2

    ).

    c) Nhn thy y = 0 khng phi nghim ca h. Vi y 6= 0, h cho tng ng vi{

    8x3y3 + 27 = 9y3 (1)36x2y2 + 54xy = 9y3 (2) .

    Cng theo v (1) v (2) ta c 8x3y3 + 36x2y2 + 54xy + 27 = 0 xy = 32 .Vi xy = 32 thay vo (1) ta c 0 = 9y3 y = 0 (khng tha mn). Vy h cho v nghim.d) H cho tng ng vi

    {x3 y3 = 9 (1)3x2 + 6y2 = 3x 12y (2) .

    Tr theo v (1) v (2) ta c

    x3 3x2 + 3x 1 = y3 + 6y2 + 12y + 8 (x 1)3 = (y + 2)3 y = x 3

    Vi y = x 3 thay vo (2) ta c 3x2 + 6(x 3)2 = 3x 12 (x 3) 9x2 27x + 18 = 0[x = 1x = 2

    .

    Vy h c hai nghim (x; y) = (1;2) v (x; y) = (2;1).

    26

    www.MATHVN.com

    www.MATHVN.com

  • Chuyn 2. Phng Trnh - Bt Phng Trnh & H Phng Trnh i S

    Bi tp 2.38. Gii cc h phng trnh sau

    a){

    x (3x + 2y) (x + 1) = 12x2 + 2y + 4x 8 = 0 . b)

    {x + y xy = 3x + 1 +

    y + 1 = 4

    .

    c) (C-2010){

    2

    2x + y = 3 2x yx2 2xy y2 = 2 . d) (DB-05)

    { 2x + y + 1x + y = 1

    3x + 2y = 4.

    e){

    x2 + y2 = 5y 1 (x + y 1) = (y 2)x + y . f) (A-08)

    {x2 + y + x3y + xy2 + xy = 54x4 + y2 + xy (1 + 2x) = 54

    .

    Li gii.

    a) H cho tng ng vi{

    (3x + 2y)(x2 + x

    )= 12

    x2 + x + 3x + 2y = 8.

    t 3x + 2y = S, x2 + x = P , h tr thnh{

    SP = 12S + P = 8

    {

    S = 2P = 6

    hoc{

    S = 6P = 2

    .

    Vi{

    S = 2P = 6

    {

    3x + 2y = 2x2 + x = 6

    3x + 2y = 2[ x = 2

    x = 3{

    x = 2y = 2 hoc

    {x = 3y = 112

    .

    Vi{

    S = 6P = 2

    {

    3x + 2y = 6x2 + x = 2

    3x + 2y = 2[ x = 1

    x = 2{

    x = 1y = 12

    hoc{

    x = 2y = 4

    .

    Vy h c bn nghim (x; y) = (2;2) , (x; y) = (3; 112 ) , (x; y) = (1; 12) v (x; y) = (2; 4).b) iu kin: x 1, y 1, xy 0. H cho tng ng vi

    {x + y xy = 3x + y + 2

    x + y + xy + 1 = 14

    .

    t x + y = S,xy = P (P 0), h tr thnh

    {S P = 3 (1)S + 2

    S + P 2 + 1 = 14 (2)

    .

    T (1) S = P + 3 thay vo (2) ta c

    P + 3 + 2P + 3 + P 2 + 1 = 14 2

    P 2 + P + 4 = 11 P

    {

    P 114(P 2 + P + 4

    )= 121 22P + P 2

    [P = 3P = 353 (loi)

    Vi P = 3 S = 6{

    x + y = 6xy = 3

    {

    x = 3y = 3

    . Vy h c nghim duy nht (x; y) = (3; 3).

    c) H cho tng ng vi{

    2

    2x + y = 3 (2x + y) (1)x2 2xy y2 = 2 (2) .

    t

    2x + y = t (t 0). Phng trnh (1) tr thnh 2t = 3 t2 [t = 1t = 3 (loi) .

    Vi t = 1 y = 1 2x thay vo (2) ta c x2 2x (1 2x) (1 2x)2 = 2[x = 1x = 3 .

    Vy h c hai nghim (x; y) = (1;1) v (x; y) = (3; 7).d) t

    2x + y + 1 = u,

    x + y = v (u, v 0) 3x+2y = u2+v21. H cho tr thnh

    {u v = 1 (1)u2 + v2 = 5 (2) .

    T (1) u = v + 1 thay vo (2) ta c (v + 1)2 + v2 = 5[v = 1v = 2 (loi) .

    Vi v = 1 u = 2{

    2x + y + 1 = 2x + y = 1

    {

    x = 2y = 1 . Vy h c nghim duy nht (x; y) = (2;1).

    e) iu kin: y 1, x + y 0. Xt h{

    x2 + y2 = 5 (1)y 1 (x + y 1) = (y 2)x + y (2) .

    ty 1 = u,x + y = v (u, v 0). Phng trnh (2) tr thnh

    u(v2 1) = (u2 1) v uv (u v) + u v = 0 (u v) (uv + 1) = 0 u = v

    Vi u = v y 1 = x + y x = 1. Vi x = 1 thay vo (1) ta c 1 + y2 = 5[y = 2y = 2 (loi) .

    Vy h c nghim duy nht (x; y) = (1; 2).f) H cho tng ng vi

    {x2 + y + xy

    (x2 + y

    )+ xy = 54(

    x2 + y)2

    + xy = 54.

    t x2 + y = S, xy = P , h tr thnh{

    S + PS + P = 54 (1)S2 + P = 54 (2)

    .

    T (2) P = S2 54 thay vo (1) ta c S +(S2 54)S S2 54 = 54 [ S = 0S = 12 .

    27

    www.MATHVN.com

    www.MATHVN.com

  • Nguyn Minh Hiu

    Vi S = 0 P = 54 {

    x2 + y = 0xy = 54

    {

    x =3102

    y = 31004

    .

    Vi S = 12 P = 32 {

    x2 + y = 12xy = 32

    {

    x = 1y = 32

    .

    Vy h c hai nghim (x; y) =(

    3102 ;

    31004

    )v (x; y) =

    (1; 32

    ).

    Bi tp 2.39. Gii cc h phng trnh sau

    a){

    x + 10 +y 1 = 11

    x 1 +y + 10 = 11 . b){

    x 1y = 8 x3(x 1)4 = y .

    c) (A-2012){

    x3 3x2 9x + 22 = y3 + 3y2 9yx2 + y2 x + y = 12

    . d) (A-2010){ (

    4x2 + 1)x + (y 3)5 2y = 0

    4x2 + y2 + 2

    3 4x = 7 .

    Li gii.

    a) iu kin: x, y 1. Xt h{

    x + 10 +y 1 = 11 (1)

    x 1 +y + 10 = 11 (2) .Tr theo v (1) v (2) ta c

    x + 10x 1 = y + 10y 1 (*).

    Xt hm s f(t) =t + 10t 1 trn [1; +) c f (t) = 1

    2t+10

    12t1 < 0,t (1; +).

    Suy ra f(t) lun nghch bin trn [1; +). Do () f(x) = f(y) x = y.Vi x = y thay vo (1) ta c

    x + 10 +

    x 1 = 11 x + 10 + x 1 + 2

    (x + 10) (x 1) = 121

    x2 + 9x 10 = 56 x

    {x 56x2 + 9x 10 = (56 x)2 x = 26 (tha mn)

    Vy h c nghim duy nht (x; y) = (26; 26).

    b) iu kin: x 1, y 0. Xt h{

    x 1y = 8 x3 (1)(x 1)4 = y (2) .

    Thay (2) vo (1) ta cx 1 (x 1)2 = 8 x3 x 1 + x3 x2 + 2x 9 = 0 (*).

    Nhn thy x = 2 l mt nghim ca phng trnh (*).Xt hm s f(x) =

    x 1 + x3 x2 + 2x 9 trn [1; +) c f (x) = 1

    2x1 + 3x

    2 2x+ 2 > 0,x (1; +).Suy ra f(x) lun ng bin trn [1; +). Do (*) c nghim duy nht x = 2 y = 1.Vy h c nghim duy nht (x; y) = (2; 1).

    c) H cho tng ng vi

    {(x 1)3 12 (x 1) = (y + 1)3 12 (y + 1) (1)(x 12

    )2+(y + 12

    )2= 1 (2)

    .

    T (2) suy ra{ 1 x 12 11 y + 12 1

    { 32 x 1 12 12 y + 1 32 .Xt hm s f(t) = t3 12t trn [ 32 ; 32] c f (t) = 3t2 12 < 0,t [ 32 ; 32].Suy ra f(t) lun nghch bin trn

    [ 32 ; 32]. Do (1) f(x 1) = f(y + 1) x 1 = y + 1 y = x 2.Vi y = x 2 thay vo (2) ta c (x 12)2 + (x 32)2 = 1 4x2 8x + 3 = 0 [ x = 12x = 32 .Vy h c hai nghim (x; y) =

    (12 ; 32

    )v (x; y) =

    (32 ; 12

    ).

    d) iu kin: x 34 , y 52 . H cho tng ng vi{ (

    4x2 + 1)

    2x = (6 2y)5 2y (1)4x2 + y2 + 2

    3 4x = 7 (2) .

    t

    5 2y = u (u 0), phng trnh (1) tr thnh (4x2 + 1) 2x = (u2 + 1)u (2x)3 + 2x = u3 + u (*).Xt hm s f(t) = t3 + t trn [0; +) c f (t) = 3t2 + 1 > 0,t [0; +).Suy ra f(t) lun ng bin trn [0; +). Do () f(2x) = f(u) 2x = u 2x = 5 2y

    {x 0y = 54x

    2

    2

    .

    Vi y = 54x2

    2 thay vo (2) ta c 4x2 +

    (54x2

    2

    )2+ 2

    3 4x 7 = 0 4x4 6x2 + 23 4x 34 = 0 (**).Nhn thy x = 12 l mt nghim ca phng trnh (**).Xt hm s f(x) = 4x4 6x2 + 23 4x 34 trn

    [0; 34].

    Ta c f (x) = 16x3 12x 434x = 4x

    (4x2 3) 4

    34x < 0,x [0; 34] f(x) ng bin trn [0; 34].

    Do phng trnh (**) c nghim duy nht x = 12 y = 2.Vy h cho c nghim duy nht (x; y) =

    (12 ; 2).

    28

    www.MATHVN.com

    www.MATHVN.com

  • Chuyn 2. Phng Trnh - Bt Phng Trnh & H Phng Trnh i S

    4. Phng Trnh - Bt Phng Trnh & H Cha Tham SBi tp 2.40. Tm m phng trnh

    (m5)x2 3mx + m + 1 = 0.

    a) C nghim. b) V nghim c) C hai nghim tri du.

    Li gii. Vi m =

    5, phng trnh tr thnh 35x +5 + 1 = 0.Vi m 6= 0, ta c = 9m2 4 (m5) (m + 1) = 5m2 + (45 4)m + 45 > 0,m 6= 5.a) Phng trnh c nghim vi mi m R.b) Khng c gi tr no ca m phng trnh v nghim.c) Phng trnh c hai nghim tri du

    (m5) (m + 1) < 0 1 < m < 5.

    Bi tp 2.41. Tm m phng trnh x2 + 2 (m + 1)x + 9m 5 = 0 c hai nghim m phn bit.

    Li gii. Ta c = (m + 1)2 (9m 5) = m2 7m + 6.Phng trnh c hai nghim m phn bit khi v ch khi

    > 0

    S < 0P > 0

    m

    2 7m + 6 > 02 (m + 1) < 09m 5 > 0

    [m > 6m < 1

    m > 1m > 59

    [m > 659 < m < 1

    Vy vi m ( 59 ; 1) (6; +) th phng trnh cho c hai nghim m phn bit.Bi tp 2.42. Tm m phng trnh (m 2)x2 2mx + m + 3 = 0 c hai nghim dng phn bit.Li gii. Nhn thy m = 2 khng tha mn yu cu bi ton. Vi m 6= 2 ta c = m2 (m 2) (m + 3) = 6m.

    Khi phng trnh c hai nghim dng phn bit khi v ch khi

    > 0

    S > 0P > 0

    6m > 02mm2 > 0m+3m2 > 0

    m < 6[m > 2m < 0[m > 2m < 3

    [

    2 < m < 6m < 3

    Vy vi m (;3) (2; 6) th phng trnh cho c hai nghim dng phn bit.Bi tp 2.43. Tm m phng trnh (m 2)x4 2 (m + 1)x2 + 2m 1 = 0.

    a) C mt nghim. b) C hai nghim phn bit. c) C bn nghim phn bit.

    Li gii. Vi m = 2 phng trnh c hai nghim phn bit.Vi m 6= 0, t x2 = t 0 phng trnh tr thnh (m 2) t2 2 (m + 1) t + 2m 1 = 0.t f(t) = (m 2) t2 2 (m + 1) t + 2m 1 c = (m + 1)2 (m 2) (2m 1) = m2 + 7m 1.a) Phng trnh cho c mt nghim

    [f(t) c nghim kp bng 0f(t) c mt nghim 0 v mt nghim m

    {

    = 0f(0) = 0 > 0

    f(0) = 0S < 0

    { m2 + 7m 1 = 0

    2m 1 = 0m2 + 7m 1 > 02m 1 = 02(m+1)m2 < 0

    m = 12

    Vy vi m = 12 th phng trnh cho c mt nghim.

    b) Phng trnh cho c hai nghim phn bit m = 2f(t) c nghim kp dngf(t) c hai nghim tri du

    m = 2{

    = 0S > 0

    P < 0

    m = 2{ m2 + 7m 1 = 0

    2(m+1)m2 > 0

    2m1m2 < 0

    m = 2m = 7+352

    12 < m < 2

    Vy vi m ( 12 ; 2] { 7+352 } th phng trnh cho c hai nghim phn bit.29

    www.MATHVN.com

    www.MATHVN.com

  • Nguyn Minh Hiu

    c) Phng trnh cho c bn nghim phn bit f(t) c hai nghim dng phn bit

    > 0S > 0P > 0

    m2 + 7m 1 > 02(m+1)m2 > 0

    2m1m2 > 0

    735

    2 < m 2m < 1[m > 2m < 12

    2 < m < 7 + 3

    5

    2

    Vy vi m (

    2; 7+35

    2

    )th phng trnh cho c bn nghim phn bit.

    Bi tp 2.44. (D-04) Tm m h{

    x +y = 1

    xx + y

    y = 1 3m c nghim.

    Li gii. H cho tng ng vi{

    x +y = 1(

    x +y)3 3xy (x +y) = 1 3m

    { x +y = 1

    xy = m.

    Suy rax,y l hai nghim khng m ca phng trnh t2 t + m = 0 (*).

    Do h cho c nghim phng trnh (*) c nghim khng m

    0S 0

    P 0 1 4m 01 0

    m 0 0 m 1

    4

    Vy vi m [0; 14] th h cho c nghim.Bi tp 2.45. Tm m bt phng trnh

    4x 2 +16 4x m c nghim.

    Li gii. Xt hm s f(x) =

    4x 2 +16 4x trn [ 12 ; 4].o hm f (x) =

    24x 2

    216 4x ; f

    (x) = 0 4x 2 = 16 4x x = 94. Bng bin thin:

    x 12

    94 4

    f (x) + 0

    f(t)

    14

    2

    7

    14

    T bng bin thin suy ra bt phng trnh cho c nghim m min[ 12 ;4]

    f(x) m 14.

    Bi tp 2.46. Tm m phng trnh (x 3) (x + 1) + 4 (x 3)

    x+1x3 = m c nghim.

    Li gii. t (x 3)

    x+1x3 = t (t R). Phng trnh cho tr thnh t2 + 4tm = 0 (*).

    Phng trnh cho c nghim phng trnh (*) c nghim 0 m 4.Vy vi m 4 th phng trnh cho c nghim.

    Bi tp 2.47. (DB-07) Tm m BPT m(

    x2 2x + 2 + 1)+ x (2 x) 0 c nghim thuc on [0; 1 +3].Li gii. t

    x2 2x + 2 = t. Vi x [0; 1 +3] t [1; 2]. Bt phng trnh cho tr thnh

    m (t + 1) + 2 t2 0 m t2 2t + 1

    (*)

    Xt hm s f(t) = t22t+1 trn [1; 2] c f

    (t) = t2+2t+2(t+1)2

    > 0,t [1; 2] lim[1;2]

    f(t) = f(2) = 23 .

    Vy bt phng trnh cho c nghim trn[0; 1 +

    3] bt phng trnh (*) c nghim trn [1; 2] m 23 .

    Bi tp 2.48. (A-07) Tm m phng trnh 3x 1 + mx + 1 = 2 4x2 1 c nghim thc.

    Li gii. iu kin: x 1. Phng trnh cho tng ng vi 3

    x1x+1 + 2

    4

    x1x+1 = m.

    t 4

    x1x+1 = t. Vi x 1 t [0; 1). Phng trnh tr thnh 3t2 + 2t = m (*)

    Xt hm s f(t) = 3t2 + 2t trn [0; 1) c f (t) = 6t + 2; f (t) = 0 t = 13 . Bng bin thin:

    30

    www.MATHVN.com

    www.MATHVN.com

  • Chuyn 2. Phng Trnh - Bt Phng Trnh & H Phng Trnh i S

    t 0 13 1

    f (t) + 0

    f(t)

    0

    13

    1

    Vy phng trnh cho c nghim phng trnh (*) c nghim trn [0; 1) 1 m 13 .Bi tp 2.49. (B-06) Tm m phng trnh

    x2 + mx + 2 = 2x + 1 c hai nghim thc phn bit.

    Li gii. Phng trnh cho tng ng vi{

    2x + 1 0x2 + mx + 2 = 4x2 + 4x + 1

    {

    x 12m = 3x

    2+4x1x

    .

    Xt hm s f(x) =3x2 + 4x 1

    xtrn

    [ 12 ; +) \ {0} c f (x) = 3x2 + 1x2 > 0,x [1

    2; +

    )\ {0}.

    Bng bin thin:

    x 12 0 + f (x) + +

    f(x)

    92

    +

    +

    T bng bin thin suy ra phng trnh cho c hai nghim phn bit m 92 .Bi tp 2.50. (B-04) Tm m PT m

    (1 + x2 1 x2 + 2) = 21 x4 +1 + x2 1 x2 c nghim.

    Li gii. iu kin: 1 x 1.t

    1 + x2 1 x2 = t c t = x1+x2

    x1x2 ; t

    = 0 x = 0; t(0) = 0, t(1) = 2 t [0;2].Phng trnh cho tr thnh m (t + 2) = t2 + t + 2 m = t2+t+2t+2 (*).Xt hm s f(t) = t

    2+t+2t+2 trn [0;

    2] c f (t) = t

    24t(t+2)2

    0,t [0;2].Suy ra min

    [0;2]f(t) = f

    (2)

    =

    2 1; max[0;2]f(t) = f(0) = 1.

    Khi phng trnh cho c nghim phng trnh (*) c nghim trn [0;2] 2 1 m 1.Bi tp 2.51. (A-08) Tm m phng trnh 4

    2x +

    2x + 2 4

    6 x + 26 x = m c hai nghim phn bit.

    Li gii. iu kin: 0 x 6. Xt hm s f(x) = 42x +2x + 2 46 x + 26 x trn [0; 6].Ta c f (x) = 1

    2 4(2x)3

    + 12x 1

    2 4(6x)3

    16x =

    12

    (1

    4(2x)3

    14(6x)3

    )+ 1

    2x 1

    6x .

    t 14(2x)3

    14(6x)3 = u(x),

    12x 1

    6x = v(x).

    Nhn thy f (2) = 0 v u(x), v(x) cng dng trn (0; 2), cng m trn (2; 6) nn ta c bng bin thin

    x 0 2 6

    f (x) + 0

    f(x)

    2

    6 + 2 4

    6

    3

    2 + 6

    4

    12 + 2

    3

    Do phng trnh c hai nghim phn bit 26 + 2 46 m < 32 + 6.Bi tp 2.52. (DB-07) Tm m phng trnh 4

    x4 13x + m + x 1 = 0 c ng mt nghim.

    Li gii. Phng trnh cho tng ng vi

    4x4 13x + m = 1 x

    {1 x 0x4 13x + m = x4 4x3 + 6x2 4x + 1

    {x 1m = 4x3 + 6x2 + 9x + 1

    Xt hm s f(x) = 4x3 + 6x2 + 9x + 1 trn [1; +) c f (x) = 12x2 + 12x + 9; f (x) = 0 x = 12 .Bng bin thin

    31

    www.MATHVN.com

    www.MATHVN.com

  • Nguyn Minh Hiu

    x 12 1f (x) 0 +

    f(x)

    +

    32

    12

    Do phng trnh cho c ng mt nghim khi v ch khi m > 12 hoc m = 32 .Bi tp 2.53. (B-07) Chng minh vi mi m > 0, PT x2 + 2x 8 = m (x 2) c hai nghim phn bit.Li gii. iu kin: x 2. Nhn thy x = 2 l mt nghim ca phng trnh.

    Vi x > 2, phng trnh tng ng vi(x2 + 2x 8)2 = m (x 2) x3 + 6x2 32 = m.

    Xt hm s f(x) = x3 + 6x2 32 trn (2; +) c f (x) = 3x2 + 12x > 0,x > 2. Bng bin thin

    x 2 + f (x) +

    f(x)

    0

    +

    T bng bin thin ta thy vi mi m > 0 th phng trnh lun c ng mt nghim trn (2; +).Vy vi mi m > 0 th phng trnh cho c ng hai nghim.

    Bi tp 2.54. Chng minh rng vi mi m, phng trnh x4 + x3 2x2 + 3mxm2 = 0 lun c nghim.Li gii. Phng trnh cho tng ng vi m2 3xm x4 x3 + 2x2 = 0 (*).

    Ta c = 9x2 4 (x4 x3 + 2x2) = 4x4 + 4x3 + x2 = (2x2 + x)2.Do ()

    [m = 3x+2x

    2+x2

    m = 3x2x2x

    2

    [m = x2 + 2xm = x x2

    [x2 + 2xm = 0 (1)x2 x + m = 0 (2) .

    Phng trnh cho c nghim [

    (1) c nghim(2) c nghim

    [

    1 = 4 + 4m 02 = 1 4m 0

    [m 1m 14

    m R.Vy phng trnh cho c nghim vi mi m.

    Bi tp 2.55. (DB-04) Tm m h{

    x2 5x + 4 03x2 mxx + 16 = 0 c nghim.

    Li gii. H cho tng ng vi

    {1 x 4m = 3x

    2+16xx

    .

    Xt hm s f(x) =3x2 + 16

    xx

    trn [1; 4] c f (x) =3x(x2 16)2x5

    0,x [1; 4].Suy ra max

    [1;4]f(x) = f(1) = 19; min

    x f(x) = f(4) = 8. Do h cho c nghim 8 m 19.

    Bi tp 2.56. (D-2011) Tm m h{

    2x3 (y + 2)x2 + xy = mx2 + x y = 1 2m c nghim.

    Li gii. H cho tng ng vi{ (

    x2 x) (2x y) = mx2 x + 2x y = 1 2m .

    t x2 x = u, 2x y = v (u 14 ). H tr thnh{

    uv = m (1)u + v = 1 2m (2) .

    T (2) v = 1 2m u thay vo (1) ta c u (1 2m u) = m m = u2+u2u+1 .Xt hm s f(u) =

    u2 + u2u + 1

    c f (u) =2u2 + 2u 1

    (2u + 1)2 ; f

    (u) = 0 u = 1 +

    3

    2. Bng bin thin:

    x 14 1+3

    2+

    f (x) + 0

    f(x) 58

    232

    32

    www.MATHVN.com

    www.MATHVN.com

  • Chuyn 2. Phng Trnh - Bt Phng Trnh & H Phng Trnh i S

    Vy h cho c nghim khi v ch khi m 23

    2 .

    Bi tp 2.57. Tm m h

    1 x2 + 2 31 x2 = m c nghim duy nht.Li gii. Nhn thy nu x0 l nghim phng trnh th x0 cng l nghim phng trnh.

    Do gi s phng trnh c nghim duy nht th nghim bng 0 m = 3.Vi m = 3 phng trnh tr thnh

    1 x2 + 2 31 x2 = 3 (*).

    t 6

    1 x2 = t (t 0). Phng trnh (*) tr thnh t3 + 2t2 3 = 0 t = 1 61 x2 = 1 x = 0.Vy vi m = 3 th phng trnh cho c nghim duy nht x = 0.

    Bi tp 2.58. Tm m h{

    x = y2 y + my = x2 x + m c nghim duy nht.

    Li gii. Xt h{

    x = y2 y + m (1)y = x2 x + m (2) .

    Nhn thy nu h c nghim (x; y) th cng c nghim (y;x).Do h c nghim duy nht khi x = y, thay vo (1) ta c x2 2x + m = 0 (*).Vy h c nghim duy nht khi v ch khi (*) c nghim kp 1m = 0 m = 1.

    33

    www.MATHVN.com

    www.MATHVN.com