Calculo de Demanda de Agua Por El Cultivo

28
UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE CIANECIAS AGRARIAS DEPARTAMENTO ACADÉMICO DE AGRONOMÍA Y ZOOTECNIA E.F.P AGRONOMÍA PRÁCTICA N° 06: CALCULO DE LA DEMANDA DE AGUA EN UN PROYECTO DE RIEGO “Métodos para estimas la ETo” Método del tanque Evaporímetro Clase “A”, Método de Blaney-Criddle, Método de Penman, Método de Hargreaves, y Método de Cropwat CURSO : INGENIERIA DE RIEGOS (IR-342) DOCENTE : M.Sc. Ing. Rubén Meneses Rojas ALUMNO : AMIQUERO ÑAHUI, Rusmell Marcial. YANCE SOTO, Franklin

Transcript of Calculo de Demanda de Agua Por El Cultivo

Page 1: Calculo de Demanda de Agua Por El Cultivo

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA

FACULTAD DE CIANECIAS AGRARIAS

DEPARTAMENTO ACADÉMICO DE AGRONOMÍA Y ZOOTECNIA

E.F.P AGRONOMÍA

PRÁCTICA N° 06: CALCULO DE LA DEMANDA DE AGUA EN UN PROYECTO DE RIEGO

“Métodos para estimas la ETo”

Método del tanque Evaporímetro Clase “A”, Método de Blaney-Criddle, Método de Penman, Método de Hargreaves, y Método de Cropwat

CURSO : INGENIERIA DE RIEGOS (IR-342)

DOCENTE : M.Sc. Ing. Rubén Meneses Rojas

ALUMNO : AMIQUERO ÑAHUI, Rusmell Marcial.

YANCE SOTO, Franklin

DIA Y HORA DE PRÁCTICA: Sábado 7:00 - 9:00pm.

AYACUCHO-PERU

2011-II

Page 2: Calculo de Demanda de Agua Por El Cultivo

I. TITULO: “CALCULO DE LA DEMANDA DE AGUA EN UN PROYECTO DE RIEGO EN HU”

1. Formación de la cedula de cultivo

Para cultivos de:

2 campanas chicas 2 campanas grandes 2 especies de pastos 2 especies perennes 2 especies frutales o forestales

2. Distribución del cultivo

3. Determinación de ETo

Métodos para estimas la ETo:

Método del tanque Evaporímetro Clase “A”,

Método de Blaney-Criddle,

Método de Penman,

Método de Hargreaves, y

Método de Cropwat.

4. Obtención de valores Kc método FAO

5. Determinación del agua en el proyecto para el diseño del canal.

II. OBJETIVOS:

a) Calcular la demanda de gua por lo cultivos

b) Obtener los cálculos de ETc por los métodos de tanque Evaporímetro Clase “A”, métodos de Blaney-Criddle, Método de Penman, el Método de Hargreaves y Método de Cropwat.

c) Obtener Kc para cada uno de los cultivos mensuales elegidos por el grupo.

d) Determinación la cedula de cultivo y calendario del riego.

e) Diseño del canal

Page 3: Calculo de Demanda de Agua Por El Cultivo

III. INTRODUCCION:

Evapotranspiración (ET), engloba el proceso de transferencia de agua a la atmosfera tanto por acción de las plantas como por evaporación directa del suelo.

Thornthwaite y Penman (1948) definen el concepto de evapotranspiración potencial (ETp)

El concepto de la evapotranspiración real (ETp) se maneja como otra forma de cálculo más próximo a las condiciones de campo.

Doorenbos y Pruitt (1975 y 1977) define la evapotranspiración de referencia (ETo). Allen et al (1994) proponen una nueva definición de la ETo y exponen los nuevos

objetivos a cubrir en las investigaciones sobre este tema. Thornhwaite introduce en la ecuación el factor temperatura y la insolación pero no

considera tipo de superficie ni transpiración. Penman considera tanto la fuente de energía (radiación) como el transporte del vapor

de agua a partir de una superficie. No considera transpiración. Método de Penman modificado (Penman-Monteith, 1963) considera una resistencia

del cultivo (resistencia estomática) y una resistencia aerodinámica, ambos términos s agrupan n el término conocido como coeficiente de cultivo.

Allen et al (1994) propone un criterio unificador suponiendo un cultivo hipotético de referencia con una condiciones aerodinámicas fijas.

ETp. Es la evapotranspiración que se produciría si se cumpliesen dos hipótesis: que existe un desarrollo vegetativo óptimo y que la humedad del suelo coincide con su capacidad de campo.

ET máximo (ETm) viene determinado por el clima y el desarrollo de as plantas cuando están bien abastecidas de agua. ETp-ETm es una medida de la resistencia de la cubierta vegetal.

ETr, representa lo que realmente vuelve a la atmosfera por evapotranspiración e las condiciones reales del área. Esta depende de la cantidad de agua disponible para evaporarse.

La relación entre ETR/ETp se ha utilizado como parámetro ara cuantificado el riego en función de la demanda.

ETo. Denominada evapotranspiración del cultivo de referencia o evapotranspiración de referencia, de unos 8 s 12 cm de altura, bien desarrollada y uniforme, que cubre totalmente el suelo tiene un crecimiento activo, estando siempre bien regado (Pruitt y Doorebos, 1977).

Adoptado por la FAO en su guía para las Necesidades Hídricas de los Cultivos. Las características y dificultades de este método propicio que la FAO junto a la

Comisión Internacional de Riego y Drenaje (1990) definieron el concepto de cultivo hipotético de referencia. Este concepto se adapta muy bien a la ecuación de referencia. Este concepto se adapta muy bien a la ecuación de Penman- Monteith.

Allen et al (1994), define la ETo como la tasa de evapotranspiración de un hipotético de referencia que tiene una atura uniforme de 0.12m de altura, una resistencia de superficie del cultivo a la transferencia de vapor de 70 s/m y una albedo de 0.23.

ETc, denominada uso consuntivo del cultivo se expresa mediante la tasa de evaporación y transpiración (ETc) [mm/día] o [mm/mes] de un cultivo libre de enfermedades que crecen en un campo extenso, en condiciones óptimas de suelo, fertilidad y suministro de agua.

Page 4: Calculo de Demanda de Agua Por El Cultivo

La cual depende además de los factores del clima que afectan a la evaporación (temperatura, humedad del aire, el régimen del viento y la intensidad de la radiación solar), de las características fisiológicas de la cobertura vegetal y de la disponibilidad de agua en el suelo para satisfacer la demanda hídrica de la planta.

IV. FUNDAMENTOS TEORICOS

a) PLANIFICACION DEL RIEGO

El agricultor, antes de planificar su sistema de riego o de determinar las necesidades de riego de sus cultivos, es decir antes del planeamiento, diseño, instalación, operación y mantenimiento y evaluación del sistema de riego, se enfrenta a las siguientes interrogantes:

Por qué regar? : Qué beneficios pretende obtener del riego?

Cuanto regar? : Cuál es la dosis de agua de riego por aplicar?

Cuando regar? : Cuál es el momento oportuno de riego?

Cómo regar? : Cuál método de riego seleccionar?

La adecuada respuesta a estas preguntas permitirá hacer uso racional y eficiente del agua y se evitaran riegos en exceso o en deficiencia.

b) EFICIENCIA DE RIEGO

Es un indicador de cómo estamos manejando el agua, así tenemos:

Eficiencia de Conducción : De la cantidad de agua captada en la fuente, qué cantidad llega a la zona de riego. (ejm 90%).

Eficiencia de Distribución : Del agua tomada del canal principal, qué cantidad llega a la parcela de riego (ejm. 90 %).

Eficiencia de Aplicación : De la cantidad de agua aplicada al suelo, qué cantidad queda almacenado para ser utilizado por la planta. Depende del método de riego. (ejm. 40% en riego por gravedad).

Entonces, la eficiencia de riego es: 0.9*0.9*0.4*100% = 32 %

Page 5: Calculo de Demanda de Agua Por El Cultivo

A. CONCEPTOS BÁSICOS:

A.1) FORMULACIÓN DE LA CEDULA DE CULTIVO

Factores:

Cima: como la temperatura, humedad, radiación solar, velocidad de viento, en otros

Suelo: peso especifico aparente, peso especifico real, porosidad, textura, estructura y humead del suelo.

Cultivo: especie, potencia genético Mercado: oportunidad de mercado para satisfacer la demanda. Diagnostico: recurso económico, financiación y mano de otra calificada

Distribución del cultivo:

Plantas con el fin de riego y producción

CULTIVO AREA (Ha)

papa 150

maíz grano 200

arveja 20

cebada 20

avena forrajera 100

pasto asociado 100

naranja 80uva 80

750

Calendario de riego

Especie (ha) ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DICpapa 150maíz grano 200arveja 20cebada 20avena forrajera 100pasto asociado 100naranja 80uva 80Ar.t (ha) 750 50 50 50 50 50 50 50 50 50 50 50 50

Page 6: Calculo de Demanda de Agua Por El Cultivo

A.2) Métodos Indirectos O De Fórmulas Empíricas

La mayoría de los métodos indirectos para estimar la ETo emplean fórmulas, las cuales reflejan los procesos físicos del clima, o fórmulas aproximadas desarrolladas por métodos de regresión sobre resultados de la experimentación.

Algunos métodos, tales como el de Blaney-Criddle o el de Hargreaves, relacionan la ETo a factores geográficos y climáticos, mientras que otros como la fórmula de Penman se basan sobre el conocimiento de los procesos físicos de la evapotranspiración.

Método De Fórmulas Empíricas

Métoodo del Tanque Evaporímetro Clase “A” Método de Blaney – Criddle, Penman – Monteith, Método de Hargreaves, Método de Radiación, Método de Crhistiansen, Método de Hensen – Haise, Método de Rejtima, Método de Ivanov, Otros

a) Método Del Tanque Evaporímetro Clase “A”

El método del tanque evaporímetro ha sido utilizado extensivamente en las áreas de riego, cuando no se tiene suficiente información climática. Este método debe utilizarse sólo cuando esté calibrado apropiadamente.

El tanque evaporímetro más conocido es el tipo “A”, este tanque es circular, tiene un diámetro de 121 cm, una profundidad de 25.5 cm y el nivel del agua se mantiene 6 a 8 cm debajo del borde. El tanque está construido de hierro galvanizado y está montado 15 cm arriba de la superficie del suelo sobre una tarima de madera. Los cultivos que se encuentran alrededor del tanque evaporímetro no deben ser más altos de 1 m. La ET del cultivo de referencia se calcula con la siguiente ecuación:

ET o=Kp∗Ep

Donde:

ETo es la evapotranspiración del cultivo de referencia (mm/dia) Kp es el coeficiente del tanque evaporímetro que depende de la humedad relativa mínima,

de la velocidad promedio del viento en 24 horas y del tipo de cobertura que se encuentra alrededor del tanque.

Ep es la evaporación medida en el tanque evaporímetro (mm/dia).

NOTA: Para calcular los valores de Kp Doorenbos y Pruitt realizaron una tabla que se muestra anexa, de la misma manera Allen y Pruitt (1991) propusieron dos fórmulas para calcular los valores de la tabla en cuestión:

Page 7: Calculo de Demanda de Agua Por El Cultivo

b) Método de Blaney- Criddle

Desarrollado en la región árida al OE de los EE UU; toma en cuenta la T° media del periodo considerado, las horas luz por día. Adecuado para las zonas áridas y semiáridas y para periodos que no sean inferiores a un mes. No se recomienda para regiones elevadas (T°mín. diarias son bajas), ni para regiones ecuatoriales (variación de la T° es reducida).

Según modificación del método original por la FAO, después de calcular el factor ( f) de Blaney – Criddle, se calcula ETo con la siguiente fórmula:

ETO=a+ [b∗( f ) ]

f =P∗[ (0.46∗Tm)+8.13 ]

Donde:

ETo : Evapotranspiración potencial, promedio mensual [mm/día]a, b : Coeficientes de la regresión lineal entre (f) y ETo.(f) : Factor de uso consuntivo de B-C promedio mensual [mm/día]P : Porcentaje de horas de luz diarias, promedio del total anual.Tm : Temperatura media diaria, promedio mensual [°C].

c) El método de FAO Penman-Monteith:

Se puede calcular ETo utilizando datos meteorológicos. Como resultado de una consulta de expertos realizada en mayo de 1990, el método de FAO Penman-Monteith ahora se recomienda como el único método estándar para la definición y el cálculo de la evapotranspiración de referencia; este método requiere datos de radiación, temperatura del aire, humedad atmosférica y velocidad del viento.

El método distingue la influencia del viento durante las horas del día (Udía) y durante la

noche (Unoche). Toma en consideración la HR y la Radiación solar. Por lo tanto incluye el Factor de ajuste (C) basado en HRmax, Radiación solar y relación Udia/Unche.

ETO=C∗{(W∗Rn )+[ (1−W )∗F (u )∗(ea−ad ) ]}Donde:

ETo : Evapotranspiración del cultivo de referencia [mm/día]C : Factor de ajuste de Penman, TablaW : Factor de ponderación de Penman. TablaRn : Radiación neta total, por medición directa o fórmulaf(u) : Función del viento, fórmulaea : Presión de vapor de agua a saturación [mbar]ed : Presión de vapor de agua ambiente [mbar], fórmula

Page 8: Calculo de Demanda de Agua Por El Cultivo

d) Método De George Hargreaves

Método diseñado por el Dr. George Hargreaves (1975) sugiere el cálculo de la evapotranspiración potencial a partir de datos medidos de temperatura media del aire, humedad relativa media y de datos de radiación solar.

Inicialmente el Dr. Hargreaves realizo sus estudios sobre probabilidades de precipitación mensual para humedad disponible en Honduras, Siendo uno de los problemas enfrentados en esa época la poca información disponible.

La fórmula modificada de Hargreaves se expresa en la siguiente relación matemática

ETo=0.0023∗Ra∗(Tm+17.8 )∗√TD

Donde:

ETo : Evapotranspiración del cultivo de referencia [mm/día]Ra : Rdaiación extraterrestre [mm/día], tablasTm : Temperatura media diaria [°C]TD : Diferencia de T° diaraia promedio en el periodo considerado {°C]

e) Método De Cropwat

` CROPWAT 8.0 para Windows es un programa de computación que puede ser usado para el cálculo de los requerimientos de agua de los cultivos y de sus requerimientos de riego en base a datos climáticos y de cultivo ya sean existentes o nuevos. Además, el programa permite la elaboración de calendarios de riego para diferentes condiciones de manejo y el cálculo del esquema de provisión de agua para diferentes patrones de cultivos.

La presente versión de Windows se basa en las versiones en sistema DOS del CROPWAT 5.7 de 1992 y CROPWAT 7.0 de 1999. Además de una interfase con el usuario completamente rediseñada, CROPWAT 8.0 para Windows incluye una serie de características nuevas y actualizadas.

En la FIGURA 3 Estas características incluyen: entrada de datos climáticos en versión mensual, decadiarios y diaria para el cálculo de la ETo,

Compatibilidad con versiones anteriores de tal manera que permite el uso de la información de la base de datos CLIMWAT

Posibilidad de estimar los datos climáticos en caso de no contar con los valores medidos

Cálculos diarios y decadiarios de los requerimientos de agua del cultivo basados en algoritmos de cálculo actualizados incluido el ajuste de los valores del coeficiente de cultivos

Cálculo de las necesidades de agua de cultivos y la programación de riego para los cultivos y para arrozales

Programaciones de riego ajustables e interactivas con el usuario

Page 9: Calculo de Demanda de Agua Por El Cultivo

Tablas de balances diarios de agua en el suelo

Fácil guardado y recuperación de sesiones y de las programaciones de riego definidas por el usuario

Presentaciones gráficas de los datos de entrada, requerimientos de agua de los cultivos y programaciones de riego

Sencilla importación/exportación de datos y gráficos a través del portapapeles o de archivos de texto ASCII

Rutinas de impresión extensivas apropiadas para todas las impresoras basadas en Windows

Sistema de ayuda sensible al contexto

Todos los procedimientos de cálculo, tal como se utilizan en CROPWAT 8.0 se basan en las directrices de la FAO tal como se establece en la publicación No 56 de la Serie Riego y Drenaje de la FAO "Evapotranspiración del Cultivo - Guías para la determinación de los requerimientos de agua de los cultivos". Haga clic aquí para ver esta publicación en línea. (Este enlace requiere conexión a Internet)

CROPWAT 8.0 para Windows fue desarrollado utilizando Visual Delphi 4.0 y funciona en las siguientes plataformas de Windows: 95/98/ME/2000/NT/XP

Page 10: Calculo de Demanda de Agua Por El Cultivo

A.3) COEFICIENTE DEL CULTIVO (Kc)

El Coeficiente de Evapotranspiración del Cultivo (Kc), expresa la relación entre el uso consuntivo del cultivos en consideración (ETc) y la evapotranspiración del cultivo de referencia (ETo).

K c=ET c

ET o

mm /diamm /dia

Kc : Coeficiente del cultivoETc : Evapotranspiración del Cultivo, [mm/día]ETo : Evapotranspiración del cultivo de referencia [mm/día]

Dichos coeficientes se determinan empíricamente comparando al uso consuntivo del cultivo (ETc) con el del cultivo de referencia, bajo idénticas condiciones, de acuerdo a las características del cultivo y de las fases de su desarrollo.

La FIGURA 1 y FIGURA 2 representa los valores de Kc típico de un cultivo anual, donde dicha relación no es constante durante las fases de su desarrollo: inicialmente Kc es bajo, con el desarrollo vegetativo de las plantas Kc aumenta hasta alcanzar un máximo; posteriormente y con la senectud del cultivo, su valor disminuye.

También se puede determinar los valores de Kc, siguiendo la metodología propuesta por la FAO, para cultivos anuales, cultivos forrajeros y para los frutales, reportado en algunos caos en tablas generalizadas. Para el primer caso, la FAO divide el ciclo de vida de los cultivos en cuatro etapas:

Primera Etapa : Etapa inicial o de establecimiento del cultivo, Segunda Etapa : Etapa de rápido desarrollo del cultivo, Tercera Etapa : Etapa de mediados de la temporada o de máximo uso consuntivo Cuarta Etapa : Etapa de maduración y cosecha.

Page 11: Calculo de Demanda de Agua Por El Cultivo

FIGURA 2

B. Resultados

Cuadro de resultado en la obtención de “ETo”

ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DICTANQUE EVAPORIMETRO

CLASE “A” (mm/dia) 3.2 2.8 2.9 3.1 2.9 2.9 3.2 3.5 3.8 4.4 4.5 3.8BLANEY-CRIDDLE (mm/dia) 2.1 1.5 1.8 1.3 1.9 1.8 1.9 1.9 1.8 1.7 2.1 1.8

PENMAN (mm/dia) 3.4 3.2 2.6 2.7 2.5 2.5 2.2 2.6 2.6 3.0 3.1 3.5

HARGREAVES (mm/dia) 6.26 4.44 4.38 3.71 3.6 3.3 3.4 3.6 4.49 5.05 5.31 5.17 CROPWAT (mm/dia) 3.47 3.14 3.34 2.69 2.37 2.19 2.3 2.52 3.11 3.47 3.84 3.17

PROMEDIO - ELIGIDO 3.7 3.0 3.0 2.7 2.6 2.5 2.6 2.8 3.2 3.5 3.7 3.5

Page 12: Calculo de Demanda de Agua Por El Cultivo

0 2 4 6 8 10 12 140.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

3.73.0 3.0

2.7 2.6 2.5 2.6 2.83.2

3.5 3.7 3.5

GRAFICA DE Eto

T.E.CLASE¨A¨BLANEY-CRIDDLEPENMANHARGREAVESCROPWATELIGIDO

MESES

Eto

EN (m

m/d

ia)

Calculo de Kc

CALCULO DEL COIFICIENTE DE CULTIVO (Kc)( Método recomendado por la FAO )

1°DATOS GENERALES :

Cultivo = PAPA Lugar =Huamanga -

Ayacucho

periodo = 1 AÑO (2012) Altitud =2760

m.s.n.m.Fecha siembra = 01-nov-12 Latitud = 13° 18' S

Longitud = 74° 18' W

2° DURACION DE LAS FASES FechaInicial = 30 días 01/11 - 30/11Desarrollo del cultivo = 50 días 30/11 - 19/01Mediados del cultivo = 80 días 19/11 - 09/04Finales del cultivo = 30 días 09/04- 09/05TOTAL DE LA DURACION = 190 días

3° DURACION DE LAS FASESKc - fase inicial = 0.56 Dato del fascículo II (fig-2.3)

ETo = 4.1 mm/día(dato del promedio-elegido de los cinco métodos)

Frecuencia de riego = 7 días (dato experimental)

Kc - mediados de la temporada = 1.15 fascículo II (tabla-2-27)

Kc - final periodo (cosecha) = 0.75 fascículo II (tabla-2-27)

Page 13: Calculo de Demanda de Agua Por El Cultivo

CALCULO DEL COIFICIENTE DE CULTIVO (Kc)( Método recomendado por la FAO )

1°DATOS GENERALES :

Cultivo = ARVEJA Lugar =Huamanga -

Ayacuchoperiodo = 1 AÑO (2012) Altitud = 2760 m.s.n.m.Fecha siembra = 01-may-12 Latitud = 13° 18' S

Longitud = 74° 18' W2° DURACION DE LAS FASES Fecha

Inicial = 20 días 01/05 - 20/05Desarrollo del cultivo = 28 días 20/05 - 16/06Mediados del cultivo = 56 días 16/06 - 11/08Finales del cultivo = 28 días 11/08 - 09/09TOTAL DE LA DURACION = 132 días

3° DURACION DE LAS FASESKc - fase inicial = 0.56 Dato del fascículo II (fig-2.3)

ETo = 4.1 mm/día(dato del promedio-elegido de los cinco métodos)

Frecuencia de riego = 7 días (dato experimental)Kc - mediados de la temporada = 1.15 fascículo II (tabla-2-27)Kc - final periodo (cosecha) = 1.05 fascículo II (tabla-2-27)

CALCULO DEL COIFICIENTE DE CULTIVO (Kc)( Método recomendado por la FAO )

1°DATOS GENERALES :

Cultivo = MAIZ DE GRANO Lugar =Huamanga -

Ayacuchoperiodo = 1 AÑO (2012) Altitud = 2760 m.s.n.m.Fecha siembra = 01-set-2012 Latitud = 13° 18' S

Longitud = 74° 18' W

2° DURACION DE LAS FASES FechaInicial = 20 días 01/09 - 20/09Desarrollo del cultivo = 65 días 20/09 - 24/11Mediados del cultivo = 50 días 24/11 - 13/01Finales del cultivo = 45 días 13/01 - 27/02TOTAL DE LA DURACION = 180 días

3° DURACION DE LAS FASESKc - fase inicial = 0.56 Dato del fascículo II (fig-2.3)

ETo = 4.1 mm/día(dato del promedio-elegido de los cinco métodos)

Frecuencia de riego = 7 días (dato experimental)

Kc - mediados de la temporada = 1.15 fascículo II (tabla-2-26)

Kc - final periodo (cosecha) = 0.6 fascículo II (tabla-2-26)

CALCULO DEL COIFICIENTE DE CULTIVO (Kc)( Método recomendado por la FAO )

1°DATOS GENERALES :

Cultivo = CEBADA Lugar =Huamanga -

Ayacuchoperiodo = 1 AÑO (2012) Altitud = 2760 m.s.n.m.Fecha siembra = 01-abr-12 Latitud = 13° 18' S

Longitud = 74° 18' W2° DURACION DE LAS FASES Fecha

Inicial = 30 días 01/04 - 30/04Desarrollo del cultivo = 30 días 30/04 - 30/05Mediados del cultivo = 75 días 30/05 - 13/08Finales del cultivo = 45 días 13/08 - 27/09TOTAL DE LA DURACION = 180 días

3° DURACION DE LAS FASESKc - fase inicial = 0.56 Dato del fascículo II (fig-2.3)

ETo = 4.1 mm/día(dato del promedio-elegido de los cinco métodos)

Frecuencia de riego = 7 días (dato experimental)

Kc - mediados de la temporada = 1.15 fascículo II (tabla-2-26)

Kc - final periodo (cosecha) = 0.2

Page 14: Calculo de Demanda de Agua Por El Cultivo

CALCULO DEL COIFICIENTE DE CULTIVO (Kc)

( Método recomendado por la FAO )

1°DATOS GENERALES :

Cultivo = AVENA FORRAJERA Lugar =Huamanga -

Ayacucho

periodo = 1 AÑO (2012) Altitud = 2760 m.s.n.m.

Fecha siembra = 1 Feb. 2012 Latitud = 13° 18' S

Longitud = 74° 18' W

2° DURACION DE LAS FASES Fecha

Inicial = 30 días 01/02 - 02/03

Desarrollo del cultivo = 75 días 02/03 - 16/05

Mediados del cultivo = 45 días 16/05 - 30/06

Finales del cultivo = 0 días 30-junTOTAL DE LA DURACION = 150 días

3° DURACION DE LAS FASES

Kc - fase inicial = 0.56 Dato del fascículo II (fig-2.3)

ETo = 4.1 mm/día(dato del promedio-elegido de los cinco métodos)

Frecuencia de riego = 7 días (dato experimental)

Kc - mediados de la temporada = 1.15 fascículo II (tabla-2-26)

Kc - final periodo (cosecha) =

Page 15: Calculo de Demanda de Agua Por El Cultivo

CALCULO DEL COIFICIENTE DE CULTIVO (Kc)( Método recomendado por la FAO )

1°DATOS GENERALES :

Cultivo = NARANJA Lugar =Huamanga -

Ayacuchoperiodo = 1 AÑO (2012) Altitud = 2760 m.s.n.m.Fecha siembra = 01-ene-12 Latitud = 13° 18' S

Longitud = 74° 18' W

2° DURACION DE LAS FASES FechaInicial = 60 días 01/01 - 01/03Desarrollo del cultivo = 90 días 01/03 - 30/05Mediados del cultivo = 120 días 30/05 - 27/09Finales del cultivo = 95 días 27/09 - 31/12TOTAL DE LA DURACION = 365 días

3° DURACION DE LAS FASESKc - fase inicial = 0.56 Dato del fascículo II (fig-2.3)

ETo = 4.1 mm/día(dato del promedio-elegido de los cinco métodos)

Frecuencia de riego = 7 días (dato experimental)

Kc - mediados de la temporada = 0.8 fascículo II (tabla-2-30)

Kc - final periodo (cosecha) =

CALCULO DEL COIFICIENTE DE CULTIVO (Kc)( Método recomendado por la FAO )

1° DATOS GENERALES :

Cultivo = PASTO ASOCIADO Lugar =Huamanga -

Ayacuchoperiodo = 1 AÑO (2012) Altitud = 2760 m.s.n.m.Fecha siembra = 1 Maíz. 2012 Latitud = 13° 18' S

Longitud = 74° 18' W

2° DURACION DE LAS FASES FechaInicial = 20 días 01/03 - 20/03Desarrollo del cultivo = 45 días 20/03 - 04/05Mediados del cultivo = 50 días 04/05 - 23/06Finales del cultivo = días 23-junTOTAL DE LA DURACION = 115 días

3° DURACION DE LAS FASESKc - fase inicial = 0.56 Dato del fascículo II (fig-2.3)

ETo = 4.1 mm/día(dato del promedio-elegido de los cinco métodos)

Frecuencia de riego = 7 días (dato experimental)

Kc - mediados de la temporada = 0.9 fascículo II (tabla-2-28)

Kc - final periodo (cosecha) =

CALCULO DEL COIFICIENTE DE CULTIVO (Kc)( Método recomendado por la FAO )

DATOS GENERALES :

Cultivo = UVA Lugar =Huamanga -

Ayacucho

periodo = 1 AÑO (2012) Altitud =2760

m.s.n.m.Fecha siembra = 01-abr-12 Latitud = 13° 18' S

Longitud = 74° 18' W2° DURACION DE LAS FASES Fecha

Inicial = 20 días 01/04 - 20/04Desarrollo del cultivo = 40 días 20/04 - 30/05Mediados del cultivo = 120 días 30/05 - 27/09Finales del cultivo = 60 días 27/09 - 26/11TOTAL DE LA DURACION = 240 días

3° DURACION DE LAS FASES

Kc - fase inicial = 0.56 Dato del fascículo II (fig-2.3)

ETo = 4.1 mm/día(dato del promedio-elegido de los cinco métodos)

Frecuencia de riego = 7 días (dato experimental)

Kc - mediados de la temporada = 0.8 fascículo II (tabla-2-31)

Kc - final periodo (cosecha) = 0.6

Page 16: Calculo de Demanda de Agua Por El Cultivo
Page 17: Calculo de Demanda de Agua Por El Cultivo
Page 18: Calculo de Demanda de Agua Por El Cultivo

Cuadro de resumen de Kc

Para KC ponderado:

K c=∑( K ci∗A i)

∑ Ai

Donde:

K ci : Coeficiente del cultivo

Ai: Área de cada cultivo

CULTIVOAREA(Ha) ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC

papa 150 1.4 1.15 1.15 1.15 0.75 0 0 0 0 0 0.55 0.98

maíz 200 1.15 0.6 0 0 0 0 0 0 0.58 0.8 1.1 1.15

arveja 20 0 0 0 0 0.62 0.89 1.1 1.15 1.05 0 0 0

cebada 20 0 0 0 0.6 0.87 1.15 1.15 1.15 0.2 0 0 0

avena forrajera 100 0 0.58 0.87 0.89 1.15 1.15 0 0 0 0 0 0

pasto asociado 100 0 0 0.58 0.74 0.9 0.9 0 0 0 0 0 0

naranja 80 0.55 55 0.55 0.67 0.8 0.8 0.8 0.8 0.8 0.8 0.5 0.45

uva 80 0 0 0 0.62 0.8 0.8 0.8 0.8 0.8 0.7 0.6 0

TOTAL 750 0.645 0.651 0.642 0.058 0.072 0.068 0.026 0.026 0.026 0.033 0.034 0.041kc ponder. 0.411 0.414 0.408 0.037 0.046 0.043 0.016 0.016 0.016 0.021 0.022 0.026

Page 19: Calculo de Demanda de Agua Por El Cultivo

CALENDARIO AGRÍCOLA

CULTIVO RINCIPAL

Especie (ha) ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC

papa 150 1.40 1.15 1.15 1.15 0.75 0.00 0.00 0.00 0.00 0.00 0.55 0.98

maíz 200 1.15 0.6 0 0 0 0 0 0 0.58 0.8 1.1 1.15

arveja 20 0 0 0 0 0.62 0.89 1.1 1.15 1.05 0 0 0

cebada 20 0 0 0 0.6 0.87 1.15 1.15 1.15 0.2 0 0 0

avena forrajera 100 0 0.58 0.87 0.89 1.15 1.15 0 0 0 0 0 0

pasto asociado 100 0 0 0.58 0.74 0.9 0.9 0 0 0 0 0 0naranja 80 0.55 55 0.55 0.67 0.8 0.8 0.8 0.8 0.8 0.8 0.5 0.45

uva 80 0 0 0 0.62 0.8 0.8 0.8 0.8 0.8 0.7 0.6 0

Ar.t (ha) 750 750 750 750 750 750 750 750 750 750 750 750 750

kc ponderado 0.41 0.41 0.41 0.04 0.05 0.04 0.02 0.02 0.02 0.02 0.02 0.03

ETO(mm/dia) 3.7 3.0 3.0 2.7 2.6 2.5 2.6 2.8 3.2 3.5 3.7 3.5

ETO(mm/mes) 110.52 90.72 90 81.12 79.44 75.96 77.76 84.6 95.04 105.3 112.44 104.64

Pp. 75% (mm) 109.525 122.85 91.5 15.125 2.675 4.75 3.4 7.35 9.75 20.1 27.35 58.75

PE (mm/mes) 98.09 109.078 83.33 9.595 0 0 0 2.28 4.56 14.345 21.28 49.452

ETc (mm/mes) 45.39 37.58 36.74 2.99 3.62 3.30 1.27 1.38 1.55 2.23 2.43 2.70

NRn (mm) -52.70 -71.50 -46.59 -6.61 3.62 3.30 1.27 -0.90 -3.01 -12.11 -18.85 -46.75

NRn (m3/ha) -527.03 -714.95-

465.87 -66.07 36.24 32.99 12.67 -9.02 -30.12 -121.15 -188.47 -467.50Modulo de riego

(lt/seg/ha) -0.20 -0.28 -0.18 -0.03 0.01 0.01 0.00 0.00 -0.01 -0.05 -0.07 -0.18Demanda de riego

(lt/seg/ha) -152.50 -206.87-

134.80 -19.12 10.49 9.55 3.67 -2.61 -8.71 -35.05 -54.53 -135.27

∴Caudal

demandado = 10.49 lt/seg /750ha

Page 20: Calculo de Demanda de Agua Por El Cultivo

ETo: es el elegido mmdia

ommmes

ETc=ETa∗Kc mm /mes

Donde:

ETc: Evapotranspiración del cultivo o uso consultivo (mm/m) ETa: Evapotranspiración de un cultivo de referencia (mm/m)Kc: Coeficiente del cultivo

Pp(75%) = PERCENTIL(rango;025)

PE= parte de la lluvia que esta retenido en el suelo

Service USADescripción de la PE

incremento %de la Pp PE

5 030 9555 9080 82

105 65130 45155 25

>155 5

Necesidad de riego neto (NRn)

NRn=ETc−PE

Donde:

NRn: Necesidad de riego neto (mm)

ETc: Evapotranspiración del cultivo o uso consultivo (mmmes

)

PE: Parte de la lluvia que esta retenido en el suelo

Necesidad de riego bruto (NRb)

NRb= NRnEr

mmom3

ha

Donde:

NRb: Necesidad de riego bruto (mm o m3/ha)

Page 21: Calculo de Demanda de Agua Por El Cultivo

NRn: Necesidad de riego neto (mm)

V. Resultados Y Discusión

CUADRO DE RESULTADOS DE “ETo”

ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DICTANQUE EVAPORIMETRO

CLASE “A” (mm/día)3.2 2.8 2.9 3.1 2.9 2.9 3.2 3.5 3.8 4.4 4.5 3.8

BLANEY-CRIDDLE (mm/día)

2.1 1.5 1.8 1.3 1.9 1.8 1.9 1.9 1.8 1.7 2.1 1.8

PENMAN (mm/día) 3.4 3.2 2.6 2.7 2.5 2.5 2.2 2.6 2.6 3.0 3.1 3.5HARGREAVES (mm/día) 6.26 4.44 4.38 3.71 3.6 3.3 3.4 3.6 4.49 5.05 5.31 5.17

  CROPWAT (mm/día) 3.47 3.14 3.34 2.69 2.37 2.19 2.3 2.52 3.11 3.47 3.84 3.17PROMEDIO (mm/día) 3.7 3.0 3.0 2.7 2.6 2.5 2.6 2.8 3.2 3.5 3.7 3.5

El “ETo” elegido es promedio de los 5 métodos para cálculos.

El valor mas aproximado de ETo se encuentra entre los métodos de Cropwat, Penman y del Tanque Evaporímetro de Clase “A”. Debido a su complejidad y relación funcional del ETo a través de datos meteorológicos (humedad relativa, temperatura, horas de sol, velocidad de viento).

Se debe que el método BLANEY-CRIDDLE es para lugares áridos y semi-aridos y el método HARGREAVES es obtenido a través de datos tomados con un lisímetro en pastos festuca.

VI. CONCLUSIONES Y RECOMENDACIONES

a) Conclusiones

b) Recomendaciones

Los resultanos nunca superara a los datos tomados ne campo, es decir nosotros debemos hacegurar que los datos obtenidos deban ser de procedencia confiable

La variación de los resultados de ETo con por los diversos métodos se debe ala form analítica y al estudio referido de una zona en referencia

Page 22: Calculo de Demanda de Agua Por El Cultivo

VII. BIBLIOGRAFIA