Carroll Harris Presentation

download Carroll Harris Presentation

If you can't read please download the document

  • date post

    18-Jul-2016
  • Category

    Documents

  • view

    11
  • download

    3

Embed Size (px)

description

Carroll Harris Presentation

Transcript of Carroll Harris Presentation

  • Evaluation of the Sandwich Plate System in Bridge Decks Using a Plate Approach

    Devin Harris Michigan TechChris Carroll Virginia TechA Comparison Between ANSYS and GT STRUDL Models

  • Project OverviewSPS Introduction

  • SPS for Civil Structures

  • Introduction to SPSDeveloped by Intelligent EngineeringMaritime industryBridge Application (deck)Pre-fab PanelsDisadvantagesCostLimited applicationNo design provisionsAdvantagesLightweightRapid installationNew/rehab

  • Prefabricated Decks/BridgesFabricated panel limited girder configurationWide girder spacing Larger cantileversFast erectionStructured Panel Deck

  • Half-Scale Bridge (VT Laboratory)Span 40 ft; width 14.75 ftDeck 1 in. (3.2-19.1-3.2)8 SPS panelsTransversely welded/boltedBolted to girders (composite)2 girder construction

  • Shenley Bridge (St. Martin, QC)Completed - November 20037 days of total constructionSpan 74 ft; width 23 ftDeck 2 in. (6.4-38-6.4)10 SPS panelsTransversely welded/boltedBolted to girders (composite)3 girder construction

  • LAY PANELSERECT GIRDERS& BRACINGSequence of SPS ConstructionBOLT PANELS TO BEAMS & TOGETHERWELD DECK SEAM

  • COAT DECKERECT BARRIERSSequence of SPS ConstructionLAY ASPHALT

  • Prefabricated Decks/BridgesSimple plate many girder configurationSmall girder spacingShort cantileversGirders attached to deck in factoryVery fast erectionSimple Plate Deck

  • Cedar Creek Bridge (Wise County, TX)2-Lane rural roadSPS Deck (integral girders)Span = 3@50 ftWidth = 30 ftDeck 1-5/8 in.5/16-1-5/16

  • Fabrication Process

  • Current Bridge Projects New Bridge IBRC Cedar Creek Texas June 08

  • Research ObjectiveTo develop a simple design procedure for SPS decks for bridge applications

  • SPS Deck Design ApproachAASHTO Deck DesignDesign MethodsLinear Elastic (Equivalent Strip)Inelastic (Yield-Line)Empirical (R/C only)Orthotropic PlateLimit StatesServiceabilityStrengthFatigueSPS Approach (Layered Plate)Variable loads and B.C.sAssume deflection controls

  • SPS Plate Representation

  • Analysis OptionsClassical Plate ApproachNavierLevyEnergy (Ritz)Finite Element ApproachShellSolidGrid (line elements)Approach primarily dependent on B.C.s

  • FE Model ApproachShell ModelAdvantagesIdeal for thin elementsComputationally efficientMembrane/bending effectsSingle thru thickness elementSolid ModelAdvantagesRealistic geometry representationElement connectivity

    DisadvantagesElement compatibilityElement connectivityStacking limitations*

    DisadvantagesCan be overly stiffUser error (more likely)Complicated mesh refinement

  • Material Properties*Dt = flexural rigidity for layered plate (equivalent to EI for a beam)*Ventsel, E., and Krauthammer, T. (2001). Thin plates and shells:theory, analysis, and applications, Marcel Dekker, New York, NY.

    Face Plates (Steel)Core (Polyurethane)Composite SectionYoungs Modulus (E -ksi)29,878109Poissons Ratio (n)0.2870.36Flexural Rigidity (D)N/A

  • Element Validation (Generic)Givens:Boundary Conditions: Fully RestrainedMaterial Properties: E=29,000 ksi; n=0.25 Dimensions: thickness=6 (constant); a=b=L [L/t 1-200]Load: q = 0.01 ksi (uniform)

    ANSYSShell 63 (4-node)Shell 91/93 (8-node)Solid 45 (8-node)Solid 95, Solid 191 (20-node)

    GT STRUDLBPR (4-node plate)SBHQ6 (4-node shell)IPLS (8-node solid)IPQS (20-node solid)

  • GT STRUDL ModelsElement TypesBPRSBHQ6IPLSIPQS

  • GT STRUDL ModelsMesh Verification

    Chart1

    0.004380.004030.00080.000810.000810.003990.004110.004130.00469

    0.00480.00470.002210.002290.00230.004740.004810.004830.00469

    0.004730.004710.00350.003720.003770.004830.004880.00489

    0.004710.004710.004110.004430.004510.004860.00490.0049

    0.00470.004710.00430.004660.004740.004871.51.5

    BPR

    SBHQ6

    IPLS 1

    IPLS 2

    IPLS 3

    IPQS 1

    IPQS 2

    IPQS 3

    Theoretical

    Mesh Refinement

    Sheet1

    BPRSBHQ6IPLS 1IPLS 2IPLS 3IPQS 1IPQS 2IPQS 3

    240.004380.004030.00080.000810.000810.003990.004110.00413

    120.00480.00470.002210.002290.00230.004740.004810.00483

    60.004730.004710.00350.003720.003770.004830.004880.00489

    30.004710.004710.004110.004430.004510.004860.00490.0049

    1.50.00470.004710.00430.004660.004740.00487

    300.00469

    00.00469

    Chart2

    0.84562022341.05020576131.11158142271.33662551441.12863021751.00907554381.0039609053

    0.74652410350.94450323340.99714138741.03358318641.02974720751.00527952311.0041740153

    0.72024498460.91787781080.9684914205401.00911949771.003439971.0042082181

    0.71562842480.91323921660.9634226599601.00415033641.00200379031.0042148059

    0.7134188070.91172426150.9617501539801.00334821430.99341486181.0042176602

    0.71281249850.91107668431001001.0031272193

    0.71202118610.91051926871501501.0031388293

    0.71174396532002002001.0032761618

    IPLS 1 layer

    IPLS 2 layers

    IPLS 3 layers

    IPLS 6 layers

    IPQS

    BPR

    SBHQ6

    IPLS

    0.84562022341.05020576131.11158142271.33662551441.1286302175

    0.74652410350.94450323340.99714138741.03358318641.0088624339

    0.72024498460.91787781080.96849142051.00230930340.978600823

    0.71562842480.91323921660.9634226599600.9732493958

    0.7134188070.91172426150.96175015398080

    0.71281249850.9110766843100100100

    0.71202118610.9105192687150150150

    0.7117439653200200200200

    IPLS 6x6x6

    IPLS 3x3x3

    IPLS 2x2x2

    IPLS 1x1x1

    IPLS 2x2x1

    L/t Ratio

    dFEA/dCLASSICAL

    IPLS Element Validation

    Sheet2

    q0.01

    D556800IPLS

    thickness6 in.3 in.2in.1 in.1 in.1 in.IPQSBPRSBHQ6

    L/ttLdCLAdFEdFE/dCLA1x12x23x3dFEdFE/dCLA

    106600.0002930.0002480.84562022340.0003081.05020576130.0003261.11158142270.0003921.33662551440.0003311.128630217500.0003311.1286302175

    2061200.0046920.0035030.74652410350.0044320.94450323340.0046790.99714138740.004851.03358318640.0047341.008862433900.0048321.02974720750.0047351.00907554380.0047111.0039609053

    4062400.0750790.0540750.72024498460.0689130.91787781080.0727130.96849142050.0752521.00230930340.0734720.97860082300.07576331.00911949770.0754751.00527952310.0753921.0041740153

    6063600.3800860.2720.71562842480.3471090.91323921660.3661830.96342265990.3699180.973249395800.3816631.00415033640.3813931.003439970.3816851.0042082181

    8064801.2012580.8570.7134188071.0952160.91172426151.155310.961750153901.205281.00334821431.2036651.00200379031.2063211.0042148059

    10066002.9327592.0905070.71281249852.6719680.911076684302.941931.00312721932.9134460.99341486182.9451281.0042176602

    150690014.84709110.5714430.712021186113.5185620.9105192687014.8936931.0031388293

    2006120046.92413833.3979720.7117439653047.0778691.0032761618

    11

    10001

    450

    Sheet3

  • GT STRUDL ModelsTwo Dimensional Example60 in.60 in.IPLQ (2D equivalent of IPLS) Linear Shape FunctionIPQQ (2D equivalent of IPQS) Quadratic Shape FunctionA shape function is the relationship of displacements within an element.

  • GT STRUDL ModelsTwo Dimensional Example60 in.60 in.One Layer

  • GT STRUDL ModelsTwo Dimensional Example60 in.60 in.Two Layers

  • GT STRUDL ModelsTwo Dimensional Example60 in.60 in.Three Layers

  • GT STRUDL ModelsTwo Dimensional Example60 in.60 in.Four Layers

  • GT STRUDL ModelsTwo Dimensional Example120 in.120 in.

  • GT STRUDL ModelsTwo Dimensional Example

    Chart1

    0.7037982350.69912614640.6994722270.7163869182

    0.86874891850.89120089980.89734383110.8996366153

    0.9146911230.940214570.94722270290.9499048278

    0.93182211460.95877314410.96608409760.9689392628

    IPLQ 1 Layer

    IPLQ 2 Layers

    IPLQ 3 Layers

    IPLQ 4 Layers

    Number of Longitudinal Divisions

    dFEA/dClassical

    2D Element Comparison Example

    Chart1 (2)

    0.7037982350.69912614640.6994722270.71638691820.9880169580.9945924901

    0.86874891850.89120089980.89734383110.89963661530.99208340540.9972313549

    0.9146911230.940214570.94722270290.94990482780.99307838730.9978802561

    0.93182211460.95877314410.96608409760.96893926280.99364076830.9981830767

    IPLQ 1 Layer

    IPLQ 2 Layers

    IPLQ 3 Layers

    IPLQ 4 Layers

    IPQQ 1 Layer

    IPQQ 2 Layers

    Number of Longitudinal Divisions

    dFEA/dClassical

    2D Element Comparison Example

    Sheet1

    IPLQ1234

    ActualAct/TheoActualAct/TheoActualAct/TheoActualAct/Theo

    50.162690.7040.161610.6990.161690.6990.16560.716

    100.200820.8690.206010.8910.207430.8970.207960.900

    150.211440.9150.217340.9400.218960.9470.219580.950

    200.21540.9320.221630.9590.223320.9660.223980.969

    IPQQ12

    ActualAct/TheoActualAct/Theo

    50.228390.9880.229910.995

    100.229330.9920.230520.997

    150.229560.9930.230670.998

    200.229690.9940.230740.998

    Sheet2

    Sheet3

    Chart1

    0.7037982350.69912614640.6994722270.7163869182

    0.86874891850.89120089980.89734383110.8996366153

    0.9146911230.940214570.94722270290.9499048278

    0.93182211460.95877314410.96608409760.9689392628

    IPLQ 1 Layer

    IPLQ 2 Layers

    IPLQ 3 Layers

    IPLQ 4 Layers

    Number of Longitudinal Divisions

    dFEA/dClassical

    2D Element Comparison Example

    Chart1 (2)

    0.7037982350.69912614640.6994722270.71638691820.9880169580.9945924901

    0.86874891850.89120089980.89734383110.89963661530.99208340540.9972313549

    0.9146911230.940214570.94722270290.94990482780.99307838730.9978802561

    0.93182211460.95877314410.96608409760.96893926280.99364076830.9981830767

    IPLQ 1 Layer

    IPLQ 2 Layers

    IPLQ 3 Layers

    IPLQ 4