Camprubí 2013

6
©2013 Society of Economic Geologists, Inc. Special Publication 17, pp. 201–243 Chapter 6 Tectonic and Metallogenetic History of Mexico ANTONI CAMPRUBÍ Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F . (Mexico)  Abstract Mexico is widely known to be a richly endowed country in both metallic and industrial mineral deposits, the exploitation of which has constituted an economic activity of paramount importance for centuries. This paper presents an analysis of the time and space distribution of over 200 mineral deposits, which is based on the avail- able absolute and relative ages of mineralization and constitutes a modied and updated version of the analysis of Camprubí (2009). Pre-Jurassic ore deposits are relatively scarce and of subordinate economic signicance. These include Ti-bearing anorthosites and rare element pegmatites in intracratonic environments, barite sedi- mentary-exhalative (sedex) deposits, and ultramac-mac Cr-Cu-Ni(-platinum group element [PGE]) deposits in oceanic environments. Since the Jurassic, the metallogenic evolution of Mexico can be understood as a prod- uct of the evolution of two major regions: the Pacic margin and the Gulf of Mexico. The Mesozoic evolution of the Pacic margin is characterized by rifting and separation of the Guerrero com- posite terrane from the North American continent and the initiation of arc magmatism in an extensional conti- nental margin setting. The ore deposits emplaced in this period are mostly polymetallic volcanogenic massive sulde (VMS) and Cr-Cu-Ni(-PGE) deposits associated with ultramac-mac complexes. These occur domi- nantly near the boundaries of the Guerrero composite terrane. Porphyry-type deposits emplaced in the mid- Cretaceous are subordinate and, apparently, small. These likely formed in island arcs that were later accreted to the mainland. A shift from extensional to compressional tectonics resulted in the accretion of the Pacic ter- ranes, most importantly the Guerrero composite terrane, to the Mexican mainland by the Late Cretaceous. This tectonic shift gave rise to the initial stages of the Paleocene boom in porphyry-type and sulde skarn deposits. The continental arcs in these epochs represent the earliest stages for the Sierra Madre Occidental silicic large igneous province. The earliest known examples of epithermal deposits in Mexico are Paleocene and include, besides intermediate to low suldation deposits, the La Caridad Antigua high suldation deposit, in associa- tion with the giant La Caridad porphyry copper deposit. The Late Cretaceous iron oxide copper-gold (IOCG) deposits formed in northern Baja California and along the Pacic margin in southwestern and southern Mexico, and continued forming in the latter regions into the Paleocene. Contrastingly, some Late Cretaceous IOCG deposits formed several hundreds of km inland in northwestern Mexico, and are suspected cases for emplace- ment in back-arc environments. The formation of orogenic Au deposits began in the Late Cretaceous, and they kept forming into the Eocene as compressional tectonics progressed. The formation of porphyry-type, sulde skarn, and epithermal deposits continued during the Eocene, and followed the eastward progression of the magmatism of the Sierra Madre Occidental. The number of known examples of epithermal deposits relative to porphyry-type and sulde skarn deposits increases with time. The formation of IOCG deposits along the Pacic margin seemingly dwindled during the Eocene, although they began to form close to the Chihuahua-Coah uila border, possibly in association with the earliest stages of miner- alization in the Eastern Mexican alkaline province. Also, a group of U-Au vein deposits in Chihuahua, in asso- ciation with felsic volcanic rocks, is apparently restricted to the Eocene. The maximum geographic extension and climactic events of the Sierra Madre Occidental ( for both magmatic and ore-forming events) were attained during the Oligocene, as the arc kept migrating eastward and southward. As magmatism reached the Mesa Cen- tral, epithermal and subepithermal, sulde skarn, Sn veins associated with F-rich rhyolites, IOCG, and Sn-W greisen deposits formed around the main reactivated fault zones, generating the highest concentration of ore deposits known in Mexico. The focus of magmatism and mineralizing processes shifted progressively southward in the Eastern Mexican alkaline province between the Oligocene and th e Miocene, and intensied signicantly in northern Coahuila and Chihuahua in the Oligocene. This province also includes alkaline porphyry Cu-Mo deposits, REE-bearing carbonatites, and polymetallic skarns. During the Miocene, the magmatism of the Sierra Madre Occidental retracted dramatically southward and began concentrating in an E-W arrangement that corresponds to the Trans-Mexican volcanic belt, while con- tinental extension evolved into the opening of the Gulf of California. During this time, metallogenic processes associated with the Sierra Madre Occidental virtually ceased. From the late Miocene, the formation of epith- ermal deposits, sulde skarns, and porphyry-type deposits resumed in the Trans-Mexican volcanic belt and the Eastern Mexican alkaline province, whereas IOCG deposits seem restricted to the latter. The opening of the Gulf of California represents the beginning of a new cycle in metallogenesis, with the formation of shallow ana- logues of sedex deposits and sedimentary phosphorites along the Baja California peninsula, epithermal deposits near the cul-de-sac of the Gulf, and recent VMS deposits in passive continental margins and mid-ocean ridges.  201 E-mail: camprubitaga@gmail .com

Transcript of Camprubí 2013

Page 1: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 1/44

©2013 Society of Economic Geologists, Inc.Special Publication 17, pp. 201–243

Chapter 6

Tectonic and Metallogenetic History of Mexico

ANTONI CAMPRUB͆Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F. (Mexico)

 Abstract

Mexico is widely known to be a richly endowed country in both metallic and industrial mineral deposits, theexploitation of which has constituted an economic activity of paramount importance for centuries. This paperpresents an analysis of the time and space distribution of over 200 mineral deposits, which is based on the avail-able absolute and relative ages of mineralization and constitutes a modified and updated version of the analysisof Camprubí (2009). Pre-Jurassic ore deposits are relatively scarce and of subordinate economic significance.These include Ti-bearing anorthosites and rare element pegmatites in intracratonic environments, barite sedi-mentary-exhalative (sedex) deposits, and ultramafic-mafic Cr-Cu-Ni(-platinum group element [PGE]) depositsin oceanic environments. Since the Jurassic, the metallogenic evolution of Mexico can be understood as a prod-uct of the evolution of two major regions: the Pacific margin and the Gulf of Mexico.

The Mesozoic evolution of the Pacific margin is characterized by rifting and separation of the Guerrero com-posite terrane from the North American continent and the initiation of arc magmatism in an extensional conti-nental margin setting. The ore deposits emplaced in this period are mostly polymetallic volcanogenic massivesulfide (VMS) and Cr-Cu-Ni(-PGE) deposits associated with ultramafic-mafic complexes. These occur domi-nantly near the boundaries of the Guerrero composite terrane. Porphyry-type deposits emplaced in the mid-Cretaceous are subordinate and, apparently, small. These likely formed in island arcs that were later accretedto the mainland. A shift from extensional to compressional tectonics resulted in the accretion of the Pacific ter-ranes, most importantly the Guerrero composite terrane, to the Mexican mainland by the Late Cretaceous. Thistectonic shift gave rise to the initial stages of the Paleocene boom in porphyry-type and sulfide skarn deposits.The continental arcs in these epochs represent the earliest stages for the Sierra Madre Occidental silicic largeigneous province. The earliest known examples of epithermal deposits in Mexico are Paleocene and include,besides intermediate to low sulfidation deposits, the La Caridad Antigua high sulfidation deposit, in associa-tion with the giant La Caridad porphyry copper deposit. The Late Cretaceous iron oxide copper-gold (IOCG)deposits formed in northern Baja California and along the Pacific margin in southwestern and southern Mexico,and continued forming in the latter regions into the Paleocene. Contrastingly, some Late Cretaceous IOCGdeposits formed several hundreds of km inland in northwestern Mexico, and are suspected cases for emplace-ment in back-arc environments. The formation of orogenic Au deposits began in the Late Cretaceous, and they

kept forming into the Eocene as compressional tectonics progressed.The formation of porphyry-type, sulfide skarn, and epithermal deposits continued during the Eocene, andfollowed the eastward progression of the magmatism of the Sierra Madre Occidental. The number of knownexamples of epithermal deposits relative to porphyry-type and sulfide skarn deposits increases with time. Theformation of IOCG deposits along the Pacific margin seemingly dwindled during the Eocene, although theybegan to form close to the Chihuahua-Coahuila border, possibly in association with the earliest stages of miner-alization in the Eastern Mexican alkaline province. Also, a group of U-Au vein deposits in Chihuahua, in asso-ciation with felsic volcanic rocks, is apparently restricted to the Eocene. The maximum geographic extensionand climactic events of the Sierra Madre Occidental (for both magmatic and ore-forming events) were attainedduring the Oligocene, as the arc kept migrating eastward and southward. As magmatism reached the Mesa Cen-tral, epithermal and subepithermal, sulfide skarn, Sn veins associated with F-rich rhyolites, IOCG, and Sn-Wgreisen deposits formed around the main reactivated fault zones, generating the highest concentration of oredeposits known in Mexico. The focus of magmatism and mineralizing processes shifted progressively southwardin the Eastern Mexican alkaline province between the Oligocene and the Miocene, and intensified significantlyin northern Coahuila and Chihuahua in the Oligocene. This province also includes alkaline porphyry Cu-Modeposits, REE-bearing carbonatites, and polymetallic skarns.

During the Miocene, the magmatism of the Sierra Madre Occidental retracted dramatically southward andbegan concentrating in an E-W arrangement that corresponds to the Trans-Mexican volcanic belt, while con-tinental extension evolved into the opening of the Gulf of California. During this time, metallogenic processesassociated with the Sierra Madre Occidental virtually ceased. From the late Miocene, the formation of epith-ermal deposits, sulfide skarns, and porphyry-type deposits resumed in the Trans-Mexican volcanic belt and theEastern Mexican alkaline province, whereas IOCG deposits seem restricted to the latter. The opening of theGulf of California represents the beginning of a new cycle in metallogenesis, with the formation of shallow ana-logues of sedex deposits and sedimentary phosphorites along the Baja California peninsula, epithermal depositsnear the cul-de-sac of the Gulf, and recent VMS deposits in passive continental margins and mid-ocean ridges.

  201

† E-mail: [email protected]

Page 2: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 2/44

202  ANTONI CAMPRUBÍ 

Introduction

MEXICO  is well endowed in a variety of mineral deposits.Besides petroleum and natural gas, Mexico is an importantproducer of many mineral commodities: it is a top producerof Ag (with an unsurpassed historical production) and Bi, amajor producer of Cd, As, Mo, Pb, Zn, Sb, Mn, and Au, andan important producer of Cu and Fe. It is also an importantproducer of industrial minerals such as celestine, fluorite, bar-ite, and phosphorite. The mineral endowment of Mexico ishosted by a vast variety of types or subtypes of ore deposits.In order of importance, these include epithermal, porphyry-type, sulfide skarn, Mississippi Valley-type (MVT) and associ-ated deposits, volcanogenic massive sulfide (VMS), orogenic

gold, sedimentary-exhalative (sedex), and iron oxide copper-gold (IOCG) deposits as the most prominent types. Othersinclude ultramafic-mafic–hosted Cr(-platinum group element[PGE]) and Cu-Ni deposits, carbonatite-hosted rare earthelement (REE) mineralization, and Sn or U-Au veins associ-ated with felsic volcanism. These underwent specific geologicprocesses and settings during their formation, such as variousoceanic environments (e.g., suprasubduction or island arc),the obduction of oceanic crust, or continental magmatism,

 which are closely confined in time.The metallogenic provincesand epochs of Mexico have traditionally been loosely definedthrough the main physiographic provinces in which they arefound (namely, Sierra Madre Occidental, Sierra Madre Ori-ental, Sierra Madre del Sur, Sierra Madre de Chiapas, Trans-

Mexican volcanic belt, Mesa Central, and the Baja Californiapeninsula). As these physiographic boundaries do not neces-sarily coincide with tectonic entities or terranes, this paper

 will describe the metallogeny of Mexico organized into majortectonomagmatic events rather than using the traditional geo-graphic subdivisions.

Although the oldest known Mexican ore deposits date backto the Mesoproterozoic, the most metallogenically productivegeologic processes of the region started in the Jurassic.Besides the early work by González-Reyna (1956), the metal-logeny of Mexico has been addressed by several authors atregional scales (Salas, 1975; Clark et al., 1977, 1982; Clark andde la Fuente, 1978; Fabregat-Guinchard and Cortés-Guzmán,1978; Clark and Damon, 1979; Damon et al., 1981; González-

Partida and Torres-Rodríguez, 1988; Miranda-Gasca, 2000;Staude and Barton, 2001; Camprubí, 2009; Clark and Fitch,2009), or with regard to specific types of deposits (Damon etal., 1980, 1983; Mead et al., 1988; Megaw et al., 1988; Albinsonet al., 2001; Camprubí et al., 2003; Singer et al., 2005; Cam-prubí and Albinson, 2006, 2007; Ortiz-Hernández et al., 2006;

 Valencia-Moreno et al., 2006, 2007; González-Sánchez et al.,2007, 2009; Mortensen et al., 2008). Different criteria havebeen used to characterize and categorize ore deposits in Mex-ico, but an approach integrating major geologic events andassociated deposit types has not been attempted. The most

comprehensive and useful review to date (Clark and Fitch,2009) is rooted in the prodigious work of the Kenneth Clarkand Paul Damon team in the late 1970s and early 1980s (Clarket al., 1977, 1982; Damon et al., 1981, 1983). In addition, Fab-regat-Guinchard and Cortés-Guzmán (1978) compiled a largecollection of data in order to produce regional commoditymaps of economically productive Mexican ore deposits.

Most ore deposits in Mexico are related to either (1) theconvergent plate margin along the Pacific coast and the result-ing magmatic activity since the Jurassic or (2) the fluid dynam-ics and geochemical processes in the sedimentary basins thatare part of the Gulf of Mexico megabasin, which also hosts theMexican petroleum and natural gas fields. Although such pro-cesses probably account for the vast majority of ore depositsin Mexico, there are other types of deposits, like orogenic golddeposits, rare element pegmatites, or Ti-bearing anorthosites,

 which formed in response to different processes. In the caseof orogenic gold deposits, despite being unrelated to magma-tism, they are related to the evolution of the Pacific margin.Significant tectonic events like the opening of the Gulf of Cal-ifornia and the subsequent incorporation of the Baja Califor-nia peninsula into the Pacific plate generated modern shallowsubmarine hydrothermal Mn or Cu-Co-Ni deposits on the

 western side of the Gulf (eastern coast of the Baja Californiapeninsula) and sedimentary phosphorites in the southern partof the peninsula (Alatorre, 1988; Camprubí et al., 2008).

The geologic configuration of Mexico can be schematized asa grouping of accreted tectonostratigraphic terranes that

include a wide variety of volcanosedimentary series associated with several Mesozoic magmatic arc to back-arc systems (e.g.,Centeno-García et al., 2008, 2011; Martini et al., 2013). Thecore subcontinental basement upon which accretion tookplace is named Oaxaquia, and extends NNW-SSE from Coa-huila to Oaxaca (Fig. 1). The complex structural architectureof Mexico is characterized by fault or discontinuity zones atdifferent crustal scales that have acted episodically as prefer-ential channelways for magmas and hydrothermal fluids over along period of time. The critical shift from dominantly exten-sional to compressional tectonomagmatic environments alongthe Pacific margin occurred between the Early and Late Cre-taceous and led to the initiation of continental arc and back-arcmagmatism, which was accompanied by the formation of

related magmatic-hydrothermal ore deposits. This generallycompressional period terminated in the Miocene when riftingand the opening of the Gulf of California commenced.

This paper has, in general, excluded those deposits thatlack radiochronometric dating or other trustworthy geologicinformation. Examples include the deposits that belong to thesedimentary and diagenetic domain in northwestern Mexico,from which no absolute geochronological determinationsare available. In this paper, “skarn deposits” is used to meaneither mantos, chimneys, or skarns in the sense of Megawet al. (1988) and Clark and Fitch (2009), as well as “distal

The sedimentary-diagenetic history of the Gulf of Mexico includes the formation of Mississippi Valley-type(MVT) and associated industrial mineral, red bed-hosted U and Cu-Co-Ni, sedimentary phosphorite, and sedexdeposits. The emplacement of MVT and red bed-hosted deposits was associated with the emplacement ofbasinal brines through reactivated faults that controlled basin inversion. These faults also played a significantrole as channelways for magmas and associated magmatic-hydrothermal ore deposits of the Eastern Mexicanalkaline province.

Page 3: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 3/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 203

skarns,” the metallic minerals of which are essentially sulfides,thus excluding iron oxide skarns, which are herein groupedinto the IOCG clan instead. The morphology, structure, andmetal contents of the diverse skarn styles vary significantlybetween individual deposits, but all these differences fit ina single genetic type, as is the case for epithermal deposits(Camprubí and Albinson, 2006, 2007). The word “clan” inthe context of IOCG deposits is used to loosely group mag-matic-hydrothermal deposit types rich in iron oxides, whichcontain variable amounts of copper and gold, among otherelements. However, this grouping does not necessarily implythat the deposits therein adhere to the specific IOCG model

as defined in Williams et al. (2005). The term “subepithermal”is used in this paper for deposits that share most of their char-acteristics with epithermal deposits, except for their depth ofemplacement (>~1,000 m), and which may or may not be vis-ibly associated with sulfidic skarns or porphyry-type depos-its. Therefore, the use of this term is similar to that in Lefortet al. (2011). The term “carbonate replacement deposits,” inthe sense of Megaw et al. (1988), is avoided, as it includesskarns and several epithermal deposits in Mexico (those thatare emplaced in carbonate sequences; see a list of the latterin Albinson et al., 2001). Also, it may constitute a misnomer if

mostly MVT, a few VMS, and several IOCG deposits, amongothers, are also hosted by such rocks. However, the “carbonatereplacement deposit” label can be tentatively used for massiveto semimassive polymetallic sulfide deposits that formed bythe replacement of carbonate rocks with no evidence for high-temperature skarn mineralogy and no clear epithermal origin.

Proterozoic to Jurassic Metallogenic Epochs

Pre-Jurassic ore deposits are relatively scarce in Mexico.Known Proterozoic ore deposits include Ti-bearing anortho-sites and rare element (U-Th-Nb-Ta-REE) pegmatites in theOaxacan Complex, south of the Oaxaquia subcontinental

block (Fig. 2). Rare element pegmatites are found in theregion between Huitzo and Telixtlahuaca, including the ElMuerto pegmatite, formerly mined for U and Th (Prol-Ledesma et al., 2012). Two sets of pegmatites were dated at1153 to 1063 Ma and 980 to 956 Ma by Solari et al. (2003) inthe Oaxacan Complex, whereas Ti-bearing anorthosites in thePluma Hidalgo area were dated at 1010 to 998 Ma by Schulzeet al. (2000). North of the Oaxaquia subcontinental block,there is a Neoproterozoic gold-bearing gneiss assemblage atEl Novillo (Patchett and Ruiz, 1987; Eguiluz de Antuñano etal., 2004).

FIG. 1. General geologic configuration of Mexico based on tectonostratigraphic terranes and the distribution of the Oaxa-

quia subcontinental block, simplified from Centeno-García et al. (2008).

Page 4: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 4/44

204  ANTONI CAMPRUBÍ 

Paleozoic ore deposits are also scarce (Fig. 2) and includethe Carboniferous (Visean) VMS deposits in Teziutlán-AireLibre (Puebla), which have been characterized as Besshi-type deposits (Miranda-Gasca, 2007). The economically mostimportant Paleozoic deposits are the Late Devonian baritedeposits in Sonora (Johnson et al., 2009), which are associ-ated with hydrocarbon seepage (Canet et al., 2013). The ser-pentinites and refractory-grade PGE-poor chromitites in theTehuitzingo-Tecomatlán region (Puebla) are part of a sliceof ophiolitic mantle sequence from a suprasubduction zone(Proenza et al., 2004) that was probably obducted during the

Early Ordovician (Campa-Uranga et al., 2002; Galaz et al.,2012) as part of a regional-scale orogenic event (Vega-Granilloet al., 2007). Other small Paleozoic Cr-Ni-Cu-Co-PGE occur-rences in ultramafic-mafic complexes are found in Sinaloa.The Re-Os model ages in platinum group minerals (PGMs)of the Loma Baya chromitite deposit peak at ca. 300 (Car-boniferous) and ca. 130 Ma (near the Hauterivian-Barremianlimit). Such model ages are interpreted by González-Jiménezet al. (2012) as ages of successive melting, and the latter is alsointerpreted as the ultimate age for the emplacement of thePGE-bearing podiform chromitite bodies. The Carboniferous

melting age permits relating these deposits to similar occur-rences at other times in the Paleozoic, implying recurrence ofsimilar mineralizing processes.

Mexico’s “Backbone” Metallogenic Provinces:The Accreted Pacific Margin

The present-day continental Mexico is composed of a mosaicof tectonostratigraphic terranes that were assembled duringthe Paleozoic and Mesozoic as the result of the complex inter-action between Laurentia, Gondwana, and the paleo-Pacificplate. Even though the Mexican tectonomagmatic evolution

is still a subject of debate, consensus over some principal tec-tonic events exists. At the end of the Paleozoic, Pangea wasassembled, resulting in the accretion of Oaxaquia and otherpre-Mesozoic Gondwanic terranes to Laurentia. Subductionof the paleo-Pacific plate under the western margin of Pan-gea is documented by a continental arc developed during thePermian and Early Triassic. During the Middle and Late Tri-assic, a cessation of magmatic activity was accompanied by thedeposition of wide fans of turbidites along the western marginof Pangea, which was a passive margin at that time. By theJurassic, the Precambrian and Paleozoic Gondwanic terranes

FIG. 2. Age and geographic distribution of pre-Mesozoic ore deposits in Mexico. The extent of the Oaxaquia subcontinen-tal block is indicated for reference.

Page 5: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 5/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 205

underwent widespread extension triggered by the breakupof Pangea, leading to the opening of the Gulf of Mexico andother surrounding continental to shallow marine basins thatprogressively subsided and deepened during the Early Cre-taceous. Contemporaneously, subduction was reestablishedalong the paleo-Pacific margin, producing magmatic activity,

as well as the accretion of oceanic terranes that resulted inthe progressive growth of the Mexican leading edge. Finally,during the Late Cretaceous, the assembled terranes weredeformed in a fold and thrust belt, which represents the south-ern extensions of the Rocky Mountains belt and is controlledby both the Sevier and Laramide structures. See the compre-hensive work by Centeno-García (2005), Centeno-García etal. (2008, 2011), and references therein for detailed accountson the tectonic history of the Mexican Pacific margin.

The types of ore deposits that can be genetically attributedto a wide range of syngenetic and magmatic processes asso-ciated with the evolution of the accreted Pacific margin ofMexico occurred dominantly in oceanic environments duringthe Late Jurassic to Early Cretaceous and in continental arcsduring the Late Cretaceous to Recent. Principal deposit typesinclude (1) polymetallic or Ag-Au epithermal/subepithermaldeposits, (2) porphyry Cu, Mo, Au, W deposits, (3) poly-metallic sulfide skarn deposits, (4) volcanogenic stratiform/ strata-bound massive sulfides (VMS) or barite deposits, (5)magmatic-hydrothermal iron oxide deposits (herein assignedto the IOCG clan), (6) Sn veins associated with fluorine-richrhyolites, (7) U(-Au) veins in rhyolites, and (8) a range of mag-matic deposits associated with ultramafic-mafic complexes.Subordinate types of deposits are rare element pegmatitesand carbonatites, and Sn-W greisens. The above deposit typesare located along a broad northwest-southeast magmatic beltextending across the country that evolved from mostly sub-marine oceanic to incipient continental arcs in the Mesozoic,to subaerial continental magmatic arcs since the Late Creta-

ceous. The latter include the silicic large igneous province ofthe Sierra Madre Occidental, the Sierra Madre del Sur, theSierra Madre de Chiapas (the western and southern SierrasMadre), and the Eastern Mexican alkaline province.

The Sierra Madre Occidental is the greatest silver-produc-ing region in the world. The Mesozoic-Cenozoic magmaticactivity in the Pacific margin can be divided into five majorepisodes (Ferrari et al., 2005b, 2007a; Morán-Zenteno et al.,2005, 2007; Centeno-García et al., 2008, 2011): (1) Jurassicto Early Cretaceous, (2) Late Cretaceous to Paleocene, (3)Eocene-Oligocene, (4) early Miocene, and (5) middle Mio-cene to Present. The latter corresponds to the Trans-Mexican

 volcanic belt, which contains recent and presently active vol-canoes. The Mesozoic metallogeny in Mexico is closely related

to almost continually active subduction-related processes thatoccurred in the western Pacific margin. Geologic evidenceindicates a complex history of oceanic and/or fringed exten-sional arcs that experienced suprasubduction rifting, followedby stages of compression and accretion (mainly the Guerrerocomposite terrane; Centeno-García, 2005; Centeno-García etal., 2008, 2011). Rifting was associated with the breakup ofPangea and the subsequent opening of the Gulf of Mexico(Centeno-García, 2005). Due to the geographic location ofMexico, which forms a relatively narrow “bridge” between theAtlantic and the Pacific, it was likely subject to very complex

interactions between the divergent and convergent plateboundaries throughout the Mesozoic. Therefore, the conti-nental crust of western Mexico can be understood as havinggrown by the generation of oceanic and continental marginarcs followed by accretion of these Mesozoic tectonostrati-graphic terranes to the Proterozoic subcontinental block of

Oaxaquia and its “satellite” and already accreted Paleozoicterranes.

 Late Jurassic to Early Cretaceous

Subduction in the Pacific region can be traced back to theEarly Jurassic, and formed several island arcs and other sub-duction-related submarine volcanic or volcanosedimentaryassemblages (Centeno-García et al., 2008, 2011). Several VMSdeposits are found in these assemblages, which extend into theCretaceous. Examples include the Tizapa-Santa Rosa, CampoMorado-Suriana, Tlanilpa-Azulaquez, Cuale-Bramador, andSan Nicolás-El Salvador deposits (Fig. 3). The latter constitutethe largest VMS deposits in Mexico, with estimated reservesat over 100 Mt. Another set of VMS or syngenetic deposits(La Minita and Sapo Negro in Michoacán) contain sulfidesat their base, overlain by massive barite, and, finally, Mn andFe oxides at the top. This reflects a progressive increase inthe oxidation state of the deposition site. Some VMS depos-its formed in back-arc settings between the volcanic arcs andthe subaerial terranes of eastern Mexico, and others formed

 within juvenile and slightly evolved arcs (Mortensen et al.,2008). In the case of the Ag-rich Cuale-Bramador depositsin Jalisco, a shallow submarine epicontinental environment issuggested (Bissig et al., 2008). This is the most likely environ-ment for the La Minita deposits as well, provided that VMSdeposits are syngenetic to rudist reefs. The overwhelmingmajority of Mesozoic VMS deposits in Mexico have been clas-sified as Kuroko-type deposits, although Copper King is argu-ably representative of the Cyprus type (Miranda-Gasca, 2000;

Mortensen et al., 2008). These deposits formed in association with either calc-alkaline, tholeiitic and alkaline submarine volcanic, or volcanosedimentary rock assemblages (González-Partida, 1993), although the time and space distribution ofthese rock types in relation to mineralization is hitherto stillpoorly constrained.

 VMS deposits in the Guerrero composite terrane occurin two distinct belts (Fig. 3): one of them is found near thepresent Pacific coast (e.g., Cuale-Bramador, La Minita-SapoNegro, Arroyo Seco), and the other one lies relatively farinland, near the eastern boundary of this terrane (San Nico-lás-El Salvador and the deposits in the Guanajuato ranges—Tizapa-Santa Rosa, Tlanilpa-Azuláquez, Rey de Plata, andCampo Morado-Suriana). The latter constitutes the region

 where VMS deposits are more abundant. The eastern part ofthe Guerrero composite terrane is separated from ancestralNorth America by the Arperos basin. This basin is likely para-autochthonous, suggesting that the Guerrero composite ter-rane is a rifted piece of North America rather than an exoticterrane (Martini et al., 2013). VMS deposits were emplacedaround the margins of the Guerrero composite terrane inrifted arc or back-arc settings, which also included depositsassociated with ultramafic-mafic complexes. According to thismodel, VMS deposits near the eastern boundary of the Guer-rero composite terrane could be explained as deposits formed

Page 6: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 6/44

206  ANTONI CAMPRUBÍ 

in arc to back-arc environments, although only the San Nico-lás-El Salvador deposits have been satisfactorily identified ashaving formed in a back-arc setting (Mortensen et al., 2008).

Most of the ultramafic-hosted Cr-Ni-Cu deposits formedduring the Early Jurassic and the Early Cretaceous in islandarcs and suprasubduction zones (Ortiz-Hernández et al.,

2006), although such deposits require detailed studies todefine their tectonomagmatic affinity. The Loma Baya chro-mitite deposits in Guerrero clearly show evidence for forma-tion in back-arc ophiolites (González-Jiménez et al., 2012).

Evidence for primitive arc development is found at theEarly Cretaceous El Arco-Calmallí porphyry Cu-Au deposit(Weber and López-Martínez, 2006), which constitutes theoldest porphyry-type deposit known in Mexico. However, nodeposits that formed in continental arcs older than the LateCretaceous have been documented. The IOCG clan depositsare particularly abundant in the Alisitos terrane in the northern

Baja California peninsula (Fig. 3), and also in southwesternMexico. All of these deposits occur in a narrow strip of landthat lies within a few hundreds of km east of the inferred loca-tion of the former subduction zone, similar to IOCG depositsin the Andean coastal ranges (see Sillitoe, 2003).

 Late Cretaceous to Paleocene

Porphyry deposits, low to high sulfidation epithermaldeposits, sulfidic skarns, and IOCG-type mineralizationformed in a series of Late Cretaceous to Paleocene continen-tal arcs (Valencia-Moreno et al., 2006, 2007; Fig. 4). Epither-mal deposits are subordinate and include El Barqueño (mostlylow sulfidation mineralization) and Caridad Antigua (high sul-fidation). The latter was stacked on the La Caridad porphyryCu deposit, and was preserved from erosion by being down-thrown by faulting (Valencia et al., 2008). The giant porphyryCu-Mo(-W) deposits in northern Sonora (e.g., Cananea, La

CCaammppoo MMoor raaddoo--SSuur riiaannaa((LLaattee JJuur raassssiicc))

EEll BBaabbaallúú((EEaar rllyy CCr reettaacceeoouuss))

EEll FFeennóómmeennoo((EEaar rllyy CCr reettaacceeoouuss))

PPr roossppeer riiddaadd((uunndd.. aaggee))

 C  C  e  e n n  t     t     e  e n n  o  o -- G  G  a  a r  r   c  c í    í     a  a  e  e  t      t      a  a l     l     ..  (     (   2  2   0   0  1  1  1  1    )     )   

EEll RReemmoolliinnoo--LLaa FFááttiimmaa((EEaar rllyy JJuur raassssiicc))

CCaar rmmeenn((uunndd.. aaggee))

LLooss GGaavviillaanneess && LLaa PPaazz((LLaattee JJuur raassssiicc))

DDiiooss MMee A Ayyuuddaa((uunndd.. aaggee))

S    S    i     i     e   e   r    r    r    r    a   a   

M     M     a   a   d     d     

r    r    e   e   t    t    e   e   r    r    r    r    a   a   n   n   

e   e   

SSaann JJuuaann MMaazzaattlláánn((EEaar rllyy JJuur raassssiicc))

CCuuiiccaattlláánn--CCoonncceeppcciióónn PPááppaalloo((EEaar rllyy CCr reettaacceeoouuss??))

IIxxccuuiinnaattooyyaacc((TTr riiaassssiicc??))

Z Zaap poot teec coot teer rr raannee

C Cuui ic caat teec coot teer rr raannee

 X    X   o o l  l  a a  p  p a a t  t  e e r  r  r  r  a a n n e e    M Maay yaa t teer rr raannee

M Mi ix  xt teec coo t teer rr raannee

SSaann IIggnnaacciioo((LLaattee JJuur raassssiicc))   TTiiáámmaar roo

((EEaar rllyy CCr reettaacceeoouuss))

TTllaanniillppaa--A Azzuullááqquueezz((EEaar rllyy CCr reettaacceeoouuss))

00 550000 kkmm

FFr raanncciissccoo II.. MMaaddeer roo((EEaar rllyy CCr reettaacceeoouuss??))

EEr réénnddiir raa((EEaar rllyy CCr reettaacceeoouuss))

EEll EEnncciinnoo

 A Aqquuiillaa

Ter r ane b oundar ies

FIG. 3. Space distribution of ore deposits formed from the Triassic to the Early Cretaceous in the Pacific convergentmargin of Mexico, showing terrane names and other significant geologic features. Modified from Camprubí (2009). Seeavailable ages in Table 1. The “und. age” labels indicate those deposits with ages that are undetermined but that have beeninferred from their stratigraphic position or from various sources, as cited in Miranda-Gasca (2000) and in Ortiz-Hernándezet al. (2006). The Baja California peninsula is depicted at its approximate prerifting position. Paleotectonic reconstructionsfrom this period were taken from Centeno-García et al. (2011). Following these, the area of Jurassic-Albian arc undergoingsynvolcanic extensional unroofing (green) is extended northward into known similar areas, and the Jurassic-Albian back-arcbasin is extended southward into the Petatlán-Papanoa region, as data from the Loma Baya deposit (González-Jiménez et al.,2011, 2012) confirm that it formed in suprasubduction zone back-arc ophiolites.

Terrane boundaries

Page 7: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 7/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 207

Caridad) are part of the province that also contains the por-phyry deposits in southeastern Arizona and southwesternNew Mexico. Porphyry deposits in Mexico are apparentlycogenetic with their host batholiths, which may have beenderived from variable sources and magmatic processes, anddisplay different degrees of crustal contamination and assimi-lation of sedimentary materials (for detailed accounts, see

 Valencia-Moreno et al., 2006, 2007; Zürcher and Titley, 2007;Potra and Macfarlane, 2013). In southwestern Mexico there isa significant concentration of mostly skarn hosted iron depos-

its (the “iron belt” of Damon et al., 1981; Clark et al., 1982)such as Mezcala or Cerro Náhuatl, and more IOCG type mag-matic-hydrothermal magnetite-apatite deposits such as PeñaColorada, El Encino, or Zaniza. The available age constraintsin southwestern Mexico (Camprubí et al., 2006a, 2011) indi-cate that an early Paleocene magmatic episode was responsi-ble for such concentration of deposits, and might havegenerated other types of deposits as well. Hernández-Barosio(1989) explained the formation of iron oxide deposits insoutheastern Mexico mostly as due to magmatic “segregationand injection” during the Paleocene-Eocene. Iron oxide

skarns are considered as part of the broad and loosely charac-terized IOCG-type or magmatic-hydrothermal iron oxidedeposits, in much the same fashion as similar deposits in theAndean coastal ranges (e.g., Sillitoe, 2003). The coeval occur-rence of tholeiitic gabbrodiorites in southwestern Mexicoand most iron deposits indicates continental extension andcrustal thinning in the region during the Paleocene, thus sup-porting an Andean-like IOCG setting. Tholeiitic and calc-alkaline rocks were emplaced in the same regionsimultaneously (Zürcher et al., 2001; Corona-Esquivel and

Henríquez, 2004). In the Alisitos arc, Baja California (Fig. 5),gabbros are also reported in association with parental mag-matic rocks for the Early Cretaceous San Fernando IOCGdeposit, which probably formed during the short-lived conti-nental rifting period at 111 to 110 Ma described by Busby etal. (2006) or later during a compressional event (Cruise et al.,2007). Other iron oxide deposits in southwestern Mexico (seeFig. 6), such as Las Truchas, La Guayabera, Aquila, Tibor,and Plutón, are interpreted to belong to the Paleocene IOCGcluster on the basis of key geologic characteristics. Theseinclude (1) association with gabbros, diorites, and/or

CCeer rr roo ddeell OOr roo

Lar amide Belt

QQuuiittoovvaacc

LLaass TTr ruucchhaass

LLaa HHuueer rttiittaa

LLooss UUvvaar reess

SSaauuzzaalliittoo

EEll MMiillaaggr roo

EEll LLiimmóónn

ZZaanniizzaa

SSaann PPeeddr roo

LLooss HHuummooss

CCoommaannj jaa ddee CCoor roonnaa

TTaallppaa ddee A Alllleennddee ((EEll RRuubbíí,, LLaa A Amméér riiccaa,, A Ammaalltteeaa))

CCaar rnnaavvaall && CCeer rr roo MMaar riiaacchhii

CCeer rr roo SSaann PPeeddr roo

MMiillppiillllaass

 A Aqquuiillaa

MMaar riiqquuiittaa

HHuuééppaacc

LLooss CCiimmiieennttooss

PPiieeddr raass VVeer rddeess

LLaa RReef foor rmmaa

SSaann A Annttoonniioo ddee llaa HHuueer rttaa && A Auur roor raa

 A Ar rtteeaaggaa

EEll BBaattaammoottee

CCuummoobbaabbii

 Á Állaammooss

TTr reess PPiieeddr raass

BBeellllaa EEssppeer raannzzaa

Black symbols: Late CretaceousWhite symbols: Paleocene

CCeer rr roo TTúúnneell

GGuuaayynnooppaa && GGuuaayynnooppiittaa

T TS SM MA AF FZ Z 

S SLLT TF FZ Z 

LLaattee CCr reettaacceeoouuss ttoo PPaalleeoocceennee

CCoonnccoor rddiiaa--PPaar reeddoonneess A Ammaar riillllooss

LLaa EEssppeer raannzzaa

EEll PPiillaar r 

CCaappoottee BBaassiinn

00 550000 kkmm

TTaar raacchhii

FIG. 4. Distribution of magmatism and ore deposits formed from the Late Cretaceous to the Paleocene in the Pacificconvergent margin of Mexico. Modified from Camprubí (2009). See available ages in Table 1. The distribution of volcanic

and intrusive rocks was taken from Ferrari et al. (2005a, 2007a) for the Sierra Madre Occidental and Morán-Zenteno et al.(2005, 2007) and Martínez-Serrano et al. (2008) for the Sierra Madre del Sur. Abbreviations: SLTFZ = San Luis-Tepehuanesfault zone, TSMAFZ = Taxco-San Miguel de Allende fault zone.

Page 8: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 8/44

208  ANTONI CAMPRUBÍ 

Cretaceous batholiths

Lower Cretaceous volcanosedimentary sequences

Lower Cretaceous marine sequences

Mesozoic metamorphic rocks

Western belt:oceanic arc (Alisitos Group)

Busby et al. (2006)

MMEEXXIICCAALLII

ÁÁnnggeell ddee llaa GGuuaar rddaaIIssllaanndd

P   P   

 A    A   

C   C   

I    I    

F    F    I    I    

C   C   

O   O   

C   C   

E    E    

 A    A   

N    N    

G   G   

U    U    

L   L   F    F    

O   O   

F    F    

C   C   

 A    A   

L   L   

I    I    F    F    

O   O   

R   R   

N    N    

I    I     A    A   

2288ºº

2299ºº

3322ºº

111177ºº

111166ºº

111144ºº 111133ºº

CCaalliif f oor r nniiaa

 A Ar ri iz zoonnaa

BBaaj  jaa C Caal li if foor rnni iaa SSuur r 111155ºº

TTIIJJUUAANNAA

EENNSSEENNAADDAA

EEll A Ar rccoo

PPaalloommaass

EEr réénnddiir raa

CCeeddr roossIIssllaanndd

CCoor rttee ddee MMaaddeer raa

EEll FFeennóómmeennoo

LLaa HHuueer rttiittaa

EEll Á Állaammoo

CCaallmmaallllíí

OOlliivviiaa

BBeellttr ráánn

Magmatic-hydrothermal iron oxide(-Cu-Au) deposits

Porphyry-type deposits

W(-Au-Ag) skarn deposits

VMS deposits

Deposits in ultramafic-mafic complexes

Orogenic gold deposits (?)

Unknown type (Au-Ag)

Turquoise deposits (supergene alteration of MHIO?)

Mineralized areas during the Cenozoic 

MMiixxzzyy

PPiinnoo SSuuáár reezz

LLooss GGaavviillaanneess

OOj jooss NNeeggr rooss

LLaa GGr ruullllaa

LLaa TTiinnaaj jaa

SSAANN QQUUIINNTTÍÍNN

BBAAHHÍÍAA DDEE LLOOSS ÁÁNNGGEELLEESS

SSaannttaa CCaattaar riinnaa

PPííccaallee && YYeesseenniiaa

PPUUEERRTTEECCIITTOOSS

SSAANN FFEELLIIPPEE

CCeer rr roo EEll TTooppoo

CCiinnccoo HHeer rmmaannooss

TECATE

SSAANN LLUUIISS RRÍÍOO CCOOLLOORRAADDOO

CCoolloor raaddoo RRiivveer r ddeellttaa

AAllttaar r DDeesseer rtt

SSaann PPeeddr roo yy SSaann PPaabblloo

SSaann FFeer rnnaannddoo

EEll GGaattooSSaannttaa ÚÚr rssuullaa,, EEll SSaallttoo && LLaa CCaar raammaalllloollaa

LLaa CCoocchhaalloossaaCCeer rr roo PPeellóónn

CCeer rr roo BBllaannccoo

SSaauuzzaalliittoo,, LLaa A Alleej jaannddr raa && LLaa TTóór rttoollaa

EEll MMaannzzaannooEEll TTaar raaiicciittoo

CCaaññaaddaa ddeell GGr riinnggooCCaammppoo RRooddr ríígguueezz

EEll MMoor rr roo

PPaallmmaa ddeell GGr riinnggoo

LLaa BBr rúúj juullaa A Agguuaa CChhiiqquuiittaa

EEll BBaabbaallúú

SSaann IIssiiddr roo

 A Ag guuaa BBl laannc caa F Faauul lt t 

GGuuaaddaalluuppee SSoollííss

LLaa EEnnvviiddiiaa

LLaa PPr roossppeer riiddaadd

SSaann JJeer róónniimmoo

FIG. 5. Distribution of Mesozoic rocks in the state of Baja California (simplified from the updated Geological Map ofMexico by Ferrari et al., 2007b) showing the occurrences of ore deposits that formed during the Mesozoic or that are likelyof Mesozoic age, with special attention to the occurrence of magmatic-hydrothermal iron oxide deposits. The types of oredeposits are interpreted from the descriptions of Juvera-Gaxiola et al. (1962), Andrade-Pulido and Estrada-Barraza (1965),Ojeda-Rivera et al. (1965), Gastil et al. (1975), Krummenacher et al. (1975), Amaya-Martínez (1977), Pesquera-Velázquez(1981), Martín-Barajas and Monjaraz (1989), Bon-Aguilar et al. (2001), Ortega-Rivera (2003), Arellano-Morales et al. (2005),Servicio Geológico Mexicano (2005, 2011), Clark and Fitch (2009), and Torres-Carrillo et al. (2011). See ages in Table 1.MHIO = magmatic hydrothermal iron oxide.

Page 9: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 9/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 209

monzogranites assigned to the Paleocene by geologic andlimited absolute age constraints, (2) complex interactions inthe associated intrusive rocks, including evidence for magmamingling or mixing, (3) iron oxide-dominated, sulfide-poorore deposits, (4) apatite-rich intrusives and iron oxide-bear-ing associations, and/or (5) potassic or sodic alteration assem-blages commonly associated with carbonate-rich propyliticalteration.

Despite the fact that the vast majority of IOCG-type depos-its that formed during this period occur in settings similar tothose in the Andean Coastal ranges, within a few hundred

km from the trench, a few others (Guaynopa, Cerro del Oro;Fig. 4) formed several hundred km farther inland. Althoughno solid case for these IOCG deposits being emplaced in aback-arc environment can be made on the basis of the cur-rent knowledge, given their locations inland, this hypothesis is

 worth testing in future research.

Eocene to early Miocene

The climactic magmatism in the Sierra Madre Occidentalis represented by ignimbritic silicic volcanism in two mainpulses: (1) from late Eocene to early Oligocene along the

FIG. 6. Distribution of Mesozoic rocks and Cenozoic(?) batholiths in southwestern Mexico (simplified from the updatedGeological Map of Mexico by Ferrari et al., 2007b) showing the occurrences of ore deposits that formed during the Mesozoicor that are likely of Mesozoic age, with special attention to the occurrence of magmatic-hydrothermal iron oxide deposits, of which type the early Cenozoic deposits are also shown. The distribution of the majority of magmatic-hydrothermal iron oxidedeposits was taken from Flores-Aguillón (2005), and additional information from Cárdenas-Vargas et al. (1992, 1994), Werre-Keeman and Estrada-Rodarte (1999), and Castro-Rodríguez and Mérida-Cruz (2008); the possible examples of orogenicgold deposits were inferred based on information from Ruiz-Marqués and Núñez-Espinal (1993). See the inset of the map ofMexico in Figure 3, and ages in Table 1.

Page 10: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 10/44

210  ANTONI CAMPRUBÍ 

entire Sierra Madre Occidental and the Mesa Central, and(2) during the early Miocene in the central and southernSierra Madre Occidental. The late Eocene to early Oligocene(~35–30 Ma) magmatic episode constitutes the first bimodalandesitic-rhyolitic volcanic event of the early volcanic com-plex of the Sierra Madre Occidental (McDowell and Keizer,

1977). The early volcanic complex is largely formed by andes-ites and, locally, rhyolitic volcanic centers, which are generallyassociated with economically relevant epithermal deposits. Amyriad of intermediate sulfidation polymetallic to low sulfida-tion Au-Ag epithermal deposits formed in association with theearly volcanic complex (Figs. 7, 8). This metallogenetic periodincludes the world-class epithermal Ag Guanajuato and Fres-nillo deposits, the latter of which is currently the largest activesilver mine in the world in terms of historical productionand proven reserves. In fact, this period constitutes the mostprospective one for epithermal deposits in the Sierra MadreOccidental of Mexico (Camprubí and Albinson, 2006, 2007).The magmatism migrated eastward from the Pacific margininland during the Eocene (Fig. 7), and calc-alkaline magmasintruded into the carbonate platform sequences that formed

in epicontinental basins related to the passive margin of theGulf of Mexico. Intrusions within the carbonate rocks are spa-tially associated with some of the largest Zn-Pb-Cu-Ag skarndeposits in the country. These include the Zimapán, Mapimí,Charcas, Concepción del Oro, and San Martín deposits.This group of deposits also includes known skarn deposits at

Mazapil (Fig. 7). This district contains the giant Au-Ag-Pb-Zn Peñasquito deposit (with proven and probable reserves of~1200 Mt, which correspond to >10 Moz Au and ~600 MozAg; see recent reports by Goldcorp), which is the largest Audeposit and the largest currently operating mine in Mexico.The deposits at Peñasquito are hosted mainly by two brecciapipes that crosscut carbonate rocks, with no Ca silicate assem-blages so far recognized. Some Paleocene to Oligocene skarnand porphyry-type deposits in Sonora, like the Pilares deposit,are rich in tungsten (Mead et al., 1988; Valencia-Moreno etal., 2006, 2007). West of the carbonate platform, porphyry-type deposits formed in portions of the magmatic belt that

 were more proximal to the trench.Tin vein deposits associated with the emplacement of

high-fluorine rhyolitic domes or granitic intrusions (greisen)

Well-r ecognized f ault zones

00 550000 kkmm

FIG. 7. Distribution of magmatism and ore deposits emplaced during the Eocene in the Pacific convergent margin ofMexico. Modified from Camprubí (2009). See available ages in Table 1. The Talamantes Mn deposit is identified by a gray staridentifying it as epithermal type, although the author could not confirm such affiliation. See magmatic centers of the EasternMexican alkaline province in figure 7 of Camprubí (2009).

Well-recognized fault zones

Page 11: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 11/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 211

of Oligocene age are restricted to the borders of the MesaCentral (especially to the San Luis-Tepehuanes fault system;Nieto-Samaniego et al., 2005, 2007; Fig. 8) and formed dur-ing the Oligocene crustal extensional period as well. Examplesinclude the Tlaquicheros, Villa de Reyes, Villa de Arriaga,Ahualulco, Cosío, Sierra de Chapultepec, La Ochoa, JuanAldama, Cerro de los Remedios, Sombrerete, Avino, and ElNaranjo-Los Ángeles deposits (Table 1; Fig. 8). During theOligocene, new IOCG-type deposits were emplaced in thesouthern Sierra Madre Occidental and near the western edgeof the Eastern Mexican alkaline province (Fig. 8; Cerro de

Mercado and the La Perla-Hércules cluster, respectively).The Paleocene IOCG deposits are interpreted to have beenemplaced at greater depth than their Oligocene counterparts.The former contain coarse euhedral magnetite and pegma-toid magnetite-apatite-pyroxene veins and are interpreted tohave formed from hypabyssal iron oxide-rich melts (e.g., PeñaColorada; Camprubí and Canet, 2009; Camprubí et al., 2011),

 whereas the latter show volcanic features (e.g., La Perla,Cerro de Mercado; Cárdenas-Vargas and del Castillo-García,1964; Lyons, 1988a). The potential for deeper deposits for theOligocene is unknown.

Miocene to Present

The early Miocene magmatic pulse, known as the Upper Volcanic series, corresponds to the last volcanic episode in theSierra Madre Occidental that is clearly ignimbritic (McDow-ell and Keizer, 1977). This igneous pulse is associated withmainly epithermal (Au-Ag and polymetallic) deposits (Fig. 9).Most Miocene epithermal deposits are found in Nayarit orin the states nearby (southwestern Mexico), along with sometin vein deposits associated with Miocene calderas (Fig. 10).Polymetallic deposits are probably associated with the con-tinuous volcanism that occurred between 19.55 and 12.6 Ma(Aguilar-Nogales, 1987a, b). The second important prospec-tive area for Miocene deposits is found near the eastern limitof the Trans-Mexican volcanic belt (Figs. 10, 11), and includesepithermal deposits like those in the Pachuca-Real del Montedistrict, as well as precious metal and polymetallic skarn, por-phyry, and IOCG-type deposits. The Pachuca-Real del Montedistrict (inactive) has traditionally been regarded as the larg-est single silver-producing district of all time (~45,000 t Ag,220 t Au). The reason for such an exceptional amount of silverin a single district, especially in such an uncommon place and

Well-r ecognized f ault zones

00 550000 kkmm

FIG. 8. Distribution of magmatism and ore deposits emplaced during the Oligocene in the Pacific convergent margin of

Mexico. Modified from Camprubí (2009). Available ages are listed in Table 1. See magmatic centers of the Eastern Mexicanalkaline province in figure 7 of Camprubí (2009).

Well-recognized fault zones

Page 12: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 12/44

212  ANTONI CAMPRUBÍ 

TABLE 1. Compilation of the Known

Deposit State Deposit type

Proterozoic (2500–542 Ma)Huitzo (El Muerto)– Telixtlahuaca Oaxaca Rare element (U-Th-Nb-Ta-REE) pegmatitesPluma Hidalgo Oaxaca Ti-bearing anorthosites

Novillo Tamaulipas Au veins in gneissLa Panchita Oaxaca PegmatitesLa Joya (San Andrés Nuxiño) Oaxaca Pegmatites

Paleozoic (542–251 Ma)Tehuitzingo – Tecomatlán Puebla Cr-PGE in ophiolites

Teziutlán–Aire Libre Puebla Zn-Pb-Ag VMS (possible Besshi type)Cerro Cobachi – Sierra El Aliso – Sonora Barite deposits associated with hydrocarbon seepageBarita de Sonora – Mazatán

Triassic (251.0–199.6 Ma) Vizcaíno Peninsula (several deposits) Baja California Sur Cr-Ni-Co-Cu-Au-PGE in ophiolitesLa Dicha – La Esperanza (Ixcuinatoyac) Guerrero Cu and barite VMS

Early and Middle Jurassic (199.6–161.2 Ma)El Remolino – La Fátima Sonora PGE in ultramafic-mafic complex (pyroxenites)

San Juan Mazatlán Oaxaca Porphyry CuCedros Island Baja California Magnesites in ophiolitesEl Arco – Calmallí Baja California Porphyry Cu-Au (with IOCG roots?)

Late Jurassic (161.2–145.5 Ma)Cuale Jalisco Polymetallic VMSTizapa State of México Polymetallic VMS

San Nicolás – El Salvador Zacatecas Polymetallic VMSCampo Morado – Suriana Guerrero Polymetallic VMSEl Gordo Guanajuato Polymetallic VMSSan Ignacio (Los Mexicanos) Guanajuato Polymetallic VMSMolango Hidalgo Mn sedexLa Caja & La Casita formations Zacatecas / Coahuila / Sedimentary phosphorites(many locations) San Luis Potosí 

Early Cretaceous (145.5–99.6 Ma)Francisco I. Madero Zacatecas Polymetallic VMS (?) overprinted by a Cenozoic skarn

Tiámaro Michoacán Porphyry CuTlanilpa – Azuláquez district State of México Polymetallic VMSMagdalena and Margarita Islands Baja California Magnesite and Cr in ultramafic-mafic complexConcepción Pápalo Oaxaca Asbestos in ultramafic-mafic complexLoma Baya Guerrero Cr-Ni-PGE in back-arc ultramafic-mafic complex

Dos Hermanas – La Virgen Zacatecas Polymetallic VMS

San Fernando Baja California Fe-Cu-Au IOCG deposit

Palmar Chico – San Pedro Limón State of México Cr-Ni-Co in island-arc ultramafic-mafic complexEréndira – Guadalupe Solís – Tepuxtete – Baja California Fe-Cu-Au IOCG depositsSan Isidro

San Juan de Otates Guanajuato Cr-Ni in island-arc ultramafic-mafic complexEl Tamarindo Guerrero Cr-Ni in island-arc ultramafic-mafic complexSanta Úrsula – La Cochalosa Baja California Fe-Cu IOCG deposit

El Babalú Baja California Fe-Cu IOCG depositLa Minita – La Blanca – Sapo Negro Michoacán Zn-Pb-Ba-Ag VMS

Page 13: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 13/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 213

Ages of Ore Deposits in Mexico

Age (Ma) Dating method Selected references and comments

1063–1053 U/Pb Solari et al. (2003)1010–998 U/Pb Schulze et al. (2000), Weber et al. (2010); source area for recent Ti-rich coastal placers

<1000? Sm-Nd Patchett and Ruiz (1987), Eguiluz de Antuñano et al. (2004)980 Pb- α  Cited in Salas (1975); mined for collector-quality minerals930–770 K-Ar; Rb-Sr Cited in Salas (1975); unknown aim for mining

>481–478 U/Pb* The orebodies are part of the Xayacatlán Formation, which is crosscut by the Tetícicmetagranitoids, dated at 478 Ma (Campa-Uranga et al., 2002); the youngest detrital zirconcluster in the low-grade rocks yielded U-Pb ages of 481 ± 16 Ma (Galaz et a l., 2012); suchages would represent the upper threshold for the obduction of the ophiolites, the formationof which would be much older

345–327 U/Pb Ángeles-Moreno et al. (2003)Late Devonian Johnson et al. (2009), Canet et al. (2013)

221.0–220.0 U/Pb Kimbrough and Moore (2003), Kimbrough and Ledesma-Vazquez (2008)Late Triassic-Early Jurassic Klesse (1968)

Early Jurassic Biostratigraphy Rodríguez-Castañeda et al. (2003); the pyroxenites are hosted by the Caracahui andSanta Rosa formations

190.6 K-Ar* Damon et al. (1983)173.0 U/Pb Kimbrough and Moore (2003)164.1 Re-Os Weber and López-Martínez (2006), cited in Valencia-Moreno et al. (2006, 2007)

157.2–154.0 U/Pb* Bissig et al. (2008)156.7–103.4 Pb-Pb JICA-MMAJ (1991); other Pb-Pb model ages by Elías-Herrera et al. (2000) span 227 to

188 Ma; setting aside technical considerations, Late Jurassic ages are considered here tobe the likeliest due to the regional geologic context

151.3–147.9 U/Pb* Mortensen et al. (2008); largest VMS deposits in Mexico146.2–142.3 U/Pb* Mortensen et al. (2008)

146.1 U/Pb* Mortensen et al. (2008)145.0 U/Pb* Martini et al. (2011)

Oxfordian-Kimmeridgian? Okita (1992); largest Mn deposit in North AmericaKimmeridgian-early Berriasian Soto-Pineda (1960), Rogers et al. (1961), Vivanco-Flores (1976)

141–133? U/Pb* Escalona-Alcázar et al. (2009); these ages correspond to the enclosing volcanosedimentarycomplex, and are not restricted to the deposit; if this deposit were definitely ascribed to a VMS model, the likeliest period for its formation would be closer to the 141 Ma age than the133 Ma age, in accordance with the period with the highest production of VMS depositsregionally; a late skarn overprint (Canet et al., 2009) remains undated, but it is likely to be ofLate Cretaceous or Cenozoic age

140.0–131.0 U/Pb; Ar/Ar Garza-González et al. (2006), Garza González-Vélez (2007)139.7–138.8 U/Pb* Mortensen et al. (2008)

138–134 K-Ar Cited in Arellano-Morales et al. (2005)138.0–123.0 Ar/Ar Delgado-Argote et al. (1992)

~130.0 Re-Os González-Jiménez et al. (in prep.); Re-Os model ages display two peaks at ca. 300 and ca.130 Ma: the former is interpreted as a previous remelting age and the latter as the last

  remelting episode that led to the emplacement of PGE-bearing chromitites; no reasonableage estimates for obduction are available so far

117.94? Ar/Ar It is assumed that the nearby basaltic andesite dated by Iriondo et al. (2003) is likely to beassociated with the mineralizations

114.8–111.9? 100? U/Pb*, Re-Os Staude and Barton (2001) and Lopez et al. (2005) argued for an Early Cretaceous age; here,the ages for the Misión San Fernando pluton by Busby et al. (2006) are used, plus Re-Os agesby Duncan et al. (2011)

114.0–104.0 Ar/Ar Cited in Ortiz-Hernández et al. (2006)113.4–98.6 Ar/Ar* Ortega-Rivera (2003)

112.8 K-Ar Cited in Ortiz-Hernández et al. (2006)112.0 ? Cited in Ortiz-Hernández et al. (2006)

111.59? Ar/Ar* Busby et al. (2006); this age corresponds to the La Burra pluton, with which the Santa Úrsulaand nearby deposits are possibly associated

101.0–95.0? Ar/Ar* Cited in Ortega-Rivera (2003, supplementary material on CD)100.4 Rb-Sr Ortigoza-Cruz et al. (1994)

Page 14: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 14/44

214  ANTONI CAMPRUBÍ 

El Fenómeno – Corte de Madera – Baja California W-Au skarnsCerro El Topo – Los Gavilanes

Bacubirito Sinaloa PGE-Cu-Co-Ni in ultramafic-mafic complex (ophiolites),and late Au-Ag veins

Late Cretaceous (99.6–65.5 Ma)Las Truchas Michoacán Fe skarn (IOCG clan)

Aquila Michoacán Fe skarn (IOCG clan)

San Pedro Sinaloa Cu-PGE-Au in ultramafic-mafic complexLa Huertita Baja California W-Au skarnSauzalito – Minitas Baja California Porphyry Au-Cu?Guaynopa Chihuahua Fe-Cu-Au IOCG depositEl Encino Jalisco Fe Kiruna type (IOCG clan)

Guaynopita Chihuahua Porphyry Cu-AuConcordia – Paredones Amarillos Baja California Sur Orogenic Au

La Esperanza Sonora Cu-Zn-Ni-Co skarnTobora Sinaloa W skarnLos Uvares Baja California Sur Orogenic Au

Bacamacari Sinaloa Porphyry CuLa Parrilla Durango Polymetallic skarnMetates Durango Porphyry Au-AgEl Milagro Baja California Fe-Cu-Au IOCG depositEl Pilar Sonora Porphyry CuTalpa de Allende Jalisco Polymetallic VMS(El Rubí, La América, Amaltea)

Caborca Sonora Porphyry CuEl Promontorio Sonora Porphyry CuQuitovac Sonora Orogenic AuComanja de Corona Guanajuato Polymetallic skarnCapote Basin Sonora Zn-Cu skarnLos Naranjos Sinaloa Porphyry Mo-CuPeña Colorada Colima Fe skarn and Kiruna type (IOCG clan)

Los Humos Sonora Porphyry Cu-MoSanta María Zaniza Oaxaca Fe-Cu IOCG (?) depositEl Limón Guerrero Au skarnMezcala Guerrero Fe-Au skarn (IOCG clan?)

Agua Dulce (Talpa de Allende) Jalisco Fe IOCG (?) depositLos Pilares (Mina Nyco) Sonora Wollastonite skarn Verde Grande Sonora Cu skarnCerro del Oro Sonora Fe-Cu skarn (IOCG clan)San Javier (Badiraguato) Sinaloa Ni-Cr-Co in diatremes (described as kimberlites) in an

ultramafic-mafic complex

Paleocene (65.5–55.8 Ma)Carnaval Sonora W skarnEl Violín (Mochitlán) Guerrero Magnetite-apatite deposit (IOCG clan)Cerro Mariachi Sonora W skarnEl Coralillo Sonora Porphyry Cu

Cerro San Pedro San Luis Potosí Porphyry Au-AgLucy (Cananea district) Sonora Porphyry Mo-CuMilpillas Sonora Porphyry Cu-Au-MoLa Mariquita Sonora Porphyry Cu-MoCumobabi (San Judas) Sonora Mo-Cu-W porphyry (breccia pipes)Los Cimientos Michoacán Porphyry Cu-AuLa Herradura Sonora Orogenic AuSierra del Alo Jalisco Magnetite-apatite deposit (IOCG clan)Tarachi Sonora Porphyry Mo-AuEl Alacrán Sonora Porphyry Cu-MoLos Alisos (La Caridad district) Sonora Porphyry Cu-MoMaría (Cananea district) Sonora Porphyry Cu-MoPiedras Verdes Sonora Porphyry Cu-Mo

TABLE 1.

Deposit State Deposit type

Page 15: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 15/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 215

100.0–83.0 Ar/Ar* Gastil et al. (1975), Krummenacher et al. (1975), Ortega-Rivera (2003); such ages can be  protracted to 108 Ma, with regard to the ages of productive plutons; some deposits cited in

Salas (1975) and Clark and Fitch (2009)Probably Albian Cerecero-Luna et al. (1984), cited in Ortiz-Hernández et al. (2006)

99.0? ? Vázquez et al. (1986), uncertain age; unpublished Ar/Ar age by A. Camprubí and27.74 Ar/Ar M. López-Martínez (2013)98.6 K-Ar* Ruvalcaba-Ruiz (1983); Camprubí (2009) referred to some ages at 63.0 to 61.24 Ma, which

might also be associated with part of the deposit; see Camprubí and González-Partida (in prep.)96.0 ? Rodríguez-Castañeda et al. (2003)

96–89 K-Ar* Gastil et al. (1975), Krummenacher et al. (1975), Ortega-Rivera (2003)95–73 K-Ar*, Ar/Ar*, U/Pb* Ortega-Rivera (2003), and references therein

98.12–95.42 Ar/Ar González-Partida et al. (in prep.)93.1 K-Ar Cited in Corona-Esquivel and Henríquez (2004); this age corresponds to a magnetite-bearing

gabbro, the association of which with the main Fe orebodies is uncertain; later granitic rocks, with which the Fe mineralizations have been traditionally associated, were dated at 65 ± 3 Ma

92.4–84.4 U/Pb González-Partida et al. (in prep.)91.0 K-Ar* Echo Bay (1997), cited in Cendejas-Cruz and Aldana-Hernández (2008), and Clark and Fitch

(2009)

91.0–89.0 U/Pb Pérez-Segura et al. (2009)91.0–88.0 K-Ar* Henry (1985), cited in Clark and Damon (1979)90.0–80.0 K-Ar*, FT* Carrillo-Chávez et al. (1999) advocate an epithermal model, whereas Clark and Fitch (2009)

propose an orogenic gold model instead, which is the position taken in this paper88.0 K-Ar* Damon et al. (1980)

87.4–79.2 K-Ar* Clark et al. (1979)85.0 K-Ar Warnaars and Girón-Garay (1999)

~79.0? Ar/Ar* Ortega-Rivera (2003)73.9 Re-Os Del Río-Salas (2011)71.9 K-Ar* Zárate del Valle et al. (2000); this age is unlikely to correspond to the formation of these

deposits, which are expected to be synchronous with those at Cuale (see above)70.9–67.6 K-Ar* Damon et al. (1980)69.6–51.8 K-Ar* Roldán-Quintana (1991)

69.51–61.29 Ar/Ar Iriondo (2001), Iriondo et al. (2005)69.0 K-Ar* Gross (1975)

69.0–64.0 U-Pb* Meinert (1982)68.5–65.0 K-Ar* Cited in Bustamante-Yáñez (1993)

68.0–48.18 Ar/Ar, K-Ar Camprubí et al. (2011), and references therein; largest iron deposit in Mexico

67.9–66.6 K-Ar* Damon et al. (1983), E. Pérez-Segura (pers. comm., 2012)<67.0? K-Ar* Murillo-Muñetón et al. (1986)66.6–65.4 Ar/Ar, Re-Os Canela-Barboza (2005)66.2–62.2 U/Pb, Ar/Ar, Re-Os Meza-Figueroa et al. (2003), Levresse et al. (2004); listed among “typical” skarns, though such

labeling should be tested by the IOCG hypothesis; this district is one of the largest recentmining developments for gold in Mexico

65.6 K-Ar* Juárez-Álvarez et al. (1985)Late Cretaceous Cendejas-Cruz and Peña-Leal (1999), Saitz-Sau (2009)Late Cretaceous Pérez-Segura (1985), Barton et al. (1995)

Late Cretaceous to early Paleocene González-Gallegos et al. (1991)Late Cretaceous to early Paleocene Bustamante-Yáñez (1985), Servais et al. (1985)

64.9 K-Ar Mead et al. (1988)64.9–62.1 K-Ar Miranda-Gasca and Roldán-Martínez (2003), Zamora et al. (1975)64.1–49.6 K-Ar* Mead et al. (1988)

64.0 U/Pb Anderson and Silver (1977)

64.0 K-Ar Petersen et al. (2001)63.8–63.0 Re-Os Barra et al. (2005), Del Río-Salas et al. (2012)63.1–59.0 Re-Os, K-Ar Cited in Singer et al. (2005), Valencia-Moreno et al. (2006, 2007), Valencia et al. (2006)63.0–60.4 Re-Os Barra et al. (2005); Del Río-Salas et al. (2012)63.0–40.0 ? Cited in Mead et al. (1988), Singer et al. (2005), Valencia-Moreno et al. (2006, 2007)

62.8 K-Ar Cited in Valencia-Moreno et al. (2006, 2007)61.0 Re-Os Quintanar-Ruiz et al. (2008)

61.0–53.0 K-Ar* Munguía-Rojas and Pérez-Vargas (1989)60.99–60.0 U/Pb*, Re-Os Greig (2012) and T. Bissig, written communication, 201360.9–56.7 Re-Os, K-Ar Cited in Salas (1975) and Barra et al. (2005)60.4–60.2 U/Pb Rascón-Heimpel and Valencia-Moreno (2007), Rascón-Heimpel et al. (2012)60.4–57.4 Re-Os, K-Ar Barra et al. (2005)

~60.0 Re-Os Barra et al. (2005)

(Cont.)

Age (Ma) Dating method Selected references and comments

Page 16: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 16/44

216  ANTONI CAMPRUBÍ 

Cananea Sonora Porphyry Cu-Mo-Zn

La Azulita Sinaloa Porphyry Cu-MoLa Reforma Sinaloa Polymetallic skarnSan José del Desierto Sinaloa Porphyry Cu-Mo-WChutla Guerrero Fe skarn (IOCG clan)Magistral (Choix) Sinaloa Porphyry Cu-Mo-WCosalá Sinaloa Fe skarn (IOCG clan), telescoped by IS polymetallic epithermalCuatro Hermanos Sonora Porphyry Cu-Au-MoSan Manuel (Altar) Sonora Porphyry Au/LS Au epithermalEl Barqueño Jalisco LS-IS Au-Ag epithermalSan Antonio de la Huerta Sonora Porphyry Cu-MoMoctezuma Sonora Polymetallic skarn and IS epithermal; gossanSanto Tomás – Cuchicari Sinaloa Porphyry Cu-Au-MoArteaga Michoacán Fe skarn (IOCG clan)Suaqui Verde Sonora Porphyry Cu-MoTameapa Sinaloa Porphyry Cu-Au-Mo and polymetallic skarn

El Batamote Sonora Porphyry Cu-Au-MoLa Caridad Sonora Porphyry Cu-Au-MoHuepac (Padercitas – Washington) Sonora Porphyry Cu-W-Mo-Ag (veins, breccia pipes)

San Alberto (Álamos) Sonora W-Cu skarnLos Chicharrones Sinaloa Porphyry MoTres Piedras Sonora Porphyry Mo-W-Cu (breccia pipes)Cerro Túnel Sinaloa Porphyry Cu (breccia pipes)Cerro Mazomique Sinaloa IOCG (hematite-magnetite-Au-Cu)Bella Esperanza Sonora Porphyry Cu-MoAurora Sonora Porphyry Cu-MoOjos Negros Baja California Ni-Co in ultramafic-mafic complexSan Francisco (Autlán) Jalisco Mn lacustrine sedex

Eocene (55.8–33.9 Ma)

El Chacón Sonora Orogenic AuLa Caridad Antigua Sonora HS Cu-Au epithermalEl Maguey Guanajuato W-Bi skarnMalpica Sinaloa Porphyry Cu-MoSierra Pinta Sonora Orogenic AuTamcapa Sinaloa Porphyry CuLa Guadalupana Chihuahua Porphyry W-Cu-Mo

Sonoita (El Desierto) Sonora W-Cu-Ag pegmatiteLa Sorpresa Jalisco Porphyry CuCampo Bustamante Sonora Orogenic AuLa Colorada (Chalchihuites) Zacatecas Polymetallic skarn/IS epithermal veins and mantosEl Crestón Sonora Porphyry MoPilares Sonora Porphyry Cu-Mo-WLa Toñita Sonora Orogenic AuFlorida-Barrigón Sonora Porphyry Cu-Au-MoSatevó (Batopilas district) Chihuahua Porphyry Au-Ag-CuLa Guadalupana Chihuahua Porphyry W-Cu-MoLas Higueras Sinaloa Porphyry Mo-Cu Villa Juárez Hidalgo Fe-Cu-wollastonite skarnLa Negra Sonora Orogenic AuTlayca Morelos Cu skarnBadiraguato Sinaloa Porphyry Cu (breccia pipes)Jacala Hidalgo Ag-Au skarnLos Verdes (Yécora, Buenavista district) Sonora Porphyry W-Mo-CuLa Choya Sonora Orogenic Au

Santa Rosa (San Felipe de Jesús district) Sonora Polymetallic skarnLas Higueras Sinaloa Porphyry Cu-MoMala Noche Durango EpithermalDoña Marcia Sonora Orogenic AuPiedras Verdes Sonora Cu in supergene enrichment zonePalo Verde (El Tungsteno) Sonora W skarnBatopilas Chihuahua IS Ag deep epithermal or subepithermalTronco de Peras Durango Polymetallic skarnCharcas San Luis Potosí Polymetallic skarnBaviacora Sonora W-Cu-Mo skarnCerro Colorado Chihuahua Porphyry Cu-MoSan Martín Zacatecas Polymetallic skarn/deep IS Ag epithermal or subepithermal

TABLE 1.

Deposit State Deposit type

Page 17: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 17/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 217

59.9 K-Ar Cited in Singer et al. (2005) and Valencia-Moreno et al. (2006, 2007); one of the largest Cudeposits in North America

59.5 K-Ar Cited in Clark and Damon (1979), Valencia-Moreno et al. (2006, 2007)59.2–58.6 K-Ar Cited in Bustamante (1978), Valencia-Moreno et al. (2006, 2007)

59.1 K-Ar Cited in Clark and Damon (1979), Valencia-Moreno et al. (2006, 2007)59.0 K-Ar* Bastida et al. (1988)

59.0–56.0 ?* Cited in Bustamante (1978), Clark and Damon (1979)58.5–57.7 (skarn) K-Ar Cited in Bustamante (1978), Clark and Damon (1979), Valencia-Moreno et al. (2006, 2007)

58.0–55.7 K-Ar, Re-Os Cited in Singer et al. (2005), Barra et al. (2005)<58.0 K-Ar* Cited in Carrillo et al. (1984)57.9 Ar/Ar Camprubí et al. (2006a)57.4 K-Ar Cited in Valencia-Moreno et al. (2006, 2007)57.3 130Te-130 Xe Srinivasan et al. (1972)57.2 K-Ar Cited in Clark and Damon (1979), Singer et al. (2005), Valencia-Moreno et al. (2006, 2007)57.0 K-Ar* Bastida et al. (1988)57.0 Re-Os Cited in Singer et al. (2005) and Barra et al. (2005)

57.0–53.0 (porphyry) Re-Os Cited in Bustamante (1978), Clark and Damon (1979), Singer et al. (2005), Barra et al. (2005)54.1–52.2 (skarn) ?*

56.8 K-Ar Cited in Singer et al. (2005), Valencia-Moreno et al. (2006, 2007)56.8–51.3 K-Ar, U/Pb, Re-Os Cited in Singer et al. (2005), Barra et al. (2005); one of the largest Cu deposits in North America56.8–45.7 K-Ar Clark et al. (1979), Mead et al. (1988), Valencia-Moreno et al. (2006, 2007)

56.4 Ar/Ar Mead et al. (1988)56.2 K-Ar Cited in Valencia-Moreno et al. (2006, 2007)<56.1–55.7 Ar/Ar Mead et al. (1988)

<56.0 K-Ar* Henry (1985), cited in Clark and Damon (1979)<56.0? ? Bustamante and Soberanes (1978)

55.9 K-Ar Cited in Valencia-Moreno et al. (2006, 2007)55.8–53.5 K-Ar Cited in Salas (1975) and Valencia-Moreno et al. (2006, 2007)

Late Cretaceous to early Paleocene Cited in Ortiz-Hernández et al. (2006)Paleocene? Zantop (1978)

55.54 Ar/Ar Iriondo (2001), Iriondo et al. (2005)55.0 U/Pb Valencia et al. (2008)55.0 K-Ar* Zárate del Valle (1986)54.1 Re-Os Barra et al. (2005)54.8 K-Ar Araux-Sánchez et al. (2001)54.1 K-Ar* Damon et al. (1983)

54.0–51.5 K-Ar Cited in Mead et al. (1988) and Valencia-Moreno et al. (2006, 2007)

54.0 K-Ar Mead et al. (1988)54.0 ? Cited in Valencia-Moreno et al. (2006, 2007)53.68 Ar/Ar Iriondo (2001), Iriondo et al. (2005)

53.6 (skarn) K-Ar Cited in Valencia-Moreno et al. (2006, 2007)53.5 K-Ar Cited in Valencia-Moreno et al. (2006, 2007)

~53.0 ? Cited in Valencia-Moreno et al. (2006, 2007)52.43 Ar/Ar Iriondo (2001), Iriondo et al. (2005)52.4 K-Ar Cited in Singer et al. (2005), Valencia-Moreno et al. (2006, 2007)51.6 K-Ar Cited in Valencia-Moreno et al. (2006, 2007)51.0 K-Ar Clark et al. (1979)51.0 K-Ar* Cited in Bustamante (1978), Clark and Damon (1979)

51.0–49.0 K-Ar Flores et al. (2003)50.24 Ar/Ar Iriondo (2001), Iriondo et al. (2005)50.0? ? Alam-Hernández et al. (2000)

50.0–49.0 K-Ar* Henry (1985), cited in Clark and Damon (1979)<50.0 K-Ar* Flores-Castro et al. (2006)49.6 K-Ar Cited in Valencia-Moreno et al. (2006, 2007)

49.59–46.26 Ar/Ar Iriondo (2001), Iriondo et al. (2005)

49.5 K-Ar Cited in Salas (1975); Mead et al. (1988)49.0 K-Ar Cited in Valencia-Moreno et al. (2006, 2007)48.9 K-Ar* Clark et al. (1979)

48.55–45.81 Ar/Ar Iriondo (2001), Iriondo et al. (2005)48.4 K-Ar Cited in Castro-Escárrega (2007)48.1 Ar/Ar, Rb-Sr Mead et al. (1988)

48.0–45.0? K-Ar* Cited in Wilkerson et al. (1988)47.2 K-Ar* Clark et al. (1979)46.6 ? Cited in Megaw et al. (1988)

46.6–35.2 K-Ar Mead et al. (1988)46.3 K-Ar Cited in Valencia-Moreno et al. (2006, 2007)

46.2 (skarn), K-Ar, Re-Os Damon et al. (1983), unpublished data by V.A. Valencia and A. Camprubí (2013)44.0–43.7 (molybdenite)

(Cont.)

Age (Ma) Dating method Selected references and comments

Page 18: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 18/44

218  ANTONI CAMPRUBÍ 

San Marcos Caldera Chihuahua Continental volcanogenic-hydrothermal UGüeras de Fernando Durango Ag-Au epithermalReal de Ángeles Zacatecas IS polymetallic epithermalCandelero Sinaloa LS Au-Ag epithermalLa Vasca Coahuila Polymetallic skarnCerro Mercado Coahuila Fe skarn (IOCG clan)Tibor Michoacán Fe skarn (IOCG clan)Sierra Peña Blanca Chihuahua Continental volcanogenic-hydrothermal U

Topia Durango IS(?) polymetallic epithermalZimapán Hidalgo Polymetallic skarnGavilán Durango Porphyry AuEl Burro – La Minita Coahuila Fe-Co-Ni skarns (IOCG clan?)Talamantes Chihuahua Mn veins (epithermal?)Las Fraguas (Poliutla) Guerrero LS Hg-Cu epithermalBismark Chihuahua Polymetallic skarnEl Melón Chihuahua Epithermal (?) barite veinsSan Francisco Sonora Orogenic AuSan Dimas (Tayoltita) Durango IS-LS Ag-Au and polymetallic epithermalProvidencia – Concepción del Oro Zacatecas Porphyry Zn/polymetallic skarnReal de Guadalupe Guerrero IS polymetallic epithermal

La Negra (Maconí) Querétaro Polymetallic skarnOrión Durango EpithermalGuanaceví Durango LS-IS polymetallic epithermalCerro Panuco Coahuila Porphyry Cu-MoPromontorio Durango EpithermalIndé – Cieneguillas (Cerro Blanco) Durango Intrusion-related fluorite and polymetallic deposit (skarn?)Taxco Guerrero Polymetallic skarn/IS epithermalDolores Chihuahua LS Au-Ag epithermalJilotlán Jalisco IS-LS polymetallic epithermalSierra del Gallego Chihuahua Continental volcanogenic-hydrothermal ULos Reyes Chihuahua Cu-W skarnPlaceres del Oro – Pinzán Morado – Piedra Imán Guerrero LS Ag-Au epithermal and Fe veins (IOCG clan?)Mapimí Durango Polymetallic skarnSombrerete Zacatecas Sn veins & IS polymetallic epithermalPlacer de Guadalupe (La Virgen – Puerto del Aire) Chihuahua Continental volcanogenic-hydrothermal U-Au-REE-Cd-Ge-VSan Ignacio (Villa Ahumada) Chihuahua Polymetallic skarns and REE-bearing carbonatitesEl Cuarenta Durango Disseminated Hg (shallow epithermal?)Sierra de Aconchi Sonora Rare element pegmatites/continental volcanogenic-hydrothermal

U depositsReal de Catorce San Luis Potosí IS polymetallic epithermalSanta María de la Paz San Luis Potosí Polymetallic skarn/IS deep epithermal or subepithermalInguarán Michoacán Porphyry Cu-WBuenavista de Cuéllar Guerrero Fe skarn (IOCG clan)Zacatecas Zacatecas IS to LS, polymetallic to Au-Ag epithermal Villa Pasqueira (La Venada) Sonora W-Cu-Mo skarnEl Anteojo Chihuahua Fe skarn (IOCG clan)Huautla Morelos IS polymetallic epithermalLos Ángeles Chihuahua LS Au-Ag epithermalConcheño Chihuahua LS Au-Ag epithermalLa Ciénega Durango IS-LS polymetallic epithermal

Oligocene (33.9–23.03 Ma)La Verde Michoacán Porphyry Cu-Co Velardeña Durango Polymetallic skarn/IS epithermalTemascaltepec (La Guitarra) State of México LS-IS polymetallic epithermalChorreras Chihuahua Fe skarn (IOCG clan)

Aguachile Coahuila Fluorite-Be in ring-dike complex (skarn?)La Azul (Taxco district) Guerrero Fluorite mantos, inconclusive type (MVT? epithermal?)

San Isidro Michoacán Porphyry CuRancho Blanco Chihuahua Fe veins (IOCG clan)Río Verde Durango Rhyolite-hosted Sn depositsLa Pasta Chihuahua IS Zn epithermal(?)La Morena Coahuila IS polymetallic epithermalPuerto Rico (Sierra del Carmen) Coahuila Pb-Zn MVT or skarn(?)Hércules Coahuila Magnetite-apatite deposit (IOCG clan)Tepetate – Villa de Arriaga San Luis Potosí Rhyolite-hosted Sn veins and gem-quality topaz depositsEl Tigre Sonora LS Au-Ag epithermalMulatos Sonora HS Au-Cu epithermal

TABLE 1.

Deposit State Deposit type

Page 19: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 19/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 219

<46.0–45.0 K-Ar* Cited in Ferriz (1981), Reyes-Cortés et al. (2009)<45.5 K-Ar* Clark et al. (1977)45.2 FT Cited in Pearson et al. (1988)

<44.6 K-Ar*, U/Pb* Henry et al. (2003)44.59 Ar/Ar* Iriondo et al. (2004)44.3? Ar/Ar* Molina-Garza et al. (2008)44.0 K-Ar* Bastida et al. (1988)

44.0–37.3 (32.0 ± 8) FT, K-Ar*, U/Pb George-Aniel et al. (1991) and Fayek et al. (2006) provided preliminary wide-dispersion data(in parenthesis)

43.8 K-Ar Loucks et al. (1988)43.6–40.8 K-Ar* Vassallo et al. (2008)

>43.2 K-Ar Warnaars and Girón-Garay (1999)42.51–41.13 Ar/Ar* Iriondo et al. (2004)

<42.5 K-Ar* Clark et al. (1979)<42.3 K-Ar* Pantoja-Alor (1986)~42.0 K-Ar* Baker and Lang (2003)<41.88 Ar/Ar* Iriondo et al. (2004)~41.0 Ar/Ar* Pérez-Segura et al. (1996)

40.9, 38.6–31.9 K-Ar Enríquez and Rivera (2001), Henry et al. (2003)40.0–38.8 K-Ar, Rb-Sr Cited in Megaw et al. (1988)40.0–37.0 K-Ar* Albinson and Parrilla (1988)

39.6–38.1 K-Ar* Vassallo et al. (2008)39.5 K-Ar* Clark et al. (1979)<38.7? K-Ar* Clark et al. (1979)38.64 Ar/Ar Iriondo et al. (2003)38.5 K-Ar Fries and Rincón-Orta (1965)38.4 Ar/Ar* Tuta et al. (1988)

38.0–36.0? K-Ar* Cited in Camprubí et al. (2003)38.0–35.0? Cited in Overbay et al. (2001)

<38.0 K-Ar* Grajales-Nishimura and López-Infanzón (1984)>37.0 K-Ar* Bockoven (1981)36.6 K-Ar Cited in Valencia-Moreno et al. (2006, 2007)

<36.6 K-Ar* Pantoja-Alor (1986)36.1 ? Cited in Megaw et al. (1988)36.0 K-Ar* Albinson (1988)

36.0–35.0 U/Pb González-Reyna (1956), Fries (1962)36.0 Ar/Ar Nandigam et al. (1999), Nandigam (2000)

36.0–32.0 K-Ar*, Ar/Ar* Tuta et al. (1988)<35.9 (pegmatites) K-Ar* Cited in Martínez et al. (1979)

35.7? K-Ar* Tuta et al. (1988), Gunnesch et al. (1994)37.0–35.7 (skarn) Ar/Ar*, U/Pb Tuta et al. (1988), Gunnesch et al. (1994), Pinto-Linares et al. (2008)

35.6 K-Ar Cited in Valencia-Moreno et al. (2006, 2007)35.5–34.7 Ar/Ar Meza-Figueroa et al. (2003)35.5–30.8 K-Ar Cited in Camprubí and Albinson (2007)34.8–34.1 Ar/Ar Mead et al. (1988)

34.7 K-Ar* Clark et al. (1979)34.5–33.0? Ar/Ar*, U/Pb* González-Torres et al. (2008)

<34.0? Cited in Albinson et al. (2001)<34.0? Cited in Albinson et al. (2001)<34.0? K-Ar* de la Garza et al. (2001)

33.4 K-Ar Cited in Valencia-Moreno et al. (2006, 2007)33.4–30.2 K-Ar, FT Cited in Gilmer et al. (1988)33.3–32.9 Ar/Ar Camprubí et al. (2003)

33.13–32.69 Ar/Ar* Iriondo et al. (2004)

~33.0 ?* Takeda (1977)33.0–30.0 (U-Th)/He Ages by Pi et al. (2005); these authors advocate an epithermal model, whereas Tritlla and

Levresse (2006) advocate an MVT model32.5 K-Ar Cited in Valencia-Moreno et al. (2006, 2007)

<32.34 Ar/Ar* Iriondo et al. (2004)32.3 Rb-Sr Huspeni et al. (1984)

<32.77 Ar/Ar* Iriondo et al. (2004)<32.71 Ar/Ar* Iriondo et al. (2004)32.0? K-Ar* Takeda (1977) describes it as a skarn, and González-Sánchez et al. (2009) as an MVT deposit32.0? ? Cited in Corona-Esquivel and Henríquez (2004)

32.0–30.0? Aguillón-Robles et al. (1994)<31.7 K-Ar* Montaño (1986)

<31.6–>25.0 K-Ar*, Ar/Ar* Staude (2001)

(Cont.)

Age (Ma) Dating method Selected references and comments

Page 20: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 20/44

220  ANTONI CAMPRUBÍ 

La Perla – La Negra Chihuahua Magnetite-apatite deposit (IOCG clan)

Cerro de Mercado Durango Magnetite-apatite deposit (IOCG clan)El Tovar Durango EpithermalPeñón Blanco Durango LS-IS Au-Ag epithermalLa Ochoa Durango Rhyolite-hosted Sn depositsCerro de los Remedios Durango Rhyolite-hosted Sn depositsSan Carlos Chihuahua Polymetallic skarn/IS epithermalRío Verde (El Realito, El Refugio) Guanajuato Fluorite MVT

Guanajuato Guanajuato IS to LS polymetallic to Au-Ag epithermal

San Francisco del Oro – Santa Bárbara – Parral Chihuahua Polymetallic skarn/IS epithermalGavilanes – La Negra Durango LS-IS Ag-Au and polymetallic epithermalSan Nicolás Tamaulipas Polymetallic skarn to IS epithermal (?)

Dinamita Durango Fe-Cu skarn (part of the IOCG clan?)América-Sapiorís Durango Rhyolite-hosted Sn depositsEl Sauzal Chihuahua HS Au-Cu epithermalEl Presón – Leones Chihuahua HS Au-Cu epithermal Villa de Arriaga San Luis Potosí Rhyolite-hosted Sn deposits Villa de Reyes San Luis Potosí Rhyolite-hosted Sn depositsTlayca Morelos Au-Ag skarnLas Cuevas San Luis Potosí Fluorite MVT

Sain Alto Zacatecas Hg veins (shallow epithermal?)Fresnillo Zacatecas IS polymetallic epithermalAvino-Zaragoza Durango Rhyolite-hosted Sn depositsAhualulco San Luis Potosí Rhyolite-hosted Sn-Hg deposits and polymetallic (epithermal?)

 veinsOcampo Chihuahua LS Au-Ag epithermalAjoya Sinaloa LS-IS polymetallic epithermalPueblo Nuevo Durango EpithermalSan Carlos Tamaulipas REE-bearing skarns and pegmatites (alkaline magmatism)El Rincón (La Gloria) Tamaulipas Au-Ag-Co-Ni-Cr skarns

Lluvia de Oro Sonora Orogenic AuEl Pilote Coahuila Fluorite skarnGuadalcázar San Luis Potosí Granite-hosted Sn-W greisen, partly skarn, late Ag-Hg veins

(epithermal?)

Comanja de Corona Guanajuato IS-LS polymetallic epithermalCusihuiriachic Chihuahua IS polymetallic & HS Au-Cu epithermalSan José de Gracia Sinaloa Ag-Au epithermalSan Martín Querétaro LS Au-Ag epithermalLa Encantada Coahuila Polymetallic skarnBacís Durango LS-IS polymetallic epithermalEl Oro-Tlalpujahua State of México/Michoacán IS-LS polymetallic epithermalCanoas Zacatecas Hg breccias and veins (shallow epithermal?)Santa Eulalia Chihuahua Polymetallic skarnNaica Chihuahua Polymetallic skarnEl Rodeo Durango LS(?) Ag-Au-fluorite epithermalSan Antonio Sonora LS(?) Au epithermalLos Vasitos Sinaloa Fe skarn (IOCG clan)Cinco Minas (Hostotipaquillo) Jalisco LS(?) Au-Ag epithermalEl Picacho Tamaulipas Th-Y-Nb-REE carbonatitesLa Colorada Sonora LS(?) Au epithermalGranaditas (Arizpe) Sonora Volcanogenic U veinsConeto de Comonfort Durango Sn veins in rhyolites, Ag veins (IS epithermal?)

Monterrey Formation (San Hilario) Baja California Sur Sedimentary phosphoritesMiocene (23.03–5.33 Ma)Lluvia de Oro Durango LS Au-Ag epithermalAlmagres Veracruz Synsedimentary shallow submarine FeMagdalena basin (Mesa del Álamo) Sonora Lacustrine-hydrothermal boratesAltagracia Oaxaca LS-IS(?) Ag-Au epithermalBolaños Jalisco IS-LS polymetallic epithermalTubutama basin Sonora Lacustrine-hydrothermal boratesSan Pedro Analco Jalisco LS(?) Au-Ag epithermalEl Indio-Huajicori Nayarit LS(?) Au-Ag epithermalEl Zopilote Nayarit IS(?) polymetallic epithermalEl Pinabete Nayarit IS(?) polymetallic epithermal

TABLE 1.

Deposit State Deposit type

Page 21: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 21/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 221

31.5–27.2? K-Ar* Cited in Labarthe-Hernández and Tristán-González (1988), Corona-Esquivel and Henríquez(2004)

31.4–29.7 FT, Ar/Ar, (U-Th-Sm)/He Lyons (1988a), Iunes et al. (2002), McDowell et al. (2005)31.3 K-Ar* Clark et al. (1979)31.3 Ar/Ar Unpublished data by A. Camprubí and A. Iriondo (2013)

31.1–29.6 K-Ar* Tuta et al. (1988)31.1–28.6 K-Ar* Tuta et al. (1988)

31.0 (skarn) ? Immitt (1985)<30.9–30.5 K-Ar* Tuta et al. (1988) seem to advocate a skarn model, whereas surveys carried out by this paper’s

author suggest a fault-controlled MVT deposit30.7–27.0, 30.2, 28.47 K-Ar, Ar/Ar, Rb/Sr Gross (1975), Saldaña-Alba (1991), Randall et al. (1994); unpublished data by A. Camprubí,

A. Iriondo, and T. Uysal (2013)30.6–26.5 K-Ar Grant and Ruiz (1988)

<30.5 K-Ar* Clark et al. (1977), Henry et al. (2003)<30.45? Ar/Ar* It is assumed that the nearby diorite dated by Iriondo et al. (2003) is likely associated with the

mineralizations30.4 K-Ar* Clark et al. (1979)30.3 Rb-Sr Huspeni et al. (1984)

<~30.0 ? Sellepack (1997), Feinstein and Goodell (2007)<~30.0 K-Ar* Padilla-Palma et al. (1995)

30.0–29.0 K-Ar* Torres-Hernández et al. (2001)30.0–29.0 K-Ar* Torres-Hernández et al. (2001)

30.0 Pb- α  Pantoja-Alor (1983)29.9–29.2? K-Ar* Vassallo et al. (2008); Tuta et al. (1988) favor a skarn model, whereas Levresse et al. (2003)

advocate an MVT model; largest fluorite mine in the world29.7–28.4 K-Ar* Tuta et al. (1988)

29.7 Ar/Ar Velador et al. (2010); largest active silver mine in the world29.6 Rb-Sr Huspeni et al. (1984)

<29.3 K-Ar Tristán-González et al. (2009)

<29.2–27.8 K-Ar* Clark et al. (1979); Swanson and McDowell (1985)<29.1? K-Ar* Henry et al. (2003)

29.0 K-Ar* Clark et al. (1979)28.8 K-Ar Cepeda-Dávila et al. (1975)28.78 Ar/Ar* It is assumed that the nearby monzonite dated by Iriondo et al. (2003) is likely to be associated

 with the mineralizations28.5 Ar/Ar Rothemund et al. (2001)28.4 U/Pb Levresse et al. (2006, 2011)

28.3–28.0 Ar/Ar*, K-Ar* Tuta et al. (1988)

>28.2 K-Ar* Nieto-Samaniego et al. (1996)28.1 K-Ar Clark et al. (1979)27.6 K-Ar* Clark et al. (1979)27.5 K-Ar* Cited in Camprubí et al. (2003)27.4 ? Cited in Megaw et al. (1988)27.0 K-Ar Albinson et al. (2001)27.0 K-Ar Cited in Albinson et al. (2001)

27.0–26.3 K-Ar*; Ar/Ar* Tuta et al. (1988)26.6 ? Cited in Megaw et al. (1988)

26.2–25.9 ? Cited in Megaw et al. (1988)<26.0 ? Cited in Clark et al. (1977)

<25.59? Ar/Ar* Iriondo et al. (2004)25.3 K-Ar* Clark et al. (1979)

24.5–21.65 Ar/Ar Unpublished data by A. Camprubí, A. Iriondo, and M. López-Martínez (2013)24.0–17.5? K-Ar Ramírez-Fernández et al. (2000)23.8–22.5 Ar/Ar Zawada et al. (2001)

>23.5 Ar/Ar* González-León et al. (2000)Oligocene to Miocene Ponce-Sibaja and Gutiérrez-Tapia (1978)

Late Oligocene to early Miocene Alatorre (1988)

23.0–20.0 K-Ar* Cited in Camprubí et al. (2003)<23.0 Pollen Martínez-Hernández et al. (2001)

22.7–21.5 K-Ar* Miranda-Gasca et al. (1998)<22.31–7.09 (~15–16?) Ar/Ar* Iriondo et al. (2004)

22.2 K-Ar* Lyons (1988b)22.0 K-Ar* Gómez-Caballero et al. (1980)

≤~21.0? Nieto-Obregón et al. (1981)≤~21.0? Ar/Ar* Cited in Camprubí et al. (2003) **≤~21.0? Ar/Ar* Cited in Camprubí et al. (2003) **≤~21.0? Nieto-Obregón et al. (1981)

(Cont.)

Age (Ma) Dating method Selected references and comments

Page 22: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 22/44

222  ANTONI CAMPRUBÍ 

Nuevo Milenio Nayarit LS(?) Au-Ag epithermalLos Nopalitos Nayarit Sn veins in rhyolitesLos Espejos – Las Cruces Nayarit Sn veins in rhyolitesMezquital del Oro Zacatecas LS(?) Au-Ag epithermalSan Martín de Bolaños Jalisco IS polymetallic epithermalPachuca-Real del Monte Hidalgo IS-LS polymetallic epithermal

Angangueo Michoacán IS-LS polymetallic epithermalLa Yesca Nayarit IS(?) polymetallic epithermalSanta María del Oro Nayarit LS(?) Au-Ag epithermalCebadillas (Compostela) Nayarit LS Au-Ag epithermalCerro Colorado Chiapas IOCG clan?Ixtacamaxtitlán (Sotoltepec – Tuligtic) Puebla Porphyry Au/polymetallic skarn/LS epithermalSantiago Zacatepec Mixes Oaxaca Polymetallic skarnSan Antonio Sonora Orogenic AuCaballo Blanco Veracruz Porphyry Cu-Au / HS Au-Ag epithermal

Tzitzio Michoacán LS Ag-Au epithermalEl Carmen Chiapas IOCG clan?Cerro Colorado – Cerro Bustillo Chiapas IOCG clan?Tatatila – Las Minas Veracruz Polymetallic and Fe-Cu-Au skarns (IOCG clan) / stacked by

IS polymetallic epithermal?Sinaí – La Escondida (Sierra Pinta) Baja California HS-IS-LS(?) Au-Ag-Cu epithermalSan Felipe Baja California HS-IS-LS(?) Ag-Au epithermalEl Boleo Baja California Sur Shallow Cu-Co-Zn and Mn sedex

Tolimán Chiapas Porphyry Cu Xoconostle Michoacán HS Au-Ag-Hg epithermalSierra de Chapultepec Zacatecas Sn veins in rhyolite domesEl Naranjo – Los Ángeles (Sombrerete district) Zacatecas Sn-W-In-Ga veins in rhyolite domesEl Gavilán Baja California Sur Shallow Mn sedex(?)El Chico Hidalgo IS-LS(?) polymetallic epithermalLucifer Baja California Sur Shallow Mn sedex

Pliocene–Present (5.33–0 Ma)

Sierra Peña Blanca Chihuahua Supergene oxidation and reduction eventsIxhuatán Chiapas Porphyry Au-Ag and Cu-Au-Mo, and alkaline LS Au epithermalSanta Fe Chiapas Cu-Au skarn

Punta Mita Nayarit Hg-Ba in shallow submarine vents, passive marginLa Victoria Knoll Baja California Hg-Ag-Cr in Fe-Mn submarine crustsGuaymas basin Offshore Sonora / Cu-Co-Zn-Ni-Au-Ag VMS

Baja California SurConcepción Bay Baja California Sur Mn-Ba-Hg in coastal vents, passive margin21°N East Pacific Rise Offshore Nayarit / Cu-Co-Pb-Ag-Cd-Mn-Ba “Cyprus-type” VMS

Baja California SurPopocatépetl stratovolcano Puebla / State of México HS Au-Ag-Cu mineralizationColima stratovolcano Jalisco Au in high-temperature sublimatesPathé – Yexthó (Tecozautla) Hidalgo / Querétaro LS kaolinite epithermal in geothermal fieldLos Azufres Michoacán LS polymetallic-bearing epithermal fluids in geothermal fieldBarra de Colotepec – Mazunte – La Colorada – Oaxaca Ti(-REE-Ag) fluvial and beach placersLa Ventosa

América-Sapiorís Durango Sn and topaz alluvial and fluvial placersConeto de Comonfort Durango Sn-Au alluvial and fluvial placersGuadalcázar San Luis Potosí Sn-Au-Ag alluvial and fluvial placersPlacer de Guadalupe Chihuahua Au-U alluvial and fluvial placersEl Tambor Sinaloa Au alluvial and fluvial placers

El Boludo Sonora Au alluvial and fluvial placers Xicotepec de Juárez Puebla BauxitesTenejapa Chiapas Bauxites

Notes: Asterisks (*) denote age determinations on rocks hosting or postdating rocks of ore deposits and are to be interpreted accordingly; age determinations were carried out in host and overlying rocks (*), and are considered to yield reasonable age ranges for the formation of the epithermal deposits, correlatingtheir age with the local geology (**); Aguilar-Nogales (1987a), based on several geochronological determinations in country rocks, suggested a preferentialrange of ages for epithermal deposits in Nayarit between 19.55 and 12.60 Ma; in many deposits, the cited authors did not assign the deposits to the types notedhere; the author of this paper did so by interpreting the data provided in the existing publications; also, in many cases the authors used the ages they obtainedfor purposes other than characterizing ore deposits and may not refer to them explicitly; thus, again, the author of this paper must be held responsible for theinterpretation given here; the “Laramide” age spans ~80 to ~40 Ma in northwest Mexico (Late Cretaceous to Eocene; Staude and Barton, 2001); some of the“recent” deposits, none of them dated so far, may have started forming during the Pliocene-Pleistocene or before; the term “polymetallic” stands for metalassociations that generally include base (Zn-Pb-Cu ± Cd ± Sn) and precious (Ag-Au) metals; different metal associations are otherwise noted

TABLE 1.

Deposit State Deposit type

Page 23: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 23/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 223

≤~21.0? Speculative age**≤~21.0? Speculative age≤~21.0? Speculative age≤~21.0? Ar/Ar* Cited in Camprubí et al. (2003)

20.8 FT Cited in Scheubel et al. (1988)20.3 K-Ar McKee et al. (1992); historically, largest silver mine in the world, long inactive and now possibly

surpassed by Fresnillo<20.0 Ar/Ar Corona-Chávez et al. (2001)<19.5 Ar/Ar*, K-Ar* Cited in Aguilar-Nogales (1987a,b), Camprubí et al. (2003)**<19.5 Ar/Ar*, K-Ar* Cited in Aguilar-Nogales (1987a,b), Camprubí et al. (2003)**<19.0 ? Cited in Motolinia-García and Zaldívar-Ruiz (1980)18.0 ? Cited in Clark and Fitch (2009)

17.8 (porphyry Au) Ar/Ar Tritlla et al. (2004); presently under intensive exploration for epithermal veins17.52–17.33 Ar/Ar* Unpublished data by A. Camprubí and M. López-Martínez (2013)

17.32 Ar/Ar Iriondo (2001), Iriondo et al. (2005)17.0–7.48 K-Ar* Negendank et al. (1985), Ferrari et al. (2005a); the likeliness of one of the ages is disputed, and

no clear association can be established between the ores and the dated rocks<14.0 K-Ar* Cited in Benítez et al. (1977)

13.0–12.0 K-Ar* Cited in Clark and Fitch (2009)<12.7 K-Ar* Montesinos and Virgen-Magaña (1983)

11.0? (intrusive rocks) K-Ar* Negendank et al. (1985); presently under intensive exploration

<9.5 K-Ar* Gastil et al. (1975), Krummenacher et al. (1975)~9.0 ? Cited in Clark and Fitch (2009)

7.1–6.76 (Cu-Co-Zn), Ar/Ar, magneto- Holt et al. (2000), Conly et al. (2011)7.0 (Mn) stratigraphy, K-Ar

5.75 K-Ar Cited in Valencia-Moreno et al. (2006, 2007)<5.45 K-Ar Pasquarè et al. (1988)

Miocene? Bracho-Valle (1960)Miocene? Bracho-Valle (1960)

Middle Miocene to Pliocene Camprubí et al. (2008)Late Miocene Nolasco-Vargas and Huitrón-Esquivel (1977)

Late Miocene to early Pliocene Cited in Camprubí et al. (2008)

3.1, 1.6, 0.085, 0.041 U series Fayek et al. (2006)~2.8 K-Ar, Ar-Ar Miranda-Gasca et al. (2005)

2.29–2.24 K-Ar Cited in Valencia-Moreno et al. (2006, 2007)

Recent Prol-Ledesma et al. (2002)Recent Hein et al. (2005)Recent Lonsdale et al. (1980)

Recent Canet et al. (2005), Camprubí et al. (2008)Recent Bischoff et al. (1983)

Recent Larocque et al. (2007)Recent Taran et al. (2000)Recent Aguilera (1907)Recent González-Partida and Torres-Rodríguez (1997)Recent Carranza-Edwards et al. (1988)

Recent Smith et al. (1957), Fabregat (1966)Recent Smith et al. (1957), Fabregat (1966)Recent Fries and Schmitter (1948)Recent González-Reyna (1956)Recent González-Reyna (1956)

Recent Wilson et al. (2009)Recent Wing-Morales (1987)Recent Wing-Morales (1987)

(Cont.)

Age (Ma) Dating method Selected references and comments

Abbreviations: FT = fission track dating, HS = high sulfidation, IOCG = iron oxide copper-gold deposits, IS = intermediate sulfidation, LS = low sulfidation,MVT = Mississippi Valley-type deposits, sedex = sedimentary-exhalative deposits, VMS = volcanogenic massive sulfide deposits

Page 24: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 24/44

224  ANTONI CAMPRUBÍ 

time for epithermal deposits in Mexico, is unknown. East ofPachuca, the Ixtacamaxtitlán area in Puebla (Fig. 11) containssmall porphyry gold (dated at 17.8 Ma; Table 1) and skarndeposits overprinted by low sulfidation epithermal deposits.

Recent deposits and modern hydrothermal activity

The geothermal fields in central Mexico and the BajaCalifornia peninsula are modern analogues for shallow epi-thermal deposits. Epithermal metallic mineral associationshave been described from active volcanoes. Thus, Taran etal. (2000) reported gold as a sublimate in the Colima volcano

and Larocque et al. (2007) described metallic mineral associa-tions similar to those in high sulfidation epithermal deposits inpumice fragments of the Popocatépetl volcano. These includeenargite, tennantite, base metal sulfides, kaolinite, and alu-nite, among several other minerals.

In addition, erosional degradation of previously formeddeposits led to the formation of numerous alluvial, fluvial, andcoastal placer deposits of Au, Sn, U, and Ti throughout west-ern Mexico. See the exhaustive inventory of these deposits byClark and Fitch (2009), of which only the most significant arenoted in Table 1.

Special case: The Eastern Mexican alkaline province

The Eastern Mexican alkaline province formed betweenthe late Eocene and Recent times, and constitutes a beltthat runs subparallel to the Pacific margin along most of thesouthern Gulf of Mexico (Figs. 7, 8, 9, 11). It comprises somealkaline intrusive and volcanic complexes, the ages of whichdecrease southward (see ages for the magmatic complexesof the Eastern Mexican alkaline province by Sewell, 1968;Bloomfield and Cepeda-Dávila, 1973; Nelson and Gonzalez-Caver, 1992; Nandigam et al., 1999; Ramírez-Fernández et al.,2000; Iriondo et al., 2003, 2004; Ferrari et al., 2005a; Molina-Garza et al., 2008; Viera-Décida et al., 2009; see also fig. 7 inCamprubí, 2009). The Eastern Mexican alkaline province issituated up to >1,000 km east of the Pacific magmatic arc.It reflects a change in magmatism from subduction-relatedto intraplate in origin due to slab rollback and continentalextension (Ramírez-Fernández et al., 2000; Aranda-Gómezet al., 2005, 2007; Viera-Décida et al., 2009) related to thesouthward propagation of the Rio Grande rift. The prevail-ing tectonic regime in the region during the formation of oredeposits in the Eastern Mexican

Well-r ecognized f ault zones

00 550000 kkmm

FIG. 9. Distribution of magmatism and ore deposits emplaced during the early Miocene, before the establishment of the

Trans-Mexican volcanic belt (TMVB), at the Pacific convergent margin of Mexico. Modified from Camprubí (2009). Seeavailable ages in Table 1.

Well-recognized fault zones

Page 25: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 25/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 225

alkaline province was extensional (Labarthe-Hernández andTristán-González, 1988). In north-central (Chihuahua) andnortheastern Mexico (Tamaulipas) at the El Picacho and

 Villa Ahumada complexes, respectively, the Eastern Mexi-can alkaline province contains REE-bearing carbonatitesand carbonatite-related skarns, agpaites, and related alkalinemetasomatism (Rubinovich-Kogan et al., 1988; Nandigam etal., 1999; Nandigam, 2000; Ramírez-Fernández et al., 2000).Considering the occurrence of the assemblage of ore deposit

types at a regional level and the arguably strong affinitybetween carbonatites and the IOCG type (Groves and Viel-reicher, 2001; Gandhi, 2003; Pirajno, 2009), it is l ikely that theEastern Mexican alkaline province includes the IOCG-typegroup of deposits in eastern Chihuahua and western Coahuila(e.g., La Perla and Hércules; Table 1; Figs. 7, 8).

Further study may also explore the possible genetic linkbetween IOCG-type and epithermal deposits in northeasternChihuahua. In northern Coahuila, a group of Eocene to Oli-gocene polymetallic (Zn-Pb-Cu-Ag-Au) skarn deposits (Figs.7, 8) is related to calc-alkaline to alkaline magmatism as well,

and some of them are rich in Co-Ni-Cr assemblages. In thesouthern part of the Eastern Mexican alkaline province, in thePalma Sola region in Veracruz, an alkaline magmatic complex(dated at 17.0 and 7.48 Ma; Negendank et al., 1985; Ferrari etal., 2005a) hosts a group of porphyry and epithermal depositscurrently under exploration that are similar to those in thesouthwest Pacific (e.g., Richards and Kerrich, 1993; Richards,1995). In a tectonomagmatic context similar to the above, theporphyry-type, sulfide skarn, and low sulfidation alkaline epi-

thermal deposits (roscoelite-bearing and telluride-rich min-eral associations) in the Ixhuatán region in northern Chiapas(Miranda-Gasca et al., 2005) likely represent the southern-most end of the Eastern Mexican alkaline province metallo-genic belt.

Some deposits in central Mexico (porphyry and epithermaldeposits: Caballo Blanco, Tzitzio, Xoconostle) and in Chiapas(epithermal, porphyry, and sulfide skarn deposits: Ixhuatán,Santa Fe) are spatially associated with Recent magmatism ofeither the Trans-Mexican volcanic belt or the Eastern Mexi-can alkaline province (Table 1; Fig. 11).

FIG. 10. Geographic distribution of possibly Miocene epithermal deposits in southwest Mexico (after Aguilar-Nogales,1987a, b), Oligocene-Miocene ignimbrites of the latest magmatic pulses of the Sierra Madre Occidental in the area, andmajor structural features (simplified from Ferrari et al., 2005b, 2007a). Same symbols as in Figure 9.

Page 26: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 26/44

226  ANTONI CAMPRUBÍ 

 Late Miocene to Recent: The Gulf of California

The opening of the Gulf of California since the late Mio-cene is associated with the long-term continental extensionin the Sierra Madre Occidental (Ferrari et al., 2005b, 2007a).Both of these phenomena are part of the southern Basin andRange. The ore deposits in this area formed in a distinctivemetallogenetic context.

There is a group of epithermal deposits in northern BajaCalifornia (e.g., San Felipe), of Miocene to Pliocene age, which formed in association with the extensional regime ofthe Gulf of California (Clark and Fitch, 2009) rather than arcmagmatism like those in the Sierra Madre Occidental. Thesouthern half of the Baja California peninsula hosts the mostimportant sedimentary phosphorite deposits in Mexico in thelate Oligocene-early Miocene Monterrey Formation, whichformed in a relatively shallow submarine environment (Ala-torre, 1988). The tectonosedimentary setting for such phos-phorites (continental rifting) is similar to the one with which

the Kimmeridgian-early Berriasian phosphorite formationsin the proto-Gulf of Mexico are associated (e.g., Rogers etal., 1961). Phosphorites formed in both regions during earlystages of continental rifting.

Most of the deposits associated with the opening of the Gulfof California are Miocene to Pliocene, relatively shallow, syn-genetic (and partly epigenetic) stratiform deposits that can

 vaguely be ascribed to a shallow analogue to the sedex-typedeposits. This is the case of the synsedimentary Co-Cu-Zn-Mn El Boleo deposit and the Mn Lucifer deposit, which occurin the same stratigraphic section, and for which a hydrother-mal origin in a shallow submarine environment was proposed(Freiberg, 1983). Del Río-Salas et al. (2008) further refinedthe genetic model for these deposits to indicate an exhalative-intraformational environment restricted to isolated basins ina diagenetic stage related to the initial evolution of the Gulfof California. Other deposits on the western coast of the BajaCalifornia peninsula (Fig. 11) are Mn veins and stockworks

SSiieer rr raa PPiinnttaa

Ter r ane boundar ies

Volcanic r ocks (outcr ops)00 550000 kkmm

FIG. 11. Distribution of magmatism and ore deposits emplaced between the late Miocene (since the establishment of theTrans-Mexican volcanic belt) and the Present in the Pacific convergent margin of Mexico. Modified from Camprubí (2009).

Available ages are listed in Table 1. The Trans-Mexican volcanic belt (middle Miocene to Present) is shown in order to indi-cate the extent of older magmatic rocks that are covered by it. The Xoconostle and Tzitzio deposits are genetically associated with the Trans-Mexican volcanic belt, not with the volcanism of the Sierra Madre Occidental. The El Boleo and El Gavilándeposits in the Baja California peninsula are not associated with arc magmatism, but instead with continental extension, andthe Monterrey Formation is composed of sedimentary phosphorites. See magmatic centers of the Eastern Mexican alkalineprovince in figure 7 of Camprubí (2009).

  Terrane boundaries

 Volcanic rocks (outcrops)

Page 27: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 27/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 227

and other Mn oxide and barite deposits like those in the Con-cepción Peninsula (e.g., El Gavilán, Santa Rosa; Camprubí etal., 2008; Rodríguez-Díaz et al., 2010) and smaller depositsdistributed southward along the coast (Mapes-Vázquez, 1956;see fig. 1 in Camprubí et al., 2008). Moreover, small recentdeposits and coastal hydrothermal vents that precipitate min-

eral associations like those in the “fossil” deposits occur atConcepción Bay (Canet et al., 2005; Camprubí et al., 2008).Such vents are dominated by meteoric water (Prol-Ledesmaet al., 2004) and the classification of all these deposits in termsof deposit type is difficult, although they can be genericallyclassified as veins in rift and extensional settings.

Both shallow and deep hydrothermal systems are wide-spread at the Pacific passive margin (Hein et al., 2005) andin the Gulf of California, for example, the Cu-Co-Zn-Ni-Au-Ag vents in the Guaymas basin (Lonsdale et al., 1980), theHg-Ba-Tl vents in Punta Mita (Fig. 11; Prol-Ledesma etal., 2002), and in the black Cu-Co-Pb-Ag-Cd-Mn and whitebarite smokers on the East Pacific Rise at the 21°N latitude(Bischoff et al., 1983). The latter are forming in an actualisticCyprus-type VMS setting.

The Gulf of Mexico Megabasin

The Gulf of Mexico opened during the Middle-Late Juras-sic as a result of the breakup of Pangea (e.g., Anderson andSchmidt, 1983). Goldhammer (1999) and Padilla y Sánchez(2007) illustrated the evolution of the major basins in theregion. A thick sedimentary sequence with terrigenous, evap-oritic, and carbonate facies was deposited in the resulting pas-sive margin and horst-and-graben marginal subbasins. LateCretaceous orogenic episodes produced significant shorten-ing of most of the Mexican crust. The eastern front of theseorogenic episodes in Mexico is represented by the SierraMadre Oriental fold-and-thrust belt, and the deformationstyles attenuate easterly toward the passive margin of the Gulf

of Mexico. Today, part of the basin hosts oil and gas fields, butalso Mississippi Valley-type (MVT), red bed-hosted uranium(roll-front) or Cu(-Co-Ni) (Kupferschiefer-type) deposits,sedex Mn deposits, sedimentary phosphorites, sedimentaryiron oxide-hydroxide deposits of uncertain origin, and sulfurdeposits in cap rocks of evaporite diapirs (see fig. 4 in Cam-prubí, 2009). As described above, the carbonate formationsalso host skarn (mostly polymetallic) and other deposits asso-ciated with the magmatism of the Sierra Madre Occidental orthe Eastern Mexican alkaline province.

The mineral deposits of synsedimentary origin in thisregion are relatively scarce, although they have an outstandingeconomic significance. The giant Oxfordian-Kimmeridgian(?) Molango sedex Mn deposit constitutes the largest man-

ganese deposit in the Americas (Okita, 1992), with 35 Mt ofproven and over 250 Mt of probable reserves (from recentcorporate reports of Compañía Minera Autlán). Sedimen-tary phosphorites occur in the Kimmeridgian-Early Berria-sian La Caja and La Casita formations, and are distributedamong several locations in the states of Coahuila, Zacatecas,and San Luis Potosí (Soto-Pineda, 1960; Rogers et al., 1961;

 Vivanco-Flores, 1976). The epigenetic and (mostly) strata-bound deposit types in northeastern and eastern Mexico areMVT and red bed hosted (Kupferschiefer-type Cu-Co-Ni-etc. and roll-front uranium) deposits. These are distributed

in two preferential areas, both marginal epicontinental basins,in northeastern and east-central Mexico (Fig. 12). The latterregion contains several fluorite deposits, among which theLas Cuevas (the largest fluorite deposit in the world, with cur-rent reserves of ~50 Mt at 70% fluorite) and the Río Verdedeposits stand out. In addition, some celestine, strontianite,

Zn-Pb, barite, red bed-hosted Cu, and sulfur deposits occuraround the margins of the San Luis-Valles platform. Thesedeposits and their distribution are reminiscent of the distri-bution of similar deposits in northeastern Mexico. The MVTand red bed province of northeastern Mexico (González-Sánchez et al., 2007, 2009) formed in the basin that coveredmost of the present state of Coahuila and part of the neigh-boring states. The likeliness of this region to host MVT depos-its was early stated by Rosas-Solís and Sámano-Tirado (1983)

 when comparing the Appalachian structural features in theregion with those in the United States. Similar deposits arealso found along the Chihuahua trough (Caballero-Martínezand Sánchez-Rojas, 2011), northwest of the Coahuilan basins(Fig. 12). The basins in northeastern Mexico are composed ofhorsts (paleogeographic features as paleoislands and part ofthe North American mainland) and grabens (main depocen-ters) that controlled the sedimentary regimes and the result-ing sedimentary facies. Such faults later played a decisive role(1) in governing the deformation styles of the Sierra MadreOriental that led to the inversion of the basin, (2) as channel-

 ways for the mineralizing basinal brines for MVT and associ-ated deposits, and (3) as channelways for the emplacementof magmas that led to the formation of magma-related oredeposits of the Eastern Mexican alkaline province. González-Sánchez et al. (2007, 2009) catalogued over 200 occurrencesof MVT and associated deposits in this region. The epigen-etic deposits in this province show regional-scale mineralogi-cal zonation that allows the definition of the following, fromsouth to north: (1) the Southern MVT celestine subprovince,

associated with the Coahuila paleoisland and the Parras basin,(2) the Cu subprovince, which contains red bed Cu-(Co-Cr-Pb-Zn-U-fluorite) deposits hosted by clastic formations alongmajor faults, (3) the Central MVT Zn-Pb subprovince, partlyassociated with the San Marcos fault but also distributed inthe central part of the Sabinas basin, (4) the Central MVTbarite subprovince, located in the central part of the basin,and (5) the Northern MVT fluorite subprovince, associated

 with the Burro-Peyotes paleopeninsula and the La Babia fault(Fig. 12; see also fig. 2 in González-Sánchez et al., 2009).

The Celestine subprovince accounts for one the largestconcentrations of celestine known in the Earth’s crust, andthe most important deposits are found in the Sierra de Alami-tos and San Agustín districts onto the Coahuila paleoisland

(Fig. 12). Other important deposits are found in Múzquiz(barite), Buenavista (fluorite), Cuatro Palmas (fluorite, andsome U-rich bodies), Sierra Mojada (Zn-Pb), Reforma (Zn-Pb) in Coahuila, and Tres Marías (Zn-Pb-Ge) in Chihua-hua. The Southern Cu subprovince contains several Cu-richdeposits hosted by red beds of the Early Cretaceous SanMarcos Formation (mostly microconglomerates, sandstones,and arkoses) along the southern shoulder of San Marcos fault,in the Cuatrociénegas area, Coahuila. Very similarly, the Las

 Vigas Cu deposits in Chihuahua are hosted by red beds of theLas Vigas Formation (mostly sandstones), which occurs along

Page 28: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 28/44

228  ANTONI CAMPRUBÍ 

G GU ULLF F 

O OF F 

M ME EX  XI IC CO O 

00 440000 kkmm

MMAATTAAMMOORROOSS

CCOORRPPUUSS CCHHRRIISSTTII

SSAANNTTAA FFEE

BBRROOWWNNSSVVIILLLLEE

HHOOUUSSTTOONN

     N     N    e    e   w   w     M     M    e    e   x   x     i     i    c    c    o    o

     T     T    e    e   x   x    a    a    s    sGG r r aa nntt ss mm ii nnee r r aa ll bb eell tt

LLeeee ((11997788)),, LLuuddwwiigg  eet t aal l .. ((11998844)),,GGaabbeellmmaann aanndd BBooyyeer r ((11998888))

AALLBBUUQQUUEERRQQUUEE

OOUUA ACCHHIITTA A--MMA ARRA ATTHHOONNOORROOGGEENNIICC BBEELLTT

((PPEENNNNSSYYLLVVA ANNIIA ANN))

Page 29: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 29/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 229

the southern shoulder of the La Babia fault. These depositsare akin to those in Trans-Pecos Texas (Price et al., 1988) andmay share a common genesis with them. The formation ofsome MVT deposits in northeastern Mexico predated oro-genic deformation whereas others postdated it. The mineral-izing fluids are thought to be basinal brines and fluid flow was

partially driven by either lithostatic pressure or orogenic com-pression. Mineralization formed mostly strata-bound deposits within evaporites or reefal limestones (González-Sánchez etal., 2007, 2009). The Oligocene La Coma uranium red bed-hosted (roll-front) deposits occur in a context similar to that ofthe deposits of the Cu subprovince, although their formation

 was probably diachronic, as part of the Gulf Coast uraniumprovince of southern Texas (Finch, 1996).

Regional Features That Govern the Emplacement ofOre Deposits: Controversies and Paradigms

The role of the basement on magmatism:Which ones are failed hypotheses?

Much has been said about the influence of the Guerrerocomposite terrane with regard to the chemistry of ore depos-its and mineralizing fluids. It has been suggested that theabundance of ore deposits in western Mexico is due to the“fertility” of the basement, to the point that the Mesozoic

 VMS deposits have been traditionally considered as precon-centrations of metals contained in Cenozoic deposits (e.g., deCserna, 1971). This hypothesis is still evident in several recentgeologic-mining maps edited by the Mexican Geological Sur-

 vey. In general, this scenario is unlikely, due to the followingreasons:

1. The distribution of Mesozoic VMS deposits is relativelylimited, as they are largely confined to the southern portionof the Guerrero composite terrane in two belts (east and west

boundaries of the terrane), whereas Cenozoic magmatic-hydrothermal deposits are vastly widespread and their occur-rence does not mimic the extent of particular terranes, or thetypes or ages of the basement (compare Fig. 3 with Figs. 4,7, 8).

2. The distribution of Cenozoic deposits follows only thedistribution and migration of Cenozoic magmatism (as noticedby Damon et al., 1981; Clark et al., 1982; Camprubí, 2009)

and of reactivated fault zones (Nieto-Samaniego et al., 2005,2007), regardless of the occurrence of different terranes, orthe types or ages of the basement.

3. The available geochemical data for Cenozoic deposits(O, H, He isotopes and composition in volatile species in fluidinclusions; e.g., Albinson et al, 2001; Camprubí et al., 2006b;

Camprubí and Albinson, 2007) suggest the occurrence of mul-tiple likely sources for mineralizing fluids but also that metal-carrying hydrothermal pulses for epithermal deposits were so

 well endowed because of their juvenile magmatic component.

Sulfur isotope data show both sedimentary/metasedimen-tary and magmatic sources of sulfur as a critical metal ligandin most epithermal deposits (Camprubí and Albinson, 2006,2007, and references therein), and the relative amount of H2Sin solution correlates positively with the proportion of rela-tively oxidized magmatic fluids in inclusion fluids implied byN2 /Ar ratios (Albinson et al., 2001; Camprubí et al., 2006b;Camprubí and Albinson, 2007). However, the largest metallif-erous porphyry deposits in Mexico occur in regions underlainby the North American craton in northern Sonora and havestrong crustal geochemical signatures (see Valencia-Morenoet al., 2006, 2007), as would normally be expected for S-typegranitic rocks. The wide variety of metal associations of por-phyry-type deposits of Mexico (Cu, Cu-Au, Cu-Mo, W, Cu-W,Mo, etc.; Valencia-Moreno et al., 2006, 2007), along with theiremplacement in island or continental arcs and other locationstoward back-arc environments, suggests that their petrogen-esis ranges widely from intermediate, largely mantle derivedI-type rocks to highly evolved felsic, S-type (or peraluminous?)rocks characterized by considerable crustal assimilation.

The small El Pilote fluorite skarn is the only deposit wherethe case of a direct relationship to preexisting deposits maybe made (Levresse et al., 2006, 2011). Fluorite in this depositmay have been remobilized from strata-bound deposits simi-

lar to those in the nearby La Encantada MVT deposit.Reactivation of preexisting faults and metallogeny,as exemplified around the Mesa Central and

 in northeastern Mexico

Tectonostratigraphic terranes (Fig. 1) controlled theemplacement of ore deposits of the oceanic magmatic “realm”during the Mesozoic independently from each other and

FIG. 12. Distribution of Late Cretaceous(?) to Paleogene epigenetic strata-bound ore deposits of the sedimentary and dia-genetic realm in northwestern Mexico and southwestern United States (states of Chihuahua, Coahuila, Durango, Guanajuato,Nuevo León, San Luis Potosí, Tamaulipas, Zacatecas, New Mexico, and Texas). It encompasses the distinctive metallogenicprovinces of (1) northeastern Mexico, (2) the Chihuahua basin (Chihuahua trough), (3) the San Luis-Valles platform, (4) the

Rio Grande rift, (5) the Gulf Coast, (6) the Delaware basin, (7) the Grants mineral belt, and (8) a group of barite, celestine,and Zn-Pb mineralization in salt diapir caps. The latter represents some modern mineralization similar/analogous to MVTdeposits (though not strictly so) in diapir caps and other occurrences. Uranium deposits similar to those of the Grants min-eral belt also occur in Utah, Colorado, and Arizona, and are also hosted by the Morrison Formation (not shown in this map).Recent occurrences of mineralizations similar to MVT deposits are also included in this figure. The most abundant featuredtypes or styles of ore deposits are Mississippi Valley-type and associated barite, celestine, and fluorite deposits, epigeneticmetalliferous (Cu-Co-etc. and U) deposits hosted by clastic sequences, and speleogenetic sulfur deposits or deposits associ-ated with diapir caps. Sulfur and Zn-Pb MVT deposits within the late Paleozoic Delaware basin in Texas and New Mexico,related to the Late Cretaceous to Paleocene Laramide uplift, are shown for comparison due to their occurrence in an analo-gous sedimentary-diagenetic and orogenic setting, though host rocks are much older than those in northeastern Mexico andthe Chihuahua basin. Some sulfur thermogenic sulfate reduction-derived deposits occur in Texistepec and Jáltipan in south-ern Veracruz (diapir caps) and Guaxcamá in the San-Luis Valles platform. Also included in the map are the caverns of Sonora,Texas, in which celestine and metatyuyamunite occur.

Page 30: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 30/44

230  ANTONI CAMPRUBÍ 

irrespective of other geologic features. This resulted in a pat-tern for the distribution ore deposits in which most ultramafic-mafic complexes and VMS deposits occur near the terraneboundaries and their suture zones (Fig. 3). The configurationof the continental crust that resulted from terrane accretionand crustal thickening includes suture zones that ultimately

formed structurally weak areas susceptible to reactivation.The most evident case for the above is the southern border ofthe Mesa Central (the over 700-km-long San Luis-Tepehu-anes fault system), as it runs almost alongside the northeast-ern section of the suture zone between the Guerrerocomposite terrane and the Mexican paleomainland. The firstore deposits were emplaced at this suture following the shiftfrom extensional to compressional tectonomagmatic environ-ments in the Late Cretaceous (the La Parrilla skarn; Fig. 4).The ore deposits continued to be emplaced along the SanLuis-Tepehuanes fault system until the voluminous and cli-mactic magmatism of the Sierra Madre Occidental invadedthis region during the Oligocene and produced what arguablyconstitutes the most remarkable areal concentration of mag-matic-hydrothermal ore deposits in Mexico (Fig. 8). Addition-ally, several sulfide skarns or porphyry-type deposits (e.g.,Cerro San Pedro, Charcas, Santa María de la Paz, and Real deCatorce) formed along the N-S–running Taxco-San Miguel deAllende fault system, which constitutes the eastern boundaryof the Mesa Central. The rest of the crustal-scale fault-con-trolled areas that limit the Mesa Central (see Nieto-Samaniegoet al., 2005, 2007) also exert a control on the metallogeny. This

 would have occurred as magmatism focused in areas that (1) were already structurally weak, (2) contain penetrative dis-continuities in the basement, or (3) experienced long-lastingfaulting that generated channelways for the upflow of bothmagmas and mineralizing fluids, as suggested by Miranda-Gasca (2000) and Nieto-Samaniego et al. (2005, 2007). How-ever, once the magmatism retreated southward during the

early Miocene and the main terrane suture and fault systems were out of reach of the remaining magmatism, ore-formingprocesses ceased in the Mesa Central and focused in otherregions (Fig. 9).

The northern boundary of the Mesa Central, known as theSector Transversal de Parras of the Sierra Madre Oriental,constitutes a special case. Unlike the San Luis-Tepehuanesor the Taxco-San Miguel de Allende fault systems, the SectorTransversal de Parras is not currently associated with recentfaulting. In spite of this, several ore deposits, mostly sulfideskarns and associated deposits (e.g., Concepción del Oro,Mazapil, Mapimí, Velardeña), formed along this geologic fea-ture. The array of skarn deposits in the Sector Transversal deParras probably constitutes the most economically productive

skarn belt in Mexico, and it includes the recently discoveredgiant Peñasquito Au-Ag-Pb-Zn deposit (which is tentativelylabeled as a generic carbonate replacement deposit or car-bonate replacement deposits) in the Mazapil skarn district,Zacatecas. The emplacement of such deposits and their asso-ciated intrusions occurred largely during the Eocene and theOligocene, the most productive epochs for mineralizationalong the boundaries of the rest of the Mesa Central as well(Figs. 7, 8). The Sector Transversal de Parras may reflect thereactivation of part of the suture zone between the Centralterrane and the Oaxaquia subcontinental block during the

Sevier and Laramide orogenies and, therefore, the polyme-tallic sulfide skarn deposits (and also some iron oxide skarns)that occur along the Sector Transversal de Parras might be theresult of the forceful emplacement of their “parental” magmasthrough reactivated boundaries in the basement. Such reacti-

 vation is reflected by Paleozoic basement rocks of the Parras

region thrusting northward onto the Mesozoic sedimentarysequence (Tardy et al., 1974). This interpretation, albeitspeculative at this stage, would explain the concentration ofmagmatic-hydrothermal ore deposits, which occurs along thenarrow strip of land that delineates the Sector Transversalde Parras, whereas immediately north and south of it no oredeposits of magmatic-hydrothermal types are known for hun-dreds of km (Figs. 7, 8).

The reactivated faults of northeastern Mexico controlledthe emplacement of types of deposits that belong either tothe magmatic continental or to the sedimentary-diageneticrealms. These faults initially formed as the result of thebreakup of Pangea and the subsequent opening of the Gulf ofMexico, in a horst-and-graben arrangement. This is the case ofthe >1,000-km-long La Babia and San Marcos faults, and thesmaller faults that limit the La Mula or Monclova basementhighs within the Sabinas basin (Chávez-Cabello et al., 2005,2007). Such faults controlled (1) the distribution of depocen-ters and other sedimentary and paleogeographic features, (2)the geometry of the Sevier and Laramide deformation (andthe subsequent inversion of the basins), and (3) the preferen-tial emplacement sites of ore deposits. The outflow of basinalbrines and their interaction with evaporites, reefal carbonaterocks, or red beds generated MVT and associated celestine,fluorite, and barite deposits, and red bed-hosted Cu-Co-Ni-Zn and U deposits (González-Sánchez et al., 2007, 2009).The formation of magmatic-hydrothermal ore deposits of theEastern Mexican alkaline province in northeastern Mexicobegan in the Eocene (Fig. 12). Such deposits and their paren-

tal magmas were emplaced in association with the La Babiafault or near it (e.g., the La Encantada and La Vasca skarnsin northern Coahuila), with the faults that bound the Mon-clova paleoisland or basement high (e.g., the Cerro Pánucoporphyry Cu-Mo deposit in the Monclova intrusive belt,southeastern Coahuila) and, perhaps, the Tamaulipas paleo-archipelago (e.g., the cluster of REE-bearing carbonatite-related or polymetallic skarns and pegmatites at San Carlos,San Nicolás, and La Gloria in central Tamaulipas).

Discussion

Metallogenic epochs

Epithermal, skarn, porphyry, VMS, IOCG clan, and volcano-

genic tin and uranium deposits overlap in time and space dur-ing the Cenozoic and the Mesozoic (Fig. 13), and also partiallyoverlap deposits associated with ultramafic-mafic complexes.Other types of deposits, genetically unrelated to magmatism,such as orogenic gold (associated with the Laramide orog-eny), sedex, phosphorites, MVT, and red bed-hosted deposits(associated with sedimentation and basin dynamics in epi-continental environments), do not share the same time andspace distribution as the above types. Clark and Fitch (2009)determined six preferential time intervals in the metallogenichistory of the region: Proterozoic, Paleozoic, Permo-Triassic,

Page 31: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 31/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 231

Jurassic to Early Cretaceous, Late Cretaceous to early Mio-cene, and late Miocene to Present. However, the tempo-ral distribution of ore deposits in Mexico is heavily skewedtoward the Cenozoic (Fig. 13). During the Cenozoic, the agedistribution of ore deposits forms several peaks that reflectthe emplacement of specific types of deposits at specific times

and in well-defined regions. Besides the ill-defined Protero-zoic and Paleozoic metallogenic provinces (Fig. 2), severaltime-space slices can be determined for the Mesozoic andthe Cenozoic, based on the time and space distribution of oredeposits and on their dominant types: (1) pre-Middle Jurassicin southern and western Mexico, mostly deposits associated

 with ultramafic-mafic complexes, (2) Middle Jurassic to EarlyCretaceous in southwestern Mexico, mostly VMS deposits, (3)Cretaceous in southwestern Mexico and the Pacific margin,mostly deposits associated with ultramafic-mafic complexes,and some magmatic-hydrothermal iron oxide deposits, (4)Late Cretaceous to early Eocene in the northwestern andPacific areas, dominantly porphyry-type deposits, and also

 with magmatic-hydrothermal iron oxide deposits, and anincreasing amount of skarns with time, (5) Late Cretaceous tolate Eocene in northwest Mexico, with orogenic gold deposits,or around the Gulf of Mexico, which contains mostly Missis-sippi Valley-type, Cu-U-Co-Zn red bed, and Mn sedimentary-exhalative deposits, (6) early to late Eocene in northwesternand central Mexico, dominantly skarn and epithermal depos-its, (7) Oligocene virtually everywhere, dominantly epither-mal deposits, Sn veins, and greisen (in the southern portionof the Mesa Central) and some skarns throughout Mexico, (8)latest Oligocene to early Miocene in southwestern and cen-tral Mexico, dominantly epithermal, and (9) middle Mioceneto Present, with epithermal deposits in continental Mexico,sedex around the Gulf of California, and supergene/residualdeposits or placers throughout Mexico.

Most types of deposits and the vast majority of dated depos-

its are genetically associated with magmatism of differentcomposition and tectonomagmatic affinity, emplaced at dif-ferent crustal levels. Hence, it is no surprise that they mimicthe time and space distribution of magmatism. Orogenic golddeposits, although not associated with magmatism, occuralong the Pacific margin as a consequence of the orogeniesthat were accompanied by magmatism.

Overview of the Mexican “backbone” metallogeny

The metallogenic history of the Pacific convergent marginin Mexico can be documented from the Jurassic as a succes-sion of VMS-, porphyry-, skarn-, and epithermal-dominatedepochs that include several other types of associated depos-its. The magmatic arcs of this long-lasting convergent margin

 were first established on relatively thin continental or oce-anic crust under epicontinental seas. At that time, submarinehydrothermal activity led to the formation of VMS deposits.Once the general tectonomagmatic environment shiftedfrom extensional to compressional, porphyry and epithermaldeposit types followed. The occurrence of IOCG-type depos-its close to the subduction trench at the time of the tectonictransition and initial establishment of a continental arc isnoteworthy and similar to those in the Andean coastal ranges.IOCG deposits in Mexico are interpreted to have formed onrelatively thin crust. Available data suggest that they ceased

to form after crustal thickening through orogeny. This is sup-ported by the fact that from the Paleocene onward, IOCGdeposits no longer formed in southwestern-southern Mexico(compare Fig. 4 with Figs. 7, 8). Likewise, the cessation inthe formation of IOCG deposits in the Alisitos terrane duringthe Late Cretaceous (Fig. 4) is concurrent with a transition to

compressional tectonics. However, IOCG deposits continuedto form between the Eocene and the Oligocene, several hun-dreds of km inland (Figs. 7, 8), near the southern border ofthe Mesa Central (e.g., Cerro de Mercado in Durango) and inassociation with the Eastern Mexican alkaline province (e.g.,the La Perla-Hércules cluster in Chihuaha-Coahuila, Tatatila-Las Minas in Veracruz). These are similar to the Late Creta-ceous IOCG-type deposits Cerro del Oro and Guaynopa inSonora and Chihuahua (Table 1).

The occurrence of carbonate rocks in the path of the magmaupflow determined the formation of skarn-related deposits, as

 well as the style of mineralization and geometry of epithermaldeposits. Their mineralogy and metal content was seeminglydetermined to a large extent by the chemistry and metalendowment of mineralizing fluids (Albinson et al., 2001; Cam-prubí and Albinson, 2006, 2007; Camprubí et al., 2006b). Thetime and space distribution of magmatism and epithermaldeposits in the Sierra Madre Occidental and other contempo-raneous magmatic belts are generally coincident, especiallyduring the Oligocene-Miocene and around the suture zonesof the Guerrero composite terrane and the Mesa Central. Thissuggests “a prevailing deep-seated control on mineralizationthat links ore genesis to magmatic processes” (Simmons et al.,2005, p. 512). The known relationships (in space and time;genetic) between ore deposits suggest that they constitute asuite that encompasses porphyry-type deposits, sulfide orindustrial-mineral skarns (excluding, in principle, iron oxideskarns), and epithermal types, among others. Examples inMexico for such relationships are abundant (Deen and Atkin-

son, 1988; Gunnesch et al., 1994; Morales-Ramírez et al.,2003; Valencia et al., 2005, 2008; González-Partida and Cam-prubí, 2006; Camprubí and Albinson, 2007). These deposits,in turn, are associated with dominantly continental arc-relatedmagmatism that spans calc-alkaline (including both adake-likeand fluorine-rich magmas) to alkaline assemblages. The rela-tive abundance of porphyry-type deposits and the scarcity ofepithermal deposits during the Paleocene compared toEocene to Miocene may be attributed to deeper levels of ero-sion and lack of preservation potential for epithermal deposits(compare Figs. 4, 7). This is consistent with the distribution ofEocene deposits that are found at the bottom of deep canyonsthat were carved into the large volcanic pile in the centralSierra Madre Occidental (e.g., Tayoltita in Durango).

Unlike most metallogenic provinces with epithermal depos-its, high sulfidation epithermal deposits are uncommon in theMexican “backbone” region, despite the presence of econom-ically significant examples such as the deposits at El Sauzalin Chihuahua. Instead, intermediate sulfidation deposits aredominant, although most deposits have intermediate sul-fidation roots and early stages and low sulfidation tops andlate stages, thus developing different styles of mineralizationupon different magmatic settings (see fig. 14 in Camprubíand Albinson, 2007). These deposits are typically polyme-tallic and/or Ag rich and some are overprinting skarn and/or

Page 32: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 32/44

232  ANTONI CAMPRUBÍ 

Key to types of ore depositsVolcanogenic massive sulphides (VMS)

Porphyry-type metalliferous deposits

Non-iron oxide skarns

Epithermal deposits

Sub-epithermal deposits

Sn veins associated with topaz rhyolites, and Sn-W greisen-hosted deposits

Deposits of the IOCG ‘clan’ (including iron-oxide skarns)

Volcanogenic hydrothermal U deposits

Magmat ic -hydro thermal  

Miscellaneous types of deposits associated with mafic-ultramafic rocks

Rare-element deposits in carbonatites

Rare-element deposits in pegmatites

Ti-rich anorthosites

Magmatic 

Undifferentiated orogenic (shear zones), lode and mesothermal gold deposits

Metamorphic-orogenic 

Sedimentary phosphorites

Hydrothermal-sedimentary borate deposits

Sedimentary-exhalative (SEDEX) and shallow submarine/coastal exhalative deposits

Synsedimentary shallow submarine Fe deposits (non-exhalative?)

Placers

Sed imentary -synsed imentary  

Mississippi Valley type (Pb-Zn) and associated deposits (F, Sr, Ba)

Epigenetic-diagenetic-authigenic 

Residual  Supergene oxidation/enrichment, gossan

Bauxites

""PPeer rmmiissssiivvee”” aaggee r raannggee f foor r MMVVTT && r reedd--bbeedd ddeeppoossiittss iinn NNEE MMeexxiiccoo?

OOr rooggeenniicc / / llooddee ggoolldd ddeeppoossiittss iinn NNWW MMeexxiiccoo && SSiinnaallooaa ((&& SSWW MMeexxiiccoo????))

Mesa CentralMesa Central & Nayarit? ?

Sndeposits

LS to IS in SW & E-central MexicoHS to LS in NW MexicoI S- LS M es a Ce ntr al & S MS HS t o I S i n NW M ex ic o & Za ca te ca sIS-LS in Durango & SMS IS-LS

HS in the TMVBHS to IS-LS? around GC

Epithermaldeposits

Central Mexico NW towards central MexicoCentral MexicoChiapasPorphyrydeposits

Intersection between the SMO & SMOr, & in Sonora   Sonora, Sinaloa, ZacatecasCentral MexicoChiapas Intersection between the SMO & SMOr     Sonora & SW MexicoSkarndeposits

SW Mexico, Sinaloa, Baja California (Pacific margin)Durango & NE MexicoIOCG(?)

deposits

Isthmus of Tehuantepec

?

Sinaloa

VVoollccaannooggeenniicc UU ddeeppoossiittss iinn CChhiihhuuaahhuuaa

LLaasstt iiggnniimmbbr riittee f fllaar ree--uupp ((SSMMOO))

EExxtteennssiioonn aanndd r riif fttiinngg--oof ff f oof f tthhee

BBaaj jaa CCaalliif foor rnniiaa PPeenniinnssuullaa bbeeggiinnss

Cenozoic

PaleogeneNeogene

Quaternary

PaleoceneEoceneOligoceneMiocenePliocene

Pleistocene               H           o               l           o           c           e           n           e

         0    -

         1

         0    -

         2

         0    -

         3

         0    -

         4

         0    -

         5

         0    -

         6

         0    -

Phanerozoic

Cenozoic Mesozoic Paleozoic

Paleogene   Cretaceous Jurassic Triassic Permian Carboniferous Devonian SilurianOrdovician Cambrian

Phanerozoic Proterozoic Archean Hadean

Neo-proterozoic

Meso-proterozoic

Paleo-proterozoic

Paleo-archean

Meso-archean

Neo-archean

“Precambrian”

Eo-arch.

         0    -

(Ma)

(Ma)

(Ma)

CClliimmaaxx oof f iiggnniimmbbr riittee vvoollccaanniissmm ((SSMMOO))

         N       e       o       g       e       n       e

CCr ruussttaall eexxtteennssiioonn aalloonngg tthhee PPaacciif fiicc mmaar rggiinn

LLaar rggeesstt vvoollccaanniicc ppuullssee ((SSMMSS))

34567

RRiif fttiinngg iinn tthhee GGuullf f oof f CCaalliif foor rnniiaa LLaar raammiiddee OOr rooggeennyy

CCr ruussttaall eexxtteennssiioonn,, MMeexxiiccaann BBaassiinn aanndd RRaannggee

BBaassaallttiicc--aannddeessiittiicc vvoollccaanniissmm

oof f tthhee TTMMVVBB bbeeggiinnss

TTr raannss--MMeexxiiccaann VVoollccaanniicc BBeelltt ((TTMMVVBB))   UUppppeer r VVoollccaanniicc SSuuppeer rggr roouupp ((UUVVSS,, SSMMOO))

EEaasstteer rnn MMeexxiiccaann AAllkkaalliinnee PPr roovviinnccee – – TTr raannss--PPeeccooss

LLoowweer r VVoollccaanniicc CCoommpplleexx ((LLVVCC,, SSMMOO))

LLVVCC ((SSiinnaallooaa && BBCC))

Page 33: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 33/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 233

porphyry-type ores, whether they are stacked or telescoped.The abundance of intermediate sulfidation vs. the scarcityof high sulfidation epithermal deposits is probably a resultof the exceptionality of the volcanism of the Sierra MadreOccidental silicic large igneous province. The Sierra MadreOccidental is ranked third in terms of volume (>3.9 ×  105 

km3) and second in terms of magma flux (>22 km3 /kyr) amongsilicic large igneous provinces worldwide (Bryan, 2007). Suchexceptional magmatism, which is associated with the progres-sion of the Sevier and Laramide orogenies, slab flattening,and rapid subduction of the Farallon plate, accounts for therapid crustal thickening in Mexico during the Cenozoic. Thepossible connection between such magmatism and the domi-nance of intermediate sulfidation over high sulfidation depos-its remains hitherto an unresolved issue, at least in terms ofthe likely depth of emplacement of the respective “parental”intrusives (see hypothetical case scenarios in fig. 14 of Cam-prubí and Albinson, 2007). The establishment of a dominantlyextensional regime that resulted in the Basin and Range prov-ince after the Laramide orogeny, including the Great Basinin Nevada, the Gulf of California, the late phase extension ofthe Rio Grande rift and, possibly, the Eastern Mexican alka-line province, did not stop magmatic-hydrothermal mineral-izing processes but rearranged them, both geographically andgenetically. Interestingly, a case has been made for mutuallyexclusive low sulfidation and high and intermediate sulfida-tion epithermal deposits both in time and space in the Greatbasin of Nevada, within the dominantly extensional tectono-magmatic context of the Basin and Range province (John,2001; Sillitoe and Hedenquist, 2003). As mentioned above,this does not seem to be the case for epithermal deposits asso-ciated with the Sierra Madre Occidental (compressional tec-tonomagmatic context).

Future research topics and developments in

Mexican metallogenyThe regional metallogenic analysis above leaves manyunresolved issues that underline the need for further studies.Besides persevering with obvious general topics, several spe-cific lines of further research are listed below:

1. There is a need for detailed studies devoted to the docu-mentation of mineralogy, fluid geochemistry, and mechanismsof formation of ore deposits in general. This is the prerequi-site for correct identification of ore deposit types and for put-ting solid metallogenetic models together.

2. Geochronological determinations of ore deposits andgenetically associated magmatic rocks are necessary, along

 with petrogenetic determinations that may lead to more pre-

cise definition of tectonomagmatic environments. Although

this is needed to trace the formation of any type of deposit, itis especially necessary for comparatively poorly studied types,such as those included in the IOCG clan and ultramafic-maficcomplex–related deposits.

3. Similarly, it is necessary to establish a specific programfor geochronological determinations in mineral deposits of

the sedimentary-diagenetic “realm” in the region adjacent tothe Gulf of Mexico, as none of them has ever been properlydated.

4. In light of new age constraints, reevaluation of the roleof the Sevier and Laramide orogenies as plausible agents forthe mobilization of basinal brines as mineralizing fluids forMVT and associated deposits, including red bed-hosted Uand Cu-Co-Ni deposits, is needed. Likewise, geochronologi-cal determinations for the deformation in the Mexican foldand thrust belt are also necessary, both for the assessment ofthe mobilization of basinal brines and for the determinationof the evolution of this orogen, as it constitutes the southerntermination of the Sevier and Laramide orogenies.

5. Tectonomagmatic evaluation of the Eastern Mexicanalkaline province is also needed. It is likely due to intraplatemagmatism during continental extension and slab rollback.Or, perhaps, other hypothetical scenarios like back-arc con-tinental extension need to be invoked. Other deposits orregions would benefit from a similar analysis (e.g., IOCG-type deposits emplaced distally from the trench, such as thosein western Chihuahua and eastern Sonora during the LateCretaceous, compared to the trench-proximal “Andean”-typeIOCG deposits).

6. Further research assessing different metallogenic asso-ciations of VMS and other deposits in the Guerrero compos-ite terrane and in the basin separating it from the mainland(Arperos basin) during the Mesozoic is needed. In addition,the striking lack of VMS deposits in the northern half of theGuerrero composite terrane when compared to the southern

half needs to be addressed in terms of its tectonomagmaticaffiliation.7. The various types of deposits that are currently being

labeled generally as “IOCG” deposits should be differen-tiated, especially in terms of their elemental associations,modes of emplacement, depth and temperature of formation,and association with well-defined tectonomagmatic settings orother types of deposits (e.g., carbonatites).

8. The general prospectiveness or likeliness of the Trans-Mexican volcanic belt to host economic ore deposits hasbeen traditionally overlooked or underestimated. However,magmatism in the Trans-Mexican volcanic belt evolved fromintermediate to mafic, then to felsic and to compositionally

 variable magmatism (Gómez-Tuena et al., 2005, 2007) and,

therefore, it is a good candidate to host ore deposits of the

FIG. 13. Histographic representation for the occurrence in time of ore deposits in Mexico with known ages, based on Table1. The black boxes cover the time span obtained in individual deposits or overlying/underlying rocks. The time span of majorgeologic events was drawn from Henry et al. (2003), Ferrari et al. (2005b, 2007a), Morán-Zenteno et al. (2005, 2007), andCenteno-García et al. (2008). The two available analyses from Caballo Blanco (Veracruz) are shown in gray boxes for reasonsexplained in Table 1. Although this deposit is marked here as epithermal, it is not known whether the analyzed rocks weremore closely associated with epithermal or porphyry mineralization. Also in gray are MVT deposits with poorly understoodassociations with the dated rocks. Abbreviations: GC = Gulf of California, HS = high sulfidation, IS = intermediate sulfida-tion, LS = low sulfidation, LVC = Lower volcanic complex (SMO), MVT = Mississippi Valley-type deposits, SBC = SinaloanBatholithic Complex, SMO = Sierra Madre Occidental, SMOr = Sierra Madre Oriental, SMS = Sierra Madre del Sur, TMVB= Trans-Mexican volcanic belt, UVS = Upper Volcanic Supergroup (Sierra Madre Occidental).

Page 34: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 34/44

234  ANTONI CAMPRUBÍ 

calc-alkaline suite (e.g., Camprubí and Albinson, 2006, 2007).In fact, the ages of several ore deposits (mostly epithermal)are in accordance with the ages of magmatism in the Trans-Mexican volcanic belt (Fig. 11).

9. The actual distribution of orogenic gold deposits beyondthose in northern Sonora, especially along the southwestern

and southern edges of continental Mexico along the Pacificmargin and in the Baja California peninsula, should bedetermined.

10. The petrogenesis and metallogeny of known types ofore deposits that occur in association with fluorine-rich rhyo-lites, besides tin veins, and likeliness for the formation of oredeposit types unknown to date should be assessed (e.g., rareelement pegmatites).

Conclusions

1. Pre-Mesozoic metallogenic provinces and epochs inMexico are ill defined due to scarce data and relatively scarcerock assemblages of that age. The ore deposits that are knownto occur during such prolonged periods of time are (1) Pro-terozoic rare element pegmatites, Ti-bearing anorthosites,and Au-bearing gneisses, and (2) Paleozoic VMS (Besshitype?), sedex, and deposits associated with ultramafic-maficcomplexes. The metallogeny of Mexico from the Mesozoiconward can be explained through the geologic evolution oftwo major regions: the Pacific margin and the Gulf of Mexico.

2. The most prolific metallogenetic epoch at the Pacificmargin began early in the Mesozoic. It can be divided intooceanic and continental magmatic environments, and thechange from one to the other occurred between the late EarlyCretaceous and the earliest Late Cretaceous. As dominantlyextensional settings shifted to compressional ones (mostlyLaramide orogenic pulses) and the continental crust thick-ened, the magmatic arcs (and deposit types) shifted from oce-anic to continental ones, which evolved into the Sierra Madre

Occidental silicic large igneous province. This is paralleled bya change from dominantly submarine to subaerial ore deposittypes.

3. Between the Jurassic and the Early Cretaceous, thedominant environments for ore deposition are favorable for

 VMS and deposits associated with ultramafic-mafic com-plexes. Also, a few examples of porphyry-type and IOCG clandeposits occur during this period of time. The tectonomag-matic assemblages with which these deposits are associatedare dominantly island/primitive arcs, although the deposits inultramafic-mafic complexes comprise several other possiblesettings (see González-Jiménez et al., 2011).

4. Between the Late Cretaceous and the Paleocene theproduction of ore deposits shifted to types typical for con-

tinental arcs, such as porphyry, sulfide skarn, IOCG clandeposits, and a few epithermal deposits. As the continen-tal magmatism migrated eastward and attained its climacticmagma production and areal coverage between the Eoceneand the Oligocene, so did the ore deposits. However, the rela-tive abundance of the different types of deposits varies withtime, as the proportion of epithermal over porphyry-type andsulfide skarn deposits increased markedly during the Eoceneand, especially, the Oligocene. This is interpreted as a resultof decreasing degrees of erosion with time. Other types ofdeposits also formed during the Eocene and Oligocene, such

as volcanic rock-related uranium or tin vein deposits, greisen,and carbonatites.

5. Magmatism and metallogeny reached regions over 1,000km to the east of the subduction trench during the Paleogene,

 with several isolated magmatic centers along a narrow stripalong the Gulf of Mexico, known as the Eastern Mexican alka-

line province. The ore deposits in this region span Eoceneto relatively recent ages (younging southward), and includeREE-bearing carbonatite/skarn, volcanic rock-related ura-nium, and alkaline low sulfidation epithermal deposits.

6. During the early Miocene, before the establishmentof the Trans-Mexican volcanic belt, the magmatism of theSierra Madre Occidental retreated dramatically southwardand, almost exclusively, epithermal deposits formed in south-central Mexico. Subsequent continental extension and riftingthat drove the Baja California peninsula northwestward andinitiation of the Trans-Mexican volcanic belt magmatism gen-erated two genetically different arrays of ore deposit types,beginning in the late Miocene: (1) sedimentary phosphoritesand shallow analogues to sedex deposits that formed along the

 western coast of the Gulf of California, epithermal depositsthat formed near the northern limit of the Gulf, and active

 VMS examples that are forming along the oceanic ridge orin passive-margin basins; and (2) several epithermal deposits(plus other likely associated types) that have formed since thelate Miocene along the Trans-Mexican volcanic belt.

7. The second major metallogenic region of Mexico is the western rim of the Gulf of Mexico megabasin, which is consti-tuted by sedimentary-diagenetic deposits. These include Mis-sissippi Valley-type and associated industrial mineral deposits,red bed-hosted Cu-Co-Ni or U deposits, sedex Mn deposits,sedimentary phosphorites, and sulfur deposits in evaporitediapir caps. The vast majority of such deposits remain undated,although the giant Molango sedex Mn deposits correlate withOxfordian-Kimmeridgian (?) sequences, the sedimentary

phosphorites in northeastern and east-central Mexico corre-late with Kimmeridgian-early Berriasian sequences, and theformation of the epigenetic types of ore deposits in the regioncan be ascribed to pre-, syn-, or postorogenic epochs relativeto the Laramide (and Sevier?) orogeny. The Laramide oro-genic pulses are also the driving forces for the emplacementof orogenic gold deposits along the Pacific margin, especiallyin northwestern Mexico.

8. All of the types of ore deposits mentioned above havebeen subject to various degrees of erosion and/or supergeneprocesses since their hypogene emplacement. Such processesgenerated placer deposits (Au, Sn, Ti, etc.), gossans andsupergene enrichment zones, and small magnesite, bauxite,and laterite occurrences. Some of these secondary processes

occurred quite recently, whereas some occurred as early asthe Eocene, as in the case of the supergene enrichment zoneat Piedras Verdes, or the Pliocene, as with the oxidation andreduction events in U deposits at Sierra Peña Blanca.

9. Besides the ill-defined Proterozoic and Paleozoic metal-logenic provinces, no less than nine time-space slices can bedetermined for the Mesozoic and the Cenozoic: (1) ill-definedpre-Middle Jurassic, (2) Middle Jurassic to Early Cretaceous insouthwestern Mexico, (3) Cretaceous in southwestern Mexicoand the Pacific margin, (4) Late Cretaceous to early Eocenein the northwestern and Pacific areas, (5) Late Cretaceous to

Page 35: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 35/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 235

late Eocene in northwest Mexico, with orogenic gold deposits,or around the Gulf of Mexico, with sedimentary-diageneticdeposits, (6) early to late Eocene in northwestern and centralMexico, with porphyry-type and sulfidic skarns as the mostabundant types, (7) Oligocene all across Mexico, with epither-mal deposits as the most abundant type, (8) latest Oligocene

to early Miocene in southwestern and central Mexico, and (9)middle Miocene to Present in several locations, with eitherhypogene or supergene to sedimentary deposits.

10. It has been determined that, in some regions, theemplacement of types of ore deposits of either the mag-matic-hydrothermal or sedimentary-diagenetic “realms” wascontrolled by reactivated large-scale faults. The fault zonessouth of the Mesa Central may represent reactivated portionsof the sutures between the Guerrero composite terrane andthe mainland. Such fault zones arguably played a paramountrole as channelways for both the emplacement of magmas andhydrothermal fluids, as magmatism extended into these areas.The clearest example is the climactic magmatism of the Oli-gocene centered on the San Luis-Tepehuanes fault system,but this association is also evident for deposits as old as LateCretaceous in the same region. Other remarkable examplesof reactivated faults as effective channelways for the emplace-ment of ore deposits include those in northeastern Mexico(e.g., San Marcos and La Babia faults). Such faults governednot only sedimentation and deformation features, but also (1)the emplacement of deep basinal brines into shallower partsof the basin, thus resulting in the formation of MVT and redbed-hosted deposits between the Late Cretaceous and Paleo-cene, and (2) the emplacement of discrete magmatic centersand a variety of associated magmatic-hydrothermal ore depos-its of the Eastern Mexican alkaline province since the Eocene.

 Acknowledgments

Financial support for this study was received from the

PAPIIT-DGAPA program of UNAM through grants IN103807and IN110810, and from CONACYT (Basic Science Researchprogram) through grant 155662. Additional funding wasreceived from the internal annual research budget of theInstituto de Geología of UNAM. I also wish to thank severalcolleagues and friends with whom I had many fruitful discus-sions while writing this paper or during the process of sortingout the ideas that led to it, especially Elena Centeno-García,Michelangelo Martini, Elisa Fitz-Díaz, Tawn Albinson, Car-les Canet, Eduardo González-Partida, Francisco González-Sánchez, Martín Valencia-Moreno, Alexander Iriondo, AldoIzaguirre, José M. González-Jiménez, Luca Ferrari, Ángel F.Nieto-Samaniego, and Dante J. Morán-Zenteno. MassimoChiaradia initiated the earliest version of this paper, and he

is cordially rethanked for that. Also, Thomas Bissig is thankedfor his invitation to submit this paper; he and Alan Galleyare wholeheartedly thanked for their thorough reviews. Víc-tor Valencia and John Thompson also reviewed early andlate versions of the manuscript, respectively. This paper wasimproved considerably through these reviews.

REFERENCES

Aguilar-Nogales, M., 1987a, Volcanismo contínuo y yacimientos miocénicos eNayarit, in Memoria XVII Convención Nacional AIMMGM: México, D.F.,Asociación de Ingenieros de Minas, Metalurgistas y Geólogos de México(AIMMGM), p. 114–125.

——1987b, La Yesca, un yacimiento manganoargentífero con posibilidadesde aprovechamiento: Pachuca, Hidalgo, Consejo de Recursos Minerales,Unpublished report, 17 p.

Aguilera, J.G., 1907, Los kaolines de la Hacienda de Yexthó, Hgo.: Boletín dela Sociedad Geológica Mexicana, v. 3, p. 25–33.

Aguillón-Robles, A., Aranda-Gómez, J.J., and Solorio-Munguía, J.G., 1994,Geología y tectónica de un conjunto de domos riolíticos del OligocenoMedio en el sur del estado de San Luis Potosí, México: Revista Mexicanade Ciencias Geológicas, v. 11, p. 29–42.

Alam-Hernández, C., Vélez-López, J., and Hernández-Pérez, I., 2000, Textoguía carta magnética “Cuernavaca” E14-5, escala 1:250,000: Pachuca,Hidalgo, Consejo de Recursos Minerales, 20 p.

Alatorre, A.E., 1988, Stratigraphy and depositional environments of thephosphorite-bearing Monterrey Formation in Baja California Sur, Mexico:Economic Geology, v. 83, p. 1918–1930.

Albinson, T., 1988, Geologic reconstruction of paleosurfaces in the Sombre-rete, Colorada, and Fresnillo districts, Zacatecas state, Mexico: EconomicGeology, v. 83, p. 1647–1667.

Albinson, T., and Parrilla, L.V., 1988, Geologic, mineralogic and fluid inclu-sion characteristics of polymetallic veins, Real de Guadalupe mining dis-trict, Guerrero, Mexico: Economic Geology, v. 83, p. 1975–1984.

Albinson, T., Norman, D.I., Cole, D., and Chomiak, B.A., 2001, Controls onformation of low-sulfidation epithermal deposits in Mexico: Constraintsfrom fluid inclusion and stable isotope data,  in Albinson, T., and Nelson,C.E., eds., New mines and discoveries in Mexico and Central America:

Society of Economic Geologists Special Publication Series, v. 8, p. 1–32.Amaya-Martínez, R., 1977, Yacimientos de fierro en la porción central delEstado de Baja California Norte: Consejo de Recursos Minerales, VI Semi-nario Interno sobre Exploración Geológica-Minera, p. 361–376.

Anderson, T.H., and Schmidt, V.A., 1983, The evolution of Middle Americaand the Gulf of Mexico-Caribbean region during Mesozoic time: Geologi-cal Society of America Bulletin, v. 94, p. 941–966.

Anderson, T.H., and Silver, L.T., 1977, U-Pb isotope ages of granitic plutonsnear Cananea, Sonora: Economic Geology, v. 72, p. 827–836.

Andrade-Pulido, J., and Estrada-Barraza, S., 1965, Geología regional y yacimientos minerales de la porción noroeste del estado de Baja California,México: Pachuca, Hidalgo, Consejo de Recursos Naturales No Renovables,Unpublished report, 276 p.

Ángeles-Moreno, E., Sánchez-Martínez, S., Centeno-García, E., Mortensen,J.K., Solé-Viñas, J., Solís-Pichardo, G., and Schaaf, P., 2003, Geology, geo-chemistry and structural geology of the mylonitic complexes of the Teziutlánbasement, Puebla State, in eastern Mexico: Geological Society of AmericaAbstracts with Programs, Paper 9-2, https://gsa.confex.com/gsa/2003CD/ finalprogram/abstract_52417.htm.

Aranda-Gómez, J.J., Luhr, J.F., Housh, T.B., Valdez-Moreno, G., and Chávez-Cabello, G., 2005, El volcanismo tipo intraplaca del Cenozoico tardío en elcentro y norte de México: Una revisión: Boletín de la Sociedad GeológicaMexicana, v. 57, p. 187–225.

——2007, Late Cenozoic intraplate-type volcanism in central and northernMéxico: A review: Geological Society of America Special Paper, v. 422, p.93–128.

Araux-Sánchez, E., Vega-Granillo, R., and Enríquez-Minjárez, E., 2001,Características geológicas de un yacimiento mesotermal asociado a zonasde cizalla en el noroeste de Sonora,  in Acta de Sesiones XXIV Conven-ción Internacional AIMMGM: México, D.F., Asociación de ingenieros deMinas, Metalurgistas y Geólogos de México (AIMMGM), p. 25–32.

Arellano-Morales, R., Terán-Ortega, L.A., and Maraver-Romero, D., 2005,Monografía geológico-minera del estado de Baja California: Pachuca,Hidalgo, Consejo de Recursos Minerales, Publication M-22e, 170 p.

Baker, T., and Lang, J.R., 2003, Reconciling fluid inclusion types, fluid pro-

cesses, and fluid sources in skarns: An example from the Bismark deposit,Mexico: Mineralium Deposita, v. 38, p. 474–495.Barra, F., Ruiz, J., Valencia, V.A., Ochoa-Landín, L., Chesley, J.T., and

Zurcher, L., 2005, Laramide porphyry Cu-Mo in northern Mexico: Ageconstraints from Re-Os geochronology in molybdenite: Economic Geology, v. 100, p. 1605–1616.

Barton, M.D., Staude, J.M., Zürcher, L., and Megaw, P.K.M., 1995, Porphyrycopper and other intrusion-related mineralizationin Mexico: Arizona Geo-logical Society Digest, v. 20, p. 487–524.

Bastida, R., Mota-Mota, S., Bustamante, J., Núñez-Espinal, J., Vélez, J., Men-doza, S., and Zapata, R., 1988, Geología y geofísica del yacimiento ferríferode Los Pozos, mpio. de Arteaga, Michoacán: Pachuca, Hidalgo, Consejo deRecursos Minerales, Unpublished report, 42 p.

Page 36: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 36/44

Page 37: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 37/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 237

Centeno-García, E., Guerrero-Suastegui, M., and Talavera-Mendoza, O.,2008, The Guerrero composite terrane of western Mexico: Collision andsubsequent rifting in a supra-subduction zone: Geological Society of Amer-ica Special Paper, v. 436, p. 279–308.

Centeno-García, E., Busby, C., Busby, M., and Gehrels, G., 2011, Evolutionof the Guerrero composite terrane along the Mexican margin, from exten-sional fringing arc to contractional continental arc: Geological Society ofAmerica Bulletin, v. 123, p. 1776–1797.

Cepeda-Dávila, L., Padilla-Lara, P., and Bloomfield, K., 1975, El complejoalcalino de la Sierra de San Carlos, Tamaulipas, in Memoria XI ConvenciónNacional AIMMGM: México, D.F., Asociación de Ingenieros de Minas,Metalurgistas y Geólogos de México (AIMMGM), p. 333–373.

Cerecero-Luna, M., Montañez-Díaz de León, C., García-Ruiz, J.M., Rojo-Yaniz, R., Silos, S.A., and Servais, M., 1984, Proyecto rocas ultabásicas(Sinaloa). Informe Anual: Pachuca, Hidalgo, Consejo de Recursos Minera-les, Unpublished report, 37 p.

Chávez-Cabello, G., Aranda-Gómez, J.J., Molina-Garza, R.S., Cossío-Torres,T., Arvizu-Gutiérrez, I.R., and González-Naranjo, G.A., 2005, La falla SanMarcos: Una estructura jurásica de basamento multirreactivada del norestede México: Boletín de la Sociedad Geológica Mexicana, v. 57, p. 27–52.

——2007, The San Marcos fault: A Jurassic multireactivated basement struc-ture in northeastern México: Geological Society of America Special Paper, v. 422, p. 261–286.

Clark, K.F., and Damon, P.E., 1979, Metallization epoch during late Meso-zoic and Cenozoic magmatism, Sinaloa, Mexico: Pachuca, Hidalgo, Consejo

de Recursos Minerales, Unpublished report, 35 p.Clark, K.F., and de la Fuente, F.E., 1978, Distribution of mineralizationin time and space in Chihuahua, Mexico: Mineralium Deposita, v. 13, p.27–49.

Clark, K.F., and Fitch, D.C., 2009, Evolución de depositos metalicos entiempo y espacio en Mexico,  in Clark, K.F., Salas-Pizá, G., and Cubillas-Estrada, R., eds., Geología económica de México, II edición: Pachuca,Hidalgo, Servicio Geológico Mexicano, p. 62–133.

Clark, K.F., Carrasco, M.L., Damon, P.E., and Sandoval, H., 1977, Posiciónestratigráfica y distribución en tiempo y espacio de mineralización en laprovincia de la Sierra Madre Occidental, en Durango, México: Pachuca,Hidalgo, Consejo de Recursos Minerales, Unpublished report, 48 p.

Clark, K.F., Damon, P.E., Schutter, S.R., and Shaffiqullah, M., 1979, Mag-matismo en el norte de México en relación a los yacimientos metalíferos, in AIMMGM Memoria Técnica XIII: México, D.F., Asociación de Ingenierosde Minas, Metalurgistas y Geólogos de México (AIMMGM), p. 8–57.

Clark, K.F., Foster, C.T., and Damon, P.E., 1982, Cenozoic mineral depos-its and subduction-related magmatic arcs in Mexico: Geological Society ofAmerica Bulletin, v. 93, p. 533–544.

Conly, A.G., Scott, S.D., and Bellon, H., 2011, Metalliferous manganeseoxide mineralization associated with the Boléo Cu-Co-Zn district, Mexico:Economic Geology, v. 106, p. 1173–1196.

Corona-Chávez, P., Salgado-Soto, Z., Mennella, L., Ostroumov, M., Garduño-Monroy, V., and Bustos-Díaz, J., 2001, Modelo de transtensión y su relacióncon los depósitos hidrotermales del distrito minero de Angangueo: Boletínde Mineralogía, v. 14, p. 43–44.

Corona-Esquivel, R., and Henríquez, F., 2004, Modelo magmático del yacimiento de hierro Peña Colorada, Colima, y su relación con la explor-ación de otros yacimientos de hierro en México: Universidad NacionalAutónoma de México, Instituto de Geología, Boletín, v. 113, 100 p.

Cruise, M., Hitzman, M., and Lopez, G., 2007, Baja California, Mexico—newIOCG discoveries in a frontier district: Arizona Geological Society, Pro-ceedings of the Ores & Orogenesis Symposium, Abstract 97, p. 138–139.

Damon, P.E., Shafiqullah, M., and Clark, K.F., 1980, Geochronology of theporphyry copper deposits and related mineralization in Mexico: Pachuca,

Hidalgo, Consejo de Recursos Minerales, Unpublished report, 44 p.——1981, Evolución de los arcos magmáticos en México y su relación con lametalogénesis: Revista del Instituto de Geología U.N.A.M., v. 5, p. 131–139.

——1983, Geochronology of the porphyry copper deposits and relatedmineralization of Mexico: Canadian Journal of Earth Sciences, v. 29, p.1052–1071.

de Cserna, Z., 1971, Interpretación de la estratigrafía y tectónica de lasestructuras mineralizadas y posibilidades para la localización de nue- vos yacimientos en la región de Fresnillo, estado de Zacatecas: Pachuca,Hidalgo, Consejo de Recursos Minerales, Unpublished report, 35 p.

Deen, J.A., and Atkinson, Jr., W.W., 1988, Volcanic stratigraphy and oredeposits of the Moctezuma district, Sonora, Mexico: Economic Geology, v. 83, p. 1841–1855.

de la Garza, V., Olavide, S., and Villasuso, R., 2001, Geology and ore depos-its of the La Ciénega gold district, Durango, Mexico: Society of EconomicGeologists Special Publication Series, v. 8, p. 87–93.

Delgado-Argote, L.A., López-Martínez, M., York, D., and Hall, C.M., 1992,Geologic framework and geochronology of ultramafic complexes of south-ern Mexico: Canadian Journal of Earth Sciences, v. 29, p. 1590–1604.

Del Río-Salas, R., 2011, Metallogenesis for the Boléo and Cananea coppermining districts: A contribution to the understanding of copper ore depositsin northwestern México: Unpublished Ph.D. thesis, Tucson, Arizona, Uni- versity of Arizona, 259 p.

Del Rio-Salas, R., Ruiz, J., Ochoa-Landín, L., Noriega, O., Barra, F., Meza-Figueroa, D., and Paz-Moreno, F., 2008, Geology, geochemistry and Re-Ossystematics of manganese deposits from the Santa Rosalía basin and adja-cent areas in Baja California Sur, México: Mineralium Deposita, v. 43, p.467–482.

Del Rio-Salas, R., Ochoa-Landín, L., Ruiz, J., Eastoe, C., Meza-Figueroa,D., Zuñiga-Hernández, H., Mendívil-Quijada, H., and Quintanar-Ruiz, F.,2012, Geology, stable isotope, and U-Pb geochronology of the Mariquitaporphyry copper and Lucy Cu-Mo deposits, Cananea district, Mexico: Acontribution to regional exploration: Journal of Geochemical Exploration, v. 124, p. 140–154, doi: 10.1016/j.gexplo.2012.08.016.

Duncan, R., Hitzman, M., Ramos, J., Durán, E., Cruise, M., and Stein, H., 2011,The San Fernando prospect, Baja California, México: A cousin to Andeaniron oxide-copper-gold systems?, in Barra, F., Reich, M., Campos, E., andTornos, F., eds., 11th SGA Biennial Meeting—Let’s talk ore deposits: Antofa-

gasta, Chile, Ediciones Universidad Católica del Norte, v. 2, p. 503–505.Eguiluz de Antuñano, S., Amezcua Torres, N., and Aquino, A., 2004, Oro enel Gneis Novillo, Tamaulipas, México: Geos, v. 24, p. 291.

Elías-Herrera, M., Sánchez-Zavala, J.L., and Macías-Romo, C., 2000, Geo-logic and geochronologic data from the Guerrero terrane in the Tejupilcoarea, southern Mexico: New constraints on its tectonic interpretation: Jour-nal of South American Sciences, v. 13, p. 355–375.

Enríquez, E., and Rivera, R., 2001, Timing of magmatic and hydrothermalactivity at the San Dimas district, Durango, Mexico: Society of EconomicGeologists Special Publication Series, v. 8, p. 33–38.

Escalona-Alcázar, F.J., Delgado-Argote, L.A., Weber, B., Núñez-Peña, E.P., Valencia, V.A., and Ortiz-Acevedo, O., 2009, Kinematics and U-Pb dating ofdetrital zircons from the Sierra de Zacatecas, Mexico: Revista Mexicana deCiencias Geológicas, v. 26, p. 48–64.

Fabregat, F.J., 1966, Los minerales mexicanos 3. Durangita: UniversidadNacional Autónoma de México, Instituto de Geología, Boletín, v. 77, 113 p.

Fabregat-Guinchard, F.J., and Cortés-Guzmán, H., 1978, Observando lacarta metalogenética de México,  in VII Seminario Interno sobre Explor-ación Geológico-Minera: Pachuca, Hidalgo, Consejo de Recursos Minera-les, p. 797–824.

Fayek, M., Ren, M., Goodell, P., Dobson, P., Saucedo, A., Kelts, A., Utsu-nomiya, S., Ewing, R.C., Riciputi, L.R., and Reyes, I., 2006, Paragenesisand geochronology of the Nopal I uranium deposit, Mexico: Office of Civil-ian Radioactive Waste Management, Department of Energy, Yucca Moun-tain project, Technical report, 8 p.

Feinstein, M.N., and Goodell, P.C., 2007, The Cuenca de Oro, a pull-apartbasin hosting precious metal deposits along the re-activated Seri-Tahue ter-rane boundary: Eos Transactions AGU, v. 88(23), Abstract T41A-07, http://  www.agu.org/meetings/sm07/sm07-sessions/sm07_T41A.html.

Ferrari, L., Tagami, T., Eguchi, M., Orozco-Esquivel, M.T., Petrone, C.M.,Jacobo-Albarrán, J., and López-Martínez, M., 2005a, Geology, geochronol-ogy and tectonic setting of late Cenozoic volcanism along the southwesternGulf of Mexico: The Eastern Alkaline province revisited: Journal of Volca-nology and Geothermal Research, v. 146, p. 284–306.

Ferrari, L., Valencia-Moreno, M., and Bryan, S., 2005b, Magmatismo y tec-

tónica en la Sierra Madre Occidental y su relación con la evolución de lamargen occidental de Norteamérica: Boletín de la Sociedad GeológicaMexicana, v. 57, p. 343–378.

——2007a, Magmatism and tectonics of the Sierra Madre Occidental and itsrelation with the evolution of the western margin of North America: Geo-logical Society of America Special Paper, v. 422, p. 1–39.

Ferrari, L., Morán-Zenteno, D.J., and González-Torres, E., 2007b, Actualiza-ción y adaptación de la Carta Geológica de la República Mexicana, escala1:2,000,000 publicada por el Instituto de Geología de la UNAM y el Con-sejo de Recursos Minerales (Ortega-Gutiérrez et al., 1992): UniversidadNacional Autónoma de México (UNAM), Digital resources, http://www.geologia.unam.mx/igl/index.php/difusion-y-divulgacion/212-carta-geologica-de-la-republica-mexicana.

Page 38: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 38/44

238  ANTONI CAMPRUBÍ 

Ferriz, H., 1981, Geología de la caldera de San Marcos, Chihuahua: Univer-sidad Nacional Autónoma de México, Instituto de Geología, Revista, v. 5,p. 65–79.

Finch, W.I., 1996, Uranium provinces of North America: Their definition,distribution, and models: U.S. Geological Survey Bulletin, v. 2141, 18 p.

Flores, K., Ortiz, L.E., Vaquer, R., Esquivel, C., and Acevedo, O.A., 2003,Microtermometría y geobarometría de la fase fluida del skarn de VillaJuárez, estado de Hidalgo (México), in Memoria XXV Convención NacionalAIMMGM, v. 1: México, D.F., Asociación de Ingenieros de Minas, Metal-urgistas y Geólogos de México (AIMMGM), p. 309–318.

Flores-Aguillón, G., 2005, Yacimientos ferríferos en la Región Costera delPacífico comprendida entre Barra de Navidad, Jalisco y Lázaro Cárdenas,Michoaca n: Boletín Técnico Servicio Geológico Mexicano, v. 69, p. 2–27.

Flores-Castro, K., Ramírez-Cardona, M., Ortiz-Hernández, L.E., Canet, C.,Roy, P.D., and Cadena-Zamudio, J.L., 2006, Paragénesis de minerales deTe-Ag-Bi-Au en la mina Nuevo Encino Prieto, Jacala de Ledezma, Hidalgo,México: Boletín de Mineralogía, v. 17, p. 3–9.

Freiberg, D.A., 1983, Geologic setting and origin of the Lucifer manganesedeposit, Baja California Sur, Mexico: Economic Geology, v. 78, p. 931–943.

Fries, Jr., C., 1962, Lista de fechas geoquímicas reportadas para minerales yrocas mexicanas, con comentarios sobre su signigicado geológico y geotec-tónico: Universidad Nacional Autónoma de México, Instituto de Geología,Boletín, v. 64, p. 85–110.

Fries, Jr., C., and Rincón-Orta, C., 1965, Nuevas aportaciones geocronológi-cas y técnicas empleadas en el Laboratorio de Geocronometría: Universi-

dad Nacional Autónoma de México, Instituto de Geología, Boletín, v. 73,p. 57–134.Fries, Jr., C., and Schmitter, E., 1948, Los placeres de estaño de la región de

Guadalcázar, estado de San Luis Potosí: Comité Directivo para la Investig-ación de los Recursos Minerales de México, Boletín, v. 17, 50 p.

Gabelman, J.W., and Boyer, W.H., 1988, Uranium deposits in Todilto lime-stone, New Mexico: The Barbara “J” No. 1 mine: Ore Geology Reviews, v.3, p. 241–276.

Galaz, G., Keppie, J.D., Lee, J.K.W., and Ortega-Rivera, A., 2012, A high-pressure folded klippe at Tehuitzingo on the western margin of an extrusionzone, Acatlán Complex, southern México: Gondwana Research, v. 23, p.641–660, doi: 10.1016/j.gr.2012.04.011.

Gandhi, S.S., 2003, An overview of the Fe oxide-Cu-Au deposits and relateddeposit types,  in  CIM Montréal 2003 Mining Industry Conference andExhibition: Canadian Institute of Mining, Technical Paper, CD-ROMedition.

Garza-González, C., Camprubí, A., González-Partida, E., Arriaga-García, G.,and Rosique-Naranjo, F., 2006, Hydrothermal alteration and fluid inclu-sion study of the Lower Cretaceous porphyry Cu-Au deposit of Tiámaro,Michoacán, Mexico: Journal of Geochemical Exploration, v. 89, p. 124–128.

Garza González-Vélez, C.E., 2007, Metalogenia del pórfido de cobre de Tiá-maro, estado de Michoacán: Unpublished Ph.D. thesis, Juriquilla, Queré-taro, Mexico, Posgrado en Ciencias de la Tierra, Universidad NacionalAutónoma de México, 258 p.

Gastil, R.G., Philips, R.P., and Allison, E.C., 1975, Reconnaissance geology ofthe state of Baja California and reconnaissance geologic map of the state ofBaja California: Geologic Society of America Memoir, v. 140, 170 p.

George-Aniel, B., Leroy, J.L., and Poty, B., 1991, Volcanogenic uranium min-eralizations in the Sierra Pena Blanca district, Chihuahua, Mexico: Threegenetic models: Economic Geology, v. 86, p. 233–248.

Gilmer, A.L., Clark, K.F., Conde, J., Hernández, I., Figueroa, J.I., and Por-ter, E.W., 1988, Sierra de Santa María, Velardeña mining district, Durango,Mexico: Economic Geology, v. 83, p. 1802–1829.

Goldhammer, R.K., 1999, Mesozoic sequence stratigraphy and paleogeo-graphic evolution of northeast Mexico: Geological Society of America Spe-

cial Paper, v. 340, p. 1–58.Gómez-Caballero, A., Nieto-Obregón, J., Arriaga-Meléndez, H., and Car-rillo-Ramírez, P., 1980, Estudio geológico del depósito de boratos delárea de Tubutama, Sonora,  in VIII Seminario Interno sobre ExploraciónGeológico-Minera: Pachuca, Hidalgo, Consejo de Recursos Minerales, p.365–403.

Gómez-Tuena, A., Orozco-Esquivel, M.T., and Ferrari, L., 2005, Petrogé-nesis ígnea de la Faja Volcánica Transmexicana: Boletín de la SociedadGeológica Mexicana, v. 57, p. 227–284.

——2007, Igneous petrogenesis of the Trans-Mexican volcanic belt: Geologi-cal Society of America Special Paper, v. 422, p. 129–181.

González-Gallegos, A., Rodríguez-Palacios, F., and Mancillas-Gutiérrez, A.,1991, Informe de la visita de reconocimiento geológico-minero efectuada

a los cuerpos de fierro del ejido Cerro del Oro, Mpio. de Rayón, Son.:Pachuca, Hidalgo, Consejo de Recursos Minerales, Unpublished report,30 p.

González-Jiménez, J.M., Proenza, J.A., Camprubí, A., Centeno-García, E.,González-Partida, E., Griffin, W.L., O’Reilly, S.Y., and Pearson, N.J., 2011,Chromite deposits at Loma Baya: Petrogenesis and clues for the origin ofthe coastal Guerrero composite terrane in Mexico, in Barra, F., Reich, M.,

Campos, E., and Tornos, F., eds., 11th SGA Biennial Meeting—Let’s talkore deposits, v. 2: Antofagasta, Chile, Ediciones Universidad Católica delNorte, p. 606–608.

González-Jiménez, J.M., Camprubí, A., Griffin, W.L., Centeno-García, E.,O’Reilly, S.Y., Martini, M., Proenza, J.A., and Pearson, N.J., 2012, A Meso-zoic back arc in the Guerrero composite terrane (Mexico): Evidence tromtrace elements and Re-Os isotopes in podiform chromitites from LomaBaya: Geological Society of America, 108th Annual Meeting CordilleranSection, Juriquilla, Querétaro, Mexico, March 29–31, 2012, Proceedings,p. 72.

González-León, C.M., McIntosh, W.C., Lozano-Santacruz, R., Valencia-Moreno, M., Amaya-Martínez, R., and Rodríguez-Castañeda, J.L., 2000,Cretaceous and Tertiary sedimentary, magmatic, and tectonic evolution ofnorth-central Sonora (Arizpe and Bacanuchi quadrangles), northwest Mex-ico: Geological Society of America Bulletin, v. 112, p. 600–610.

González-Partida, E., 1993, Datos geoquímicos de roca total para la secuen-cia volcanosedimentaria en Cuale-El Rubí, Jalisco y Tierra Caliente, Guer-rero, México: Geofísica Internacional, v. 32, p. 249–259.

González-Partida, E., and Camprubí, A., 2006, Evolution of mineralizingfluids in the Zn-Pb-Cu(-Ag ± Au) skarn and epithermal deposits of the world-class San Martín district, Zacatecas, Mexico: Journal of GeochemicalExploration, v. 89, p. 138–142.

González-Partida, E., and Torres-Rodríguez, V., 1988, Evolución tectónicade la porción centro-occidental de México y su relación con los yacimientosminerales asociados: Geofísica Internacional, v. 27, p. 543–581.

——1997, Comportamiento geoquímico del sistema hidrotermal actual delcampo geotermico de Los Azufres, Michoacán: Reflexión sobre la evoluciónde fluidos para entender los yacimientos hidrotermales fósiles, in Memorias XXII Convención Nacional AIMMGM, v. 1: México, D.F., Asociación deIngenieros de Minas, Metalurgistas y Geólogos de México (AIMMGM),p. 185–198.

González-Reyna, J., 1956, Riqueza minera y yacimientos minerales deMéxico, 3rd edition: México, D.F., Banco de México, 497 p.

González-Sánchez, F., Puente-Solís, R., González-Partida, E., and Cam-prubí, A., 2007, Estratigrafía del Noreste de México y su relación con los

 yacimientos estratoligados de fluorita, barita, celestina y Zn-Pb: Boletín dela Sociedad Geológica Mexicana, v. 59, p. 43–62.González-Sánchez, F., Camprubí, A., González-Partida, E., Puente-Solís, R.,

Canet, C., Centeno-García, E., and Atudorei, V., 2009, Regional stratigra-phy and distribution of epigenetic stratabound celestine, fluorite, barite,and Zn-Pb deposits in the MVT province of northeastern Mexico: Minera-lium Deposita, v. 44, p. 343–361.

González-Torres, E., Morán-Zenteno, D., Chapela-Lara, M., Solé-Viñas, J., Valencia, V., and Pompa-Mera, V., 2008, Geocronología del campo vol-cánico de Huautla, Morelos y del sector norte-central de la Sierra Madredel Sur y sus implicaciones en el conocimiento de la evolución magmáticadel Cenozoico: Geos, v. 28, p. 352.

Grajales-Nishimura, J.M., and López-Infanzón, M., 1984, Nuevos datos K-Ar y petrografía de las rocas ígneas y metamórficas de la región sudoccidentaldel estado de Michoacán, in Resúmenes VII Convención Nacional: México,D.F., Sociedad Geológica Mexicana, p. 199.

Grant, G.J., and Ruiz, J., 1988, The Pb-Zn-Cu-Ag deposits of the Granadeña

mine, San Francisco del Oro-Santa Bárbara district, Chihuahua, Mexico:Economic Geology, v. 83, p. 1683–1702.Greig, R.E., 2012, Stratigraphy of the Tarachi South area, Sonora, Mexico:

Unpublished B.Sc. thesis, Vancouver, British Columbia, University of Brit-ish Columbia, 169 p.

Gross, W.H., 1975, New ore discovery and source of silver-gold veins, Guana- juato, Mexico: Economic Geology, v. 70, p. 1175–1189.

Groves, D.I., and Vielreicher, N.M., 2001, The Phalabowra (Palabora) car-bonatite-hosted magnetite-copper sulfide deposit, South Africa: An end-member of the iron oxide-copper-gold-rare earth element deposit group?:Mineralium Deposita, v. 36, p. 189–194.

Gunnesch, K.A., Torres del Ángel, C., Cuba Castro, C., and Sáez, J., 1994,The Cu-(Au) skarn and Ag-Pb-Zn vein deposits of La Paz, northeastern

Page 39: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 39/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 239

Mexico: Mineralogical, paragenetic, and fluid inclusion characteristics:Economic Geology, v. 89, p. 1640–1650.

Hein, J.R., Koschinsky, A., and McIntyre, B.R., 2005, Mercury- and silver-rich ferromanganese oxides, southern California borderland: Deposit modeland environmental implications: Economic Geology, v. 100, p. 1151–1168.

Henry, C.D., 1985, Geology and geochronology of the granitic batholith com-plex, Sinaloa, Mexico: Unpublished Ph.D. thesis, Austin, Texas, Universityof Texas at Austin, 158 p.

Henry, C.D., McDowell, F.W., and Silver, L.T., 2003, Geology and geochro-nology of the granitic batholithic complex, Sinaloa, México: Implicationsfor Cordilleran magmatism and tectonics: Geological Society of AmericaSpecial Paper, v. 374, p. 237–274.

Hernández-Barosio, A., 1989, Geología regional y prospección minera Au-FeEl Tibor: Pachuca, Hidalgo, Consejo de Recursos Minerales, Unpublishedreport, 48 p.

Hill, G.T., Campbell, A.R., and Kyle, P.R., 2000, Geochemistry of south- western New Mexico fluorite occurrences implications for precious metalsexploration in fluorite-bearing systems: Journal of Geochemical Explora-tion, v. 68, p. 1–20.

Holt, J.W., Holt, E.W., and Stock, J.M., 2000, An age constraint on Gulf ofCalifornia rifting from the Santa Rosalia basin, Baja California Sur, Mexico:Geological Society of America Bulletin, v. 112, p. 540–549.

Huspeni, J.R., Kesler, S.E., Ruiz, R., Tuta, Z., Sutter, J.F., and Jones, L.M.,1984, Petrology and geochemistry of rhyolites associated with tin mineral-ization in northern Mexico: Economic Geology, v. 79, p. 87–105.

Immitt, J.P., 1985 (1987), Mineralización tipo skarn y vetas epitermales enla región de la caldera de San Carlos, noreste de Chihuahua: UniversidadNacional Autónoma de México, Instituto de Geología, Boletín, v. 103, 77 p.

Iriondo, A., 2001, Proterozoic basements and their Laramide juxtaposition inNW Sonora, México: Tectonic constraints on the SW margin of Laurentia:Unpublished Ph.D. thesis, Boulder, Colorado, University of Colorado, 222p.

Iriondo, A., Kunk, M.J., Winick, J.A., and Consejo de Recursos Minerales(CRM), 2003, 40Ar/ 39Ar dating studies of minerals and rocks in various areasin Mexico: USGS/CRM scientific collaboration (part I): USGS Open-FileReport 03-020.

——2004, 40Ar/ 39Ar dating studies of minerals and rocks in various areas inMexico: USGS/CRM scientific collaboration (part II): USGS Open-FileReport 04-1444.

Iriondo, A., Martínez-Torres, L.M., Kunk, M.J., Atkinson, Jr., W.W., Premo, W.R., and McIntosh, W.C., 2005, Northward Laramide thrusting in theQuitovac region, northwestern Sonora, Mexico: Implications for the jux-taposition of Paleoproterozoic basement blocks and the Mojave-Sonoramegashear hypothesis: Geological Society of America Special Paper, v. 393,p. 631–669.

Iunes, P.J., Hadler N., J.C., Bigazzia, G., Tello S., C.A., Guedes O., S., andPaulo, S.R., 2002, Durango apatite fission-track dating using length-basedage corrections and neutron fluence measurements by natural thorium thinfilms and natural U-doped glasses calibrated through natural uranium thinfilms: Chemical Geology, v. 187, p. 201–211.

Japan International Cooperation Agency-Metal Mining Agency of Japan(JICA-MMAJ), 1991, Informe de la exploración cooperativa de mineral enla región de Arcelia, Estados Unidos de México, fase IV: Pachuca, Hidalgo,Unpublished report to the Consejo de Recursos Minerales, 155 p.

John, D.A., 2001, Miocene and early Pliocene epithermal gold-silver depos-its in the northern Great Basin, western USA: Characteristics, distribution,and relationship to magmatism: Economic Geology, v. 96, p. 1827–1853.

Johnson, C.A., Emsbo, P., Poole, F.G., and Rye, R.O., 2009, Sulfur- and oxy-gen-isotopes in sediment-hosted stratiform barite deposits: Geochimica etCosmochimica Acta, v. 73, p. 133–147.

Juárez-Álvarez, A., Sánchez, F., and Martínez, A., 1985, Geología del yacimiento ferrifero Agua Dulce, Jal., in Memoria XVI Convención Nacio-nal AIMMGM: Asociación de Ingenieros de Minas, Metalurgistas y Geólo-gos de México (AIMMGM), p. 1–43.

Juvera-Gaxiola, V.M., Camacho-Tirado, J., and Osoria-Hernández, A., 1962,Yacimientos de hierro de la porción central del estado de Baja California:Pachuca, Hidalgo, Consejo de Recursos Naturales No Renovables, Unpub-lished report, 97 p.

Kimbrough, D.L., and Ledesma-Vazquez, J., 2008, Late Triassic paleo-oce-anic basement framework of the Peninsular Ranges batholith of Baja Cali-fornia; new evidence from the El Arco-Calmalli district: Geological Societyof America, Abstracts Joint Annual Meeting, paper 167-10, https://gsa.con-fex.com/gsa/2008AM/finalprogram/abstract_152201.htm.

Kimbrough, D.L., and Moore, T.E., 2003, Ophiolite and volcanic arc assem-blages on the Vizcaíno Peninsula and Cedros Island, Baja California Sur,México: Mesozoic forearc lithosphere of the Cordilleran magmatic arc:Geological Society of America Special Paper, v. 374, p. 43–71.

Klesse, E., 1968, Geology of the El Ocotito-Ixcuinatoyac region and of LaDicha stratiform sulphide deposit, state of Guerrero: Boletín de la SociedadGeológica Mexicana, v. 31, p. 107–140.

Krummenacher, D., Gastil, R.G., Bushee, J., and Doupont, J., 1975, K-Arapparent ages, Peninsular Ranges batholith, southern California and BajaCalifornia: Geological Society of America Bulletin, v. 86, p. 760–768.

Kyle, J.R, and Posey, H.H., 1991, Halokinesis, cap rock development, andsalt dome mineral resources: Developments in Sedimentology, v. 50, p.413–476.

Labarthe-Hernández, G., and Tristán-González, M., 1988, El domo La Negra y su ambiente tectónico en la Sierra de Encinillas, Chihuahua, in Memoria3er Simposio de Geología Regional de México: México, D.F., Instituto deGeología, Universidad Nacional Autónoma de México, p. 51–52.

Larocque, A.C.L., Stimac, J.A., Siebe, C., Greengrass, K., Chapman, R., andMejia, S.R., 2007, Deposition of a high-sulfidation Au assemblage from amagmatic volatile phase, Volcán Popocatépetl, Mexico: Journal of Volcanol-ogy and Geothermal Research, v. 170, p. 51–60.

Lee, M.J., 1978, Rubidium-strontium minimum ages of sedimentation, ura-nium mineralization, and provenance, Morrison Formation (Upper Juras-sic), Grants mineral belt, New Mexico: American Association of PetroleumGeologists Bulletin, v. 62, p. 1673–1683.

Lee, M.-K., and Williams, D.D., 2000, Paleohydrology of the Delaware basin, western Texas: Overpressure development, hydrocarbon migration, and oregenesis: American Association of Petroleum Geologists Bulletin, v. 84, p.961–974.

Lefort, D., Hanley, J., and Guillong, M., 2011, Subepithermal Au-Pd min-eralization associated with an alkalic porphyry Cu-Au deposit, Mount Mil-ligan, Quesnel terrane, British Columbia, Canada: Economic Geology, v.106, p. 781–808.

Levresse, G., González-Partida, E., Tritlla, J., Camprubí, A., Cienfuegos-Alvarado, E., and Morales-Puente, P., 2003, Fluid origin of the world-class,carbonate-hosted Las Cuevas fluorite deposit (San Luis Potosí, Mexico):Journal of Geochemical Exploration, v. 78–79, p. 537–543.

Levresse, G., González-Partida, E., Carrillo-Chavez, A., Tritlla, J., Camprubí,A., Cheilletz, A., Gasquet, D., and Deloule, E., 2004, Petrology, U/Pb dat-ing and (C-O) stable isotope constraints on the source and evolution of theadakite-related Mezcala Fe-Au skarn district, Guerrero, Mexico: Minera-lium Deposita, v. 39, p. 301–312.

Levresse, G., Tritlla, J., Villareal, J., and González-Partida, E., 2006, The “ElPilote” fluorite skarn: A crucial deposit in the understanding and interpre-tation of the origin and mobilization of F from northern Mexico deposits:Journal of Geochemical Exploration, v. 89, p. 205–209.

Levresse, G., Tritlla, J., Solorio-Munguía, J.G., Valencia, V., and Pinto-Lin-ares, P.J., 2011, Fluid inclusions and U/Pb dating of the El Pilote Fluoriteskarn occurrence: Metallogenic implications: Comptes Rendus Geosci-ence, v. 343, p. 342–350.

Lonsdale, P.R, Bischoff, J.L., Burns, V.M., Kastner, M., and Sweeney, R.E.,1980, A high-temperature hydrothermal deposit on the seabed at a Gulf ofCalifornia spreading center: Earth and Planetary Science Letters, v. 49, p.8–20.

Lopez, G., Gutierrez, R., Shin, H.C., Hitzman, M.W., and Cruise, M., 2005,IOCG style alteration and mineralization at the San Fernando prospect,Baja California Norte, Mexico: Geological Society of America Abstracts with Programs, v. 37, p. 516.

Loucks, R.R., Lemish, J., and Damon, P.E., 1988, Polymetallic fissure veinmineralization, Topia, Durango, Mexico: Part I. District geology, geochro-

nology, hydrothermal alteration, and vein mineralogy: Economic Geology, v. 83, p. 1499–1528.Ludwig, K.R., Simmons, K.R., and Webster, J.D., 1984, U-Pb isotope system-

atics and apparent ages of uranium ores, Ambrosia Lake and Smith Lakedistricts, Grants mineral belt, New Mexico: Economic Geology, v. 79, p.322–337.

Lyons, J.I., 1988a, Volcanogenic iron oxide deposits, Cerro de Mercado and vicinity, Durango, Mexico: Economic Geology, v. 83, p. 1886–1906.

——1988b, Geology and ore deposits of the Bolaños silver district, Jalisco,Mexico: Economic Geology, v. 83, p. 1560–1582.

Mapes-Vázquez, E., 1956, El manganeso en México, in González-Reyna, J.,ed., Symposium sobre yacimientos de manganeso, vol. III: Mexico City, XXCongreso Geológico Internacional, p. 35–78.

Page 40: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 40/44

240  ANTONI CAMPRUBÍ 

Martín-Barajas, A., and Monjaraz, J.A., 1989, Informe final de actividades delproyecto San Fernando, prospectos El Gato y la Cochalosa de Fe: Pachuca,Hidalgo, Oficina de Exploración Regional Baja California Norte, Consejode Recursos Minerales, Unpublished report, 32 p.

Martínez, L., Carrillo, P.A., Peña-Rocha, L., and Vega-Cruz, B., 1979, Estu-dio geológico-geoquímico de las pegmatitas en la Sierra de Aconchi, Mpio.de Aconchi, Sonora: Pachuca, Hidalgo, Consejo de Recursos Minerales,Unpublished report, 19 p.

Martínez-Hernández, E., Corona-Esquivel, R., Ramírez-Arriaga, E., andMorales-Isunza, A., 2001, Edad y ambiente sedimentario asociado al yacimiento de hierro “El Palotal”, distrito de Almagres, estado de Veracruz, in Acta de Sesiones XXIV Convención Internacional AIMMGM: México,D.F., Asociación de Ingenieros de Minas, Metalurgistas y Geólogos deMéxico (AIMMGM), p. 65–68.

Martínez-Serrano, R.G., Solís-Pichardo, G., Flores-Márquez, E.L., Macías-Romo, C., and Delgado-Durán, J., 2008, Geochemical and Sr-Nd isoto-pic characterization of the Miocene volcanic events in the Sierra Madredel Sur, central and southeastern Mexico: Revista Mexicana de CienciasGeológicas, v. 25, p. 1–20.

Martini, M., Mori, L., Solari, L., and Centeno-García, E., 2011, Sandstoneprovenance of the Arperos basin (Sierra de Guanajuato, central Mexico):Late Jurassic-Early Cretaceous back-arc spreading as the foundation of theGuerrero terrane: Journal of Geology, v. 119, p. 597–617.

Martini, M., Solari, L., and Camprubí, A., 2013, Kinematics of the Guerreroterrane accretion in the Sierra de Guanajuato, central Mexico: New insights

for the structural evolution of arc-continent collisional zones: InternationalGeology Review, v. 55, p. 574–589.McDowell, F.W., and Keizer, R.P., 1977, Timing of mid-Tertiary volcanism in

the Sierra Madre Occidental between Durango city and Mazatlan, Mexico:Geological Society of America Bulletin, v. 88, p. 1479–1487.

McDowell, F.W., McIntosh, W.C., and Farley, K.A., 2005, A precise 40Ar-39Arreference age for the Durango apatite (U-Th)/He and fission-track datingstandard: Chemical Geology, v. 214, p. 249–263.

McKee, E.H., Dreier, J.E., and Noble, D.C., 1992, Early Miocene hydrother-mal activity at Pachuca-Real del Monte, Mexico: An example of space-timeassociation of volcanism and epithermal Ag-Au mineralization: EconomicGeology, v. 87, p. 1635–1637.

McLemore, V.T., 1996, Copper in New Mexico: New Mexico Geology, v. 18,p. 25–36.

Mead, R.D., Kesler, S.E., Foland, K.A., and Jones, L.M., 1988, Relationshipof Sonoran tungsten mineralization to the metallogenic evolution of Mex-ico: Economic Geology, v. 83, p. 1943–1965.

Megaw, P.K.M., Ruiz, J., and Titley, S.R., 1988, High-temperature, carbon-ate-hosted Ag-Pb-Zn(Cu) deposits of northern Mexico: Economic Geology, v. 83, p. 1856–1885.

Meinert, L.D., 1982, Skarn, manto, and breccia pipe formation in sedimen-tary rocks of the Cananea mining district, Sonora, México: Economic Geol-ogy, v. 77, p. 919–949.

Meza-Figueroa, D., Valencia-Moreno, M., Valencia, V.A., Ochoa-Landín, L.,Pérez-Segura, E., and Díaz-Salgado, C., 2003, Major and trace elementgeochemistry and 40Ar/ 39Ar geochronology of Laramide plutonic rocksassociated with gold-bearing Fe skarn deposits in Guerrero state, southernMexico: Journal of South American Earth Sciences, v. 16, p. 205–217.

Miranda-Gasca, M.A., 2000, The metallic ore-deposits of the Guerrero ter-rane, western Mexico: An overview: Journal of South American Earth Sci-ences, v. 13, p. 403–413.

——2007, The VMS deposits of Mexico, in Proceedings of the Ores and Oro-genesis Symposium: Phoenix, Arizona, Arizona Geological Society, Abstract238.

Miranda-Gasca, M.A., and Roldán-Martínez, J., 2003, Laramidic Cu-Au

porphyry-style mineralization in Mochitlán, Guerrero, Mexico: GeologicalSociety of America, Cordilleran Section-99th Annual Meeting, Puerto Val-larta, Jalisco, April 1–3, 2003, Proceedings, Paper 24-9, https://gsa.confex.com/gsa/2003CD/finalprogram/abstract_52398.htm.

Miranda-Gasca, M.A., Gómez-Caballero, J.A., and Eastoe, C.J., 1998, Boratedeposits of northern Sonora, Mexico: Stratigraphy, tectonics, stable iso-topes, and fluid inclusions: Economic Geology, v. 93, p. 510–523.

Miranda-Gasca, M.A., Pyle, P., Roldán, J., and Ochoa-Camarillo, H.R., 2005,Gold-silver and copper-gold deposits of Ixhuatán, Chiapas: A new alkalic-rock related metallogenic province of southeastern Mexico, Linear GoldCorporation, in Acta de Sesiones XXVI Convención Internacional de Min-ería: México, D.F., Asociación de Ingenieros de Minas, Metalurgistas yGeólogos de México (AIMMGM), p. 69–70.

Molina-Garza, R.S., Chávez-Cabello, G., Iriondo, A., Porras-Vázquez,M.A., and Terrazas-Calderón, G.D., 2008, Paleomagnetism, structure and40Ar/ 39Ar geochronology of the Cerro Mercado pluton, Coahuila: Implica-tions for the timing of the Laramide orogeny in northern Mexico: RevistaMexicana de Ciencias Geológicas, v. 35, p. 284–301.

Montaño, T., 1986, Estratigrafía del área El Tigre, noreste de Sonora, in Sim-posium Nuevas Aportaciones a la Geología de Sonora: Hermosillo, Sonora,Estación Regional del Noroeste, Instituto de Geología, Universidad Nacio-nal Autónoma de México, p. 12–13.

Montesinos, E., and Virgen-Magaña, A., 1983, Evaluación de los yacimien-tos ferríferos de Cerro Colorado y Cerro del Bustillo, mpio. de Arriaga,Chiapas: Pachuca, Hidalgo, Consejo de Recursos Minerales, Unpublishedreport, 32 p.

Morales-Ramírez, J.M., Tritlla, J., Camprubí, A., and Corona-Esquivel, R.,2003, Fluid origin of the Ixtacamaxtitlán hydrothermal deposits (PueblaState, Mexico): Journal of Geochemical Exploration, v. 78–79, p. 653–657.

Morán-Zenteno, D.J., Cerca, M., and Keppie, J.D., 2005, La evolución tec-tónica y magmática cenozoica del suroeste de México: Avances y problemasde interpretación: Boletín de la Sociedad Geológica Mexicana, v. 57, p.319–314.

——2007, The Cenozoic tectonic and magmatic evolution of southwesternMéxico: Advances and problems of interpretation: Geological Society ofAmerica Special Paper, v. 422, p. 71–91.

Mortensen, J.K., Hall, B.V., Bissig, T., Friedman, R.M., Danielson, T., Oliver,J., Rhys, D.A., Ross, K.V., and Gabites, J.E., 2008, Age and paleotectonic

setting of volcanogenic massive sulfide deposits in the Guerrero terrane ofcentral Mexico: Constraints from U-Pb age and Pb isotope studies: Eco-nomic Geology, v. 103, p. 117–140.

Motolinia-García, O., and Zaldívar-Ruiz, J., 1980, Estudio geológico y evalu-ativo del distrito minero de Cebadillas en el mpio. de Compostela, Nayarit, in VIII Seminario Interno sobre Exploración Geológico-Minera: Pachuca,Hidalgo, Consejo de Recursos Minerales, p. 97–136.

Munguía-Rojas, P., and Pérez-Vargas, M.A., 1989, Proyecto Sierra del Alo.Estudio geológico-geoquímico regional del área Tecalitlán, municipios deTecalitlán y Jilotlán de los Dolores, estado de Jalisco: Pachuca, Hidalgo,Consejo de Recursos Minerales, Unpublished report, 83 p.

Murillo-Muñetón, G., Grajales-Nishimura, J.M., and Torres-Vargas, R., 1986,Estudio petrográfico y radiométrico por K-Ar de la porción centro sur delestado de Oaxaca,  in  Resúmenes VIII Conveción Geológica Nacional:México, D.F., Sociedad Geológica Mexicana, p. 149–150.

Nandigam, R.C., 2000, Geology and geochemistry of newly discovered Ter-tiary carbonatite occurrences near Villa Ahumada area, Basin and Rangeprovince, Chihuahua, northern Mexico: El Paso, Texas, ETD Collection forUniversity of Texas at El Paso, AAI9970437, 534 p.

Nandigam, R., Clark, K.F., Anthony, E.Y., Williams, T., and Comaduran, O.,1999, Rare earth element and zinc-bearing carbonatite occurrences near Villa Ahumada, Chihuahua, northern Mexico,  in  Memorias XXIII Con- vención Nacional AIMMGM: México, D.F., Asociación de Ingenieros deMinas, Metalurgistas y Geólogos de México, CD-ROM.

Negendank, J.F.W., Emmermann, R., Krawczyk, R., Mooser, F., Tobschall,H., and Werle, D., 1985, Geological and geochemical investigations onthe eastern Trans Mexican volcanic belt: Geofísica Internacional, v. 24, p.477–575.

Nelson, S.A, and Gonzalez-Caver, E., 1992, Geology and K-Ar dating of theTuxtla volcanic field, Veracruz, Mexico: Bulletin of Volcanology, v. 55, p.85–96.

Nieto-Obregón, J., Delgado-Argote, L.A., and Damon, P.E., 1981, Relacionespetrológicas y geocronológicas del magmatismo de la Sierra Madre Occi-dental y el Eje Neovolcánico en Nayarit, Jalisco y Zacatecas,  in Memoria XIV Convención Nacional AIMMGM: México, D.F., Asociación de Ing-

enieros de Minas, Metalurgistas y Geólogos de México, p. 327–361.Nieto-Samaniego, A.F., Macías-Romo, C., and Alaniz-Álvarez, S.A., 1996,Nuevas edades isotópicas de la cubierta volcánica cenozoica de la partemeridional de la Mesa Central, México: Revista Mexicana de CienciasGeológicas, v. 13, p. 117–122.

Nieto-Samaniego, A.F., Alaniz-Álvarez, S.A., and Camprubí, A., 2005, LaMesa Central de México: Estratigrafía, estructura y evolución tectónicacenozoica: Boletín de la Sociedad Geológica Mexicana, v. 57, p. 285–318.

——2007, The Central Mesa of México: Stratigraphy, structure and tectonicevolution during the Cenozoic: Geological Society of America SpecialPaper, v. 422, p. 41–70.

Nolasco-Vargas, L., and Huitrón-Esquivel, R., 1977, Estudio geológico-minero en la Unidad Aurora en el área de El Chico, Hgo., in VI Seminario

Page 41: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 41/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 241

Interno sobre Exploración Geológico-Minera: Pachuca, Hidalgo, Consejode Recursos Minerales, p. 230–238.

Ojeda-Rivera, J., Osoria-Hernández, A., Altamirano-Ramírez, F.J., Beutel-spacher-Sandoval, R., Serna-Vigueras, R., Mapes-Vázquez, E., and Juvera, V.M., 1965, Geología regional y yacimientos minerales de la porción meridi-onal del Istmo de Tehuantepec, México: México, D.F., Consejo de Recur-sos Naturales No Renovables-Secretaría del Patrimonio Nacional-United

Nations, Unpublished report, 312 p.Okita, P.M., 1992, Manganese carbonate mineralization in the Molango dis-trict, Mexico: Economic Geology, v. 87, p. 1345–1366.

Ortega-Rivera, A., 2003, Geochronological constraints on the tectonic historyof the Peninsular Ranges batholith of Alta and Baja California: Tectonicimplications for western Mexico: Geological Society of America SpecialPaper, v. 374, p. 297–335.

Ortigoza-Cruz, F., Changkakoti, A., Morton, R.D., and Gray, J., 1994, Stron-tium isotope geochemistry of barite minealization at La Minita, S.W. Mex-ico: Boletín de la Sociedad Geológica Mexicana, v. 52, p. 1–10.

Ortiz-Hernández, L.E., Escamilla-Casas, J.C., Flores-Castro, K., Ramírez-Cardona, M., and Acevedo-Sandoval, O., 2006, Características geológicas ypotencial metalogenético de los principales complejos ultramáficos-máficosde México: Boletín de la Sociedad Geológica Mexicana, v. 57, p. 161–181.

Overbay, W.J., Page, T.C., Krasowski, D.J., Bailey, M.H., and Matthews, T.C.,2001, Geology, structural setting, and mineralization of the Dolores district,Chihuahua, Mexico: Society of Economic Geologists Special Publication8, p. 71–85.

Padilla-Palma, M.L., Ortiz-Hernández, L.E., and de la Fuente-Lavalle, F.E.,1995, Mineralización polimetálica asociada a calderas resurgentes en lazona del Presón y Leones, distrito de Manuel Benavides, estado de Chi-huahua, in Memorias XXI Convención Nacional AIMMGM: México, D.F.,Asociación de Ingenieros de Minas, Metalurgistas y Geólogos de México(AIMMGM), p. 1–14.

Padilla y Sánchez, R.J., 2007, Evolución geológica del sureste mexicano desdeel Mesozoico al presente en el contexto regional del Golfo de México:Boletín de la Sociedad Geológica Mexicana, v. 59, p. 19–42.

Pantoja-Alor, J., 1983, Geocronometría del magmatismo cretácico-terciariode la Sierra Madre del Sur: Boletín de la Sociedad Geológica Mexicana, v.44, p. 1–20.

——1986, Siete edades geocronométricas cenozoicas de la cuenca media delRío Balsas,  in Programas y Resúmenes del Primer Simposio de GeologíaRegional de México: México, D.F., Universidad Nacional Autónoma deMéxico, Instituto de Geología, p. 60–61.

Pasquarè, G., Ferrari, L., Tibaldi, A., Garduño, V.H., and Vezzoli, L., 1988,

Geology of the central sector of Mexican volcanic belt, states of Guanajuatoand Michoacán: Geological Society of America, Map and Chart Series, v.MCH 072, 20 p.

Patchett, P.J., and Ruiz, J., 1987, Nd isotopic ages of crust formation andmetamorphism in the Precambrian of eastern and southern Mexico: Con-tributions to Mineralogy and Petrology, v. 96, p. 523–528.

Pearson, M.F., Clark, K.F., and Porter, E.W., 1988, Mineralogy, fluid char-acteristics, and silver distribution at Real de Ángeles, Zacatecas, Mexico:Economic Geology, v. 83, p. 1737–1759.

Pérez-Segura, E., 1985, Carta metalogenética de Sonora 1:250,000—unainterpretación de la metalogenia de Sonora: Hermosillo, Sonora, Gobi-erno del Estado de Sonora, Dirección de Minería, Geología y Energéticos,Publicación, v. 7, 64 p.

Pérez-Segura, E., Cheilletz, A., Herrera-Urbina, S., and Hanes, Y.J., 1996,Geología, mineralización y edad del yacimiento de oro de San Francisco,Sonora—un depósito mesotermal en el noroeste de México: Revista Mexi-cana de Ciencias Geológicas, v. 13, p. 65–89.

Pérez-Segura, E., González-Partida, E., and Valencia, V.A., 2009, Magma-tismo adakítico del Cretácico tardío en la parte centro-oriental de Sonora,México, y su relación con skarns de Cu-Zn-Ni-Co: Revista Mexicana deCiencias Geológicas, v. 26, p. 411–427.

Pesquera-Velázquez, R., 1981, Depósitos minerals relacionados con procesosgeológicos marinos en la Península de Baja California: Pachuca, Hidalgo,Comisión Intersectorial de Investigación Oceanográfica, Primera ReuniónNacional Indicativa Relacionada a Problemas Oceanográficos, Unpublishedreport, 30 p.

Petersen, M.A., Della Libera, M., Jannas, R.R., and Maynard, S.R., 2001,Geology of the Cerro San Pedro porphyry-related gold-silver deposit, SanLuis Potosí, Mexico: Society of Economic Geologists Special Publication8, p. 217–241.

Pi, T., Solé, J., and Taran, Y., 2005, (U-Th)/He dating of fluorite: Applicationto the La Azul fluorspar deposit in the Taxco mining district, Mexico: Min-eralium Deposita, v. 39, p. 976–982.

Pinto-Linares, P.J., Levresse, G., Tritlla, J., Valencia, V.A., Torres-Aguilera,J.M., González, M., and Estrada, D., 2008, Transitional adakite-like to calc-alkaline magmas in a continental extensional setting at La Paz Au-Cu skarndeposits, Mesa Central, Mexico: Metallogenic implications: Revista Mexi-cana de Ciencias Geológicas, v. 25, p. 39–58.

Pirajno, F., 2009, Hydrothermal processes and mineral systems: Berlin-Hei-delberg-New York, Springer, 1250 p.

Ponce-Sibaja, B., and Gutiérrez-Tapia, R.L., 1978, Aplicación de técnicasde estudios especiales para apoyo de obras de exploración en el distritominero de Coneto de Comonfort, Dgo.,  in VII Seminario Interno sobreExploración Geológico-Minera: Pachuca, Hidalgo, Consejo de RecursosMinerales, p. 601–643.

Potra, A., and Macfarlane, A.W., 2013, Lead isotope studies of the Guerrerocomposite terrane, west-central Mexico: Implications for ore genesis: Min-eralium Deposita, doi: 10.1007/s00126-013-0477-0, in press.

Price, J.G., Rubin, J.N., and Tweedy, S.W., 1988, Geochemistry of the Las Vigas red-bed copper deposit, Chihuahua: Economic Geology, v. 83, p.1993–2001.

Proenza, J.A., Ortega-Gutiérrez, F., Camprubí, A., Tritlla, J., Elías-Herrera,M., and Reyes-Salas, M., 2004, The Paleozoic serpentinite-enclosed chro-mitites from Tehuitzingo (Acatlán Complex, southern Mexico): A petrologi-cal and mineralogical study: Journal of South American Earth Sciences, v.

16, p. 649–666.Prol-Ledesma, R.M., Canet, C., Melgarejo, J.C., Tolson, G., Rubio-Ramos,M.A., Cruz-Ocampo, J.C., Ortega-Osorio, A., Torres-Vera, M.A., and Reyes,A., 2002, Cinnabar deposition in submarine coastal hydrothermal vents,Pacific margin of central Mexico: Economic Geology, v. 97, p. 1331–1340.

Prol-Ledesma, R.M., Canet, C., Torres-Vera, M.A., Forrest, M.J., andArmienta, M.A., 2004, Vent fluid chemistry in Bahía Concepción coastalsubmarine hydrothermal system, Baja California Sur, Mexico: Journal of Volcanology and Geothermal Research, v. 137, p. 311–328.

Prol-Ledesma, R.M., Melgarejo, J.C., and Martin, R.F., 2012, The ElMuerto “NYF” granitic pegmatite, Oaxaca, Mexico, and its striking enrich-ment in allanite-(Ce) and monazite-(Ce): Canadian Mineralogist, v. 50, p.1055–1076.

Quintanar-Ruiz, F., Ruiz, J., Ochoa-Landín, L., Eastoe, C., Novelo-López,L., Valencia, V., Barra, F., and Del Río-Salas, R., 2008, Geoquímica de losfluidos mineralizantes en la mina La Herradura, Sonora: Actas INAGEQ, v. 18, p. 36.

Ramírez-Fernández, J.A., Keller, J., and Hubberten, H.-W., 2000, Relacionesgenéticas entre las carbonatitas y las rocas nefelínicas del Complejo El Pica-cho, Sierra de Tamaulipas, NE de México: Revista Mexicana de CienciasGeológicas, v. 17, p. 45–65.

Randall, J.A., Saldaña, E., and Clark, K.F., 1994, Exploration in a volcano-plutonic center at Guanajuato, Mexico: Economic Geology, v. 89, p.1722–1754.

Rascón-Heimpel, M., and Valencia-Moreno, M., 2007, Reconstruccióngeológica y metalogenética del prospecto de pórfido cuprífero Los Alisos,distrito minero de La Caridad, Sonora, México, in XXVII Convención Inter-nacional de Minería: México, D.F., Asociación de Ingenieros de Minas,Metalurgistas y Geólogos de México (AIMMGM), p. 288–292.

Rascón-Heimpel, M.A., Valencia-Moreno, M., Ochoa-Landín, L., and Cal-mus, T., 2012, Geología y geoquímica del pórfido cuprífero Los Alisos,distrito minero de La Caridad, Sonora, México: Revista Mexicana de Cien-cias Geológicas, v. 29, p. 355–383.

Reyes-Cortés, M., Fuentes-Cobas, L., Torres-Moye, E., Esparza-Ponce, H.,and Montero-Cabrera, M.E., 2009, Uranium minerals from the San Marcos

district, Chihuahua, Mexico: Mineralogy and Petrology, v. 99, p. 121–132.Richards, J.P., 1995, Alkalic-type epithermal gold deposits—a review: Min-eralogical Association of Canada Short Course Series, v. 23, p. 367–400.

Richards, J.P., and Kerrich, R., 1993, The Porgera gold mine, Papua NewGuinea: Magmatic hydrothermal to epithermal evolution of an alkali-typeprecious metal deposit: Economic Geology, v. 88, p. 1017–1052.

Rocha-Rocha, M., 2008, Inclusiones fluidas de los yacimientos de celestinaubicados en la Plataforma Valles-San Luis Potosí: Revista geoCiencia SGM, v. 4, 20 p.

Rodríguez-Castañeda, J.L., Rodríguez-Torres, R., and Almazán-Vázquez, E.,2003, An inventory of mafic and ultramafic rocks of Cordilleran Proterozoicbasement (?) in northern Sonora, Mexico: Preliminary results: GeologicalSociety of America, Proceedings Cordilleran Section-99th Annual Meeting,

Page 42: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 42/44

242  ANTONI CAMPRUBÍ 

Puerto Vallarta, Jalisco, April 1–3, 2003, Paper 40-5, https://gsa.confex.com/ gsa/2003CD/finalprogram/abstract_51794.htm.

Rodríguez-Díaz, A.A., Blanco-Florido, D., Canet, C., Gervilla-Linares, F.,González-Partida, E., Prol-Ledesma, R.M., Morales-Ruano, S., and García- Vallès, M., 2010, Metalogenia del depósito de manganese Santa Rosa, BajaCalifornia Sur, México: Boletín de la Sociedad Geológica Mexicana, v. 62,p. 141–159.

Rogers, C.L., de Cserna, Z., van Vloten, R., Tavera-Amezcua, E., and Ojeda-Rivera, J., 1961, Reconocimiento geológico y depósitos de fosfatos del nortede Zacatecas y áreas adyacentes en Coahuila, Nuevo León y San Luis Potosí:Consejo de Recursos Naturales No Renovables, Boletín, v. 56, 322 p.

Roldán-Quintana, J., 1991, Geology and chemical composition of the Jaralitoand Ancochi batholiths in east-central Sonora, Mexico: Geological Societyof America Special Paper, v. 254, p. 69–80.

Rosas-Solís, A., and Sámano-Tirado, A.P., 1983, El Paleozoico en el E deMéxico, continuación del sistema Apalachano, su importancia y relacióncon la mineralización de Pb-Zn,  in Memoria XIV Convención NacionalAIMMGM: México, D.F., Asociación de Ingenieros de Minas, Metalurgis-tas y Geólogos de México (AIMMGM), p. 231–260.

Rothemund, K.L., Clark, K.F., and Nourse, J., 2001, Structural and lithologicframework of mineralization at the Lluvia de Oro mine, Sonora, Mexico, in Acta de Sesiones XXIV Convención Internacional AIMMGM, Acapulco,Guerrero: México, D.F., Asociación de Ingenieros de Minas, Metalurgistas y Geólogos de México (AIMMGM), p. 116–117.

Rubinovich-Kogan, R., Lozano-Santa Cruz, R., Elías-Herrera, M., and Sán-chez-Zavala, J.L., 1988, Mineralogía e implicaciones petrogenéticas del Ti,Zr, Y y Nb en las rocas alcalinas y vetas hidrotermales de El Picacho, Sierrade Tamaulipas, in Memoria 3er Simposio de Geología Regional de México:México, D.F., Universidad Nacional Autónoma de México, Instituto deGeología, p. 70–73.

Ruiz-Marqués, A., and Núñez-Espinal, J., 1993, Informe final por áreas,proyecto zona costa de Michoacán: Pachuca, Hidalgo, Gerencia RegionalZona Centro, Residencia Michoacán, Consejo de Recursos Minerales,Unpublished report, 115 p.

Ruvalcaba-Ruiz, D.F., 1983, Geology and origin of the Aquila iron deposit insouthwestern Michoacán, Mexico: Unpublished Ph.D. thesis, Fort Collins,Colorado, Colorado State University, 155 p.

Saitz-Sau, O.A., 2009, Evaluación geologica económico del deposito de wol-lastonita, mina Pilares, Sonora,  in Clark, K.F., Salas-Pizá, G., and Cubil-las-Estrada, R., eds., Geología económica de México, 2ª edición: Pachuca,Hidalgo, Servicio Geológico Mexicano-Asociación de Ingenieros de Minas,Metalurgistas y Geólogos de México, p. 345–348.

Salas, G.P., 1975, Metallogenetic chart of Mexico: Geological Society ofAmerica, Map and Chart Series, v. MC13, scale 1:2,000,000, 242 p.Saldaña-Alba, E., 1991, Evolución geológica y mineralización de la parte cen-

tral de la Sierra de Guanajuato, in Convención sobre la evolución geológicade México, Primer Congreso Mexicano de Mineralogía: México, D.F., Uni- versidad Nacional Autónoma de México, p. 195–199.

Scheubel, F.R., Clark, K.F., and Porter, E.W., 1988, Geology, tectonic envi-ronment, and structural controls in the San Martín de Bolaños district,Jalisco, Mexico: Economic Geology, v. 83, p. 1703–1720.

Schulze, C., Ortega-Gutiérrez, F., Cameron, K.L., Lopez, R., and Keppie,J.D., 2000, Nuevos datos sobre el origen de las anortositas y el rutilo dePluma Hidalgo, Oaxaca: Actas INAGEQ, v. 6, p. 158.

Sellepack, S.M., 1997, The geology and geochemistry of the El Sauzal goldprospect, southwest Chihuahua, Mexico: Unpublished M.Sc. thesis, ElPaso, Texas, University of Texas at El Paso, 89 p.

Servais, M., Monod, O., Kienast, J.-R., and Chiodi, M., 1985, Descubrimientode kimberlitas en México: Area de San Javier, municipio de Badiguarato,

estado de Sinaloa,  in  Memoria XVI Convención Nacional AIMMGM:México, D.F., Asociación de Ingenieros de Minas, Metalurgistas y Geólogosde México (AIMMGM), p. 1–30.

Servicio Geológico Mexicano (SGM), 2005, Monografía geológico-minera delestado de Baja California: Pachuca, Hidalgo, Servicio Geológico Mexicano,170 p.

——2011, Panorama minero del estado de Baja California: Pachuca, Hidalgo,Servicio Geológico Mexicano, 49 p.

Sewell, C.R., 1968, The Candela and Monclova belts of igneous intrusions, apetrographic province in Nuevo León and Coahuila, Mexico: Annual Meet-ing of the Geological Society of America, Abstracts with Programs, p. 273.

Sillitoe, R.H., 2003, Iron oxide-copper-gold deposits: An Andean view: Min-eralium Deposita, v. 38, p. 787–812.

Sillitoe, R.H., and Hedenquist, J.W., 2003, Linkages between volcanotectonicsettings, ore-fluid compositions, and epithermal precious metal deposits:Society of Economic Geologists, Special Publication 10, p. 314–343.

Simmons, S.F., White, N.C., and John, D.A., 2005, Geological characteristicsof epithermal precious and base metal deposits: Economic Geology 100thAnniversary Volume, p. 485–522.

Singer, D.A., Berger, V.I., Menzie, W.D., and Berger, B.R., 2005, Porphyry

copper deposit density: Economic Geology, v. 100, p. 491–514.Smith, W.C., Guiza, Jr., R., and Segerstrom, K., 1957, Los yacimientos deestaño en el estado de Durango: Instituto Nacional para la Investigación deRecursos Minerales, Boletín, v. 36, 63 p.

Solari, L.A., Keppie, J.D., Ortega-Gutiérrez, F., Cameron, K.L., Lopez, R.,and Hames, W.E., 2003, 990 and 1100 Ma Grenvillian tectonothermalevents in the northern Oaxacan Complex, southern Mexico: Roots of anorogen: Tectonophysics, v. 365, p. 257–282.

Soto-Pineda, S., 1960, Reconocimiento geológico de los principales depósitosde fosforitas localizados en el estado de San Luis Potosí: Unpublished B.Sc.thesis, México, D.F., Escuela Superior de Ingeniería y Arquitectura, Insti-tuto Politécnico Nacional, 50 p.

Srinivasan, B., Alexander, Jr., E.C., and Manuel, O.K., 1972, Te130-Xe130 agedeterminations of tellurium minerals: Economic Geology, v. 67, p. 592–596.

Staude, J.M., 2001, Geology, geochemistry, and formation of Au-(Cu) min-eralization and advanced argillic alteration in the Mulatos district, Sonora,Mexico: Society of Economic Geologists Special Publication Series, p. 8, v.199–216.

Staude, J.M.G., and Barton, M.D., 2001, Jurassic to Holocene tectonics, mag-matism, and metallogeny of northwestern Mexico: Geological Society ofAmerica Bulletin, v. 113, p. 1357–1374.

Swanson, E.R., and McDowell, F.W., 1985, Geology and geochronology ofthe Tomochic caldera, Chihuahua, Mexico: Geological Society of AmericaBulletin, v. 96, p. 1477–1482.

Takeda, H., 1977, Las características de la mineralización de los depósitos deplomo-zinc-plata en las calizas de la parte norte de la Sierra Madre Orien-tal, México, in VI Seminario Interno sobre Exploración Geológico-Minera:Pachuca, Hidalgo, Consejo de Recursos Minerales, p. 239–277.

Taran, Y.A., Bernard, A., Gavilanes, J.-C., and Africano, F., 2000, Native goldin mineral precipitates from high-temperature volcanic gases of Colima vol-cano, Mexico: Applied Geochemistry, v. 15, p. 337–346.

Tardy, M., Longoria, J.F., Martínez-Reyes, J., Mitre S., L.M., Patiño A., M.,Padilla y S., R., and Ramírez R., C., 1974, Observaciones generales sobre laestructura de la Sierra Madre Oriental: La aloctonía del conjunto CadenaAlta-Altiplano Central, entre Torreón, Coah. y San Luis Potosí, S.L.P.

México: Revista del Instituto de Geología de la U.N.A.M., v. 75, p. 1–11.Torres-Carrillo, X.G., Delgado-Argote, L.A., Espinosa-Cardeña, J.M., andRomo-Jones, J.M., 2011, Análisis geológico y aeromagnético de las con-centraciones anómalas de Fe en el plutón San Jerónimo en el CinturónBatolítico Peninsular, Baja California, México: Boletín de la SociedadGeológica Mexicana, v. 63, p. 487–501.

Torres-Hernández, J.R., Labarthe-Hernández, G., Tristán-González, M.,Aguillón-Robles, A., Siebe-Grabach, C., Macías-Vázquez, J.L., Espíndola-Castro, J.M., and Aranda-Gómez, J.J., 2001, Vulcanismo y extensión: Laevolución de un campo volcánico en el Altiplano Central de México: ActasINAGEQ, v. 7, p. 58.

Tristán-González, M., Aguillón-Robles, A., Barboza-Gudiño, J.R., Torres-Hernández, J.R., Bellon, H., López-Doncel, R., Rodríguez-Ríos, R., andLabarthe-Hernández, G., 2009, Geocronología y distribución espacial del vulcanismo en el Campo Volcánico de San Luis Potosí: Boletín de la Socie-dad Geológica Mexicana, v. 61, p. 287–303.

Tritlla, J., and Levresse, G., 2006, Comments on “(U-Th)/He dating of fluo-

rite: Application to the La Azul fluorspar deposit in the Taxco mining dis-trict, Mexico” by Pi et al. (Mineralium Deposita 39: 976–982): MineraliumDeposita, v. 41, p. 296–299.

Tritlla, J., Camprubí, A., Morales-Ramírez, J.M., Iriondo, A., Corona-Esquivel, R., González-Partida, E., Levresse, G., and Carrillo-Chávez, A.,2004, The Ixtacamaxtitlán kaolinite deposit and sinter (Puebla state, Mex-ico): A magmatic-hydrothermal system telescoped by a shallow paleoaqui-fer: Geofluids, v. 4, p. 329–340.

Tuta, Z.H., Sutter, J.F., Kesler, S.E., and Ruiz, J., 1988, Geochronology ofmercury, tin, and fluorite mineralization in northern Mexico: EconomicGeology, v. 83, p. 1931–1942.

 Valencia, V.A., Ruiz, J., Barra, F., Gehrels, G., Ducea, M., Titley, S.R.,and Ochoa-Landin, L., 2005, U-Pb zircon and Re-Os molybdenite

Page 43: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 43/44

  TECTONIC AND METALLOGENETIC HISTORY OF MEXICO 243

geochronology from La Caridad porphyry copper deposit: Insights for theduration of magmatism and mineralization in the Nacozari district, Sonora,Mexico: Mineralium Deposita, v. 40, p. 175–191.

 Valencia, V.A., Noguez-Alcántara, B., Barra, F., Ruiz, J., Gehrels, G., Quin-tanar, F., and Valencia-Moreno, M., 2006, Re-Os molybdenite and LA-ICPMS-MC U-Pb zircon geochronology for the Milpillas porphyry copperdeposit: Insights for the timing of mineralization in the Cananea district,Sonora, Mexico: Revista Mexicana de Ciencias Geológicas, v. 23, p. 39–53.

 Valencia, V.A., Eastoe, C., Ruiz, J., Ochoa-Landín, L., Gehrels, G., González-León, C., Barra, F., and Espinoza, E., 2008, Hydrothermal evolution of theporphyry copper deposit at La Caridad, Sonora, Mexico, and the relation-ship with a neighboring high-sulfidation epithermal deposit: EconomicGeology, v. 103, p. 473–491.

 Valencia-Moreno, M., Ochoa-Landín, L., Noguez-Alcántara, B., Ruiz, J.,and Pérez-Segura, E., 2006, Características de los depósitos de pórfidocuprífero en México y su situación en el contexto mundial: Boletín de laSociedad Geológica Mexicana, v. 58, p. 1–26.

——2007, Geological and metallogenetic characteristics of the porphyry cop-per deposits of México and their situation in the world context: GeologicalSociety of America Special Paper, v. 422, p. 433–458.

 Vassallo, L.F., Solorio, J.G., Ortega-Rivera, M.A., Sousa, J.E., and Olalde, G.,2008, Paleogene magmatism and associated skarn-hydrothermal mineral-ization in the central part of Mexico: Bol-e, v. 4, 22 p.

 Vázquez, M.E., Figueroa, J.L., García-Guzmán, J., and Cota-Reyna, J.,1986, Resultados y posibilidades futuras en la exploración por mineral de

hierro en el área El Tubo-Acalpican, Mich.,  in Resúmenes VIII Conven-ción Geológica Nacional: México, D.F., Sociedad Geológica Mexicana, p.166–168.

 Vega-Granillo, R., Talavera-Mendoza, O., Meza-Figueroa, D., Ruiz, J., Geh-rels, G.E., López-Martínez, M., and de la Cruz-Vargas, J.C., 2007, Pres-sure-temperature-time evolution of Paleozoic high-pressure rocks of theAcatlán Complex (southern Mexico): Implications for the evolution of theIapetus and Rheic Oceans: Geological Society of America Bulletin, v. 119,p. 1249–1264.

 Velador, J.M., Heizler, M., and Campbell, A.R., 2010, Timing of magmaticactivity and mineralization and evidence of a long-lived hydrothermal sys-tem in the Fresnillo silver district, Mexico: Constraints from 40Ar/ 39Ar geo-chronology: Economic Geology, v. 105, p. 1335–1349.

 Viera-Décida, F., Ramírez-Fernández, J.A., Velasco-Tapia, F., and Orozco-Esquivel, M.T., 2009, Relaciones petrogenéticas del magmatismo en la Pro- vincia Alcalina Oriental Mexicana: Ciencia UANL, v. 12, p. 42–49.

 Vivanco-Flores, E., 1976, Estudio geológico-económico de roca fosfórica enla sierras de Garambullo y Fraile, mpio. De Saltillo, Coah. [B.Sc. thesis]:México, D.F., Escuela Superior de Ingeniería y Arquitectura, Instituto Poli-técnico Nacional, 58 p.

 Warnaars, F.W., and Girón-Garay, S., 1999, Control de mineralización demetales preciosos en la Sierra Madre Occidental, Durango y Sinaloa: Traba- jos Técnicos XXIII Convención Nacional AIMMGM, Acapulco, Guerrero:México, D.F., Asociación de Ingenieros de Minas, Metalurgistas y Geólogosde México (AIMMGM), CD-ROM edition.

 Weber, B., and López-Martínez, M., 2006, Pb, Sr, and Nd isotopic and chemi-cal evidence for a primitive island arc emplacement of the El Arco porphyrycopper deposit (Baja California, Mexico): Mineralium Deposita, v. 40, p.707–725.

 Weber, B., Scherer, E.E., Schulze, C., Valencia, V.A., Montecinos, P., Mezger,K., and Ruiz, J., 2010, U-Pb and Lu-Hf isotope systematics of lower crustfrom central-southern Mexico—geodynamic significance of Oaxaquia in aRodinia realm: Precambrian Research, v. 182, p. 149–162.

 Werre-Keeman, F.J., and Estrada-Rodarte, G., 1999, Monografía geológico-minera del estado de Guerrero: Consejo de Recursos Minerales, Publica-tion M-19e, 262 p.

 Wilkerson, G., Deng, Q., Llavona, R., and Goodell, P., 1988, Batopilas miningdistrict, Chihuahua, Mexico: Economic Geology, v. 83, p. 1721–1736.

 Williams, P., Barton, M.D., Johnson, D.A., Fontboté, L., De Haller, A., Mark,G., Oliver, N.H.S., and Marschik, R., 2005, Iron oxide copper-gold deposits:Geology, space-time distribution, and possible modes of origin: EconomicGeology 100th Anniversary Volume, p. 371–406.

 Wilson, P.D., Sullivan, K., Piggott, K., Marín-Payán, M., and Clark, K.F.,2009, Oro en depósitos de placer de El Boludo, Sonora, México,  in Clark,K.F., Salas-Pizá, G., and Cubillas-Estrada, R., eds., Geología económica deMéxico, II edición: Pachuca, Hidalgo, Servicio Geológico Mexicano-Aso-ciación de Ingenieros de Minas, Metalurgistas y Geólogos de México, p.817–830.

 Wing-Morales, E., 1987, La exploración para bauxita en México: MemoriaConvención Nacional de Minería AIMMGM, v. 17, p. 248–258.

Zamora, S., Trujillo, L., Werre, F.S., and Sánchez, J.L., 1975, Los yacimientosminerales en el Cerro del Violín, Municipio de Mochitlán, Gro.: Geomimet, v. 78, p. 30–51.

Zantop, H., 1978, Geologic setting and genesis of iron oxides and manganeseoxides in the San Francisco manganese deposit, Jalisco, Mexico: EconomicGeology, v. 73, p. 1137–1149.

Zárate del Valle, P.F., 1986, Caracterización de la mina El Maguey: únicaevidencia tungstenífera conocida en el centro de México,  in Resúmenes VIII Convención Geológica Nacional: México, D.F., Sociedad GeológicaMexicana, p. 43–44.

Zárate del Valle, P.F., Rosas Elguera, J., and Urrutia Fucugauchi, J., 2000,Cartografía geológica de la hoja Talpa de Allende (F13D71) Jalisco, México:Geos, v. 20, p. 311–312.

Zawada, R.D., Albinson, T., and Abeyta, R., 2001, Geology of the El Crestóngold deposit, Sonora State, Mexico: Society of Economic Geologists SpecialPublication Series, v. 8, p. 187–197.

Zürcher, L., and Titley, S., 2007, Regional controls on Laramide porphyry sys-tems in western Mexico: Ores & Orogenesis Symposium, Arizona Geologi-cal Society, Tuscon, Arizona, Sept. 24–30, 2007, Proceedings, Abstract 235.

Zürcher, L., Ruiz, J., and Barton, M.D., 2001, Paragenesis, elemental distri-bution and stable isotopes at the Peña Colorada iron skarn, Colima, México:Economic Geology, v. 96, p. 535–557.

Page 44: Camprubí 2013

8/10/2019 Camprubí 2013

http://slidepdf.com/reader/full/camprubi-2013 44/44