ChewMA1506-14 Ch1

168
1 MA1506 Mathematics II Group A Monday 800-1000 Wed 1600-1700 UT-AUD1 Lecturer: Chew Tuan Seng Group B Wed 800-1000 Friday 800-900 UT-AUD2 Lecturer: Quek Tong Seng Chew T S MA1506-14 Chapter 1 follow the contents of Lecture Note but our presentation may be different

description

asdf

Transcript of ChewMA1506-14 Ch1

Page 1: ChewMA1506-14 Ch1

1

MA1506 Mathematics II

Group A Monday 800-1000 Wed 1600-1700 UT-AUD1 Lecturer: Chew Tuan Seng

Group B Wed 800-1000 Friday 800-900 UT-AUD2

Lecturer: Quek Tong Seng

Chew T S MA1506-14 Chapter 1

follow the contents of Lecture Note but our presentation may be different

Page 2: ChewMA1506-14 Ch1

2

Chapter 1 Differential Equations

Chew T S MA1506-14 Chapter 1

Page 3: ChewMA1506-14 Ch1

3

1.1. Introduction

In this chapter, we deal only with diff. eqs. containing derivatives, called ordinary diff. eqs. Chew T S MA1506-14 Chapter 1

A differential equation is an equation containing derivatives or partial derivatives

Page 4: ChewMA1506-14 Ch1

4

1st order ordinary diff. eq.

Chew T S MA1506-14 Chapter 1

2nd order ordinary diff. eq.

2(1 ) xdy y edx

= +

2

2 ( )d y dyA By R xdxdx

+ + =

( ) ( 2)2

( ) ( 2) 1n n

n n

d y d y xdx dx

−+ = + nth order ordinary diff. eq.

1.1. Introduction

Page 5: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 5

( ) ( 1) (1)1 1 0( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( ) ( )n n

n na x y x a x y x a x y x a x y x F x−−+ + + + =

An ODE of the following form is called a linear ODE

Examples: 2

2( )d y dyA By R x

dx dx+ + =

22

2 , yxd y dy dye xdx dxdx

+ = =

Above are linear ODEs

Below are NOT linear ODEs

1.1. Introduction

Page 6: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 6

In general, ODE has many solutions, e.g. siny x c= + , c is an arbitrary constant, is a solution of ' cosy x=

Such solutions, containing arbitrary constants are called general solution Giving a specific value to constant c, say c=1, we get 𝑦 = sin𝑥 + 1, which is called a particular solution

1.1. Introduction

Page 7: ChewMA1506-14 Ch1

7

In this Chapter, we study 1st order ordinary differential equation and its applications

Chew T S MA1506-14 Chapter 1

2nd order ordinary differential equations

Applications of 2nd order will be given in Chapter TWO

1.1. Introduction

Page 8: ChewMA1506-14 Ch1

8

1.2 Separable equations

We study 1st order ODE of the following form

We shall learn how to solve separable equations by examples

Chew T S MA1506-14 Chapter 1

( )( )

dy M xdx N y

=( ) ( )M x dx N y dy=

Page 9: ChewMA1506-14 Ch1

9

Example 1

We write

Then integrate both sides

21

1xe dx dy

y=

+∫ ∫Chew T S MA1506-14 Chapter 1

1.2 Separable equations

2(1 ) xdy y edx

= +

2

11

xe dx dyy

=+

Page 10: ChewMA1506-14 Ch1

10

Example 1 (cont)

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

get

21

1xe dx dy

y=

+∫ ∫

1tanxe y c−= +1tan xy e c− = −

tan( )xy e c= −

Page 11: ChewMA1506-14 Ch1

11

Example 2

A radioactive substance decomposes at a rate proportional to the amount present i.e.,

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

Radioactive Decay

dxdt

Find

dx xdt

dx kxdt

=Hence

( )x t

( )x t

where k is a constant

Page 12: ChewMA1506-14 Ch1

12

Example 2 (cont)

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

dx kdtx=∫ ∫

ln x kt c= +( ) kt c c ktx t e e e+= =( ) ktx t Ae=

dx kxdt

=

where cA e=

Page 13: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 13

What is the value A ?

( ) ktx t Ae=We have 0(0) kx Ae=

(0)A x=( ) (0) ktx t x e=

Example 2 (cont) 1.2 Separable equations

From

Page 14: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 14

we have

1.2 Separable equations

Example 2 (cont)

Now we shall find the value of k

Assume the half-life of the substance is τ

From

So

ln(1/ 2) ln 2kτ τ

= = −

1( ) (0)2

x xτ =

( ) (0) ktx t x e=

The half-life is the time required for half of the substance to decay. So at time , the amount of the substance is ½ x(0)

ττ

1 (0) ( ) (0)2

kx x x e ττ= =

Page 15: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 15

Hence we have ln 2

( ) (0)t

x t x e τ−

=Remark: We may use

instead of

We will get the same equation as in the above

Example 2 (cont) 1.2 Separable equations

dx kxdt

= −dx kxdt

=ln 2

( ) (0)t

x t x e τ−

=

Page 16: ChewMA1506-14 Ch1

16

Example 3

Temperature of an object at time 0 is it is placed in a medium of constant temperature Temperature of the object is at time (is given) Find the temperature of the object at time

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

Cooling(Heating) Problem

(0)T

0T1( )T t

1t( )T t

t

Page 17: ChewMA1506-14 Ch1

17

Example 3 (cont)

Physical information: Rate of change dT/dt of the temperature T of an object is proportional to the difference between T and the temp T0 of the medium

Newton’s Law of Cooling (Heating)

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

0( )dT k T Tdt

= −

Page 18: ChewMA1506-14 Ch1

18

Example 3 (cont)

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

0ln( )T T kt c− = +

0( ) kt c ktT t T e Ae+− = =What is the value of A?

00(0) kT T Ae− =

0

dT kdtT T

=−∫ ∫0( )dT k T T

dt= −

We assume

0( )T t T>cooling so

Page 19: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 19

0(0)A T T= −

0 0( ) ( (0) ) ktT t T T T e− = −Now we shall find k By given, we know the value of 1( )T tSo

1

1 0 0( ) ( (0) ) ktT t T T T e− = −

Example 3 (cont) 1.2 Separable equations

Page 20: ChewMA1506-14 Ch1

20

Example 3 (cont)

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

1 0

0 1

( ) 1ln(0)

T t TkT T t −

= − Hence we have

0 0( ) ( (0) ) ktT t T T T e− = −where k is given above

Similarly, for heating, 0( )T t T< ,we get the same formula

Page 21: ChewMA1506-14 Ch1

21

Example 4

Newton’s 2nd Law

g=acceleration due to gravity =9.8m/s2

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

Retarded fall—air resistance

air resistance = bv2

m=weight of the man + equipment

where b is a constant

2dvm mg bvdt

= −

We shall discuss the case when air resistance = bv in Example 9

mg2bv

x

0 Starting pt

Page 22: ChewMA1506-14 Ch1

22

Example 4 (cont)

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

2dvm mg bvdt

= −

2 2( )dv b v kdt m

= − −

2 mgkb

=where

Hello
Sticky Note
use k^2 because k will be inefficient
Page 23: ChewMA1506-14 Ch1

23

Example 4 (cont)

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

1

2ln v k kb t cv k m− = − + +

2 2

1 bdv dtv k m

= −−

1 1 12

bdv dtk v k v k m − = − − +

Page 24: ChewMA1506-14 Ch1

24

Example 4 (cont)

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

ptv k cev k

−−=

+2kbpm

=where

How to find c?

0(0)(0)

pv k cev k

−−=

+

(0)(0)

v kcv k

−=

+

11

pt

pt

cev kce

+=

Page 25: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 25

Now suppose

K=4.87, c=0.345,p=4.02

11

pt

pt

cev kce

+=

4.02

4.02

1 0.3454.871 0.345

t

t

eve

+=

Then

Example 4 (cont) 1.2 Separable equations

Page 26: ChewMA1506-14 Ch1

26

lim ( ) 4.87t

v t→∞

=

Example 4 (cont)

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

V(t)

t

Skydiver falling at terminal velocity

Page 27: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 27

http://www.graphmatica.com

We can draw graph using graphmatica

at

Page 28: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 28

Example 5 Mixture problem 1.2 Separable equations

air or pure water

Some substance (e.g. CO, salt) flows into a tank (room), is mixed uniformly with the contents (e.g. air , pure water) of the tanks, and flows out with the mixture (air with CO, water with salt).

CO or salt air with CO or water with salt

Page 29: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 29

We want to find the amount x(t) of the substance in the tank at time t

dxdt

= the rate at which the substance flows into the tank (in flow) the rate at which the substance flows out the tank (out flow)

Now we shall give an example.

Example 5 (cont) 1.2 Separable equations

Page 30: ChewMA1506-14 Ch1

30

Example 5 (cont)

A 2000m3 room contains air with 0.002% CO at time t=0

The ventilation system blowing in air which

contains 3% CO The system blowing in and out air at a

rate of 0.2m3/min

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

Mixture problem

Page 31: ChewMA1506-14 Ch1

31

Example 5 (cont)

Let x(t) = vol of CO in the room at time t 0.2 m3 /min

3% CO 0.2 m3 /min

Room 2000 m3

CO per m3 in the tank

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

dxdt

= Inflow of CO - outflow of CO

0.006 0.0001x= −

0.03 0.2= × 0.22000

x− ×

X(t)

Page 32: ChewMA1506-14 Ch1

32

Example 5 (cont)

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

ln(60 ) 0.0001x t c− − = +

0.006 0.0001dx xdt

= − 0.0001(60 )x= −

0.000160

dx dtx=

ln(60 ) 0.0001x t c− = − −

Page 33: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 33

0.0001 0.000160 t c tx e ke− − −− = =0.000160 tx ke−= −

Now we shall find k

A 2000m3 room contains air with 0.002% CO at time t=0. Hence X(0)=2000x0.002%=2000x0.002/100=0.04

Example 5 (cont) 1.2 Separable equations

Page 34: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 34

00.04 (0) 60x ke= = −

59.96k =0.000160 59.96 tx e−= −

1.2 Separable equations

Example 5 (cont)

Page 35: ChewMA1506-14 Ch1

35

Example 5 (cont)

0.015% CO means x(t1) = 0.00015 X 2000 = 0.3

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

When the air in the room containing 0.015% CO?

10.00010.3 60 59.96 te−= −

1 43.5mint ≈

0.000160 59.96 tx e−= −

Page 36: ChewMA1506-14 Ch1

36

What happens when ODE is not separable? For examples,

2 tricks:

• reduction to separable

• linear change of variables Chew T S MA1506-14 Chapter 1

1.2 Separable equations

2 22 0dyxy y xdx

− + =

(2 4 5) 2 3 0x y y x y′− + + − + =

Page 37: ChewMA1506-14 Ch1

37

Reduction to separable form

Set

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

y v y vxx= ⇒ = y v xv′ ′= +

Now we shall give one example

yy fx

′ =

' ( ) dvy f v v xdx

= = +

( )dv dx

f v v x=

Suppose

Page 38: ChewMA1506-14 Ch1

38

Example 6 : Reduction to separable form

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

2 22 0dyxy y xdx

− + =

2 2 1 12 2 2

dy y x y xdx xy x y

−= = −

y vx=Let We have

where See previous slide

( )dv dx

f v v x=

−1 1 1( )2 2

f v vv

= −

yy fx

′ =

Page 39: ChewMA1506-14 Ch1

39

Example 6 (cont)

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

2

2 11

v dv dxv x

= −+

22

1 1( 1)1

d v dxv x

+ = −+

1 1 12 2

dv dxxv v

v

=− −

Page 40: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 40

2ln( 1) lnv x c+ = − +2ln(( 1) )v x c+ =2

1( 1) cv x e c+ = =

2

12 1y x cx

+ =

Example 6 (cont) 1.2 Separable equations

Page 41: ChewMA1506-14 Ch1

41

Linear Change of Variable

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

1 1 1

ax by cya x b y c

+ +′ =+ +

Consider ODE of the form

We shall give one example to illustrate the method

Page 42: ChewMA1506-14 Ch1

42

2 32 4 5

dy x ydx x y

− + −=

− +( 2 ) 3

2( 2 ) 5x yx y

− − −=

− +

Let u=x-2y The above can be done since two st lines -x+2y-3=0 and 2x-4y+5=0 are parallel

Example 7

Chew T S MA1506-14 Chapter 1

We may let u=-x+2y

1.2 Separable equations

Page 43: ChewMA1506-14 Ch1

43

Example 7 (cont) ( 2 ) 3'

2( 2 ) 5x yyx y

− − −=− +

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

Let u=x-2y Then 1 2du dydx dx

= −

1 3(1 )2 2 5

du udx u

− −− =

+4 112 5

du udx u

+=

+

subst into the above eq

2 54 11

u du dxu+

=+

Page 44: ChewMA1506-14 Ch1

44

Example 7 (cont)

Chew T S MA1506-14 Chapter 1

1.2 Separable equations

2 5 1 1 14 11 2 2 4 11

uu u+

= −+ +

11 24 11

du dxu

− = +

1 ln(4 11) 24

u u x c− + = +

1( 2 ) ln(4( 2 ) 11) 24

x y x y x c− − − + = +

4( 2 )4( 2 ) 11 x yx y Ae − −− + =

2 54 11

u du dxu+

=+

4( 2 ) ln(4( 2 ) 11) 8 4x y x y x c− − − + = +

4 cwhere A e=

Page 45: ChewMA1506-14 Ch1

45

1.3 Linear 1st Order ODEs

called Integrating factor

Std form

Chew T S MA1506-14 Chapter 1

( ) ( )dy p x y Q xdx

+ =

( )p x dxe∫

( ) ( ) ( )( ) ( )

p x dx p x dx p x dxdy e p x ye Q x edx

∫ ∫ ∫+ =

The given ODE multiplied by integrating factor, get

Page 46: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 46

We can check that the left hand side of the above

( ) ( )( )

p x dx p x dxdy e p x yedx

∫ ∫+

( )p x dxd yedx

∫=

1.3 Linear 1st Order ODE

cont. ( ) ( ) ( )

( ) ( )p x dx p x dx p x dxdy e p x ye Q x e

dx∫ ∫ ∫+ =

Page 47: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 47

Hence

( ) ( )( )

p x dx p x dxd ye Q x edx

∫ ∫=

S0

( ) ( )( )

p x dx p x dxye Q x e dx∫ ∫= ∫

1.3 Linear 1st Order ODE

cont. ( ) ( ) ( )

( ) ( )p x dx p x dx p x dxdy e p x ye Q x e

dx∫ ∫ ∫+ =

( ) ( )( )

p x dx p x dxd ye dx Q x e dxdx

∫ ∫= ∫ ∫

Hence

Page 48: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 48

Why

( )p x dxd yedx

( )p x dxdy edx

∫=( )p x dxdy e

dx∫+

( ) ( )( )

p x dx p x dxdy de ye p x dxdx dx

∫ ∫= + ∫( ) ( )

( )p x dx p x dxdy e ye p x

dx∫ ∫= +

( ) ( )( )

p x dx p x dxdy e p x yedx

∫ ∫+( )p x dxd ye

dx ∫=

1.3 Linear 1st Order ODE

cont.

Page 49: ChewMA1506-14 Ch1

49

Why

( ) ( )d p x p xdx

=∫Use the following example to illustrate

cont.

Chew T S MA1506-14 Chapter 1

1.3 Linear 1st Order ODE

Page 50: ChewMA1506-14 Ch1

50

cont.

coscos

d xdxx

dx∴ =∫

Chew T S MA1506-14 Chapter 1

1.3 Linear 1st Order ODE

𝑑 ∫ cos𝑥𝑑𝑥𝑑𝑥

=𝑑(sin𝑥 + 𝑐)

𝑑𝑥= cos𝑥

Page 51: ChewMA1506-14 Ch1

51

Example 8 (i)

Chew T S MA1506-14 Chapter 1

23xy y x′ − =13y y xx

′ − =

( ) ( )( )

p x dx p x dxye Q x e dx∫ ∫= ∫

Use formula

First compute integrating factor 1( 3 ) 3 lndx xxe e

− −∫ =

( ) ( )dy p x y Q xdx

+ =

1.3 Linear 1st Order ODE

0x >

3ln xe−

= 3x−=

Page 52: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 52

Hence, from

( ) ( )( )

p x dx p x dxye Q x e dx∫ ∫= ∫

we have

3 3 2 1yx xx dx x dx x c− − − −= = = − +∫ ∫

cont. 1.3 Linear 1st Order ODE

Lecture Note Example 8 (ii) Exercise

Page 53: ChewMA1506-14 Ch1

53

Example 9 An object of mass m dropped from rest

Newton 2nd Law

Chew T S MA1506-14 Chapter 1

Find the position x(t) and velocity v(t) at time t.

A resistance to the object is proportional to the magnitude of the velocity of the object.

Retarded fall—air resistance

dvm mg bvdt

= −

(Similar problem has been discussed in Example 4)

1.3 Linear 1st Order ODE

mgbv

(0) 0, (0) 0x v= =x

0 starting pt

Page 54: ChewMA1506-14 Ch1

54

Integrating factor

dv b v gdt m

+ =

cont.

Chew T S MA1506-14 Chapter 1

b btdtm me e∫ =

bt bt btm m mmve ge dt g e c

b= = +∫

By formula

How to find c? Use v(0)=0, from above, get mc gb

= −

1.3 Linear 1st Order ODE

dvm mg bvdt

= −

Page 55: ChewMA1506-14 Ch1

55

cont.

Chew T S MA1506-14 Chapter 1

( 1)bt bt btm m mm m mve g e g g e

b b b= − = −

(1 )btmmv g e

b−

= −

(1 )btmdx mg e

dt b−

= −

( ) (1 )btmmx t g e dt

b−

= −∫

1.3 Linear 1st Order ODE

Page 56: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 56

( ) (1 )btmmx t g e dt

b−

= −∫( ) ( )

btmm mx t g t e d

b b−

= + +

How to find d? use x(0)=0, from above, get

00 (0) (0 )m mx g e db b

= == + +2

2

md gb

= −

cont. 1.3 Linear 1st Order ODE

Page 57: ChewMA1506-14 Ch1

57

amt of water = constant=100 gal

3 gal/sec 100 gal water

3 gal/sec salt=0.25lb/gal

Example 10

=inflow - outflow

Chew T S MA1506-14 Chapter 1

salt/gal

Let Q(t) be the amount of salt in the tank Q(0)=20

dQdt

1.3 Linear 1st Order ODE

Mixture Problem

dQdt

= 3 0.25× 3100Q

− ×amt of water

= constant

=100 gal

Page 58: ChewMA1506-14 Ch1

58

cont.

Chew T S MA1506-14 Chapter 1

3 0.75100

dQ Qdt

+ =

( ) ( )( )

p x dx p x dxye Q x e dx∫ ∫= ∫

Use formula

310025 5

t

Q e−

= −get lim ( ) 25

tQ t

→∞=

Similar problem has been discussed in Example 5

1.3 Linear 1st Order ODE

( ) ( )dy p x y Q xdx

+ =

Page 59: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 59

Example 11 A decay chain

In Example 2, we have discussed radioactive

decay. However, some radioactive elements

are transformed into unstable elements.

The product (e.g., Thorium 230) of a radioactive (e.g., Uranium 234) decay is itself a radioactive element

1.3 Linear 1st Order ODE

Page 60: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 60

Let U(t) be the amount of Uranium at time t.

Let T(t) be the amount of Thorium at time t.

We assume that each decay of one Uranium atom produces one Thorium atom.

Hence Thorium atoms are being born at exactly the same rate at which Uranium atoms die.

1.3 Linear 1st Order ODE cont.

Birth rate of Thorium=(-1)Death rate of Uranium

So we have

Page 61: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 61

T

dT K Tdt

= − UK U+

Thorium atoms are being born at exactly the same rate at which Uranium atoms die

1.3 Linear 1st Order ODE cont.

U

dU K Udt

= −

We assume U TK K≠

0(0)U U= (0) 0T =

Uranium

Thorium

Page 62: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 62

We shall solve the above system of ODEs

From the 1st equation, we have

See Example 2

Hence 2nd equation becomes

0K tu

T U

dT K T K U edt

−+ =

1.3 Linear 1st Order ODE cont.

0K tuU U e−=

T

dT K Tdt

= −UK U+

Page 63: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 63

It is 1st order linear ODE. Hence by formula,

see Section 1.3, slide 47, we get

0

K dt K dtT TK tuUTe K U e e dt−∫ ∫= ∫

0K tK t K tuT T

UTe K U e e dt−= ∫

1.3 Linear 1st Order ODE cont.

Page 64: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 64

( )0( ) K K tK t U T uT

T U

KT t e U e CK K

−= +−

Now we shall find the constant C. By given

(0) 0T =We get

0U

T U

KC UK K

= −−

1.3 Linear 1st Order ODE cont.

Page 65: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 65

( )0( ) (1 )K t K K tU u u T

T U

KT t U e eK K

− −= −−

Unfortunately, we don’t know 0U

However

( )( ) (1 )( )

K K tU u T

T U

KT t eU t K K

−= −−

1.3 Linear 1st Order ODE cont.

0K tuU U e−=

So

Page 66: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 66

Hence we can find the time t if we know the ratio ( )

( )T tU t

It is known that

Hence ( )( )

U

T U

KT tU t K K

→− as t →∞

1.3 Linear 1st Order ODE cont.

U TK K<

( )( ) (1 )( )

K K tU u T

T U

KT t eU t K K

−= −−

Page 67: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 67

ancient corals How old the above ancient corals?

( )( ) (1 )( )

K K tU u T

T U

KT t eU t K K

−= −−

1.3 Linear 1st Order ODE

( )( )

T tU tIf we know

then we know the answer

Page 68: ChewMA1506-14 Ch1

68

Bernoulli Equations p23

Given eq multiplied by (1-n) get

Chew T S MA1506-14 Chapter 1

( ) ( ) ny p x y q x y′ + =If n=0 or n=1, then it is 1st order linear ODE, which has been just discussed

(1 ) (1 ) ( ) (1 ) ( )n n n ny n y n y p x y n y q x y− − −′ − + − = −

y-n

1.3 Linear 1st Order ODE

Page 69: ChewMA1506-14 Ch1

69

cont.

Chew T S MA1506-14 Chapter 1

Hence Bernoulli equation becomes 1st order linear ODE

1 nz y −= (1 ) nz n y y−′ ′= −

(1 ) (1 ) ( ) (1 ) ( )n n n ny n y n y p x y n y q x y− − −′ − + − = −

Let Then

So, from

we get

1.3 Linear 1st Order ODE

z′ + (1 ) ( )n p x z− = (1 ) ( )n q x−

Page 70: ChewMA1506-14 Ch1

70

Example (ii) Bernoulli Equation p24

Set

Chew T S MA1506-14 Chapter 1

2 2y y x y′ + =1 2 1z y y− −= = By formula

get 2(1 2) (1 2)z z x′ + − = −

Solve this 1st order linear ODE, get

1.3 Linear 1st Order ODE

Example (i) see Lecture note

' (1 ) ( ) (1 ) ( )Z n p x z n q x+ − = −

1 nz y −=

( ) ( ) ny p x y q x y′ + =

Page 71: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 71

1 2( 2 2)x xe y e x x c− − −= + + +

cont. 1.3 Linear 1st Order ODE

2( )x xe z x e dx− −= − =∫ 2( 2 2)xe x x c− + + +Integration by parts

Page 72: ChewMA1506-14 Ch1

72

Review: First Order ODE • Separable

• Linear

Chew T S MA1506-14 Chapter 1

( ) ( )M x dx N y dy=

• Bernoulli ( ) ( ) ny p x y q x y′ + =( ) ( )y p x y Q x′ + =

yy gx

′ =

1 1 1

ax by cya x b y c

+ +′ =+ +

1st Order ODE

Page 73: ChewMA1506-14 Ch1

73

has many solutions. However if an initial condition y(x0)=y0, (very often x0=0) is given, then there is one and only one solution, i.e., the solution is unique.

cont.

Chew T S MA1506-14 Chapter 1

( ) ( )y p x y Q x′ + =

1st Order ODE

Page 74: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 74

Review: Applications of 1st order ODE

Radioactive Decay

Cooling (Heating)

Retarded fall-air resistance

Mixture problem

Radioactive Decay chain

1st Order ODE

Page 75: ChewMA1506-14 Ch1

75

1.4 Second order linear ODE

The general form of 2nd order linear ODE is

When F(x) is zero function, we have This equation is called homogeneous.

Chew T S MA1506-14 Chapter 1

2

2( ) ( ) ( )d y dyp x q x y F x

dx dx+ + =

2

2( ) ( ) 0d y dyp x q x y

dx dx+ + =

Page 76: ChewMA1506-14 Ch1

76

When F(x) is not zero function, is called nonhomogenous.

2

2 ( ) ( ) ( )d y dyp x q x y F xdxdx

+ + =

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Examples

linear, nonhom

nonlinear

linear, hom

Page 77: ChewMA1506-14 Ch1

Superposition principle (only for homogeneous case) p27

If y1 and y2 are solutions then

c y1 + d y2 is also a solution

To prove the above result, first recall

1.4 Second-order linear ODE

Chew T S MA1506-14 Chapter 1 77

Hello
Highlight
Hello
Highlight
Page 78: ChewMA1506-14 Ch1

Proof: Superposition principle

If y1 and y2 are solutions then so is c y1 + d y2

1.4 Second-order linear ODE

Chew T S MA1506-14 Chapter 1 78

Hello
Highlight
Page 79: ChewMA1506-14 Ch1

Caution

Superposition principle does not hold for nonhomogeneous ODE

are solutions but 1 cos , 1+sinxx+

1 sin 1 cosx x+ + + is Not a solution

1.4 Second-order linear ODE

Chew T S MA1506-14 Chapter 1 79

Hello
Highlight
Page 80: ChewMA1506-14 Ch1

Example 12

are solutions.

Solve

First we can check that By superposition principle,

is a solution

By initial value condition , we get

initial value condition

1.4 Second-order linear ODE

Chew T S MA1506-14 Chapter 1 80

1 24, 1c c= =

0 01 2 1 2(0)y c e c e c c= + = +

1 2' x xy c e c e−= −So 0 0

1 2 1 2'(0)y c e c e c c= − = −

Page 81: ChewMA1506-14 Ch1

81

Linearly independent p29

• Two solutions u(x) and v(x) are said to be linearly dependent

if we can find a constant c such that u(x)=cv(x), for all x, otherwise they are linearly independent • For examples, sinx and cosx are linearly

indep; sinx and 2sinx are linearly dep.

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Hello
Highlight
Hello
Highlight
Page 82: ChewMA1506-14 Ch1

Theorem: For Hom. 2nd order linear ODE

If y1 and y2 are linearly independent solutions then general solution is y = c1 y1 + c2 y2

Particular solution: Fix some values of c1 and c2

1.4 Second-order linear ODE

Chew T S MA1506-14 Chapter 1 82

Hello
Highlight
Hello
Highlight
Page 83: ChewMA1506-14 Ch1

Example

two linearly indep solutions

General solution

Particular solution

1.4 Second-order linear ODE

Chew T S MA1506-14 Chapter 1 83

Page 84: ChewMA1506-14 Ch1

84

Homogeneous ODE with constant coefficient p31

2

2 0d y dyA Bydxdx

+ + =

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

It is clear that function is a solution

which is called a trivial solution or zero solution

zero

My presentation is slightly diff from the L N

Hello
Highlight
Hello
Highlight
Hello
Highlight
Page 85: ChewMA1506-14 Ch1

85

Now we shall look for nontrivial (nonzero) solution Recall that the general solution of first linear homogeneous ODE is

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

( ) 0dy p x ydx

+ =

( )p x dxy Ce

−∫=

(cont)

Page 86: ChewMA1506-14 Ch1

86

From this solution , we may guess that a nontrivial solution of

is of the form xy eλ=Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Consider a special case: when p(x) is constant , say D. Then the general solution is Dxy Ce−=

2

2 0d y dyA Bydxdx

+ + =

(cont)

Hello
Highlight
Hello
Highlight
Hello
Sticky Note
the general form of either y1 or y2
Page 87: ChewMA1506-14 Ch1

87

Subst. these into the given ODE, get

which is called characteristic equation or auxiliary equation

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Thus

xdy edx

λλ=2

22

xd y edx

λλ=Then

2 0x x xe A e Beλ λ λλ λ+ + =2( ) 0xA B eλλ λ+ + =

(cont)

Hence 2( ) 0A Bλ λ+ + =

Hello
Highlight
Page 88: ChewMA1506-14 Ch1

88

When solving there are three cases: (See p32)

• Two distinct real roots • Only one real root • Two distinct complex roots

2 0A Bλ λ+ + =

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

(cont)

Page 89: ChewMA1506-14 Ch1

89

(a) Two distinct real roots Suppose that two distinct real roots are and

Then we have two distinct (linearly independent) solutions

1λ 2λ

1xy eλ= 2xy eλ=

1 21 2

x xy c e c eλ λ= +Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

General soln is

Page 90: ChewMA1506-14 Ch1

90

In fact , we can prove that every solution is of the form Here and are any constants. 1C 2C

1 21 2

x xy c e c eλ λ= +

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

(cont)

Page 91: ChewMA1506-14 Ch1

91

Example 13

Solution: Let Subst this y into the given ODE , get

xy eλ=

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Solve 𝑦" + 𝑦′ − 2𝑦 = 0

𝑦(0) = 4,𝑦"(0) = −5

with

We have two distinct real roots,

1 21, 2λ λ= = −

2 2 0λ λ+ − =

Page 92: ChewMA1506-14 Ch1

92

(cont) Thus the general solution of the equation is we get 𝑦 = 𝑒𝑥+3𝑒−2𝑥

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

21 2

x xy c e c e−= +𝑦(0) = 4,𝑦′(0) = −5 By initial condition,

Page 93: ChewMA1506-14 Ch1

93

(b)Only one real root Suppose that the only one real root is Then we have a solution For 2nd order ODE, we can prove that we should have two distinct (linearly

indep.) solutions. What is the 2nd solution?

1xy eλ=

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Hello
Highlight
Hello
Highlight
Page 94: ChewMA1506-14 Ch1

94

The 2nd solution is We can verify that (see p34)

is also a solution (superposition principle) In fact , we can prove that every solution is

of the form

1xy xeλ=

1 11 2

x xy c e c xeλ λ= +

1 11 2

x xy c e c xeλ λ= +

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

(cont)

Page 95: ChewMA1506-14 Ch1

95

Example14 (ii): Solve The auxiliary equation is We have only one solution Hence the general solution is (Example 14 (i) Exercise )

2

2 4 4 0d y dy ydxdx

− + =

2 21 2

x xy c e c xe= +

2 4 4 0λ λ− + =1 2λ =

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Page 96: ChewMA1506-14 Ch1

96

(c) Two distinct complex roots Suppose that we have two distinct complex roots, namely and Then we have two distinct (linearly indep) complex-valued solutions and Suppose that Then

1λ 2λ

1xy eλ= 2xy eλ=

1 a ibλ = +

2 a ibλ = −Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Page 97: ChewMA1506-14 Ch1

97

Note that these two solutions are complex-valued . However we want real-valued solutions. How to get real-valued solutions ?

We shall look at the real part and imaginary part of the complex-valued solution

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

(cont)

Hello
Highlight
Page 98: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 98

1x ax ibxy e e eλ= =

cosaxe bx= i+ sinaxe bx

(cont) 1.4 Second-order linear ODE

axe= (cos sin )bx i bx+

Page 99: ChewMA1506-14 Ch1

99

We can verify that the real part and the imaginary part are two (real-valued) solutions

cosaxy e bx=

sinaxy e bx=

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

(cont) cos sinax axy e bx ie bx= +

Hello
Highlight
Page 100: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 100

we can prove that every solution is of the form

1 2

1 2

cos sin

( cos sin )

ax ax

ax

y c e bx c e bx

e c bx c bx

= +

= +

(cont) 1.4 Second-order linear ODE

Page 101: ChewMA1506-14 Ch1

101

Do we need to consider ANS: NO, since it induces the same general solution.

2xy eλ=

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

(cont)

Page 102: ChewMA1506-14 Ch1

102

Example 15 (i) Solve y" + 2y′ + 5y = 0 The complex roots of the auxiliary equation are Hence the general solution is. Example 15 (ii) Sovle (i) with From (i) and initial condition, we get

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

1 21 2 , 1 2i iλ λ= − + = − −

1 2( cos 2 sin 2 )xy e c x c x−= +

(0) 1, y'(0)=5y =

(cos 2 3sin 2 )xy e x x−= +

(0) 1, y'(0)=5y =

1 2

1 2

cos sin

( cos sin )

ax ax

ax

y c e bx c e bx

e c bx c bx

= +

= +

Page 103: ChewMA1506-14 Ch1

103

2nd-order nonhomogeneous linear ODE

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

From now onwards till the end of this chapter, pp 38-54, my presentation is different from the L. N. . However, the content remains unchanged.

We deal only ODEs with constant coefficients

Hello
Highlight
Page 104: ChewMA1506-14 Ch1

104

2nd-order nonhomogeneous linear ODE with constant coefficients

The general form is Solving this equation can be reduced to three steps 1.Find the general solution to the

homogeneous equation

, say the solution is

2

2 ( )d y dyA By R xdxdx

+ + =

2

2 0d y dyA Bydxdx

+ + =

hyChew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Hello
Highlight
Hello
Highlight
Page 105: ChewMA1506-14 Ch1

105

2. Find a particular solution to the nonhomogeneous equation

3. Add the solutions from step 1 and step 2 , get + ,which is the general solution to (see Appendix 1)

py

2

2 ( )d y dyA By R xdxdx

+ + =

hy py

2

2 ( )d y dyA By R xdxdx

+ + =

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Page 106: ChewMA1506-14 Ch1

106

We have learnt step 1. There are two methods for step 2. Method 1. The method of undetermined coefficients. Method 2. The method of variation of parameters.

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Now we shall use examples to illustrate method 1

Page 107: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 107

3 2 10y y′′ + =

5py =

Method 1. The method of undetermined coefficients

Example 1

Guess a solution? If the function R(x) on the right hand side is constant, then we can guess that

py A=This is always true except some special but important cases, see Examples 3-6

Hello
Highlight
Page 108: ChewMA1506-14 Ch1

108

2'' ' 2 4y y y x− − =

2py Ax=

2py A Bx Cx= + +

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

No, no

The correct form is

Example 2 Solve

Can we guess a solution?

Page 109: ChewMA1506-14 Ch1

109

First

( ) ' 2py B Cx= + ( ) '' 2py C=

2'' ' 2 4y y y x− − =

get So

2 22 2 2 2 2 4C B Cx A Bx Cx x− − − − − =

2, 2, 3C B A= − = = −

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Now shall find A, B, C

Subst above into

(cont)

2C-B-2A=0 -2C-2B=0 -2C=4 Hence

Page 110: ChewMA1506-14 Ch1

110

(cont) Hence is a particular solution of

23 2 2py x x= − + −

2'' ' 2 4y y y x− − =On the other hand is the general solution of

21 2

x xhy C e C e−= +

'' ' 2 0y y y− − =Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Page 111: ChewMA1506-14 Ch1

111

Therefore is the general solution of the nonhomogeneous ODE Here and can be any constant

2 21 2 3 2 2x x

h py y C e C e x x−+ = + − + −

2'' ' 2 4y y y x− − =

1C 2C

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

(cont)

Page 112: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 112

Now we shall consider two special but important cases

'' ' 0y Ay+ = '' 0y =The general solution of '' ' 0y Ay+ =is

1 2 1 2ox Ax Ax

hy c e c e c c e− −= + = +

Hence constant functions are solutions of

'' ' 0y Ay+ =

(cont) 1.4 Second-order linear ODE

This result will be used in Examples 3-4

Page 113: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 113

The general solution of '' 0y =is 1 2hy c c x= +

Hence constant functions and functions are solutions of

1c2c x '' 0y =

Example 3 A particular solution of '' ' 10y y+ =

is of the form py xA=Why we have extra term x

(cont) 1.4 Second-order linear ODE

Now consider 2nd case

This result will be used in Examples 5-6

Page 114: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 114

The guiding principle is: Need to ensure that no term in a particular soln is a soln of the corresponding homogeneous ODE If we let py A=then we can’t find such A, since constant A is a soln of '' ' 0y y+ =The correct form is py xA=Subst this into '' ' 10y y+ = get 10A =So 10py x=

(cont) 1.4 Second-order linear ODE

Hello
Highlight
Page 115: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 115

Example 4 '' 'y y x+ =

A correct form of ( )py x A Bx= +

Suppose we let py A Bx= +

Then we can’t find such A and B, since in this particular solution , there is one term, namely, A, is a solution of '' ' 0y y+ =Subst. ( )py x A Bx= + into '' 'y y x+ =

get 1, 1/ 2A B= − = So 21

2py x x= − +

1.4 Second-order linear ODE

Hello
Sticky Note
NO term of yp can be allowed to resemble any term of yh
Page 116: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 116

Example 5 '' 10y =

The correct form of 2

py x A=We can’t let py A= py xA=Since they are solutions of the corresponding homogeneous ODE '' 0y =Subst. 2

py x A= into '' 10y =get A=5 so

25py x=In fact, we can get this result by integrating the ODE '' 10y = twice

1.4 Second-order linear ODE

Page 117: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 117

Example 6 3''y x=

The correct form of

2 2 3( )py x A Bx Cx Dx= + + +

We can’t let 2 3( )py x A Bx Cx Dx= + + +

2 3py A Bx Cx Dx= + + +

Subst.

2 2 3( )py x A Bx Cx Dx= + + +

into 3''y x=get A=B=C=0, D=1/20 So 5(1/ 20)py x=In fact, we can get this result by integrating the ODE 3''y x= twice

1.4 Second-order linear ODE

See Example 5

Since A, xA are solutions of the corresponding homogeneous ODE '' 0y =

Hello
Sticky Note
both the term A and Bx are the solutions of the corresponding homogeneous linear d.e
Page 118: ChewMA1506-14 Ch1

Important Remark: From the above examples, we know that a particular solution of

Chew T S MA1506-14 Chapter 1 118

2

2 ( )d y dyA By R xdxdx

+ + =

not only depend on R(x) but also depend on the general solution of

2

2 0d y dyA Bydxdx

+ + =

So when we want to find a particular solution, first we need to find the general solution of

2

2 0d y dyA Bydxdx

+ + =

Page 119: ChewMA1506-14 Ch1

119

(A)The general solution of is (1)A particular solution of is of the form (2)A particular solution of is of the form

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Example 7 '' 3 ' 4 0y y y− − =

41 2

x xc e c e−+2'' 3 ' 4 xy y y e− − =

2 xAe4'' 3 ' 4 xy y y e− − =

4 xxAe

Page 120: ChewMA1506-14 Ch1

120

(cont) (B)The general solution of is So a particular soln of is of the form

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

'' 2 ' 0y y y+ + =

'' 2 ' xy y y e−+ + =

2 xx Ae−

1 2x xc e c xe− −+

Page 121: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 121

Why we have extra term 2x

in

Since

are solutions of

,x xAe xAe− −

(cont) 1.4 Second-order linear ODE

2 xx Ae−

'' 2 ' 0y y y+ + =

Page 122: ChewMA1506-14 Ch1

122

First the general solution of is

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

'' 3 ' 4 0y y y− − =4

1 2x x

py c e c e−= +

Example 8 Solve '' 3 ' 4 2siny y y x− − =

We guess a particular solution is of the form

py = cosA x + sinB x

Page 123: ChewMA1506-14 Ch1

123 Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

cont.

A particular solution

As in Example 2, we can find the values of A and B

3 /17, 5 /17A B= = −

py = sinB xcosA x +

Page 124: ChewMA1506-14 Ch1

124

So the general solution of is Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

'' 3 ' 4 2siny y y x− − =

h py y+

Hence a particular solution is (3 /17)cos ( 5 /17)sinpy x x= + −

cont.

Page 125: ChewMA1506-14 Ch1

125

Find a particular soln of First, the general soln of is

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Example 9

'' siny y x+ =

'' 0y y+ =

1 2sin cosc x c x+

Hello
Sticky Note
c1sinx and c2cosx are the solutions of homo d.e separately i.e c1sinx is a solution c2cosx is a solution
Page 126: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 126

A particular soln is of the form

since Asinx and Bcosx are solutions of

with the extra term x

(cont) 1.4 Second-order linear ODE

( sin cos )py x A x B x= +

'' 0y y+ =

Hello
Highlight
Page 127: ChewMA1506-14 Ch1

127

(cont) We can check that Hence a particular soln is The general soln of is

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

'' siny y x+ =

0, 1/ 2A B= = −

( 1/ 2)cospy x x= −

1 2sin cos (1/ 2) cosc x c x x x+ −

Page 128: ChewMA1506-14 Ch1

2nd order nonhomogeneous linear ODE

The general solution is

hy py+ The general soln for homogeneous ODE

A particular soln for nonhomogeneous ODE

How to find

128

py

2

2 ( )d y dyA By R xdx dx

+ + =

Review

Chew T S MA1506-14 Chapter 1

Page 129: ChewMA1506-14 Ch1

129

pyHow to find The method of undetermined coefficients.

Notation used in the following slides

0 1( ) , 0nn n nP x a a x a x a= + + + ≠

0 1( ) , 0nn n nQ x A A x A x A= + + + ≠

Chew T S MA1506-14 Chapter 1

Page 130: ChewMA1506-14 Ch1

(2)

(1) ( )R x C=

130

spy x A=

( ) ( )nR x P x= ( )sp ny x Q x=

(4)

s xpy x Aeα=(3)

( sin cos )spy x A bx B bx= +

( ) xR x eαβ=

( ) sinR x bxβ=

( ) cosR x bxβ=

S=0,1,2 Four basic and important cases

Page 131: ChewMA1506-14 Ch1

131

What is s? s is the smallest nonnegative integer such that no term in

is a solution of the corresponding homogeneous ODE (or corresponding homo. Complex-valued ODE)

py

What is the meaning of term used above? 3 2 2

3 2 2 2 2 2

( ) x

x x x x

Ax Bx Cx D e

Ax e Bx e Cxe De

+ + +

= + + +In the above, there are four terms

Chew T S MA1506-14 Chapter 1

Hello
Highlight
Hello
Highlight
Hello
Sticky Note
means no term in yp can be similar to any term in yh
Page 132: ChewMA1506-14 Ch1

132

Consider We can guess that a particular soln is By the method used in previous examples, we can find A, B, C, D. However the computation is very involved. We will use the following method to simplify the computation

3 2 2( ) xAx Bx Cx D e+ + +

1.4 Second-order linear ODE

Example 10 3 2'' 4 ' 2 2 xy y y x e− + =

Four more Examples 10-13, computations are very involved

Page 133: ChewMA1506-14 Ch1

133

(cont) Let Then a particular soln is

Subst the above into the given ODE, get,

We have

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

2 xy ue=2 22x xy u e ue′ ′= +

2 2 24 4x x xy u e u e ue′′ ′′ ′= + +

3" 2 2u u x− =

3 2( )u x Ax Bx Cx D= + + +

Page 134: ChewMA1506-14 Ch1

134

Thus a particular soln is

Now subst

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

We can find A,B, C, D, we get

into 3" 2 2u u x− =

3( ) 3u x x x= − −

3 2( 3 ) xpy x x e= − −

3 2( )u x Ax Bx Cx D= + + +(cont)

Page 135: ChewMA1506-14 Ch1

135

Remark: When we subst.

into the given nonhom. ODE, we do not compute the derivative of the right-hand side of

until the last step

2 xy ue=

3 2( )u x Ax Bx Cx D= + + +

Example 11 See Appendix 4

Hello
Highlight
Hello
Highlight
Page 136: ChewMA1506-14 Ch1

136

Why we have extra term x in the above?

Example 12

A particular soln is of the form

Since Bsin2x and Dcos2x are solns of

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

[( )sin 2 ( )cos2 ]x Ax B x Cx D x+ + +

'' 4 0y y+ =

'' 4 16 sin 2y y x x+ =

Page 137: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 137

Again, it is not easy to find A,B,C, D.

We shall use the method in Example

10 to find a particular soln.

Furthermore, we need to use the corresponding complex -valued ODE to help us

(cont) 1.4 Second-order linear ODE

Hello
Highlight
Page 138: ChewMA1506-14 Ch1

138

first notice that

To find a particular soln of

2 cos(2 ) sin(2 )ixe x i x= +So now we consider the corresponding complex-valued ODE

where z is a complex–valued function ,

say z (x)=w(x)+iy(x)

1.4 Second-order linear ODE

'' 4 16 sin 2y y x x+ =

2'' 4 16 i xz z xe+ =

(cont)

Hello
Highlight
Page 139: ChewMA1506-14 Ch1

139

Remark (*) : The imaginary part of is So if z(x) is a complex soln of Then the imaginary part Im(z) of z is a soln of

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

2'' 4 16 i xz z xe+ =

'' 4 16 sin 2y y x x+ =

16 sin 2x x

(cont)

216 16 cos(2 ) 16 sin(2 )ixxe x x i x x= +

Hello
Highlight
Page 140: ChewMA1506-14 Ch1

140

where

A, B are complex numbers

As in Example 10, we assume a particular soln is

( ) ( )u x x Ax B= +

Why we have extra term x in u

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

2i xpz ue=

(cont)

Page 141: ChewMA1506-14 Ch1

141 Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Since 2i xBeis a solution of the corresponding hom. ODE '' 4 0z z+ =

Now from 2i xpz ue=

We compute ( ) ',( ) ''p pz zSubst. them into 2'' 4 16 i xz z xe+ =

we get '' 4 ' 16u iu x+ =

(cont)

4 2 1 2iλ = ± − = ± − = ±

2 4 0λ + =

Hello
Sticky Note
If characteristic equation has real solution, apply general solution like normal Just to make sure zp does not have any term that coincides zh
Page 142: ChewMA1506-14 Ch1

142

Subst into the

equation , we get

So

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

(cont)

( ) ( )u x x Ax B= +

2 , 1A i B= − =

22u ix x= − +

'' 4 ' 16u iu x+ =

Page 143: ChewMA1506-14 Ch1

143

From the remark (*), we have

Now look at what we have done

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

'' 4 16 sin 2y y x x+ =2'' 4 16 i xz z xe+ =

2 2( 2 ) i xpz ix x e= − + 2( 2 )(cos2 sin 2 )ix x x i x= − + +

2Im( ) sin2 2 cos2p py z x x x x= = −

(cont)

Example 13 See Appendix 5

2 2

2 2

( 2 )cos 2 ( 2 )( sin 2 ) cos 2 sin 2 )[2 sin 2 cos 2 ] [ sin 2 2 cos 2 ]

ix x ix i x x x i x xx x x x i x x x x

= − + − + +

= + + −

Page 144: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 144

We remark that so far we only consider nonhomogeneous ODE with one term on the right hand side, e.g.,

How to solve the case when right hand side has more than one term, see next example

'' 3 ' 4 2siny y y x− − =

'' 3 ' 4 4y y y− − =

1.4 Second-order linear ODE

Page 145: ChewMA1506-14 Ch1

Example 14

We known that a particular soln of is A particular soln of is Then a particular soln of is

145 Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

'' 3 ' 4 2siny y y x− − =

'' 3 ' 4 4y y y− − =

'' 3 ' 4 2sin 4y y y x− − = +

(1/17)(3cos 5sin )py x x= −

ˆ 1py = −

ˆp py y+

Page 146: ChewMA1506-14 Ch1

146

Remark: Method of undetermined coeff only works for the following

• Polynomials

• Exponentials

• Sine/Cosine

• Sum or product of the above functions

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

constant

'' ' ( )y Ay By R x+ + =

Page 147: ChewMA1506-14 Ch1

147

Method 2: Method of Variation of Parameters

is 1 2( ) ( ) ( ) ( )py u x y x v x y x= +Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

Suppose that the general solution of homogeneous ODE '' ' 0y Ay By+ + =

is

Then a particular solution of the corresponding nonhomogeneous ODE

'' ' ( )y Ay By r x+ + =

1 1 2 2( ) ( )hy c y x c y x= +

Page 148: ChewMA1506-14 Ch1

148 Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

How to find u(x) and v(x)? We can find u and v by using the following two equations

1 2' ' 0u y v y+ =

1 2' ' ' ' ( )u y v y r x+ =Solving these two equations, get

2

1 2 1 2

' y ruy y y y

= −′ ′−

1

1 2 1 2

' y rvy y y y

=′ ′−

(cont)

Page 149: ChewMA1506-14 Ch1

149 Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

1

1 2 1 2

y rv dxy y y y

=′ ′−∫

2

1 2 1 2

y ru dxy y y y

= −′ ′−∫

(cont)

Page 150: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 150

Example1 Solve '' tany y x+ =First note that 1 2cos sinhy c x c x= +is the general soln of '' 0y y+ =Hence a particular soln of '' tany y x+ =

is ( )cos ( )sinpy u x x v x x= +

1.4 Second-order linear ODE

Page 151: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 151

Need to use

2

1 2 1 2

y ru dxy y y y

= −′ ′−∫ 1

1 2 1 2

y rv dxy y y y

=′ ′−∫

(cont) 1.4 Second-order linear ODE

( )cos ( )sinpy u x x v x x= +

1 2cos , siny x y x= = 1 2sin , cosy x y x′ ′= − =

1 2 1 2 1y y y y′ ′− =

From get

So

Page 152: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 152

get sin tanu x xdx= −∫

cos tanv x xdx= ∫

2sincos

x dxx

= −∫(cos sec )x x dx= −∫ sin ln sec tanx x x= − +

2cos 1cos

x dxx−= ∫

sin cosxdx x= = −∫

(cont) 1.4 Second-order linear ODE

2

1 2 1 2

y ru dxy y y y

= −′ ′−

1

1 2 1 2

y rv dxy y y y

=′ ′−∫

'' tany y x+ = 1 2cos , siny x y x= =

Page 153: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 153

A general soln of '' tany y x+ =is

h py y+1 2cos sin cos sinc x c x u x v x= + + +

1 2cos sin cos ln sec tanc x c x x x x= + − +

(cont) 1.4 Second-order linear ODE

Page 154: ChewMA1506-14 Ch1

154

Example 2

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

'' sin cosx x xy y e e e− − −− = +

1 2x x

hy c e c e−= +

The general soln of '' 0y y− =is

Hence a particular soln of '' sin cosx x xy y e e e− − −− = +

is ( ) ( )x xpy u x e v x e−= +

Page 155: ChewMA1506-14 Ch1

155 Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

1 ( sin cos )2

x x x xu e e e e dx− − − −= +∫1 ( sin cos )2

x x x xv e e e e dx− − −= − +∫

(cont) 2

1 2 1 2

y ru dxy y y y

= −′ ′−∫

1

1 2 1 2

y rv dxy y y y

=′ ′−

'' sin cosx x xy y e e e− − −− = +

( ) ( )x xpy u x e v x e−= +

1 2 1 2 ( ) 1 1 2x x x xy y y y e e e e− −′ ′− = − − = − − = −

Page 156: ChewMA1506-14 Ch1

156

See Appendix 2

See Appendix 3

Chew T S MA1506-14 Chapter 1

1.4 Second-order linear ODE

1 (2sin cos )2

x x xu e e e− − −= − −

1 cos2

x xv e e−= −

sinx x x xpy ue ve e e− −= + = −

1 2 sinx x x xh py y y c e c e e e− −= + = + −

(cont)

END

Page 157: ChewMA1506-14 Ch1

157

Appendix 1 Optional General soln of nonhomogeneous ODE

General Solution

We can check that

Chew T S MA1506-14 Chapter 1

'' ' ( )y Ay By R x+ + =

h py y y= +

0h h hy Ay By′′ ′+ + =where

( )p p py Ay By R x′′ ′+ + =

( ) ( ) ( ) ( )h p h p h py y A y y B y y R x′′ ′+ + + + + =

Page 158: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 158

21 1sin cos2 2

x x x xu e e dx e e dx− − − −= +∫ ∫2 sin cosx x x xe e dx e d e− − − −=∫ ∫

cos cosx x x xe e e de− − − −= − ∫cos sinx x xe e e− − −= −

Appendix 2

Page 159: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 159

cos cosx x x xe e dx e de− − − −= −∫ ∫sin xe−= −

1 ( cos 2sin )2

x x xu e e e− − −= −

Appendix 2 (cont)

Page 160: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 160

1 ( sin cos2

x x xv e dx e e dx− −= − +∫ ∫sin cosx x xe dx e d e− −=∫ ∫

cos cosx x x xe e e de− −= − ∫Hence 1 cos

2x xv e e−= −

Appendix 3

Page 161: ChewMA1506-14 Ch1

161

Appendix 4 Example 11 Consider First note that has only one root the general soln of is

Chew T S MA1506-14 Chapter 1

3 2'' 4 ' 4 20 xy y y x e− + =

2 4 4 0λ λ− + =2λ =

'' 4 ' 4 0y y y− + =2 2

1 1x xc e c xe+

Page 162: ChewMA1506-14 Ch1

162

So a particular soln of is of the form Note that we have extra term above By method used in Example 10 , we can get A=1,B=C=D=0

2x

Chew T S MA1506-14 Chapter 1

3 2'' 4 ' 4 20 xy y y x e− + =2 3 2 2( ) xx Ax Bx Cx D e+ + +

(cont)

Page 163: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 163

2xWhy we have extra term

Suppose we use 3 2 2( ) xAx Bx Cx D e+ + +

Then 2 xDe are solns of

Suppose we use

2 xCxeand

3 2 2( ) xx Ax Bx Cx D e+ + +

Then 2 xDxe is a soln of

(cont)

'' 4 ' 4 0y y y− + =

'' 4 ' 4 0y y y− + =

Page 164: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 164

Here we use

to ensure that no term in the above is a soln of

We remark that in Example 10, we use 3 2 2( ) xAx Bx Cx D e+ + +

since no term in the above is a soln of '' 4 ' 2 0y y y− + =

(cont)

'' 4 ' 4 0y y y− + =

2 3 2 2( ) xx Ax Bx Cx D e+ + +

Page 165: ChewMA1506-14 Ch1

Chew T S MA1506-14 Chapter 1 165

The meaning of “term”

There are four terms in the above particular solution We have to ensure that no term in a particular solution of nonhom. ODE is a solution of the corresponding hom. ODE

(cont)

3 2 2( ) xAx Bx Cx D e+ + +3 2 2 2 2 2x x x xAx e Bx e Cxe De= + + +

Hello
Highlight
Page 166: ChewMA1506-14 Ch1

166

Appendix 5 Example 13

As in Example 12, we consider 2'' 2 ' 5 16 x ixz z z xe e−+ + =

A particular soln is of the form where

The real part of z(x) is a particular soln of y-equation .

Chew T S MA1506-14 Chapter 1

As in example 12, we can find A and B. Why we have extra term x in u(x)?

'' 2 ' 5 16 cos2xy y y xe x−+ + =

( 1 2 )( ) ( ) i xpz x u x e − +=

( ) ( )u x x Ax B= +

Page 167: ChewMA1506-14 Ch1

Appendix 6 Example one of the most short-lived animals in the world Radioactive Decay Chain

Chew T S MA1506-14 Chapter 1 167

Page 168: ChewMA1506-14 Ch1

0( ) ( )K t K tU u T

T U

KT t U e eK K

− −= −−

ANS:

U(t)=# of eggs T(t)=# of mayflies

𝐾𝑈=ln2/2

𝐾𝑇=ln2/1 Chew T S MA1506-14 Chapter 1 168