Cheb Yshev Polynomials

download Cheb Yshev Polynomials

of 15

Transcript of Cheb Yshev Polynomials

  • 8/18/2019 Cheb Yshev Polynomials

    1/15

    Dymore User’s Manual 

    Chebyshev polynomials

    Contents

    1 Definition   1

    1.1 Zeros and extrema   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Orthogonality relationships   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Derivatives of Chebyshev polynomials   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.4 Integral of Chebyshev polynomials   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.5 Products of Chebyshev polynomials   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    2 Chebyshev approximation of functions of a single variable   4

    2.1 Expansion of a function in Chebyshev polynomials   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2 Evaluation of Chebyshev expansions: Clenshaw’s recurrence  . . . . . . . . . . . . . . . . . . . . . . . . 5

    2.3 Derivatives and integrals of Chebyshev expansions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.4 Products of Chebyshev expansions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.5 Examples   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.6 Clenshaw-Curtis quadrature  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    3 Chebyshev approximation of functions of two variables   9

    3.1 Expansion of a function in Chebyshev polynomials   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.2 Evaluation of Chebyshev expansions: Clenshaw’s recurrence  . . . . . . . . . . . . . . . . . . . . . . . . 103.3 Derivatives of Chebyshev expansions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    4 Chebychev polynomials   11

    4.1 Examples   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    1 Definition

    Chebyshev polynomials [1, 2] form a series of orthogonal polynomials, which play an important role in the theory of approximation. The lowest polynomials are

    T 0(x) = 1, T 1(x) = x, T 2(x) = 2x2 − 1, T 3(x) = 4x3 − 3x, T 4(x) = 8x4 − 8x2 + 1, . . .   (1)

    and are depicted in fig. 1. The polynomials can be generated from the following recurrence relationship

    T n+1 = 2xT n − T n−1, n ≥ 1.   (2)

    It is possible to give an explicit expression of Chebyshev polynomials as

    T n(x) = cos(n arccos x).   (3)

    This equation can be verified by using elementary trigonometric identities. For instance, it is clear, that   T 2   =cos [2 arccosx] = 2 cos2(arccos x) − 1 = 2x2 − 1, as expected from eq. (1).

    1.1 Zeros and extrema

    It is now easy to verify that  T n(x) possesses  n  zeros within the interval  x ∈   [−1, +1]:   T n(x) = cos(n arccos x) = 0implies  n arccos x = (2k − 1)π/2. Hence, the zeros of Chebyshev polynomial  T n(x) are

    x̄k  = cos π(2k − 1)

    2n  , k = 1, 2, 3, . . . , n .   (4)

    1

  • 8/18/2019 Cheb Yshev Polynomials

    2/15

    −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

    −1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    XX

       C   H   E   B   Y   S   H   E   V   P   O   L

       Y   N   O   M   I   A   L   S

    Figure 1: The seven lowest order Chebyshev polynomials

    For instance, since  T 3   =  x(4x2 − 3), its zeros are √ 3/2, 0, and −√ 3/2, which can be written as cos π/6 = √ 3/2,

    cos3π/6 = 0, and cos 5π/6 = −√ 3/2. The value of Chebyshev polynomial  T i(x) at the zeros of  T n(x) is easily foundfrom eq. (3) as

    T i(x̄k) = cos i(2k − 1)π

    2n  , i < n.   (5)

    It is also easy to find the extrema of a Chebyshev polynomial by imposing the vanishing of its derivative, d T n/dx =0. This leads to [n sin(n arccos x)] /

    √ 1

    −x2 = 0, or sin[n arccos x] = 0. The extrema of Chebyshev polynomial  T n(x)

    arex̂k  = cos

     kπ

    n  , k = 0, 1, 2, 3, . . . , n .   (6)

    For instance, dT 4/dx  =  x(2x2 − 1) = 0 leads to extrema cos π/4 =√ 

    2/2, cos π/2 = 0, and cos3π/4 = −√ 2/2. Theadditional extrema, cos 0 = 1 and cos π  = −1, occur at the ends of the interval. The value of Chebyshev polynomialT i(x) at the extrema of  T n(x) is easily found from eq. (3) as

    T i(x̂k) = cos ikπ

    n  , i < n.   (7)

    1.2 Orthogonality relationships

    Chebyshev polynomials are orthogonal within the interval  x ∈ [−1, +1] with a weight of (1 − x2)−1/2,   i.e.   +1−1

    T i(x)T j(x)√ 1 − x2   dx =

    0   i = jπ/2   i =  j = 0π i =  j  = 0

    .   (8)

    In addition to the orthogonality property defined by eq. (8), Chebyshev polynomials also enjoy the followingdiscrete orthogonality relationship

    nk=1

    T i(x̄k)T j(x̄k) =

    0   i = jn/2   i =  j = 0n i =  j  = 0

    .   (9)

    2

  • 8/18/2019 Cheb Yshev Polynomials

    3/15

  • 8/18/2019 Cheb Yshev Polynomials

    4/15

  • 8/18/2019 Cheb Yshev Polynomials

    5/15

  • 8/18/2019 Cheb Yshev Polynomials

    6/15

    2.3 Derivatives and integrals of Chebyshev expansions

    Consider now a function and its derivative, both expanded in Chebyshev series

    f (x) =N −1i=0

    ciT i(x),   and   f ′(x) =

    N −2i=0

    c′iT i(x),   (25)

    where the notation (·)′ indicates a derivative with respect to  x. What is the relationship between the coefficients of the two expansions, ci  and  c

    i? Using the formula for the derivatives of Chebyshev polynomials, eq. (13), the followingrecurrence is found

    c′

    N   = 0,   (26a)c′N −1  = 0,   (26b)

    c′N −2  = 2 × (N  − 1) cN −1 + c′N ,   (26c)...

    c′1  = 2 × 2 c2 + c′3,   (26d)c′0  = (2 × 1  c1 + c′2)/2.   (26e)

    Consider finally a function and its integral, both expanded in Chebyshev series

    f ′(x) =N −1i=0

    c′iT i(x),   and   f (x) =N i=0

    ciT i(x).   (27)

    What is the relationship between the coefficients of the two expansions,   c′i   and   ci? In view of the relationshipestablished above, it is clear that

    c1  = 2c′0 − c′2

    2  ,   (28a)

    ci  =  c′i−1 − c′i+1

    2i  , i = 2, 3, . . . , N .   (28b)

    Of course,  c0   is the integration constant that can be selected arbitrarily.

    2.4 Products of Chebyshev expansions

    Let function  h(x) be the product of two functions,  f (x) and  g (x), such that  h(x) =  f (x)g(x). It is assumed that the

    Chebyshev expansions of functions  f (x) and  g(x) are known and that function  h(x) is to be expanded in Chebyshevseries,  i.e.,N +M −1

    k=0

    ckT k(x) =

    N −1i=0

    aiT i(x)

    M −1j=0

    bjT j(x)

    ,   (29)

    where  ai,   i  = 1, 2, . . . , N   − 1 and  bj ,   j   = 1, 2, . . . , M   − 1 are the known coefficients of the Chebyshev expansion of functions f (x) and  g (x), respectively, and  ck,  k  = 1, 2, . . . , N   +  N  − 2 the unknown coefficients of the expansion of h(x). With the help of identity (17), eq. (29) becomes

    N +M −1k=0

    2ckT k  =N −1i=0

    M −1j=0

    aibj   2T iT j  =N −1i=0

    M −1j=0

    aibj   [T i+j +  T i−j]

    =

    N −1i=0

    M −1j=0 aibj   T i+j +

    N −1i=0

    ij=0 aibj  T i

    j  +

    N −1i=0

    M −1j=i+1 aibj   T j

    i.

    Identification of the coefficients of the Chebyshev polynomials of same order then yields the desired coefficients

    2c0  =  a0b0 +

    min[(N −1),(M −1)] p=0

    a pb p,   (30a)

    2ck  =

    u1 p=ℓ1

    a pbk− p +

    u2 p=k

    a pb p−k +

    u3 p=0

    a pb p+k, k = 1, 2, . . . , M   +  N  − 1.   (30b)

    where the bound on the three summations are ℓ1  = max[0, k− (M −1)], u1 = min[(N −1), k], u2 = min[(N −1), (M −1) + k], and u3  = min[(N  − 1), (M  − 1) − k], respectively.

    6

  • 8/18/2019 Cheb Yshev Polynomials

    7/15

    2.5 Examples

    To illustrate application of Chebyshev expansions, the following function will be approximated by Chebyshev poly-nomials

    f (x) = sin x, x ∈ [0, π/2].   (31)Using the algorithm presented in section   2.1   for   N   = 12, the coefficients of the Chebyshev approximation werefound to be   c0   = 6.0219 10

    −1,   c1   = 5.1363 10−1,   c2   = −1.0355 10−1,   c3   = −1.3732 10−2,   c4   = 1.3587 10−3,

    c5  = 1.0726 10−4, c6  = −7.0463 10−6, c7  = −3.9639 10−7, c8  = 1.9500 10−8,  c9  = 8.5229 10−10, c10  = −3.3516 10−11,

    c11  = −1.1990 10−12. Note the rapid decay in the magnitudes of the coefficients.Figures 2 shows the exact sine function, its Chebyshev approximation, and the error incurred by the approximation.

    Note that the error is spread over the entire range of the approximation in a  nearly uniform manner . This is due tothe fact that the extrema of Chebyshev polynomials are distributed over the entire range of the approximation andhave alternating values of plus or minus unity. These characteristics make Chebyshev polynomials an ideal basis forapproximating functions.

    0 0.5 1 1.50

    0.5

    1

       S   I   N   (   X   )

    0 0.5 1 1.5

    −0.01

    0

    0.01

       E   R   R   O   R

    0 0.5 1 1.50

    0.5

    1

       S   I   N   (   X   )

    0 0.5 1 1.5

    −1

    0

    1

    x 10−4

       E   R   R   O   R

    0 0.5 1 1.50

    0.5

    1

    x

       S   I   N   (   X   )

    0 0.5 1 1.5

    −1

    0

    1

    x 10−12

    x

       E   R   R   O   R

    Figure 2: Chebyshev polynomial expansion of function f (x) = sin x,  x ∈ [0, π]. Function f (x): solid line; Chebyshevexpansion: circles. Figures on the left represent the function and its approximation; figures on the right show theerror associated with the approximation. Top figures:   N  = 3; middle figures:   N  = 5, bottom figures:   N  = 12.

    Next, the sine function will be approximated using  N  = 3, only the terms  c0   to c2  are retained in the expansion.Figure 2  also shows the results of this crude approximation. Note that the error is nearly evenly distributed over theapproximation range and that its magnitude can be estimated by looking at the magnitude of the first neglected termof the expansion: |c3| = 1.3732 10−2. The results for an approximation including 5 terms,   i.e.   N  = 5, are presentedin fig. 2. Here again, the error is nearly evenly distributed over the approximation range and that its magnitude canbe estimated by looking at the magnitude of the first neglected term of the expansion:  |c5| = 1.0726 10−4.

    Finally, the algorithm presented in section  2.3   to evaluated the coefficients of the Chebyshev expansion of thederivative of the function was used to compute the coefficients of the expansion f ′(x) = cos x. The following coefficientswere found:   c′0   = 6.0219 10

    −1,   c′1   = −5.1363 10−1,   c′2   = −1.0355 10−1,   c′3   = 1.3732 10−2,   c′4   = 1.3587 10−3,c′5  = −1.0726 10−4, c′6 = −7.0463 10−6, c′7  = 3.9639 10−7, c′8  = 1.9500 10−8, c′9  = −8.5349 10−10, c′10  = −3.3586 10−11.Figure 3  shows the exact cosine function and its Chebyshev approximation, together with the error incurred by the

    7

  • 8/18/2019 Cheb Yshev Polynomials

    8/15

    approximation for  N  = 10. Note that the error is closely estimated by the magnitude of the first neglected term of the expansion: |c′10| = 3.3586 10−11.

    0 0.5 1 1.50

    0.2

    0.4

    0.6

    0.8

    1

    XX

       F   U   N   C   T   I   O   N   D   E   R   I   V   A   T

       I   V   E

    0 0.5 1 1.5−1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    1x 10

    −9

    XX

       E   R   R   O   R

    Figure 3: Chebyshev polynomial expansion of the derivative of function  f (x) = sin x,  x ∈ [0, π]. Function f ′(x): solidline; Chebyshev expansion for N = 12: circles. Figure on the left represents the function and its approximation; figureon the right shows the error associated with the approximation.

    2.6 Clenshaw-Curtis quadrature

    Consider the problem of evaluating the following integral ba f (x) dx. To that effect, the function is first expanded in

    terms of Chebyshev polynomials,

       ba f (x) dx ≈  

      b

    a

    2n

    i=0 ciT i(x) dx =

    2n

    i=0 ci

       ba T i(x) dx =

      b

    −a

    2

    2n

    i=0 ci

       +1−1 T i(x) dx,   (32)

    where the coefficients  ci  are found from eqs. (20a) and (20b) or eqs. (22a) and (22b). The integral of the Chebyshevpolynomials are evaluated by eq. (16) to find   b

    a

    f (x) dx ≈ (b − a)

    c0 −  c23 −   c4

    15 − · · · −   c2n

    4n2 − 1

    .   (33)

    The error,  e, in the evaluation of the integral can be estimated from the last term in the series,

    e ≈ (b − a)   |c2n|4n2 − 1 .   (34)

    Assume that for a given value of  n, the estimate of the integral given by eq. (33) does not satisfy a desired error

    criterion, say   e < ǫ, where the error estimate,   e, is given by eq. (34) and   ǫ   a small number. A larger number of Chebyshev polynomials must then be used to approximate the function, in an attempt to meet the accuracy criterion.If the Chebyshev expansion of the function is performed based on the zeros of Chebyshev polynomials using eqs. (20a)and (20b), the abscissa at which the function will be evaluated are shown in fig.  4 for  n = 2k,  k  = 1, 2, 3, 4, 5. Notethat for  k  = 2, the four abscissa all differ from those for  k  = 1. In fact, for two arbitrary but different values of  k,all abscissa are different. On the other hand, if the Chebyshev expansion of the function is performed based on theextrema of Chebyshev polynomials using eqs.  (22a) and (22b), the abscissa at which the function will be evaluatedare shown in fig.  5   for  n  = 2k + 1,   k   = 1, 2, 3, 4, 5. When using the extrema, the abscissa for n  = 2k are a subsetof the abscissa for  n  = 2ℓ where   ℓ > k. For instance, when k  = 2, the  n  = 22 + 1 = 5 abscissa are a subset of then = 23 + 1 = 9 abscissa corresponding to  k  = 3. Those five abscissa are represented by black circles in figure  5.

    The Clenshaw-Curtis quadrature scheme based on the extrema of Chebyshev polynomials is well suited for adaptiveintegration. At stage k  of the procedure, the function to be integrated is evaluated at  n  = 2k + 1 abscissa, and its

    8

  • 8/18/2019 Cheb Yshev Polynomials

    9/15

    −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 11

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    x

       P   O   W   E   R   O   F   N

    Figure 4: Abscissa of the Clenshaw-Curtis integrationscheme using the zeros of Chebyshev polynomials, forn = 1, 2, 3, 4, 5.

    −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 11

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    x

       P   O   W   E   R   O   F   N

    Figure 5: Abscissa of the Clenshaw-Curtis integrationscheme using the extrema of Chebyshev polynomials, forn = 1, 2, 3, 4, 5.

    Chebyshev expansion is computed using eqs. (22a) and (22b). Equations (33) and (34) then yield an estimate of the

    integral and of the error, respectively. If the error satisfies the accuracy criterion, the process stops. If not, stagek + 1 starts and the function is evaluated at  n  = 2k+1 + 1 abscissa to evaluate its new Chebyshev expansion. Of these n  = 2k+1 + 1 evaluations, however, n  = 2k + 1 where already performed at stage k , leaving n  = 2k new functionevaluations to be performed for stage  k  + 1. At every stage of the computation, all function evaluations are used toobtain the new Chebyshev expansion of the function. The process stops when the accuracy criterion is met.

    3 Chebyshev approximation of functions of two variables

    3.1 Expansion of a function in Chebyshev polynomials

    Section 2 describes the expansion of arbitrary functions of a single variable in series of Chebyshev polynomials. Clearly,functions of two variables can be similarly expanded in double series of Chebyshev polynomials

    f (x, y) =M −1i=0

    N −1j=0

    cijT i(x)T j(y).   (35)

    To find these coefficients given function  f (x, y), the above relationship is expressed at  x  = x̄k, y  = ȳℓ, where x̄k  and ȳℓthe zeros of  T M (x) and T N (y), respectively, as given by eq. (4). This yields f (x̄k, ȳℓ) ≈

     M −1i=0

    N −1j=0   cijT i(x̄k)T j(ȳℓ).

    Multiplying both sides of this equation by  T  p(x̄k)T q(ȳℓ) and summing the resulting equations expressed at all zerosof  T M (x) and  T N (y) leads to

    M k=1

    N ℓ=1

    f (x̄k, ȳℓ)T  p(x̄k)T q(ȳℓ) =

    M −1i=0

    N −1j=0

    cij

     M k=1

    T i(x̄k)T  p(x̄k)

      N ℓ=1

    T j(ȳℓ)T q(ȳℓ)

    .   (36)

    In view of the discrete orthogonality relationship of Chebyshev polynomials, eq. (9), it then follows that

    c00  =  1

    M N 

    M k=1

    N ℓ=1

    f (x̄k, ȳℓ),   (37a)

    ci0  =  2

    M N 

    M k=1

    N ℓ=1

    f (x̄k, ȳℓ)T i(x̄k),   (37b)

    c0j  =  2

    M N 

    M k=1

    N ℓ=1

    f (x̄k, ȳℓ)T j(ȳℓ),   (37c)

    cij  =  4

    M N 

    M k=1

    N ℓ=1

    f (x̄k, ȳℓ)T i(x̄k)T j(ȳℓ).   (37d)

    9

  • 8/18/2019 Cheb Yshev Polynomials

    10/15

    In some cases, function  f (x, y) is partially expanded in Chebyshev series. For instance, the function dependencyon the  y  variable is in the form of a Chebyshev expansion, whereas its dependency on the  x  variable is not,   i.e.

    f (x, y) =N −1j=0

    gj(x)T j(y).   (38)

    The coefficients of the complete Chebyshev expansion are found by introducing the above expression into eqs. (37a)and (37d) to find

    c0j  =

      1

    M k=1 g

    j(xk),   (39a)

    cij  =  2

    M k=1

    gj(xk)T i(xk).   (39b)

    3.2 Evaluation of Chebyshev expansions: Clenshaw’s recurrence

    If the coefficients of the two dimensional Chebyshev expansion are known, the function can be evaluated using eq.  (35).However, here again, rather than computing the polynomials then summing all contributions, it is preferable to useClenshaw’s recurrence defined by eq. (24). To that effect, eq. (35) is rewritten as

    f (x, y) =M −1

    i=0

    N −1

    j=0

    cijT j(y)T i(x) =M −1

    i=0

    di(y)T i(x).   (40)

    Clenshaw’s recurrence, eq. (24), is first used  M  times to compute the coefficients  di,  i  = 0, 1, . . . , M   − 1. Finally, onemore application of Clenshaw’s recurrence yields the desired value of the function. Of course, it is also possible torecast eq. (35) as

    f (x, y) =

    N −1j=0

    M −1i=0

    cijT i(x)

    T j(y) =

    N −1j=0

    gj(x)T j(y).   (41)

    At first,  N  applications of Clenshaw’s recurrence yield the coefficients gj ,  j  = 0, 1, . . . , N   −1, and one additional stepyields the desired function value.

    Using this second option, Clenshaw’s recurrence, characterized by eqs. (23a) to (23e), is rewritten as

    yM +1,j  = 0,   (42a)

    yM,j  = 0,   (42b)

    yM −1,j  = cM −1,j − yM +1,j + 2x yM,j ,   (42c)...

    y1,j  = c1,j − y3,j + 2x y2,j,   (42d)y0,j  = c0,j − y2,j + 2x y1,j.   (42e)

    The coefficients,  gj(x), now simply become

    gj(x) = (c0,j − y2,j) + y1,j   x =  y0,j − x y1,j.   (43)

    Clenshaw’s recurrence applied to the coefficients  gj(x) then yields the desired function value.

    3.3 Derivatives of Chebyshev expansions

    Consider now a function of two variables and its derivative with respect to  x, both expanded in Chebyshev series

    f (x, y) =M −1i=0

    N −1j=0

    cijT i(x)T j(y),   and   f ′(x, y) =

    M −2i=0

    N −1j=0

    c′ijT i(x)T j(y),   (44)

    where the notation (·)′ indicates a derivative with respect to   x. What is the relationship between the coefficientsof the two expansions,   cij   and   c

    ij? Using the formula for the derivatives of Chebyshev polynomials, eq. (13), the

    10

  • 8/18/2019 Cheb Yshev Polynomials

    11/15

    following recurrence is found

    c′M,j  = 0,   (45a)

    c′M −1,j  = 0,   (45b)

    c′M −2,j  = 2 × (M  − 1) cM −1,j  +  c′M,j ,   (45c)...

    c′1,j  = 2 × 2 c2,j +  c′3,j,   (45d)c′0,j  = (2 × 1  c1,j +  c′2,j)/2.   (45e)

    Consider next a function of two variables and its derivative with respect to  y , both expanded in Chebyshev series

    f (x, y) =M −1i=0

    N −1j=0

    cijT i(x)T j(y),   and   f +(x, y) =

    M −1i=0

    N −2j=0

    c+ijT i(x)T j(y).   (46)

    where the notation (·)+ indicates a derivative with respect to  y. What is the relationship between the coefficientsof the two expansions,   cij   and   c

    +ij? Using the formula for the derivatives of Chebyshev polynomials, eq. (13), the

    following recurrence is found

    c+i,N  = 0,   (47a)

    c+i,N −1  = 0,   (47b)

    c+

    i,N −2  = 2 × (N  − 1) ci,N −1 + c+

    i,N ,   (47c)...

    c+i,1  = 2 × 2  ci,2 + c+i,3,   (47d)c+i,0  = (2 × 1 ci,1 + c+i,2)/2.   (47e)

    4 Chebychev polynomials

    Chebychev polynomials [1, 2] are defined in the following manner

    T 0(x) = 1T 1(x) = x

    T 2(x) = 2x2 − 1T 3(x) = 4x3 − 3x

    T 4(x) = 8x4 − 8x2 + 1. . .

    T n+1(x) = 2xT n(x) − T n−1(x).

    (48)

    The variable   x  ∈   [−1, 1]. An explicit formula in terms of transcendental functions is also available:   T n(x) =cos(n arccos x).

    These polynomials are orthogonal polynomials that form an ideal basis for the approximation of functions. Anarbitrary function F (s) can be approximated as

    F (s) =N 

    i=1

    ci  T i−1(x),   (49)

    where T i are the Chebychev polynomials, ci the coefficients of the expansion,  N  the number of terms in the expansion,and  x  a non dimensional variable defined as

    x =  2s− (shi + slo)

    shi − slo .   (50)

    slo  and shi  are the lower and upper bounds defining the range over which the approximation is valid.The physical characteristics of dampers and springs are accurately and efficiently approximated by Chebychev

    polynomials. For linear springs or dampers, the elastic or viscous force, respectively, is approximated in terms of thestretch or stretch rate, respectively. For torsional springs and dampers, the elastic or viscous moment, respectively,is approximated in terms of the rotational stretch or rotational stretch rate, respectively.

    11

  • 8/18/2019 Cheb Yshev Polynomials

    12/15

    4.1 Examples

    1.   Example 1.  Consider the simple example of a linear spring of stiffness constant  k ,   i.e.   defined as  F   = ks. Atfirst, the approximation range is assumed to be between  slo   = −1 and  shi  = 1. It then follows from eq. (50)that x  =  s, and

    F   = ks  =  kx = 0 × 1 + k × x = 0 × T 0(x) + k × T 1(x).   (51)Hence, the representation of this spring is  slo   = −1,  shi   = 1,   c1  = 0, and   c2   =  k. The input sequence givenbelow defines a torsional damper for  k  = 1.2e + 04. The moment-rotational stretch rate is depicted in fig.  6.

    @DAMPER DEFINITION  {

    @DAMPER NAME  {  damperRvjTeeter } {@DAMPER TYPE  {  TORSIONAL }

    @DAMPER DEFINITION TYPE   {  CHEBYCHEV }

    @APPROXIMATION RANGE  {  -1.0, 1.0 }

    @CHEBYCHEV COEFFICIENTS {  0.0, 1.2e+04  }

    }

    }

    −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5x 10

    4   damperRvjTeeter

    ANGULAR VELOCITY [rad/sec]

       M   O   M   E   N   T   [   N .  m   ]

    Figure 6: Torsional damper with linear moment versus angular velocity characteristics.

    2.   Example 2.  Suppose now that the approximation range of the same spring is defined as  slo = −10 and shi = 10.It then follows from eq. (50) that x  =  s/10 and

    F   = ks = 10kx  = 0 × 1 + 10k × x = 0 × T 0(x) + 10k × T 1(x).   (52)

    Hence, the representation of this spring is  slo  = −10,  shi = 10,  c1  = 0, and  c2  = 10k. The spring constant is  kin both cases, but the Chebychev coefficients are different due to the different approximation range. The inputsequence given below defines a torsional damper for  k  = 1.2e + 04. The resulting viscous moment versus angular

    velocity is depicted in fig. 7.@DAMPER DEFINITION  {

    @DAMPER NAME  {  damperRvjTeeter } {

    @DAMPER TYPE  {  TORSIONAL }

    @DAMPER DEFINITION TYPE   {  CHEBYCHEV }

    @APPROXIMATION RANGE  {  -10.0, 10.0  }

    @CHEBYCHEV COEFFICIENTS {  0.0, 1.2e+05  }

    }

    }

    12

  • 8/18/2019 Cheb Yshev Polynomials

    13/15

    −10 −8 −6 −4 −2 0 2 4 6 8 10−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5x 10

    5   damperRvjTeeter

    ANGULAR VELOCITY [rad/sec]

       M

       O   M   E   N   T   [   N .  m   ]

    Figure 7: Torsional damper with linear moment versus angular velocity characteristics.

    3.   Example 3.  As a more elaborated example, consider a nonlinear spring defined as  F (s) = k1s + k3s3 with an

    approximation range slo =

     −5 and  shi = 5. It then follows from eq. (50) that x  =  s/5, and

    F   = k1s + k3s3 = 5k1x + 125k3x

    3 = 5k1T 1(x) + 125k31

    4 [T 3(x) + 3T 1(x)] .   (53)

    Collecting the coefficients of the various polynomials then yields

    F   =

    5k1 +

     3 × 1254

      k3

      T 1(x) +

    125

    4  k3

      T 3(x).   (54)

    Hence, the representation of this spring is   slo   = −5,   shi   = 5,   c1   = 0,   c2   = 5   k1  + 375/4   k3,   c3   = 0, andc4  = 125/4 k3. The resulting force versus stretch is depicted in fig. 8  for  k1  = 1000 and k3  = 80.

    @SPRING DEFINITION  {

    @SPRING NAME  {  SpringTest } {

    @SPRING TYPE  {  LINEAR }

    @SPRING DEFINITION TYPE  {  CHEBYCHEV }

    @APPROXIMATION RANGE  {  -5.0, 5.0 }

    @CHEBYCHEV COEFFICIENTS {  0.0, 4.25e+04, 0.0, 1.25e+04  }

    }

    }

    4.  Example 4.   Consider now a spring whose force-stretch relationship is defined by data points, typically exper-imental measurements. The data points as shown by symbols in fig.  9. An expansion in terms of 4 Chebychevpolynomials   [1]   is then performed and the resulting approximation is shown in fig.  9.   It is important to ap-propriately chose the number of Chebychev polynomials to be used in the expansion: fig. 10 shows the result

    of the Chebychev approximation using 48 terms in the expansion. Since the spring characteristics are linearlyinterpolated between the data points, the expansion produces a set of nearly linear segments between the datapoints.

    @SPRING DEFINITION  {

    @SPRING NAME  {  SpringNew } {

    @SPRING TYPE  {  TORSIONAL }

    @SPRING DEFINITION TYPE  {  DATA POINTS  }

    @TABLE ENTRIES {

    @VARIABLE   {  -4.0e-03 }   @FUNCTION VALUE  {  -5.0 }

    @VARIABLE   {  -3.0e-03 }   @FUNCTION VALUE  {  -3.5 }

    13

  • 8/18/2019 Cheb Yshev Polynomials

    14/15

    -15000

    -10000

    -5000

     0

     5000

     10000

     15000

    -5 -4 -3 -2 -1 0 1 2 3 4 5

       F   O   R   C   E   S   [   N   ]

    STRETCH [m]

    SpringTest

    Force

    Figure 8: Linear spring with nonlinear force versus stretch characteristics.

    @VARIABLE   {  -2.0e-03 }   @FUNCTION VALUE  {  0.0  }

    @VARIABLE   {  -1.0e-03 }   @FUNCTION VALUE  {  2.0  }

    @VARIABLE   {  0.0e-03 }   @FUNCTION VALUE   {  2.5  }

    @VARIABLE   {  1.0e-03 }   @FUNCTION VALUE   {  2.8  }

    @VARIABLE   {  2.0e-03 }   @FUNCTION VALUE   {  2.0  }

    @VARIABLE   {  3.0e-03 }   @FUNCTION VALUE   {  2.0  }

    @VARIABLE   {  4.0e-03 }   @FUNCTION VALUE   {  2.5  }

    }

    @NUMBER OF CHEBYCHEV COEFFICIENTS {  4 }}

    -6

    -5

    -4

    -3

    -2

    -1

     0

     1

     2

     3

    -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

       M   O   M   E   N   T   S   [   N .  m   ]

    ROTATION [rad]

    SpringNew

    MomentData

    Figure 9: Torsional spring with nonlinear moment versusrotation characteristics. The symbols indicate the datapoints, the solid line the Chebychev approximation using4 Chebychev polynomials.

    -5

    -4

    -3

    -2

    -1

     0

     1

     2

     3

    -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

       M   O   M   E   N   T   S   [   N .  m   ]

    ROTATION [rad]

    SpringNew

    MomentData

    Figure 10: Torsional spring with nonlinear moment versusrotation characteristics. The symbols indicate the datapoints, the solid line the Chebychev approximation using48 Chebychev polynomials.

    5.   Example 5.   Since Chebychev polynomials are continuous, they are not well suited for the approximationof functions presenting discontinuities, or very sharp gradients. Consider the data points as shown in fig.  11.An expansion in terms of 4 Chebychev polynomials shows poor correlation with the data points, whereas anexpansion with 16 terms, see fig.  12, exhibits the Gibbs phenomenon, violent oscillations of the approximationin the vicinity of the region of the discontinuity.

    @SPRING DEFINITION  {

    14

  • 8/18/2019 Cheb Yshev Polynomials

    15/15

    @SPRING NAME  {  SpringDiscontinuity } {

    @SPRING TYPE  {  LINEAR }

    @SPRING DEFINITION TYPE  {  DATA POINTS  }

    @TABLE ENTRIES {

    @VARIABLE   {  -5.0 }   @FUNCTION VALUE  {  -5.0 }

    @VARIABLE   {  -0.25 }   @FUNCTION VALUE  {  -4.0 }

    @VARIABLE   {  0.25 }   @FUNCTION VALUE  {  4.0 }

    @VARIABLE   {  5.0  }   @FUNCTION VALUE  {  5.0  }

    }

    @NUMBER OF CHEBYCHEV COEFFICIENTS {  4 }}

    -6

    -4

    -2

     0

     2

     4

     6

    -6 -4 -2 0 2 4 6

       F   O   R   C   E   S   [   N   ]

    STRETCH [m]

    SpringDiscontinuity

    ForceData

    Figure 11: Linear spring with nonlinear force versusstretch characteristics. The symbols indicate the datapoints, the solid line the Chebychev approximation using4 Chebychev polynomials.

    -6

    -4

    -2

     0

     2

     4

     6

    -6 -4 -2 0 2 4 6

       F   O   R   C   E   S   [   N   ]

    STRETCH [m]

    SpringDiscontinuity

    ForceData

    Figure 12: Linear spring with nonlinear force versusstretch characteristics. The symbols indicate the datapoints, the solid line the Chebychev approximation using16 Chebychev polynomials.

    References

    [1] W.H. Press, B.P. Flannery, S.A. Teutolsky, and W.T. Vetterling.   Numerical Recipes. The Art of Scientific Com-puting . Cambridge University Press, Cambridge, 1990.

    [2] M. Abramowitz and I.A. Stegun.  Handbook of Mathematical Functions . Dover Publications, Inc., New York, 1964.