生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian...

145
刘畅 微软亚洲研究院 高等机器学习

Transcript of 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian...

Page 1: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

刘 畅微软亚洲研究院

生成模型

高等机器学习

Page 2: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Outline• Generative Models: Overview

• Plain Generative Models• Autoregressive Models

• Latent Variable Models• Deterministic Generative Models• Generative Adversarial Nets

• Flow-Based Generative Models

• Bayesian Generative Models• Bayesian Inference (variational inference, MCMC)

• Bayesian Networks• Topic Models (LDA, LightLDA, sLDA)

• Deep Bayesian Models (VAE)

• Markov Random Fields (Boltzmann machines, deep energy-based models)

2019/10/10 清华大学-MSRA 《高等机器学习》 2

Page 3: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Overview• Generative Models:• Models that describe the generating process of all observations.

• Technically, they specify 𝑝 𝑥 (unsupervised) or 𝑝 𝑥, 𝑦 (supervised) in principle, either explicitly or implicitly.

∼ 𝑝 𝑥𝑥 𝑛 =

2019/10/10 清华大学-MSRA 《高等机器学习》 3

Page 4: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Overview• Generative Models:• Models that describe the generating process of all observations.

• Technically, they specify 𝑝 𝑥 (unsupervised) or 𝑝 𝑥, 𝑦 (supervised) in principle, either explicitly or implicitly.

∼ 𝑝 𝑥, 𝑦𝑥 𝑛 , 𝑦 𝑛 =

“0”“1”“2”“3”“4”“5” “6”“7”“8”“9”𝑦 𝑛 =

𝑥 𝑛 =

2019/10/10 清华大学-MSRA 《高等机器学习》 4

Page 5: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Overview• Non-Generative Models:

Discriminative models(e.g., feedforward neural networks):only 𝑝 𝑦|𝑥 is available.

𝑥

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

𝑝 𝑦 𝑥

𝑓

Recurrent neural networks:

only 𝑝 | is

available.

2019/10/10 清华大学-MSRA 《高等机器学习》 5

Page 6: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Overview• Non-Generative Models:

(Img: [DFD+18])

𝑥

𝑧

Autoencoders:𝑝 𝑥 unavailable.

𝑓

𝑔

𝑥

2019/10/10 清华大学-MSRA 《高等机器学习》 6

Page 7: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Overview• What can generative models do:

1. Generate new data.

Conditional Generation 𝑝 𝑥 𝑦 [LWZZ18]

Generation 𝑝 𝑥 [KW14] Missing Value Imputation (Completion)𝑝 𝑥hidden 𝑥observed [OKK16]

2019/10/10 清华大学-MSRA 《高等机器学习》 7

Page 8: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Overview• What can generative models do:

1. Generate new data.

“the cat sat on the mat”∼ 𝑝 𝑥 : Language Model.

ℎ1

𝑥1

𝑝(𝑥1 = the)

𝑥1

ℎ2

𝑥2

the

𝑝(cat|𝑥1)

𝑥2

ℎ3

𝑥3

cat

𝑝(sat|𝑥1…2)

𝑥5

ℎ6

𝑥6

𝑥4

ℎ5

𝑥5

ℎ7

𝑥7

on the mat

𝑝(the|𝑥1…4) 𝑝(mat|𝑥1…5) 𝑝(</s>|𝑥1…6)

𝑥6𝑥3

ℎ4

𝑥4

sat

𝑝(on|𝑥1…3)

2019/10/10 清华大学-MSRA 《高等机器学习》 8

Page 9: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Overview• What can generative models do:

2. Density estimation 𝑝 𝑥 .

[Ritchie Ng]

Anomaly Detection:

2019/10/10 清华大学-MSRA 《高等机器学习》 9

Page 10: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Overview• What can generative models do:

3. Draw semantic or concise representation of data 𝑥 (via latent variable 𝑧).

𝑥 (documents) 𝑧 (topics) [PT13]

𝑧 (semantic regions) [DFD+18]𝑥 (image)2019/10/10 清华大学-MSRA 《高等机器学习》 10

Page 11: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Overview• What can generative models do:

3. Draw semantic or concise representation of data 𝑥 (via latent variable 𝑧).

𝑧 (semantic regions) [KD18]𝑥 (image)

2019/10/10 清华大学-MSRA 《高等机器学习》 11

Page 12: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Overview• What can generative models do:

3. Draw semantic or concise representation of data 𝑥 (via latent variable 𝑧).

[PT13]

𝑧 ∈ ℝ20 [DFD+18]𝑥 ∈ ℝ28×28

Topic proportion

𝑧 ∈ ℝ#topic𝑥 ∈ ℝ#vocabulary

Dimensionality Reduction:

2019/10/10 清华大学-MSRA 《高等机器学习》 12

Page 13: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Overview• What can generative models do:

4. Supervised Learning: argmax𝑦∗

𝑝 𝑦∗ 𝑥∗, 𝑥 𝑛 , 𝑦 𝑛 .

[Naive Bayes]

𝑥1: doc 1

𝑧: topics

𝑦1: science & tech

𝑥2: doc 2 𝑦2: politics

......

......

Supervised LDA [MB08]2019/10/10 清华大学-MSRA 《高等机器学习》 13

Page 14: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Overview• What can generative models do:

4. Supervised Learning: argmax𝑦∗

𝑝 𝑦∗ 𝑥∗, 𝑥 𝑛 , 𝑦 𝑛 , 𝑥 𝑛 .

Semi-Supervised Learning:

Unlabeled data 𝑥 𝑛 can be

utilized to learn a better 𝑝 𝑥, 𝑦 .

2019/10/10 清华大学-MSRA 《高等机器学习》 14

Page 15: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Benefits“What I cannot create, I do not understand.” —Richard Feynman

• Natural for generation.

• For representation learning: responsible and faithful knowledge of the data.

• For supervised learning: can leverage unlabeled data.

• For supervised learning: more data-efficient.For logistic regression (discriminative) and naive Bayes (generative) [NJ01],

𝑑: data dimension.𝑁: data size.

2019/10/10 清华大学-MSRA 《高等机器学习》 15

Page 16: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Taxonomy• Plain Generative Models: Directly model 𝑝 𝑥 ; no latent variable.

• Latent Variable Models:

𝑝𝜃 𝑥 𝑥

𝑥(or 𝑥, 𝑦 )

𝑧

𝑝 𝑧

𝑝𝜃 𝑥

𝑥 = 𝑓𝜃(𝑧)

𝑥(or 𝑥, 𝑦 )

𝑧

𝑝 𝑧

𝑝𝜃 𝑥

𝑝𝜃 𝑥, 𝑧

𝑝𝜃 𝑥|𝑧

𝑧

𝑥

𝑥 = 𝑓𝜃(𝑧)

𝑝 𝑧

𝑝𝜃 𝑥

𝑧

𝑥

𝑥 ∼ 𝑝𝜃(𝑥|𝑧)

𝑝 𝑧

𝑝𝜃 𝑥

• Deterministic Generative Models:Dependency between 𝑥 and 𝑧 is deterministic: 𝑥 = 𝑓𝜃(𝑧).

• Bayesian Generative Models:Dependency between 𝑥 and 𝑧 is probabilistic: 𝑥, 𝑧 ∼ 𝑝𝜃 𝑥, 𝑧 .

2019/10/10 清华大学-MSRA 《高等机器学习》 16

Page 17: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Taxonomy• Latent Variable Models• Bayesian Generative Models

𝑧

𝑥

𝑥 ∼ 𝑝𝜃(𝑥|𝑧)

𝑝 𝑧

𝑝𝜃 𝑥

• Bayesian Network (BayesNet):𝑝 𝑥, 𝑧 specified by 𝑝 𝑧 and 𝑝 𝑥 𝑧 .

• Synonyms: Causal Networks, Directed Graphical Model

• Markov Random Field (MRF):𝑝 𝑥, 𝑧 specified by an Energy function

𝐸𝜃 𝑥, 𝑧 : 𝑝𝜃 𝑥, 𝑧 ∝ exp −𝐸𝜃 𝑥, 𝑧 .

• Synonyms: Energy-Based Model, Undirected Graphical Model

𝑧

𝑥

𝑝𝜃 𝑥, 𝑧 ∝ exp −𝐸𝜃 𝑥, 𝑧

2019/10/10 清华大学-MSRA 《高等机器学习》 17

Page 18: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Taxonomy• Summary

𝑧

𝑥

𝑥 = 𝑓𝜃(𝑧)

𝑝 𝑧

𝑝𝜃 𝑥

𝑧

𝑥

𝑥 ∼ 𝑝𝜃(𝑥|𝑧)

𝑝 𝑧

𝑝𝜃 𝑥

𝑧

𝑥

𝑝𝜃 𝑥, 𝑧 ∝ exp −𝐸𝜃 𝑥, 𝑧

𝑝𝜃 𝑥 𝑥

Generative Models (GMs)

Plain GMs

Autoregressive Models

Latent Variable Models

Deterministic GMs

Generative Adversarial Nets,

Flow-Based Models

Bayesian GMs

BayesNets

Topic Models,Variational Auto-

Encoders

MRFs

Boltzmann machines,Deep Energy-Based

Models

whether use latent variable 𝑧 deterministic or

probabilistic 𝑧-𝑥dependency

directed or undirected

2019/10/10 清华大学-MSRA 《高等机器学习》 18

Page 19: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Outline• Generative Models: Overview

• Plain Generative Models• Autoregressive Models

• Latent Variable Models• Deterministic Generative Models• Generative Adversarial Nets

• Flow-Based Generative Models

• Bayesian Generative Models• Bayesian Inference (variational inference, MCMC)

• Bayesian Networks• Topic Models (LDA, LightLDA, sLDA)

• Deep Bayesian Models (VAE)

• Markov Random Fields (Boltzmann machines, deep energy-based models)

2019/10/10 清华大学-MSRA 《高等机器学习》 19

Page 20: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Plain Generative Models• Directly model 𝑝 𝑥 ; no latent variable involved.

• Easy to learn (no normalization constant issue) and use (generation).

• Learning: Maximum Likelihood Estimation (MLE).

𝜃∗ = argmax𝜃

𝔼 ො𝑝 𝑥 log 𝑝𝜃 𝑥 = argmin𝜃

KL Ƹ𝑝, 𝑝𝜃

≈ argmax𝜃

1

𝑁σ𝑛=1𝑁 log 𝑝𝜃(𝑥

𝑛 ).

• First example: Gaussian Mixture Model

𝑝𝜃 𝑥 = σ𝑘=1𝐾 𝛼𝑘𝒩(𝑥|𝜇𝑘, Σ𝑘),

𝜃 = 𝛼, 𝜇, Σ .

2019/10/10 清华大学-MSRA 《高等机器学习》 20

Kullback-Leibler divergenceKL Ƹ𝑝, 𝑝𝜃 ≔ 𝔼 ො𝑝 𝑥 log Ƹ𝑝/𝑝𝜃

Page 21: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Plain Generative Models• Autoregressive Model:

Model 𝑝 𝑥 by each conditional 𝑝 𝑥𝑖 𝑥<𝑖 (𝑖 indices components).• Full dependency can be restored.

• Conditionals are easier to model.

• Easy learning (MLE).

• Easy generation:𝑥 ∼ 𝑝 𝑥 ⟺ 𝑥1 ∼ 𝑝 𝑥1 , 𝑥2 ∼ 𝑝 𝑥2 𝑥1 , … , 𝑥𝑑 ∼ 𝑝 𝑥𝑑 𝑥1, … , 𝑥𝑑−1 .

But non-parallelizable.

𝑥 𝑥1 𝑥2 𝑥3 𝑥𝑑⋯⋯

𝑝 𝑥1, 𝑥2, … , 𝑥𝑑 𝑝 𝑥1 𝑝 𝑥2|𝑥1 𝑝 𝑥3|𝑥1, 𝑥2 𝑝 𝑥𝑑|𝑥<𝑑⋯

2019/10/10 清华大学-MSRA 《高等机器学习》 21

Page 22: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

清华大学-MSRA 《高等机器学习》

Autoregressive Models• Fully Visible Sigmoid Belief Network [Fre98]

𝑝 𝑥𝑖 𝑥<𝑖 = Bern 𝑥𝑖 𝜎 σ𝑗<𝑖𝑊𝑖𝑗𝑥𝑗

• Neural Autoregressive Distribution Estimator [LM11]𝑝 𝑥𝑖 𝑥<𝑖 = Bern 𝑥𝑖 𝜎 𝑉𝑖,:𝜎 𝑊:,<𝑖𝑥<𝑖 + 𝑎 + 𝑏𝑖

• A typical language model:

Sigmoid function

𝜎 𝑟 =1

1+𝑒−𝑟

ℎ1

𝑥1

= 𝑝(𝑥1 = the)

𝑥1

ℎ2

𝑥2

the

𝑝(cat|𝑥1)

𝑥2

ℎ3

𝑥3

cat

𝑝(sat|𝑥1…2)

𝑥5

ℎ6

𝑥6

𝑥4

ℎ5

𝑥5

ℎ7

𝑥7

on the mat

𝑝(the|𝑥1…4) 𝑝(mat|𝑥1…5) 𝑝(</s>|𝑥1…6)

𝑥6𝑥3

ℎ4

𝑥4

sat

𝑝(on|𝑥1…3)

𝑝(“the cat sat on the mat”) = 𝑝 𝑥

2019/10/10 22

Page 23: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Autoregressive Models• WaveNet [ODZ+16]• Construct 𝑝 𝑥𝑖 𝑥<𝑖 via Causal Convolution

𝑥1 𝑥𝑖−1

ℎ2

NN

𝑝(𝑥2|𝑥1)

𝑥2

𝑥2

𝑝(𝑥1)

𝑥1

NN

𝑝(𝑥𝑖−1|𝑥< 𝑖−1 )

𝑥𝑖−1

NN

𝑝(𝑥𝑖|𝑥<𝑖)

𝑥𝑖

𝑥𝑖−2𝑥𝑖−3𝑥𝑖−4𝑥𝑖−52019/10/10 清华大学-MSRA 《高等机器学习》 23

Page 24: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Autoregressive Models• PixelCNN & PixelRNN [OKK16]• Autoregressive structure of an image:

• PixelCNN: model conditional distributions via (masked) convolution:

ℎ𝑖 = 𝐾 ∗ 𝑥<𝑖 ,𝑝 𝑥𝑖 𝑥<𝑖 = NN ℎ𝑖 .

• Bounded receptive field.

• Likelihood evaluation: parallel

𝑥𝑖

NN

𝑝(𝑥𝑖|𝑥<𝑖)

𝑥𝑖

ℎ𝑖

2019/10/10 清华大学-MSRA 《高等机器学习》 24

Page 25: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Autoregressive Models• PixelCNN & PixelRNN [OKK16]• PixelRNN: model conditional distributions via

recurrent connection:

ℎ𝑖 , 𝑐𝑖 = LSTM 𝐾 ∗ ℎ( 𝑖/𝑛 𝑛−𝑛): 𝑖/𝑛 𝑛

1D convolution

, 𝑐𝑖−1, 𝑥𝑖−1 ,

𝑝 𝑥𝑖 𝑥<𝑖 = NN ℎ𝑖 .• Unbounded receptive field.

• Likelihood evaluation (in-row): parallelLikelihood evaluation (inter-row): sequential

𝑥𝑖

𝑐𝑖

𝑥𝑖−1

𝑐𝑖−1

NN

𝑝(𝑥𝑖|𝑥<𝑖)

𝑥𝑖

ℎ𝑖

2019/10/10 清华大学-MSRA 《高等机器学习》 25

Page 26: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Autoregressive Models

Image Generation

Image Completion

• PixelCNN & PixelRNN [OKK16]

2019/10/10 清华大学-MSRA 《高等机器学习》 26

Page 27: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Outline• Generative Models: Overview

• Plain Generative Models• Autoregressive Models

• Latent Variable Models• Deterministic Generative Models• Generative Adversarial Nets

• Flow-Based Generative Models

• Bayesian Generative Models• Bayesian Inference (variational inference, MCMC)

• Bayesian Networks• Topic Models (LDA, LightLDA, sLDA)

• Deep Bayesian Models (VAE)

• Markov Random Fields (Boltzmann machines, deep energy-based models)

2019/10/10 清华大学-MSRA 《高等机器学习》 27

Page 28: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Latent Variable Models• Latent Variable:• Abstract knowledge of data; enables various tasks.

Knowledge Discovery

Manipulated Generation

Dimensionality Reduction

2019/10/10 清华大学-MSRA 《高等机器学习》 28

Page 29: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

𝑧

𝑧

Latent Variable Models• Latent Variable:• Compact representation of dependency.

De Finetti’s Theorem (1955): if 𝑥1, 𝑥2, … are infinitely exchangeable, then ∃r.v. 𝑧 and 𝑝 ⋅ 𝑧 s.t. ∀𝑛,

𝑝 𝑥1, … , 𝑥𝑛 = න ෑ

𝑖=1

𝑛

𝑝 𝑥𝑖 𝑧 𝑝 𝑧 d𝑧 .

Infinite exchangeability:

For all 𝑛 and permutation 𝜎, 𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥𝜎 1 , … , 𝑥𝜎 𝑛 .

2019/10/10 清华大学-MSRA 《高等机器学习》 29

Page 30: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Outline• Generative Models: Overview

• Plain Generative Models• Autoregressive Models

• Latent Variable Models• Deterministic Generative Models• Generative Adversarial Nets

• Flow-Based Generative Models

• Bayesian Generative Models• Bayesian Inference (variational inference, MCMC)

• Bayesian Networks• Topic Models (LDA, LightLDA, sLDA)

• Deep Bayesian Models (VAE)

• Markov Random Fields (Boltzmann machines, deep energy-based models)

2019/10/10 清华大学-MSRA 《高等机器学习》 30

Page 31: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Adversarial Nets• Deterministic 𝑓𝜃: 𝑧 ↦ 𝑥, modeled by a neural network.

+ Flexible modeling ability.

+ Good generation performance.

- Hard to infer 𝑧 of a data point 𝑥.

- Unavailable density function 𝑝𝜃 𝑥 .

- Mode-collapse.

• Learning: min𝜃

discr Ƹ𝑝 𝑥 , 𝑝𝜃 𝑥 .

• discr. = KL Ƹ𝑝, 𝑝𝜃 ⟹ MLE: max𝜃

𝔼 ො𝑝 log 𝑝𝜃 , but 𝑝𝜃 𝑥 is unavailable!

• discr. = Jensen-Shannon divergence [GPM+14].

• discr. = Wasserstein distance [ACB17].

𝑧

𝑥

𝑥 = 𝑓𝜃(𝑧)(Neural Nets)

𝑝 𝑧

𝑝𝜃 𝑥

2019/10/10 清华大学-MSRA 《高等机器学习》 31

Page 32: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Generative Adversarial Nets• Learning: min

𝜃discr Ƹ𝑝 𝑥 , 𝑝𝜃 𝑥 .

• GAN [GPM+14]: discr. = Jensen-Shannon divergence.

JS Ƹ𝑝, 𝑝𝜃 ≔1

2KL Ƹ𝑝,

𝑝𝜃 + Ƹ𝑝

2+ KL 𝑝𝜃,

𝑝𝜃 + Ƹ𝑝

2

=1

2max𝑇 ⋅

𝔼 ො𝑝 𝑥 log 𝜎 𝑇 𝑥 + 𝔼𝑝𝜃 𝑥 log 1 − 𝜎 𝑇 𝑥

=𝔼𝑝 𝑧 log 1−𝜎 𝑇 𝑓𝜃 z

+ log 2 .

• 𝜎 𝑇 𝑥 is the discriminator; 𝑇 implemented as a neural network.

• Expectations can be estimated by samples.

𝑧

𝑥

𝑥 = 𝑓𝜃(𝑧)(Neural Nets)

𝑝 𝑧

𝑝𝜃 𝑥

2019/10/10 清华大学-MSRA 《高等机器学习》 32

Page 33: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Generative Adversarial Nets• Learning: min

𝜃discr Ƹ𝑝 𝑥 , 𝑝𝜃 𝑥 .

• WGAN [ACB17]: discr. = Wasserstein distance:

𝑑𝑊 Ƹ𝑝, 𝑝𝜃 = inf𝛾∈Γ ො𝑝,𝑝𝜃

𝔼𝛾 𝑥,𝑦 𝑐 𝑥, 𝑦

= sup𝜙∈Lip1

𝔼 ො𝑝 𝜙 − 𝔼𝑝𝜃 𝜙 . (if c is a distance in a Polish space)

• Choose 𝜙 as a neural network with parameter clipping.

• Benefit: 𝑑𝑊 has more alleviative reaction to distribution difference than JS.

ℎ𝑝0

𝑝ℎ

ℎ ℎ

𝑑𝑊 𝑝0, 𝑝ℎ JS 𝑝0, 𝑝ℎ

𝑧

𝑥

𝑥 = 𝑓𝜃(𝑧)(Neural Nets)

𝑝 𝑧

𝑝𝜃 𝑥

2019/10/10 清华大学-MSRA 《高等机器学习》 33

Page 34: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Outline• Generative Models: Overview

• Plain Generative Models• Autoregressive Models

• Latent Variable Models• Deterministic Generative Models• Generative Adversarial Nets

• Flow-Based Generative Models

• Bayesian Generative Models• Bayesian Inference (variational inference, MCMC)

• Bayesian Networks• Topic Models (LDA, LightLDA, sLDA)

• Deep Bayesian Models (VAE)

• Markov Random Fields (Boltzmann machines, deep energy-based models)

2019/10/10 清华大学-MSRA 《高等机器学习》 34

Page 35: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Flow-Based Generative Models• Deterministic and invertible 𝑓𝜃: 𝑧 ↦ 𝑥.

+ Available density function!

𝑝𝜃 𝑥 = 𝑝 𝑧 = 𝑓𝜃−1 𝑥

𝜕𝑓𝜃−1

𝜕𝑥(rule of change of variables).

+ Easy inference: 𝑧 = 𝑓𝜃−1 𝑥 .

- Redundant representation: dim. 𝑧 = dim. 𝑥.

- Restricted 𝑓𝜃: deliberative design; either 𝑓𝜃 or 𝑓𝜃−1 computes costly.

• Learning: min𝜃

KL Ƹ𝑝 𝑥 , 𝑝𝜃 𝑥 ⟹ MLE: max𝜃

𝔼 ො𝑝 𝑥 log 𝑝𝜃 𝑥 .

• NICE [DKB15], RealNVP [DSB17], MAF [PPM17], GLOW [KD18].

𝑧

𝑥

𝑥 = 𝑓𝜃(𝑧)(invertible)

𝑝 𝑧

𝑝𝜃 𝑥

Jacobian Determinant

2019/10/10 清华大学-MSRA 《高等机器学习》 35

Page 36: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Flow-Based Generative Models• RealNVP [DSB17]• Building block: coupling: 𝑦 = 𝑔 𝑥 ,

where 𝑠 and 𝑡: ℝ𝐷−𝑑 → ℝ𝐷−𝑑 are general functions for scale and translation.

• Jacobian Determinant: 𝜕𝑔

𝜕𝑥= exp σ𝑗=1

𝐷−𝑑 𝑠𝑗 𝑥1:𝑑 .

• Partitioning 𝑥 using a binary mask 𝑏:

2019/10/10 清华大学-MSRA 《高等机器学习》 36

Page 37: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Flow-Based Generative Models• RealNVP [DSB17]

• Building block: squeezing: from 𝑠 × 𝑠 × 𝑐 to 𝑠

𝑠

2× 4𝑐:

• Combining with a multi-scale architecture:

where each 𝑓 follows a “coupling-squeezing-coupling” architecture.2019/10/10 清华大学-MSRA 《高等机器学习》 37

Page 38: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Flow-Based Generative Models• RealNVP [DSB17]

2019/10/10 清华大学-MSRA 《高等机器学习》 38

Page 39: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

清华大学-MSRA 《高等机器学习》

Flow-Based Generative Models• GLOW [KD18]

One step of 𝑓𝜃

Component Details

Combination of the steps to form 𝑓𝜃

2019/10/10 39

Page 40: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Flow-Based Generative Models• GLOW [KD18]

Generation Results

(Interpolation)

GenerationResults

(Manipulation;each semantic

direction =ҧ𝑧pos − ҧ𝑧neg)

2019/10/10 清华大学-MSRA 《高等机器学习》 40

Page 41: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Outline• Generative Models: Overview

• Plain Generative Models• Autoregressive Models

• Latent Variable Models• Deterministic Generative Models• Generative Adversarial Nets

• Flow-Based Generative Models

• Bayesian Generative Models• Bayesian Inference (variational inference, MCMC)

• Bayesian Networks• Topic Models (LDA, LightLDA, sLDA)

• Deep Bayesian Models (VAE)

• Markov Random Fields (Boltzmann machines, deep energy-based models)2019/10/10 清华大学-MSRA 《高等机器学习》 41

Page 42: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Generative Models: OverviewBayesian Networks

• Model structure (Bayesian Modeling):• Prior 𝑝 𝑧 : initial belief of 𝑧.

• Likelihood 𝑝 𝑥 𝑧 : dependence of 𝑥 on 𝑧.

• Learning (Model Selection): MLE.

𝜃∗ = argmax𝜃

𝔼 ො𝑝 𝑥 log 𝑝𝜃 𝑥 ,

Evidence 𝑝 𝑥 = 𝑝 𝑧, 𝑥 d𝑧.

• Feature/representation learning (Bayesian Inference):

Posterior 𝑝 𝑧 𝑥 =𝑝 𝑧,𝑥

𝑝 𝑥=

𝑝 𝑧)𝑝(𝑥|𝑧

𝑝 𝑧,𝑥 d𝑧(Bayes’ rule)

represents the updated information that observation 𝑥 conveys to 𝑧.

• Generation/prediction: 𝑧new ∼ 𝑝 𝑧|𝑥 , 𝑥new ∼ 𝑝 𝑥 𝑧new .

Prior 𝑝 𝑧

Likelihood 𝑝 𝑥|𝑧 Evidence 𝑝 𝑥

Bayesian Modeling

Latent Variable

𝑧(Bayesian Inference)

Posterior 𝑝 𝑧|𝑥

(Model Selection)

Data Variable

𝑥

2019/10/10 清华大学-MSRA 《高等机器学习》 42

Page 43: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Generative Models: Overview• Dependency between 𝑥 and 𝑧 is probabilistic: 𝑥, 𝑧 ∼ 𝑝𝜃 𝑥, 𝑧 .

𝑧

𝑥

𝑥 ∼ 𝑝𝜃(𝑥|𝑧)

𝑝 𝑧

𝑝𝜃 𝑥

• Bayesian Network (BayesNet):𝑝 𝑥, 𝑧 specified by 𝑝 𝑧 and 𝑝 𝑥 𝑧 .

• Synonyms: Causal Networks,Directed Graphical Model.

• Directional/Causal belief encoded:𝑥 is generated/caused by 𝑧, not the other way.

• Markov Random Field (MRF):𝑝 𝑥, 𝑧 specified by an Energy function

𝐸𝜃 𝑥, 𝑧 : 𝑝𝜃 𝑥, 𝑧 ∝ exp −𝐸𝜃 𝑥, 𝑧 .• Synonyms: Energy-Based Model,

Undirected Graphical Model.• Modeling the symmetric correlation.• Harder learning and generation.

𝑧

𝑥

𝑝𝜃 𝑥, 𝑧 ∝ exp −𝐸𝜃 𝑥, 𝑧

2019/10/10 清华大学-MSRA 《高等机器学习》 43

Page 44: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Generative Models: OverviewNot all Bayesian models are generative:

Prior 𝑝 𝑧

Likelihood𝑝 𝑥, 𝑦|𝑧

Latent Variable

𝑧

Data & Response 𝑥, 𝑦

Generative Bayesian Models

Evidence 𝑝 𝑥, 𝑦

Posterior 𝑝 𝑧|𝑥, 𝑦

Prior 𝑝 𝑧

Likelihood 𝑝 𝑦|𝑧, 𝑥

Latent Variable

𝑧

Response 𝑦

Data 𝑥Evidence 𝑝 𝑦|𝑥

Posterior 𝑝 𝑧|𝑥, 𝑦

Non-Generative Bayesian Models

Generative Non-generative

Supervised Naive Bayes, supervised LDA Bayesian Logistic Regression,Bayesian Neural Networks

Unsupervised BayesNets (LDA, VAE),MRFs (BM, RBM, DBM)

(invalid task)

2019/10/10 清华大学-MSRA 《高等机器学习》 44

Page 45: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Generative Models: Benefits• Robust to small data and adversarial attack.

• Stable training process

• Principled and natural inference 𝑝 𝑧 𝑥 via Bayes’ rule

One-shot generation [LST15]

2019/10/10 清华大学-MSRA 《高等机器学习》 45

Page 46: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Generative Models: Benefits• Robust to small data and adversarial attack.

Meta-learning [KYD+18] One-shot generation [LST15]

2019/10/10 清华大学-MSRA 《高等机器学习》 46

Page 47: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Generative Models: Benefits• Robust to small data and adversarial attack.

Adversarial robustness [LG17](non-generative case)

2019/10/10 清华大学-MSRA 《高等机器学习》 47

Page 48: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Generative Models: Benefits• Stable training process

• Principled and natural inference 𝑝 𝑧 𝑥 via Bayes’ rule

Prior 𝑝 𝑧

Likelihood 𝑝 𝑥|𝑧 Evidence 𝑝 𝑥

Bayesian Modeling

Latent Variable

𝑧(Bayesian Inference)

Posterior 𝑝 𝑧|𝑥

(Model Selection)

Data Variable

𝑥

2019/10/10 清华大学-MSRA 《高等机器学习》 48

Page 49: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

𝑧

𝑥 ቊ

Bayesian Generative Models: Benefits• Natural to incorporate prior knowledge

[KSDV18]

Bald

Mustache

2019/10/10 清华大学-MSRA 《高等机器学习》 49

Page 50: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Outline• Generative Models: Overview

• Plain Generative Models• Autoregressive Models

• Latent Variable Models• Deterministic Generative Models• Generative Adversarial Nets

• Flow-Based Generative Models

• Bayesian Generative Models• Bayesian Inference (variational inference, MCMC)

• Bayesian Networks• Topic Models (LDA, LightLDA, sLDA)

• Deep Bayesian Models (VAE)

• Markov Random Fields (Boltzmann machines, deep energy-based models)2019/10/10 清华大学-MSRA 《高等机器学习》 50

Page 51: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian InferenceEstimate the posterior 𝑝 𝑧 𝑥 .

𝑥(or 𝑥, 𝑦 )

𝑧

𝑝 𝑧

𝑝 𝑥

𝑝 𝑥, 𝑧

𝑝 𝑥|𝑧∗

Bayesian Modeling

𝑧∗

Bayesian Inference

𝑥(or 𝑥, 𝑦 )

𝑧

𝑝 𝑧

𝑝 𝑥

𝑝 𝑥, 𝑧𝑝 𝑧|𝑥∗

𝑥∗

2019/10/10 清华大学-MSRA 《高等机器学习》 51

Page 52: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian InferenceEstimate the posterior 𝑝 𝑧 𝑥 .

• Extract knowledge/representation from data.

Prior 𝑝 𝑧

Likelihood 𝑝 𝑥|𝑧

Bayesian Modeling

Data Variable

𝑥

Latent Variable

𝑧

Topics

Documents

Bayesian Inference

Posterior

𝑝 𝑧|𝑥

2019/10/10 清华大学-MSRA 《高等机器学习》 52

Page 53: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian InferenceEstimate the posterior 𝑝 𝑧 𝑥 .

• Extract knowledge/representation from data.

Naive Bayes: 𝑧 = 𝑦.

𝑝 𝑦 = 0 𝑥 =𝑝 𝑥 𝑦 = 0 𝑝 𝑦 = 0

𝑝 𝑥 𝑦 = 0 𝑝 𝑦 = 0 + 𝑝 𝑥 𝑦 = 1 𝑝 𝑦 = 1

𝑓 𝑥 = argmax𝑦

𝑝 𝑦 𝑥 achieves the lowest error 𝑝 𝑦 = 1 − 𝑓 𝑥 |𝑥 𝑝 𝑥 d𝑥.

2019/10/10 清华大学-MSRA 《高等机器学习》 53

Page 54: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian InferenceEstimate the posterior 𝑝 𝑧 𝑥 .

• Facilitate model learning: max𝜃

1

𝑁σ𝑛=1𝑁 log 𝑝𝜃(𝑥

𝑛 ).

• 𝑝𝜃 𝑥 = 𝑝𝜃 𝑥 𝑧 𝑝𝜃 𝑧 d𝑧 is hard to evaluate:

• Closed-form integration is generally unavailable.

• Numerical integration• Curse of dimensionality

• Hard to optimize.

• log 𝑝𝜃 𝑥 = log𝔼𝑝 𝑧 𝑝𝜃 𝑥 𝑧 ≈ log1

𝑁σ𝑛 𝑝𝜃 𝑥 𝑧 𝑛 , 𝑧 𝑛 ∼ 𝑝 𝑧 .

• Hard for 𝑝 𝑧 to cover regions where 𝑝𝜃 𝑥 𝑧 is large.

• log1

𝑁σ𝑛 𝑝𝜃 𝑥 𝑧 𝑛 is biased:

𝔼 log1

𝑁σ𝑛 𝑝𝜃 𝑥 𝑧 𝑛 ≤ log𝔼

1

𝑁σ𝑛 𝑝𝜃 𝑥 𝑧 𝑛 = log 𝑝𝜃 𝑥 .

2019/10/10 清华大学-MSRA 《高等机器学习》 54

Page 55: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian InferenceEstimate the posterior 𝑝 𝑧 𝑥 .

• Facilitate model learning: max𝜃

1

𝑁σ𝑛=1𝑁 log 𝑝𝜃(𝑥

𝑛 ).

An effective and practical learning approach:

• Introduce a variational distribution 𝑞 𝑧 :log 𝑝𝜃 𝑥 = ℒ𝜃 𝑞 𝑧 + KL 𝑞 𝑧 , 𝑝𝜃 𝑧 𝑥 ,

ℒ𝜃 𝑞 𝑧 ≔ 𝔼𝑞 𝑧 log 𝑝𝜃 𝑧, 𝑥 − 𝔼𝑞 𝑧 log 𝑞 𝑧 .

• ℒ𝜃 𝑞 𝑧 ≤ log 𝑝𝜃 𝑥 ➔ Evidence Lower BOund (ELBO)!

• ℒ𝜃 𝑞 𝑧 is easier to estimate.

• (Variational) Expectation-Maximization Algorithm:

(a) E-step: Let ℒ𝜃 𝑞 𝑧 ≈ log 𝑝𝜃 𝑥 , ∀𝜃 ⟺ min𝑞∈𝒬

KL 𝑞 𝑧 , 𝑝𝜃 𝑧 𝑥

Bayesian Inference

;

(b) M-step: max𝜃

ℒ𝜃 𝑞 𝑧 .

𝑝𝜃 𝑥 = 𝑝𝜃 𝑥 𝑧 𝑝𝜃 𝑧 d𝑧Hard to evaluate!

2019/10/10 清华大学-MSRA 《高等机器学习》 55

Page 56: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian InferenceEstimate the posterior 𝑝 𝑧 𝑥 .

• For prediction:

𝑝 𝑦∗ 𝑥∗, 𝑥, 𝑦 = ൞

𝑝 𝑦∗ 𝑧, 𝑥∗ 𝑝 𝑧 𝑥∗, 𝑥, 𝑦 d𝑧 ,

𝑝 𝑦∗ 𝑧, 𝑥∗ 𝑝 𝑧 𝑥, 𝑦 d𝑧 .

𝑍

𝑋, 𝑌

𝑋

𝑍

𝑌

(Generative)

(Non-Generative)

2019/10/10 清华大学-MSRA 《高等机器学习》 56

Page 57: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian InferenceEstimate the posterior 𝑝 𝑧 𝑥 .

• It is a hard problem• Closed form of 𝑝 𝑧 𝑥 ∝ 𝑝 𝑧 𝑝 𝑥 𝑧 is generally intractable.

• We care about expectations w.r.t 𝑝 𝑧 𝑥 (prediction, computing ELBO).• So that even if we know the closed form (e.g., by numerical integration),

downstream tasks are still hard.

• So that the Maximum a Posteriori (MAP) estimate

argmax𝑧

log 𝑝 𝑧 𝑥 𝑛𝑛=1

𝑁= argmax

𝑧log 𝑝 𝑧 +

𝑛=1

𝑁

log 𝑝(𝑥 𝑛 |𝑧)

does not help much for Bayesian tasks.

Modeling Method Mathematical Problem

Parametric Method Optimization

Bayesian Method Bayesian Inference

2019/10/10 清华大学-MSRA 《高等机器学习》 57

Page 58: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Inference• Variational inference (VI)

Use a tractable variational distribution 𝑞 𝑧 to approximate 𝑝 𝑧 𝑥 :min𝑞∈𝒬

KL 𝑞 𝑧 , 𝑝 𝑧 𝑥 .

Tractability: known density function, or samples are easy to draw.

• Parametric VI: use a parameter 𝜙 to represent 𝑞𝜙 𝑧 .

• Particle-based VI: use a set of particles 𝑧 𝑖𝑖=1

𝑁to represent 𝑞 𝑧 .

• Monte Carlo (MC)• Draw samples from 𝑝 𝑧 𝑥 .

• Typically by simulating a Markov chain (i.e., MCMC) to release requirements on 𝑝 𝑧 𝑥 .

2019/10/10 清华大学-MSRA 《高等机器学习》 58

Page 59: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Inference: Variational Inferencemin𝑞∈𝒬

KL 𝑞 𝑧 , 𝑝 𝑧 𝑥 .

• Parametric variational inference: use a parameter 𝜙 to represent 𝑞𝜙 𝑧 .

But KL 𝑞𝜙 𝑧 , 𝑝𝜃 𝑧 𝑥 is hard to compute…

Recall log 𝑝𝜃 𝑥 = ℒ𝜃 𝑞 𝑧 + KL 𝑞 𝑧 , 𝑝𝜃 𝑧 𝑥 ,

so min𝜙

KL 𝑞𝜙 𝑧 , 𝑝 𝑧 𝑥 ⟺ max𝜙

ℒ𝜃 𝑞𝜙 𝑧 .

The ELBO ℒ𝜃 𝑞𝜙 𝑧 = 𝔼𝑞𝜙 𝑧 log 𝑝𝜃 𝑧, 𝑥 − 𝔼𝑞𝜙 𝑧 log 𝑞𝜙 𝑧 is easier to compute.

• For model-specifically designed 𝑞𝜙 𝑧 , ELBO 𝜃, 𝜙 has closed form(e.g., [SJJ96] for SBN, [BNJ03] for LDA).

2019/10/10 清华大学-MSRA 《高等机器学习》 59

Page 60: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Inference: Variational Inferencemin𝑞∈𝒬

KL 𝑞 𝑧 , 𝑝 𝑧 𝑥 .

• Parametric variational inference: use a parameter 𝜙 to represent 𝑞𝜙 𝑧 .

• Information theory perspective of the ELBO: Bits-Back Coding [HV93].• Average coding length for communicating 𝑥 after communicating its code 𝑧:

𝔼𝑞 𝑧|𝑥 − log 𝑝 𝑥 𝑧 .

• Average coding length for communicating 𝑧 under the bits-back coding:𝔼𝑞 𝑧 𝑥 − log𝑝 𝑧 − 𝔼𝑞 𝑧 𝑥 − log 𝑞 𝑧 𝑥 .

The second term: the receiver knowns the encoder 𝑞 𝑧 𝑥 that the sender uses.

• Average coding length for communicating 𝑥 with the help of 𝑧:𝔼𝑞 𝑧|𝑥 −log 𝑝 𝑥 𝑧 − log 𝑝 𝑧 + log 𝑞 𝑧 𝑥 .

This coincides with the negative ELBO!

Maximize ELBO = Minimize averaged coding length under the bits-back scheme.

2019/10/10 清华大学-MSRA 《高等机器学习》 60

Page 61: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Inference: Variational Inferencemin𝑞∈𝒬

KL 𝑞 𝑧 , 𝑝 𝑧 𝑥 .

• Parametric variational inference: use a parameter 𝜙 to represent 𝑞𝜙 𝑧 .

Main Challenge:

• 𝒬 should be as large/general/flexible as possible,

• while enables practical optimization of the ELBO.

𝑝 𝑧 𝑥

𝒬

𝑞∗ = arg min𝑞∈𝒬

KL 𝑞 𝑧 , 𝑝 𝑧 𝑥

2019/10/10 清华大学-MSRA 《高等机器学习》 61

Page 62: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Inference: Variational Inference• Parametric variational inference: use a parameter 𝜙 to represent 𝑞𝜙 𝑧 .

max𝜙

ℒ𝜃 𝑞𝜙 𝑧 = 𝔼𝑞𝜙 𝑧 log 𝑝𝜃 𝑧, 𝑥 − 𝔼𝑞𝜙 𝑧 log 𝑞𝜙 𝑧 .

• Explicit variational inference: specify the form of the density function 𝑞𝜙 𝑧 .

• Model-specific 𝑞𝜙 𝑧 : [SJJ96] for SBN, [BNJ03] for LDA.

• [GHB12, HBWP13, RGB14]: model-agnostic 𝑞𝜙 𝑧 (e.g., mixture of Gaussians).

• [RM15, KSJ+16]: define 𝑞𝜙 𝑧 by a flow-based generative model.

• Implicit variational inference: define 𝑞𝜙 𝑧 by a GAN-like generative model.

• More flexible but more difficult to optimize.

• Density ratio estimation: [MNG17, SSZ18a].

ℒ𝜃 𝑞𝜙 𝑧 = 𝔼𝑞𝜙 𝑧 log 𝑝𝜃 𝑥|𝑧 − 𝔼𝑞𝜙 𝑧 log𝑞𝜙 𝑧

𝑝 𝑧.

• Gradient Estimation ∇ log 𝑞𝜙 𝑧 : [VLBM08, LT18, SSZ18b].

2019/10/10 清华大学-MSRA 《高等机器学习》 62

Page 63: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Inference: Variational Inference• Parametric variational inference: use a parameter 𝜙 to represent 𝑞𝜙 𝑧 .

max𝜙

ℒ𝜃 𝑞𝜙 𝑧 = 𝔼𝑞𝜙 𝑧 log 𝑝𝜃 𝑧, 𝑥 − 𝔼𝑞𝜙 𝑧 log 𝑞𝜙 𝑧 .

• Explicit variational inference: specify the form of the density function 𝑞𝜙 𝑧 .

To be applicable to any model (model-agnostic 𝑞𝜙 𝑧 ):

• [GHB12]: mixture of Gaussian 𝑞𝜙 𝑧 =1

𝑁σ𝑛=1𝑁 𝒩 𝑧 𝜇𝑛, 𝜎𝑛

2𝐼 .

Blue =1

𝑁σ𝑛=1𝑁 𝔼𝒩 𝜇𝑛,𝜎𝑛

2𝐼 𝑓 𝑧

≈1

𝑁σ𝑛=1𝑁 𝔼𝒩 𝜇𝑛,𝜎𝑛

2𝐼 Taylor2 𝑓, 𝜇𝑛 =1

𝑁σ𝑛=1𝑁 𝑓 𝜇𝑛 +

𝜎𝑛2

2tr ∇2𝑓 𝜇𝑛 ,

Red ≥ −1

𝑁σ𝑛=1𝑁 logσ𝑗=1

𝑁 𝒩 𝜇𝑛 𝜇𝑗 , 𝜎𝑛2 + 𝜎𝑗

2 𝐼 + log𝑁.

• [RGB14]: mean-field 𝑞𝜙 𝑧 = ς𝑑=1𝐷 𝑞𝜙𝑑 𝑧𝑑 .

• ∇𝜃ℒ𝜃 𝑞𝜙 = 𝔼𝑞𝜙 𝑧 ∇𝜃 log 𝑝𝜃 𝑧, 𝑥 .

• ∇𝜙ℒ𝜃 𝑞𝜙 = 𝔼𝑞𝜙 𝑧 ∇𝜙 log 𝑞𝜙 𝑧 log 𝑝𝜃 𝑧, 𝑥 − log 𝑞𝜙 𝑧

(similar to REINFORCE [Wil92]) (with variance reduction).2019/10/10 清华大学-MSRA 《高等机器学习》 63

Page 64: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Inference: Variational Inference• Parametric variational inference: use a parameter 𝜙 to represent 𝑞𝜙 𝑧 .

max𝜙

ℒ𝜃 𝑞𝜙 𝑧 = 𝔼𝑞𝜙 𝑧 log 𝑝𝜃 𝑧, 𝑥 − 𝔼𝑞𝜙 𝑧 log 𝑞𝜙 𝑧 .

• Explicit variational inference: specify the form of the density function 𝑞𝜙 𝑧 .

To be more flexible and model-agnostic:

• [RM15, KSJ+16]: define 𝑞𝜙 𝑧 by a generative model:𝑧 ∼ 𝑞𝜙 𝑧 ⟺ 𝑧 = 𝑔𝜙 𝜖 , 𝜖 ∼ 𝑞 𝜖 ,

where 𝑔𝜙 is invertible (flow model).

Density function 𝑞𝜙 𝑧 is known!

𝑞𝜙 𝑧 = 𝑞 𝜖 = 𝑔𝜙−1 𝑧

𝜕𝑔𝜙−1

𝜕𝑧. (rule of change of variables)

ℒ𝜃 𝑞𝜙 = 𝔼𝑞 𝜖 log 𝑝𝜃 𝑧, 𝑥 ቚ𝑧=𝑔𝜙 𝜖

− log 𝑞𝜙 𝑧 ቚ𝑧=𝑔𝜙 𝜖

.

2019/10/10 清华大学-MSRA 《高等机器学习》 64

Page 65: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Inference: Variational Inference• Parametric variational inference: use a parameter 𝜙 to represent 𝑞𝜙 𝑧 .

max𝜙

ℒ𝜃 𝑞𝜙 𝑧 = 𝔼𝑞𝜙 𝑧 log 𝑝𝜃 𝑧, 𝑥 − 𝔼𝑞𝜙 𝑧 log 𝑞𝜙 𝑧 .

• Implicit variational inference: define 𝑞𝜙 𝑧 by a generative model:𝑧 ∼ 𝑞𝜙 𝑧 ⟺ 𝑧 = 𝑔𝜙 𝜖 , 𝜖 ∼ 𝑞 𝜖 ,

where 𝑔𝜙 is a general function.

• More flexible than explicit VIs.

• Samples are easy to draw, but density function 𝑞𝜙 𝑧 is unavailable.

• ℒ𝜃 𝑞𝜙 𝑧 = 𝔼𝑞 𝜖 log 𝑝𝜃 𝑥|𝑧 |𝑧=𝑔𝜙 𝜖 − 𝔼𝑞 𝜖 log𝑞𝜙 𝑧

𝑝 𝑧|𝑧=𝑔𝜙 𝜖 .

Key Problem:

• Density Ratio Estimation 𝑟 𝑧 ≔𝑞𝜙 𝑧

𝑝 𝑧.

• Gradient Estimation ∇ log 𝑞 𝑧 .

2019/10/10 清华大学-MSRA 《高等机器学习》 65

Page 66: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Inference: Variational Inference• Parametric variational inference: use a parameter 𝜙 to represent 𝑞𝜙 𝑧 .

max𝜙

ℒ𝜃 𝑞𝜙 𝑧 = 𝔼𝑞𝜙 𝑧 log 𝑝𝜃 𝑧, 𝑥 − 𝔼𝑞𝜙 𝑧 log 𝑞𝜙 𝑧 .

• Implicit variational inferenceDensity Ratio Estimation:

• [MNG17]: log 𝑟 = argmax𝑇

𝔼𝑞𝜙 𝑍 log 𝜎 𝑇 𝑍 + 𝔼𝑝 𝑍 log 1 − 𝜎 𝑇 𝑍 .

Also used in [MSJ+15, Hus17, TRB17].

• [SSZ18a]:

𝑟 ≈ argminƸ𝑟∈ℋ

1

2𝔼𝑝 Ƹ𝑟 − 𝑟 2 +

𝜆

2Ƹ𝑟 ℋ2 ≈

1

𝜆𝑁𝑞𝟏⊤𝐾𝑞 −

1

𝜆𝑁𝑝𝑁𝑞𝟏⊤𝐾𝑞𝑝

1

𝑁𝑝𝐾𝑝𝑝 + 𝜆𝐼

−1

𝐾𝑝 ,

where 𝐾𝑝 𝑧 𝑗 = 𝐾 𝑧𝑗𝑝, 𝑧 , 𝐾𝑞𝑝 𝑖𝑗

= 𝐾 𝑧𝑖𝑞, 𝑧𝑗

𝑝, 𝑧𝑖

𝑞

𝑖=1

𝑁𝑞∼ 𝑞𝜙 𝑧 , 𝑧𝑗

𝑝

𝑗=1

𝑁𝑝∼ 𝑝 𝑧 .

Gradient Estimation:

• [VLBM08, LT18, SSZ18b].

2019/10/10 清华大学-MSRA 《高等机器学习》 66

Page 67: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Inference: Variational Inferencemin𝑞∈𝒬

KL 𝑞 𝑧 , 𝑝 𝑧 𝑥 .

• Particle-based variational inference: use particles 𝑧 𝑖𝑖=1

𝑁to represent 𝑞 𝑧 .

To minimize KL 𝑞 𝑧 , 𝑝 𝑧 𝑥 , simulate its gradient flow on the Wasserstein space.

• Wasserstein space:

an abstract space of distributions.

• Wasserstein tangent vector

⟺ vector field.

𝑧𝑡𝑖

𝒵𝑉𝑡 𝑧𝑡

𝑖

𝑞𝑡

𝒵𝑧𝑡𝑖+ 𝜀𝑉𝑡 𝑧𝑡

𝑖

𝑞𝑡 𝑡𝑞𝑡+𝜀

𝑞𝑡 𝑉𝑡 𝒫2 𝒵

𝑞𝑡+𝜀 + 𝑜 𝜀

2019/10/10 清华大学-MSRA 《高等机器学习》 67

Page 68: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Inference: Variational Inferencemin𝑞∈𝒬

KL 𝑞 𝑧 , 𝑝 𝑧 𝑥 .

• Particle-based variational inference: use particles 𝑧 𝑖𝑖=1

𝑁to represent 𝑞 𝑧 .

𝑉 ≔ grad𝑞 KL 𝑞, 𝑝 = ∇ log(𝑞/𝑝) .𝑧 𝑖 ← 𝑧 𝑖 + 𝜀𝑉 𝑧 𝑖 .

𝑉 𝑧 𝑖 ≈

• SVGD [LW16]: σ𝑗𝐾𝑖𝑗 ∇𝑧 𝑗 log 𝑝 𝑧 𝑗 𝑥 + σ𝑗 ∇𝑧 𝑗 𝐾𝑖𝑗.

• Blob [CZW+18]: ∇𝑧 𝑖 log 𝑝 𝑧 𝑖 𝑥 −σ𝑗 ∇𝑧 𝑖 𝐾𝑖𝑗

σ𝑘 𝐾𝑖𝑘− σ𝑗

∇𝑧 𝑖 𝐾𝑖𝑗

σ𝑘𝐾𝑗𝑘.

• GFSD [LZC+19]: ∇𝑧 𝑖 log 𝑝 𝑧 𝑖 𝑥 −σ𝑗 ∇𝑧 𝑖 𝐾𝑖𝑗

σ𝑘 𝐾𝑖𝑘.

• GFSF [LZC+19]: ∇𝑧 𝑖 log 𝑝 𝑧 𝑖 𝑥 + σ𝑗,𝑘 𝐾−1𝑖𝑘∇𝑧 𝑗 𝐾𝑘𝑗.

= σ𝑗 𝑧𝑖 − 𝑧 𝑗 𝐾𝑖𝑗

for Gaussian Kernel: Repulsive force!

2019/10/10 清华大学-MSRA 《高等机器学习》 68

Page 69: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Inference: Variational Inferencemin𝑞∈𝒬

KL 𝑞 𝑧 , 𝑝 𝑧 𝑥 .

• Particle-based variational inference: use particles 𝑧 𝑖𝑖=1

𝑁to represent 𝑞 𝑧 .

Non-parametric 𝑞: more particles, more flexible.• Stein Variational Gradient Descent (SVGD) [LW16]:

Update the particles by a dynamicsd𝑧𝑡

d𝑡= 𝑉𝑡 𝑧𝑡 so that KL decreases.

• Distribution evolution: consequence of the dynamics.

𝜕𝑡𝑞𝑡 = −div 𝑞𝑡𝑉𝑡 = −∇ ⋅ 𝑞𝑡𝑉𝑡 (continuity Eq.)𝑧𝑡𝑖

𝒵𝑉𝑡 𝑧𝑡

𝑖

𝑞𝑡

𝒵𝑧𝑡𝑖+ 𝜀𝑉𝑡 𝑧𝑡

𝑖

𝑞𝑡+𝜀

2019/10/10 清华大学-MSRA 《高等机器学习》 69

Page 70: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Inference: Variational Inferencemin𝑞∈𝒬

KL 𝑞 𝑧 , 𝑝 𝑧 𝑥 .

• Particle-based variational inference: use particles 𝑧 𝑖𝑖=1

𝑁to represent 𝑞 𝑧 .

• Stein Variational Gradient Descent (SVGD) [LW16]:

Update the particles by a dynamicsd𝑧𝑡

d𝑡= 𝑉𝑡 𝑧𝑡 so that KL decreases.

• Decrease KL:

𝑉𝑡∗ ≔ argmax

𝑉𝑡−d

d𝑡KL 𝑞𝑡 , 𝑝 = 𝔼𝑞𝑡 𝑉𝑡 ⋅ ∇ log 𝑝 + ∇ ⋅ 𝑉𝑡

Stein Operator 𝒜𝑝 𝑉𝑡

.

For tractability,𝑉𝑡SVGD ≔ max⋅ arg max

𝑉𝑡∈ℋ𝐷, 𝑉𝑡 =1

𝔼𝑞𝑡 𝑉𝑡 ⋅ ∇ log 𝑝 + ∇ ⋅ 𝑉𝑡

= 𝔼𝑞 𝑧′ 𝐾 𝑧′,⋅ ∇𝑧′ log 𝑝 𝑧′ + ∇𝑧′𝐾 𝑧′,⋅ .

Update rule: 𝑧 𝑖 += 𝜀 σ𝑗𝐾𝑖𝑗 𝛻𝑧 𝑗 log 𝑝 𝑧 𝑗 +σ𝑗 𝛻𝑧 𝑗 𝐾𝑖𝑗 .

= σ𝑗 𝑧𝑖 − 𝑧 𝑗 𝐾𝑖𝑗

for Gaussian Kernel: Repulsive force!

2019/10/10 清华大学-MSRA 《高等机器学习》 70

Page 71: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Inference: Variational Inference

• Particle-based variational inference: use particles 𝑧 𝑖𝑖=1

𝑁to represent 𝑞 𝑧 .

• Unified view as Wasserstein gradient flow (WGF) [LZC+19]:particle-based VIs approximate WGF with a compulsory smoothing assumption, in either of the two equivalent forms of smoothing the density (Blob, GFSD) or smoothing functions (SVGD, GFSF).

2019/10/10 清华大学-MSRA 《高等机器学习》 71

Page 72: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Inference: Variational Inference

• Particle-based variational inference: use particles 𝑧 𝑖𝑖=1

𝑁to represent 𝑞 𝑧 .

• Acceleration on the Wasserstein

space [LZC+19]:• Apply Riemannian Nesterov’s

methods to 𝒫2 𝒵 .

2019/10/10 清华大学-MSRA 《高等机器学习》 72

Inference for Bayesian logistic regression

Page 73: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Inference: Variational Inference• Particle-based variational inference: use particles 𝑧 𝑖

𝑖=1

𝑁to represent 𝑞 𝑧 .

• Kernel bandwidth selection:• Median [LW16]: median of pairwise distances of the particles.

• HE [LZC+19]: the two approx. to 𝑞𝑡+𝜀 𝑧 , i.e., 𝑞 𝑧; 𝑧 𝑗𝑗+ 𝜀Δ𝑧 𝑞 𝑧; 𝑧 𝑗

𝑗(Heat

Eq.) and 𝑞 𝑧; 𝑧 𝑖 − 𝜀∇𝑧 𝑖 log 𝑞 𝑧 𝑖 ; 𝑧 𝑗𝑗

𝑖(particle evolution), should match.

2019/10/10 清华大学-MSRA 《高等机器学习》 73

Page 74: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Inference: Variational Inference

• Particle-based variational inference: use particles 𝑧 𝑖𝑖=1

𝑁to represent 𝑞 𝑧 .

• Unified view as Wasserstein gradient flow: [LZC+19].

• Asymptotic analysis: SVGD [Liu17] (𝑁 → ∞, 𝜀 → 0).

• Non-asymptotic analysis• w.r.t 𝜀: e.g., [RT96] (as WGF).

• w.r.t 𝑁: [CMG+18, FCSS18, ZZC18].

• Accelerating ParVIs: [LZC+19, LZZ19].

• Add particles dynamically: [CMG+18, FCSS18].

• Solve the Wasserstein gradient by optimal transport: [CZ17, CZW+18].

• Manifold support space: [LZ18].

2019/10/10 清华大学-MSRA 《高等机器学习》 74

Page 75: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Inference: MCMC• Monte Carlo• Directly draw (i.i.d.) samples from 𝑝 𝑧 𝑥 .

• Almost always impossible to directly do so.

• Markov Chain Monte Carlo (MCMC):Simulate a Markov chain whose stationary distribution is 𝑝 𝑧 𝑥 .

• Easier to implement: only requires unnormalized 𝑝 𝑧 𝑥 (e.g., 𝑝 𝑧, 𝑥 ).

• Asymptotically accurate.

• Drawback/Challenge: sample auto-correlation.

Less effective than i.i.d. samples.

[GC11]

2019/10/10 清华大学-MSRA 《高等机器学习》 75

Page 76: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Inference: MCMCA fantastic MCMC animation site: https://chi-feng.github.io/mcmc-demo/

2019/10/10 清华大学-MSRA 《高等机器学习》 76

Page 77: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Inference: MCMCClassical MCMC

• Metropolis-Hastings framework [MRR+53, Has70]:

Draw 𝑧∗ ∼ 𝑞 𝑧∗|𝑧 𝑘 and take 𝑧 𝑘+1 as 𝑧∗ with probability

min 1,𝑞 𝑧 𝑘 𝑧∗ 𝑝 𝑧∗ 𝑥

𝑞 𝑧∗ 𝑧 𝑘 𝑝 𝑧 𝑘 𝑥,

else take 𝑧 𝑘+1 as 𝑧 𝑘 .

Proposal distribution 𝑞 𝑧∗ 𝑧 : e.g., taken as 𝒩 𝑧∗ 𝑧, 𝜎2 .

2019/10/10 清华大学-MSRA 《高等机器学习》 77

Page 78: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Inference: MCMCClassical MCMC

• Gibbs sampling [GG87]:

Iteratively sample from conditional distributions, which are easier to draw:

𝑧11 ∼ 𝑝 𝑧1 𝑧2

0 , 𝑧30 , … , 𝑧𝑑

0 , 𝑥 ,

𝑧21∼ 𝑝 𝑧2 𝑧1

1, 𝑧3

0, … , 𝑧𝑑

0, 𝑥 ,

𝑧31 ∼ 𝑝 𝑧3 𝑧1

1 , 𝑧21 , … , 𝑧𝑑

0 , 𝑥 ,

… ,

𝑧𝑖𝑘+1 ∼ 𝑝 𝑧𝑖 𝑧1

𝑘+1 , … , 𝑧𝑖−1𝑘+1 , 𝑧𝑖+1

𝑘 , … , 𝑧𝑑𝑘 , 𝑥 .

2019/10/10 清华大学-MSRA 《高等机器学习》 78

Page 79: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Inference: MCMCDynamics-based MCMC

• Simulates a jump-free continuous-time Markov process (dynamics):

d𝑧 = 𝑏 𝑧 d𝑡drift

+ 2𝐷 𝑧 d𝐵𝑡 𝑧diffusion

,

Δ𝑧 = 𝑏 𝑧 𝜀 +𝒩 0,2𝐷 𝑧 𝜀 + 𝑜 𝜀 ,

with appropriate 𝑏 𝑧 and 𝐷 𝑧 so that 𝑝 𝑧 𝑥 is kept stationary/invariant.

• Informative transition using gradient ∇𝑧 log 𝑝 𝑧 𝑥 .

• Some are compatible with stochastic gradient (SG): more efficient.

∇𝑧 log 𝑝 𝑧 𝑥 = ∇𝑧 log 𝑝 𝑧 +

𝑛∈𝒟

∇𝑧 log 𝑝 𝑥 𝑛 𝑧 ,

෩∇𝑧 log 𝑝 𝑧 𝑥 = ∇𝑧 log 𝑝 𝑧 +𝒟

𝒮

𝑛∈𝒮

∇𝑧 log 𝑝 𝑥 𝑛 𝑧 , 𝒮 ⊂ 𝒟.

Brownian motion

Pos. semi-def. matrix

2019/10/10 清华大学-MSRA 《高等机器学习》 79

Page 80: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Inference: MCMCDynamics-based MCMC

• Langevin Dynamics [RS02] (compatible with SG [WT11, CDC15, TTV16]):𝑧 𝑘+1 = 𝑧(𝑘) + 𝜀∇ log 𝑝 𝑧 𝑘 𝑥 +𝒩 0,2𝜀 .

• Hamiltonian Monte Carlo [DKPR87, Nea11, Bet17]

(incompatible with SG [CFG14, Bet15]; leap-frog integrator [CDC15]):

𝑟 0 ∼ 𝒩 0, Σ ,

𝑟 𝑘+1/2 = 𝑟 𝑘 + (𝜀/2)∇ log 𝑝 𝑧 𝑘 𝑥 ,

𝑧 𝑘+1 = 𝑧 𝑘 + 𝜀Σ−1𝑟 𝑘+1/2 ,

𝑟 𝑘+1 = 𝑟 𝑘+1/2 + (𝜀/2)∇ log 𝑝 𝑧 𝑘+1 𝑥 .

• Stochastic Gradient Hamiltonian Monte Carlo [CFG14] (compatible with SG):

൝𝑧 𝑘+1 = 𝑧 𝑘 + 𝜀Σ−1𝑟 𝑘 ,

𝑟 𝑘+1 = 𝑟 𝑘 + 𝜀∇ log 𝑝 𝑧 𝑘 𝑥 − 𝜀𝐶Σ−1𝑟 𝑘 +𝒩 0,2𝐶𝜀 .

• …2019/10/10 清华大学-MSRA 《高等机器学习》 80

Page 81: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Inference: MCMCDynamics-based MCMC

• Langevin dynamics [Lan08]:d𝑧 = ∇ log 𝑝 d𝑡 + 2 d𝐵𝑡 𝑧 .

Algorithm (also called Metropolis Adapted Langevin Algorithm) [RS02]:𝑧 𝑘+1 = 𝑧(𝑘) + 𝜀𝛻 log 𝑝 𝑧 𝑘 𝑥 +𝒩 0,2𝜀 ,

followed by an MH step.

2019/10/10 清华大学-MSRA 《高等机器学习》 81

Page 82: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Inference: MCMCDynamics-based MCMC

• Hamiltonian Dynamics: ቊd𝑧 = Σ−1𝑟 d𝑡,d𝑟 = ∇ log 𝑝 d𝑡.

• Algorithm: Hamiltonian Monte Carlo [DKPR87, Nea11, Bet17]

Draw 𝑟 0 ∼ 𝒩 0, Σ and simulate 𝐾 steps:𝑟 𝑘+1/2 = 𝑟 𝑘 + 𝜀/2 ∇𝑧 log 𝑝 𝑧 𝑘 𝑥 ,

𝑧 𝑘+1 = 𝑧 𝑘 + 𝜀Σ−1𝑟 𝑘+1/2 ,

𝑟 𝑘+1 = 𝑟 𝑘+1/2 + 𝜀/2 ∇𝑧 log 𝑝 𝑧 𝑘+1 𝑥 ,

and do an MH step, for one sample of 𝑧.

• Störmer-Verlet (leap-frog) integrator:• Makes MH ratio close to 1.• Higher-order simulation error [CDC15].

• More distant exploration than LD (less auto-correlation).2019/10/10 清华大学-MSRA 《高等机器学习》 82

Page 83: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Inference: MCMCDynamics-based MCMC: using stochastic gradient (SG).

• Langevin dynamics is compatible with SG [WT11, CDC15, TTV16].

• Hamiltonian Monte Carlo is incompatible with SG [CFG14, Bet15]:

the stationary distribution is changed.

• Stochastic Gradient Hamiltonian Monte Carlo [CFG14]:

൝d𝑧 = Σ−1𝑟 d𝑡,

d𝑟 = ∇ log 𝑝 d𝑡 − 𝐶Σ−1𝑟 d𝑡 + 2𝐶 d𝐵𝑡 𝑟 .

• Asymptotically, stationary distribution is 𝑝.

• Non-asymptotically (with Euler integrator), gradient noise is of higher-order of Brownian-motion noise [CDC15].

2019/10/10 清华大学-MSRA 《高等机器学习》 83

Page 84: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Inference: MCMCDynamics-based MCMC: using stochastic gradient.

• Stochastic Gradient Nose-Hoover Thermostats [DFB+14] (scalar 𝐶 > 0):d𝑧 = Σ−1𝑟 d𝑡,

d𝑟 = ∇ log 𝑝 d𝑡 − 𝜉𝑟 d𝑡 + 2𝐶Σ d𝐵𝑡 𝑟 ,

d𝜉 =1

𝐷𝑟⊤Σ−1𝑟 − 1 d𝑡.

• Thermostats 𝜉 ∈ ℝ: adaptively balance the gradient noise and the Brownian-motion noise.

2019/10/10 清华大学-MSRA 《高等机器学习》 84

Page 85: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Bayesian Inference: MCMCDynamics-based MCMC

• Complete recipe for the dynamics [MCF15]:For any skew-symmetric matrix 𝑄 and pos. semi-def. matrix 𝐷, the dynamics

d𝑧 = 𝑏 𝑧 d𝑡 + 2𝐷 𝑧 d𝐵𝑡 𝑧 ,

𝑏𝑖 =1

𝑝

𝑗

𝜕𝑗 𝑝 𝐷𝑖𝑗 +𝑄𝑖𝑗 ,

keeps 𝑝 stationary/invariant.• The inverse also holds:

Any dynamics that keeps 𝑝 stationary can be cast into this form.• If 𝐷 is pos. def., then 𝑝 is the unique stationary distribution.

• Integrators and their non-asymptotic analysis (with SG): [CDC15].

• MCMC dynamics as flows on the Wasserstein space: [LZZ19].

2019/10/10 清华大学-MSRA 《高等机器学习》 85

Page 86: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Inference: MCMCDynamics-based MCMC

• Complete framework for MCMC dynamics: [MCF15].

• Interpretation on the Wasserstein space: [JKO98, LZZ19].

• Integrators and their non-asymptotic analysis (with SG): [CDC15].

• For manifold support space:• LD: [GC11]; HMC: [GC11, BSU12, BG13, LSSG15]; SGLD: [PT13];

SGHMC: [MCF15, LZS16]; SGNHT: [LZS16]

• Different kinetic energy (other than Gaussian):• Monomial Gamma [ZWC+16, ZCG+17].

• Fancy Dynamics:• Relativistic: [LPH+16]• Magnetic: [TRGT17]

2019/10/10 清华大学-MSRA 《高等机器学习》 86

Page 87: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Bayesian Inference: Comparison

Parametric VI Particle-Based VI MCMC

Asymptotic Accuracy No Yes Yes

Approximation Flexibility Limited Unlimited Unlimited

Empirical Convergence Speed High High Low

Particle Efficiency (Do not apply) High Low

High-Dimensional Efficiency High Low High

2019/10/10 清华大学-MSRA 《高等机器学习》 87

Page 88: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Outline• Generative Models: Overview

• Plain Generative Models• Autoregressive Models

• Latent Variable Models• Deterministic Generative Models• Generative Adversarial Nets

• Flow-Based Generative Models

• Bayesian Generative Models• Bayesian Inference (variational inference, MCMC)

• Bayesian Networks• Topic Models (LDA, LightLDA, sLDA)

• Deep Bayesian Models (VAE)

• Markov Random Fields (Boltzmann machines, deep energy-based models)2019/10/10 清华大学-MSRA 《高等机器学习》 88

Page 89: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Topic ModelsSeparate global (dataset abstraction) and local (datum representation) latent variables.

[SG07]2019/10/10 清华大学-MSRA 《高等机器学习》 89

Page 90: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Latent Dirichlet AllocationModel Structure [BNJ03]:

• Data variable: Words/Documents 𝑤 = 𝑤𝑑𝑛 𝑛=1:𝑁𝑑,𝑑=1:𝐷, 𝑤𝑑𝑛 ∈ 1…𝑊 .

• Latent variables:

• Global: topics 𝛽 = 𝛽𝑘 𝑘=1:𝐾 , 𝛽𝑘 ∈ Δ𝑊.

• Local: topic proportions 𝜃 = 𝜃𝑑 , 𝜃𝑑 ∈ Δ𝐾,

topic assignments 𝑧 = 𝑧𝑑𝑛 , 𝑧𝑑𝑛 ∈ 1…𝐾 .

• Prior: 𝑝 𝛽𝑘 𝑏 = Dir 𝑏 , 𝑝 𝜃𝑑 𝑎 = Dir 𝑎 , 𝑝 𝑧𝑑𝑛 𝜃𝑑 = Mult 𝜃𝑑 .

• Likelihood: 𝑝 𝑤𝑑𝑛 𝑧𝑑𝑛, 𝛽 = Mult 𝛽𝑧𝑑𝑛 .

𝐷𝑁𝑑𝐾

𝛽𝑘 𝜃𝑑𝑤𝑑𝑛

𝑎𝑏

𝑧𝑑𝑛

2019/10/10 清华大学-MSRA 《高等机器学习》 90

Page 91: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Latent Dirichlet AllocationVariational inference [BNJ03]:

• Take variational distribution (mean-field approximation):

𝑞𝜆,𝛾,𝜙 𝛽, 𝜃, 𝑧 ≔ෑ

𝑘=1

𝐾

Dir 𝛽𝑘 𝜆𝑘 ෑ

𝑑=1

𝐷

Dir 𝜃𝑑 𝛾𝑑 ෑ

𝑛=1

𝑁𝑑

Mult 𝑧𝑑𝑛 𝜙𝑑𝑛 .

• ELBO 𝜆, 𝛾, 𝜙; 𝑎, 𝑏 is available in closed form.

• E-step: update 𝜆, 𝛾, 𝜙 by maximizing ELBO;

• M-step: update 𝑎, 𝑏 by maximizing ELBO.

2019/10/10 清华大学-MSRA 《高等机器学习》 91

Page 92: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Latent Dirichlet AllocationMCMC: Gibbs sampling [GS04]

Model structure ⟹ 𝑝 𝛽, 𝜃, 𝑧, 𝑤 = 𝐴𝐵 ς𝑘,𝑤 𝛽𝑘𝑤𝑁𝑘𝑤+𝑏𝑤−1 ς𝑑,𝑘 𝜃𝑑𝑘

𝑁𝑘𝑑+𝑎𝑘−1

⟹ 𝑝 𝑧,𝑤 = 𝐴𝐵 ς𝑘ς𝑤 Γ 𝑁𝑘𝑤+𝑏𝑤

Γ 𝑁𝑘+𝑊ത𝑏ς𝑑

ς𝑘 Γ 𝑁𝑘𝑑+𝑎𝑘

Γ 𝑁𝑑+𝐾 ത𝑎.

(𝑁𝑘𝑤: #times word 𝑤 is assigned to topic 𝑘; 𝑁𝑘𝑑: #times topic 𝑘 appears in document 𝑑.)

• Unacceptable cost to directly compute 𝑝 𝑧 𝑤 = 𝑝 𝑧,𝑤 /𝑝 𝑤 .

• Use Gibbs sampling to draw from 𝑝 𝑧 𝑤 !

𝑝 𝑧𝑑𝑛 = 𝑘 𝑧−𝑑𝑛, 𝑤 ∝𝑁𝑘𝑤−𝑑𝑛 + 𝑏𝑤

𝑁𝑘−𝑑𝑛 +𝑊ത𝑏

𝑁𝑘𝑑−𝑑𝑛 + 𝑎𝑘 .

• For 𝛽 and 𝜃, use MAP estimate:

መ𝛽 ≔ argmax𝛽

log 𝑝 𝛽 𝑤 ≈𝑁𝑘𝑤 + 𝑏𝑤

𝑁𝑘 +𝑊ത𝑏,

𝜃𝑑𝑘 ≔ argmax𝜃

log 𝑝 𝜃 𝑤 ≈𝑁𝑘𝑑 + 𝑎𝑘𝑁𝑑 + 𝐾ത𝑎

.Estimated by samples of 𝑧

2019/10/10 清华大学-MSRA 《高等机器学习》 92

Page 93: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Latent Dirichlet AllocationMCMC: Gibbs sampling [GS04]

𝑝 𝛽, 𝜃, 𝑧, 𝑤

= ෑ

𝑘=1

𝐾

Dir 𝛽𝑘 𝑏 ෑ

𝑑=1

𝐷

Dir 𝜃𝑑 𝑎 ෑ

𝑛=1

𝑁𝑑

Mult 𝑧𝑑𝑛 𝜃𝑑 Mult 𝑤𝑑𝑛 𝛽𝑧𝑑𝑛

= 𝐴𝐵 ෑ

𝑘,𝑤

𝛽𝑘𝑤𝑏𝑤−1 ෑ

𝑑,𝑘

𝜃𝑑𝑘𝑎𝑘−1 ෑ

𝑑,𝑛

𝜃𝑑𝑧𝑑𝑛𝛽𝑧𝑑𝑛𝑤𝑑𝑛

= 𝐴𝐵 ෑ

𝑘,𝑤

𝛽𝑘𝑤𝑁𝑘𝑤+𝑏𝑤−1 ෑ

𝑑,𝑘

𝜃𝑑𝑘𝑁𝑘𝑑+𝑎𝑘−1 ,

• 𝐴 =Γ σ𝑘 𝑎𝑘

ς𝑘 Γ 𝑎𝑘

𝐷

, 𝐵 =Γ σ𝑤 𝑏𝑤

ς𝑤 Γ 𝑏𝑤

𝐾

, where Γ ⋅ is the Gamma function.

• 𝑁𝑘𝑤 = σ𝑑=1𝐷 σ𝑛=1

𝑁𝑑 𝕀 𝑤𝑑𝑛 = 𝑤, 𝑧𝑑𝑛 = 𝑘 : number of times that word 𝑤 is assigned to topic 𝑘.

• 𝑁𝑘𝑑 = σ𝑛=1𝑁𝑑 𝕀 𝑧𝑑𝑛 = 𝑘 : number of times that topic 𝑘 appears in document 𝑑.

2019/10/10 清华大学-MSRA 《高等机器学习》 93

Page 94: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Latent Dirichlet AllocationMCMC: Gibbs sampling [GS04]

𝑝 𝛽, 𝜃, 𝑧, 𝑤 = 𝐴𝐵 ෑ

𝑘,𝑤

𝛽𝑘𝑤𝑁𝑘𝑤+𝑏𝑤−1 ෑ

𝑑,𝑘

𝜃𝑑𝑘𝑁𝑘𝑑+𝑎𝑘−1 ,

𝑁𝑘𝑤 =

𝑑=1

𝐷

𝑛=1

𝑁𝑑

𝕀 𝑤𝑑𝑛 = 𝑤, 𝑧𝑑𝑛 = 𝑘 ,𝑁𝑘𝑑 =

𝑛=1

𝑁𝑑

𝕀 𝑧𝑑𝑛 = 𝑘 .

• 𝛽 and 𝜃 can be collapsed:𝑝 𝑧,𝑤 = ∬𝑝 𝛽, 𝜃, 𝑧, 𝑤 d𝛽 d𝜃

= 𝐴𝐵 ෑ

𝑘

ς𝑤 Γ 𝑁𝑘𝑤 + 𝑏𝑤

Γ 𝑁𝑘 +𝑊ത𝑏ෑ

𝑑

ς𝑘 Γ 𝑁𝑘𝑑 + 𝑎𝑘Γ 𝑁𝑑 +𝐾ത𝑎

.

• Unacceptable cost to directly compute 𝑝 𝑧 𝑤 = 𝑝(𝑧, 𝑤)/𝑝 𝑤 !

2019/10/10 清华大学-MSRA 《高等机器学习》 94

Page 95: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Latent Dirichlet AllocationMCMC: Gibbs sampling [GS04]

𝑝 𝑧,𝑤 = 𝐴𝐵 ෑ

𝑘

ς𝑤 Γ 𝑁𝑘𝑤 + 𝑏𝑤

Γ 𝑁𝑘 +𝑊ത𝑏ෑ

𝑑

ς𝑘 Γ 𝑁𝑘𝑑 + 𝑎𝑘Γ 𝑁𝑑 +𝐾ത𝑎

.

• Use Gibbs sampling: iteratively sample from

𝑝 𝑧111 𝑧12

0 , 𝑧130 , 𝑧14

0 , … , 𝑧𝐷𝑁𝐷0 , 𝑤 ,

𝑝 𝑧121 𝑧11

1 , 𝑧130 , 𝑧14

0 , … , 𝑧𝐷𝑁𝐷0 , 𝑤 ,

𝑝 𝑧131 𝑧11

1 , 𝑧121 , 𝑧14

0 , … , 𝑧𝐷𝑁𝐷0 , 𝑤 ,

… ,

𝑝 𝑧𝑑𝑛𝑙+1 𝑧11

𝑙+1 , … , 𝑧𝑑 𝑛−1𝑙+1 , 𝑧𝑑 𝑛+1

𝑙 , … , 𝑤 =: 𝑝 𝑧𝑑𝑛 𝑧−𝑑𝑛, 𝑤 .

𝑝 𝑧𝑑𝑛 = 𝑘 𝑧−𝑑𝑛, 𝑤 ∝𝑁𝑘𝑤−𝑑𝑛 + 𝑏𝑤

𝑁𝑘−𝑑𝑛 +𝑊ത𝑏

𝑁𝑘𝑑−𝑑𝑛 + 𝑎𝑘 .

2019/10/10 清华大学-MSRA 《高等机器学习》 95

Page 96: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Latent Dirichlet Allocation

𝑝 𝑧, 𝑤 = 𝐴𝐵 ෑ

𝑘′

ς𝑤′ Γ 𝑁𝑘′𝑤′ + 𝑏𝑤′

Γ 𝑁𝑘′ +𝑊ത𝑏ෑ

𝑑′

ς𝑘′ Γ 𝑁𝑘′𝑑′ + 𝑎𝑘′

Γ 𝑁𝑑′ + 𝐾ത𝑎

Denote 𝑤𝑑𝑛 as 𝑤:

= 𝐴𝐵ෑ

𝑘′

ς𝑤′≠𝑤 Γ 𝑁𝑘′𝑤′ + 𝑏𝑤′ ⋅ Γ 𝑁𝑘′𝑤−𝑑𝑛 + 𝕀 𝑧𝑑𝑛 = 𝑘′ + 𝑏𝑤

Γ 𝑁𝑘′−𝑑𝑛 + 𝕀 𝑧𝑑𝑛 = 𝑘′ +𝑊ത𝑏

⋅ ෑ

𝑑′≠𝑑

ς𝑘′ Γ 𝑁𝑘′𝑑′ + 𝑎𝑘′

Γ 𝑁𝑑′ +𝐾ത𝑎⋅ς𝑘′ Γ 𝑁𝑘′𝑑

−𝑑𝑛 + 𝕀 𝑧𝑑𝑛 = 𝑘′ + 𝑎𝑘′

Γ 𝑁𝑑 + 𝐾ത𝑎

= 𝐴𝐵ෑ

𝑘′

ς𝑤′≠𝑤 Γ 𝑁𝑘′𝑤′ + 𝑏𝑤′ ⋅ Γ 𝑁𝑘′𝑤−𝑑𝑛 + 𝑏𝑤 ⋅ 𝑁𝑘′𝑤

−𝑑𝑛 + 𝑏𝑤𝕀 𝑧𝑑𝑛=𝑘

Γ 𝑁𝑘′−𝑑𝑛 +𝑊ത𝑏 ⋅ 𝑁𝑘′

−𝑑𝑛 +𝑊ത𝑏𝕀 𝑧𝑑𝑛=𝑘

⋅ ෑ

𝑑′≠𝑑

ς𝑘′ Γ 𝑁𝑘′𝑑′ + 𝑎𝑘′

Γ 𝑁𝑑′ + 𝐾ത𝑎⋅ς𝑘′ Γ 𝑁𝑘′𝑑

−𝑑𝑛 + 𝑎𝑘′ ⋅ 𝑁𝑘′𝑑−𝑑𝑛 + 𝑎𝑘′

𝕀 𝑧𝑑𝑛=𝑘′

Γ 𝑁𝑑 + 𝐾ത𝑎

= 𝐴𝐵 ෑ

𝑘′

ς𝑤′≠𝑤 Γ 𝑁𝑘′𝑤′ + 𝑏𝑤′ ⋅ Γ 𝑁𝑘′𝑤−𝑑𝑛 + 𝑏𝑤

Γ 𝑁𝑘′−𝑑𝑛 +𝑊ത𝑏

⋅ෑ

𝑘′

𝑁𝑘′𝑤−𝑑𝑛 + 𝑏𝑤

𝑁𝑘′−𝑑𝑛 +𝑊ത𝑏

𝕀 𝑧𝑑𝑛=𝑘′

⋅ ෑ

𝑑′≠𝑑

ς𝑘′ Γ 𝑁𝑘′𝑑′ + 𝑎𝑘′

Γ 𝑁𝑑′ + 𝐾ത𝑎⋅ς𝑘′ Γ 𝑁𝑘′𝑑

−𝑑𝑛 + 𝑎𝑘′

Γ 𝑁𝑑 + 𝐾ത𝑎⋅ෑ

𝑘′

𝑁𝑘′𝑑−𝑑𝑛 + 𝑎𝑘′

𝕀 𝑧𝑑𝑛=𝑘′

.

𝑝 𝑧𝑑𝑛 = 𝑘 𝑧−𝑑𝑛 , 𝑤 ∝𝑁𝑘𝑤−𝑑𝑛 + 𝑏𝑤

𝑁𝑘−𝑑𝑛 +𝑊ത𝑏

𝑁𝑘𝑑−𝑑𝑛 + 𝑎𝑘 .

2019/10/10 清华大学-MSRA 《高等机器学习》 96

Page 97: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Latent Dirichlet AllocationMCMC: Gibbs sampling [GS04]

• For 𝛽, use the MAP estimate:መ𝛽 = argmax

𝛽log 𝑝 𝛽 𝑤 .

Estimate 𝑝 𝛽 𝑤 = 𝔼𝑝(𝑧|𝑤) 𝑝 𝛽, 𝑧, 𝑤 with one sample of 𝑧 from 𝑝 𝑧 𝑤 :

⟹ መ𝛽𝑘 =𝑁𝑘𝑤 + 𝑏𝑤 − 1

𝑁𝑘 +𝑊ത𝑏 −𝑊≈𝑁𝑘𝑤 + 𝑏𝑤

𝑁𝑘 +𝑊ത𝑏.

• For 𝜃, use the MAP estimate:

𝜃𝑑𝑘 =𝑁𝑘𝑑 + 𝑎𝑘 − 1

𝑁𝑑 +𝐾ത𝑎 − 𝐾≈𝑁𝑘𝑑 + 𝑎𝑘𝑁𝑑 + 𝐾ത𝑎

.

2019/10/10 清华大学-MSRA 《高等机器学习》 97

Page 98: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Latent Dirichlet AllocationMCMC: LightLDA [YGH+15]

𝑝 𝑧𝑑𝑛 = 𝑘 𝑧−𝑑𝑛 , 𝑤 ∝ 𝑁𝑘𝑑−𝑑𝑛 + 𝑎𝑘

𝑁𝑘𝑤−𝑑𝑛 + 𝑏𝑤

𝑁𝑘−𝑑𝑛 +𝑊ത𝑏

.

• Direct implementation: 𝑂 𝐾 time.

• Amortized 𝑂 1 multinomial sampling: alias table.

3

8,1

16,1

8,7

16⟹ Alias Table: 4,

3

16, 1,

1

16, 4,

1

8, 4,

1

4= ℎ𝑖 , 𝑣𝑖

• 𝑂 1 sampling: 𝑖 ∼ Unif 1, … , 𝐾 , 𝑣 ∼ Unif 0,1 , 𝑧 = 𝑖 if 𝑣 < 𝑣𝑖 else ℎ𝑖.• 𝑂 𝐾 time to build the Alias Table ⟹ Amortized 𝑂 1 time for 𝐾 samples.• What if the target changes (slightly): use Metropolis Hastings (MH) to correct.

2019/10/10 清华大学-MSRA 《高等机器学习》 98

Page 99: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Latent Dirichlet AllocationMCMC: LightLDA [YGH+15]

𝑝 𝑧𝑑𝑛 = 𝑘 𝑧−𝑑𝑛, 𝑤 ∝ 𝑁𝑘𝑑−𝑑𝑛 + 𝑎𝑘

𝑁𝑘𝑤−𝑑𝑛 + 𝑏𝑤

𝑁𝑘−𝑑𝑛 +𝑊ത𝑏

,

• Proposal in MH:

𝑞 𝑧𝑑𝑛 = 𝑘 ∝ 𝑀𝑘𝑑 + 𝑎𝑘doc−proposal

𝑀𝑘𝑤 + 𝑏𝑤

𝑀𝑘 +𝑊ത𝑏word−proposal

.

Update 𝑀𝑘𝑑 = 𝑁𝑘𝑑 , 𝑀𝑘𝑤 = 𝑁𝑘𝑤 , 𝑀𝑘 = 𝑁𝑘 every 𝐾 draws.

• Doc-proposal:

• MH ratio = 𝑁𝑘′𝑑−𝑑𝑛+𝑎

𝑘′𝑁𝑘′𝑤−𝑑𝑛+𝛽𝑤 𝑁𝑘

−𝑑𝑛+𝑊ത𝑏 𝑀𝑘𝑑+𝑎𝑘

𝑁𝑘𝑑−𝑑𝑛+𝑎𝑘 𝑁𝑘𝑤

−𝑑𝑛+𝛽𝑤 𝑁𝑘′−𝑑𝑛+𝑊 ത𝑏 𝑀𝑘′𝑑+𝑎𝑘′

. 𝑂 1 .

• Sample from ∝ 𝑀𝑘𝑑: take 𝑧𝑑𝑛 where 𝑛 ∼ Unif 1,… ,𝑁𝑑 . Directly 𝑂 1 .

• Sample from ∝ 𝑎𝑘 (dense): use Alias Table. Amortized 𝑂 1 .

2019/10/10 清华大学-MSRA 《高等机器学习》 99

Page 100: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Latent Dirichlet AllocationMCMC: LightLDA [YGH+15]

𝑝 𝑧𝑑𝑛 = 𝑘 𝑧−𝑑𝑛, 𝑤 ∝ 𝑁𝑘𝑑−𝑑𝑛 + 𝑎𝑘

𝑁𝑘𝑤−𝑑𝑛 + 𝑏𝑤

𝑁𝑘−𝑑𝑛 +𝑊ത𝑏

,

• Proposal in MH:

𝑞 𝑧𝑑𝑛 = 𝑘 ∝ 𝑀𝑘𝑑 + 𝑎𝑘doc−proposal

𝑀𝑘𝑤 + 𝑏𝑤

𝑀𝑘 +𝑊ത𝑏word−proposal

.

Update 𝑀𝑘𝑑 = 𝑁𝑘𝑑 , 𝑀𝑘𝑤 = 𝑁𝑘𝑤 , 𝑀𝑘 = 𝑁𝑘 every 𝐾 draws.

• Word-proposal:

• MH ratio =𝑁𝑘′𝑑−𝑑𝑛+𝑎

𝑘′𝑁𝑘′𝑤−𝑑𝑛+𝛽𝑤 𝑁𝑘

−𝑑𝑛+𝑊ത𝑏 𝑀𝑘𝑤+𝑏𝑤 (𝑀𝑘′+𝑊ത𝑏)

𝑁𝑘𝑑−𝑑𝑛+𝑎𝑘 𝑁𝑘𝑤

−𝑑𝑛+𝛽𝑤 𝑁𝑘′−𝑑𝑛+𝑊 ത𝑏 𝑀𝑘′𝑤+𝑏𝑤 (𝑀𝑘+𝑊 ത𝑏)

. 𝑂 1 .

•𝑀𝑘𝑤+𝑏𝑤

𝑀𝑘+𝑊ത𝑏=

𝑀𝑘𝑤

𝑀𝑘+𝑊ത𝑏+

𝑏𝑤

𝑀𝑘+𝑊ത𝑏. Sample from either term: use Alias Table. Amortized 𝑂 1 .

2019/10/10 清华大学-MSRA 《高等机器学习》 100

Page 101: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Latent Dirichlet AllocationMCMC: LightLDA [YGH+15]

• Overall procedure for Gibbs sampling (cycle proposal):

• Alternatively use word-proposal and doc-proposal: better coverage on the modes.

• For each 𝑧𝑑𝑛, run the MH chain 𝐿 ≤ 𝐾 times and take the last sample.

2019/10/10 清华大学-MSRA 《高等机器学习》 101

Page 102: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Latent Dirichlet AllocationMCMC: LightLDA [YGH+15]

• System implementation• Send the model to data:

• Hybrid data structure:

2019/10/10 清华大学-MSRA 《高等机器学习》 102

Page 103: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Latent Dirichlet Allocation• Dynamics-Based MCMC and Particle-Based VI: target 𝑝 𝛽 𝑤 .

∇𝛽 log 𝑝 𝛽 𝑤 = 𝔼𝑝 𝑧 𝛽,𝑤 ∇𝛽 log 𝑝 𝛽, 𝑧, 𝑤 .

• Stochastic Gradient Riemannian Langevin Dynamics [PT13],Stochastic Gradient Nose-Hoover Thermostats [DFB+14],Stochastic Gradient Riemannian Hamiltonian Monte Carlo [MCF15].

• Accelerated particle-based VI [LZC+19, LZZ19].

Gibbs Sampling Closed-form known

2019/10/10 清华大学-MSRA 《高等机器学习》 103

Page 104: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Latent Dirichlet AllocationMCMC: Stochastic Gradient Riemannian Langevin Dynamics [PT13]

d𝑥 = 𝐺−1𝛻 log 𝑝 d𝑡 + 𝛻 ⋅ 𝐺−1 d𝑡 +𝒩 0,2𝐺−1 d𝑡 .

• To draw from 𝑝 𝛽 𝑤 ,

𝛻𝛽 log 𝑝 𝛽 𝑤 =1

𝑝 𝛽 𝑤𝛻𝛽 𝑝 𝛽, 𝑧 𝑤 d𝑧 =

1

𝑝 𝛽 𝑤𝛻𝛽𝑝 𝛽, 𝑧 𝑤 d𝑧

= 𝑝 𝛽, 𝑧 𝑤

𝑝 𝛽 𝑤

𝛻𝛽𝑝 𝛽, 𝑧 𝑤

𝑝 𝛽, 𝑧 𝑤d𝑧 = 𝔼𝑝 𝑧 𝛽,𝑤 𝛻𝛽 log 𝑝 𝛽, 𝑧, 𝑤 .

• 𝑝 𝛽, 𝑧, 𝑤 is available in closed form.

• 𝑝 𝑧 𝛽,𝑤 can be drawn using Gibbs sampling.

• Each 𝛽𝑘 is on a simplex: use reparameterization to convert to the Euclidean space (that’s where 𝐺 comes from), e.g., 𝛽𝑘𝑤 =

𝜋𝑘𝑤σ𝑤 𝜋𝑘𝑤

.

2019/10/10 清华大学-MSRA 《高等机器学习》 104

Page 105: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Latent Dirichlet AllocationMCMC: Stochastic Gradient Riemannian Langevin Dynamics [PT13]

d𝑥 = 𝐺−1𝛻 log 𝑝 d𝑡 + 𝛻 ⋅ 𝐺−1 d𝑡 +𝒩 0,2𝐺−1 d𝑡 .

• Various parameterizations:

2019/10/10 清华大学-MSRA 《高等机器学习》 105

Page 106: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Supervised Latent Dirichlet AllocationModel structure [MB08]:

• Variational inference: similar to LDA.

• Prediction: for test document 𝑤𝑑,

ො𝑦𝑑 ≔ 𝔼𝑝 𝑦𝑑 𝑤𝑑𝑦𝑑 = 𝜂⊤𝔼𝑝 𝑧𝑑 𝑤𝑑

ҧ𝑧𝑑≈ 𝜂⊤𝔼𝑞 𝑧𝑑 𝑤𝑑

ҧ𝑧𝑑 .

First do inference (find 𝑞 𝑧𝑑 𝑤𝑑 ), then estimate ො𝑦𝑑.

𝐷𝑁𝑑𝐾

𝛽𝑘 𝜃𝑑𝑤𝑑𝑛

𝑎𝑏

𝑧𝑑𝑛

𝑦𝑑

𝜂, 𝜎

𝑥1: doc 1

𝑧: topics

𝑦1: science & tech

𝑥2: doc 2 𝑦2: politics

......

......

2019/10/10 清华大学-MSRA 《高等机器学习》 106

Page 107: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Supervised Latent Dirichlet AllocationModel structure [MB08]:

• Generating process:• Draw topics: 𝛽𝑘 ∼ Dir 𝑏 , 𝑘 = 1,… , 𝐾;

• For each document 𝑑,• Draw topic proportion 𝜃𝑑 ∼ Dir 𝑎 ;

• For each word 𝑛 in document 𝑑,• Draw topic assignment 𝑧𝑑𝑛 ∼ Mult 𝜃𝑑 ;

• Draw word 𝑤𝑑𝑛 ∼ Mult 𝑧𝑑𝑛 .

• Draw the response 𝑦𝑑 ∼ 𝒩 𝜂⊤ ҧ𝑧𝑑 , 𝜎2 , ҧ𝑧𝑑 ≔

1

𝑁𝑑σ𝑛=1𝑁𝑑 𝑧𝑑𝑛 (one-hot).

𝑝 𝛽, 𝜃, 𝑧, 𝑤, y

= ෑ

𝑘=1

𝐾

Dir 𝛽𝑘 𝑏 ෑ

𝑑=1

𝐷

Dir ෑ

𝑛=1

𝑁𝑑

Mult 𝑧𝑑𝑛 𝜃𝑑 Mult 𝑤𝑑𝑛 𝛽𝑧𝑑𝑛 𝒩 𝑦𝑑 𝜂⊤ ҧ𝑧𝑑, 𝜎

2 .

𝐷𝑁𝑑𝐾

𝛽𝑘 𝜃𝑑𝑤𝑑𝑛

𝑎𝑏

𝑧𝑑𝑛

𝑦𝑑

𝜂, 𝜎

2019/10/10 清华大学-MSRA 《高等机器学习》 107

Page 108: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Supervised Latent Dirichlet AllocationVariational inference [MB08]: similar to LDA.

• Same variational distribution

𝑞𝜆,𝛾,𝜙 𝛽, 𝜃, 𝑧 ≔ෑ

𝑘=1

𝐾

Dir 𝛽𝑘 𝜆𝑘 ෑ

𝑑=1

𝐷

Dir 𝜃𝑑 𝛾𝑑 ෑ

𝑛=1

𝑛𝑑

Mult 𝑧𝑑𝑛 𝜙𝑑𝑛 .

ELBO 𝜆, 𝛾, 𝜙; 𝑎, 𝑏, 𝜂, 𝜎2 is available in closed form.

• E-step: update 𝜆, 𝛾, 𝜙 by maximizing ELBO.

• M-step: update 𝑎, 𝑏, 𝜂, 𝜎2 by maximizing ELBO.

• Prediction: given a new document 𝑤𝑑,ො𝑦𝑑 ≔ 𝔼𝑝 𝑦𝑑 𝑤𝑑

𝑦𝑑 = 𝜂⊤𝔼𝑝 𝑧𝑑 𝑤𝑑ҧ𝑧𝑑 ≈ 𝜂⊤𝔼𝑞 𝑧𝑑 𝑤𝑑

ҧ𝑧𝑑 .

First do inference: find 𝑞 𝑧𝑑 𝑤𝑑 i.e. 𝜙𝑑, then estimate ො𝑦𝑑.

2019/10/10 清华大学-MSRA 《高等机器学习》 108

Page 109: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Supervised Latent Dirichlet AllocationVariational inference with posterior regularization [ZAX12]

• Regularized Bayes (RegBayes) [ZCX14]:• Recall: 𝑝 𝑧 𝑥 𝑛 , 𝑦 𝑛

= argmin𝑞 𝑧

−ℒ 𝑞 = KL 𝑞 𝑧 , 𝑝 𝑧 − σ𝑛𝔼𝑞 log 𝑝 𝑥 𝑛 , 𝑦 𝑛 |𝑧 .

• Regularize posterior towards better prediction:min𝑞 𝑧

KL 𝑞 𝑧 , 𝑝 𝑧 − σ𝑛𝔼𝑞 log 𝑝 𝑥 𝑛 , 𝑦 𝑛 |𝑧 + 𝜆ℓ 𝑞 𝑧 ; 𝑥 𝑛 , 𝑦 𝑛 .

• Maximum entropy discrimination LDA (MedLDA) [ZAX12]:

• ℓ 𝑞; 𝑤 𝑛 , 𝑦 𝑛 = σ𝑛 ℓ𝜀 𝑦 𝑛 − ො𝑦 𝑛 𝑞,𝑤 𝑛

= σ𝑛 ℓ𝜀 𝑦 𝑛 − 𝜂⊤𝔼𝑞 𝑧 𝑛 𝑤 𝑛 ҧ𝑧 𝑛 ,

where ℓ𝜀 𝑟 = max 0, 𝑟 − 𝜀 is the hinge (max-margin) loss.

• Facilitates both prediction and topic representation.

2019/10/10 清华大学-MSRA 《高等机器学习》 109

Page 110: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Outline• Generative Models: Overview

• Plain Generative Models• Autoregressive Models

• Latent Variable Models• Deterministic Generative Models• Generative Adversarial Nets

• Flow-Based Generative Models

• Bayesian Generative Models• Bayesian Inference (variational inference, MCMC)

• Bayesian Networks• Topic Models (LDA, LightLDA, sLDA)

• Deep Bayesian Models (VAE)

• Markov Random Fields (Boltzmann machines, deep energy-based models)2019/10/10 清华大学-MSRA 《高等机器学习》 110

Page 111: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Variational Auto-EncoderMore flexible Bayesian model using deep learning tools.

• Model structure (decoder) [KW14]:

𝑧𝑑 ∼ 𝑝 𝑧𝑑 = 𝒩 𝑧𝑑|0, 𝐼 ,

𝑥𝑑 ∼ 𝑝𝜃 𝑥𝑑 𝑧𝑑 = 𝒩 𝑥𝑑|𝜇𝜃 𝑧𝑑 , Σ𝜃 𝑧𝑑 ,

where 𝜇𝜃 𝑧𝑑 and Σ𝜃 𝑧𝑑 are modeled by neural networks.

𝐷

𝑧𝑑

𝑥𝑑 𝜃

𝑝 𝑧𝑑

𝑝𝜃 𝑥𝑑|𝑧𝑑

2019/10/10 清华大学-MSRA 《高等机器学习》 111

Page 112: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Variational Auto-Encoder• Variational inference (encoder) [KW14]:

𝑞𝜙 𝑧 𝑥 ≔ ς𝑑=1𝐷 𝑞𝜙 𝑧𝑑 𝑥𝑑 = ς𝑑=1

𝐷 𝒩 𝑧𝑑 𝜈𝜙 𝑥𝑑 , Γ𝜙 𝑥𝑑 ,

where 𝜈𝜙 𝑥𝑑 , Γ𝜙 𝑥𝑑 are also NNs.

• Amortized inference: approximate local posteriors 𝑝 𝑧𝑑 𝑥𝑑 𝑑=1𝐷 globally by 𝜙.

• Objective:

𝔼 ො𝑝 𝑥 ELBO 𝑥 ≈1

𝐷

𝑑=1

𝐷

𝔼𝑞𝜙 𝑧𝑑 𝑥𝑑 log 𝑝𝜃 𝑧𝑑 𝑝𝜃 𝑥𝑑 𝑧𝑑 − log 𝑞𝜙 𝑧𝑑 𝑥𝑑 .

• Gradient estimation with the reparameterization trick:

𝑧𝑑 ∼ 𝑞𝜙 𝑧𝑑 𝑥𝑑 ⟺ 𝑧𝑑 = 𝑔𝜙 𝑥𝑑 , 𝜖 ≔ 𝜈𝜙 𝑥𝑑 + 𝜖 Γ𝜙 𝑥𝑑 , 𝜖 ∼ 𝑞 𝜖 = 𝒩 𝜖|0, 𝐼 .

∇𝜙,𝜃𝔼 ො𝑝 𝑥 ELBO 𝑥 ≈1

𝐷σ𝑑=1𝐷 𝔼𝑞 𝜖 ∇𝜙,𝜃 log 𝑝𝜃 𝑧𝑑 𝑝𝜃 𝑥𝑑|𝑧𝑑 − log 𝑞𝜙 𝑧𝑑|𝑥𝑑 |𝑧𝑑=𝑔𝜙 𝑥𝑑,𝜖 .

(Smaller variance than REINFORCE-like estimator [Wil92]: ∇𝜃𝔼𝑞𝜃 𝑓 = 𝔼𝑞𝜃 𝑓∇𝜃 log 𝑞𝜃 .)

𝐷

𝑧𝑑

𝑥𝑑 𝜃

𝜙 𝑝 𝑧𝑑

𝑝𝜃 𝑥𝑑|𝑧𝑑𝑞𝜙 𝑧𝑑|𝑥𝑑

2019/10/10 清华大学-MSRA 《高等机器学习》 112

Page 113: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Variational Auto-Encoder• Generation results [KW14]

2019/10/10 清华大学-MSRA 《高等机器学习》 113

Page 114: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Variational Auto-Encoder• With spatial attention structure [GDG+15]

2019/10/10 清华大学-MSRA 《高等机器学习》 114

Page 115: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Variational Auto-Encoder• Inference with importance-weighted ELBO [BGS15]

• ELBO: ℒ𝜃 𝑞𝜙 𝑧 = 𝔼𝑞𝜙 𝑧 log 𝑝𝜃 𝑧, 𝑥 − 𝔼𝑞𝜙 𝑧 log 𝑞𝜙 𝑧 .

• A tighter lower bound:

ℒ𝜃𝑘 𝑞𝜙 ≔ 𝔼𝑧 1 ,…,𝑧 𝑘 ~i.i.d.𝑞𝜙

log1

𝑘

𝑖=1

𝑘𝑝𝜃 𝑧 𝑘 , 𝑥

𝑞𝜙 𝑧 𝑘.

Ordering relation:

ℒ𝜃 𝑞𝜙 = ℒ𝜃1 𝑞𝜙 ≤ ℒ𝜃

2 𝑞𝜙 ≤ ⋯ ≤ ℒ𝜃∞ 𝑞𝜙 = log 𝑝𝜃 𝑥 .

If 𝑝 𝑧,𝑥

𝑞 𝑧 𝑥 is bounded.

2019/10/10 清华大学-MSRA 《高等机器学习》 115

Page 116: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Variational Auto-Encoder• Parametric Variational Inference: towards more flexible approximations.• Explicit VI:

Normalizing flows [RM15, KSJ+16].

Using a tighter ELBO [BGS15].

• Implicit VI:

Adversarial Auto-Encoder [MSJ+15], Adversarial Variational Bayes [MNG17], Wasserstein Auto-Encoder [TBGS17], [SSZ18a], [LT18], [SSZ18b].

• MCMC [LTL17] and Particle-Based VI [FWL17, PGH+17]:• Train the encoder as a sample generator.

• Amortize the update on samples to 𝜙.

2019/10/10 清华大学-MSRA 《高等机器学习》 116

Page 117: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Outline• Generative Models: Overview

• Plain Generative Models• Autoregressive Models

• Latent Variable Models• Deterministic Generative Models• Generative Adversarial Nets

• Flow-Based Generative Models

• Bayesian Generative Models• Bayesian Inference (variational inference, MCMC)

• Bayesian Networks• Topic Models (LDA, LightLDA, sLDA)

• Deep Bayesian Models (VAE)

• Markov Random Fields (Boltzmann machines, deep energy-based models)2019/10/10 清华大学-MSRA 《高等机器学习》 117

Page 118: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Markov Random FieldsSpecify 𝑝𝜃 𝑥, 𝑧 by an energy function 𝐸𝜃 𝑥, 𝑧 :

𝑝𝜃 𝑥, 𝑧 =1

𝑍𝜃exp −𝐸𝜃 𝑥, 𝑧 , 𝑍𝜃 = exp −𝐸𝜃 𝑥′, 𝑧′ d𝑥′d𝑧′ .

• Only correlation and no causality: 𝑝 𝑥, 𝑧 is either 𝑝 𝑧 𝑝 𝑥 𝑧 or 𝑝 𝑥 𝑝 𝑧 𝑥 .

+ Flexible and simple in modeling dependency.

- Harder to learn and generate than BayesNets.• Learning: even 𝑝𝜃 𝑥, 𝑧 is unavailable.

∇𝜃𝔼 ො𝑝 𝑥 log 𝑝𝜃 𝑥 = −𝔼 ො𝑝 𝑥 𝑝𝜃 𝑧|𝑥 ∇𝜃𝐸𝜃 𝑥, 𝑧 + 𝔼𝑝𝜃 𝑥,𝑧 ∇𝜃𝐸𝜃 𝑥, 𝑧 .

• Bayesian inference: generally same as BayesNets.

• Generation: rely on MCMC or train a generator.

(augmented) data distribution(Bayesian inference)

model distribution (generation)

=0 if 𝐸 = log 𝑝.

2019/10/10 清华大学-MSRA 《高等机器学习》 118

𝑧

𝑥

𝑝𝜃 𝑥, 𝑧 ∝ exp −𝐸𝜃 𝑥, 𝑧

Page 119: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Markov Random Fields• Learning: ∇𝜃𝔼 ො𝑝 𝑥 log 𝑝𝜃 𝑥 = −𝔼 ො𝑝 𝑥 𝑝𝜃 𝑧|𝑥 ∇𝜃𝐸𝜃 𝑥, 𝑧 + 𝔼𝑝𝜃 𝑥,𝑧 ∇𝜃𝐸𝜃 𝑥, 𝑧 .

• Boltzmann Machine: Gibbs sampling for both inference and generation [HS83].Bayesian Inference Generation

𝑥

𝑧 𝐸𝜃 𝑥, 𝑧 = −𝑥⊤𝑊𝑧 −1

2𝑥⊤𝐿𝑥 −

1

2𝑧⊤𝐽𝑧.

𝑝𝜃 𝑧𝑗 𝑥, 𝑧−𝑗 = Bern 𝜎 σ𝑖=1𝐷 𝑊𝑖𝑗𝑥𝑖 + σ𝑚≠𝑗

𝑃 𝐽𝑗𝑚𝑧𝑗 ,

𝑝𝜃 𝑥𝑖 𝑧, 𝑥−𝑖 = Bern 𝜎 σ𝑗=1𝑃 𝑊𝑖𝑗𝑧𝑗 + σ𝑘≠𝑖

𝐷 𝐿𝑖𝑘𝑥𝑘 .

2019/10/10 清华大学-MSRA 《高等机器学习》 119

Page 120: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Markov Random Fields• Learning: ∇𝜃𝔼 ො𝑝 𝑥 log 𝑝𝜃 𝑥 = −𝔼 ො𝑝 𝑥 𝑝𝜃 𝑧|𝑥 ∇𝜃𝐸𝜃 𝑥, 𝑧 + 𝔼𝑝𝜃 𝑥,𝑧 ∇𝜃𝐸𝜃 𝑥, 𝑧 .

• Restricted Boltzmann Machine [Smo86]:Bayesian Inference Generation

𝐸𝜃 𝑥, 𝑧 = −𝑥⊤𝑊𝑧 + 𝑏 𝑥 ⊤𝑥 + 𝑏 𝑧 ⊤

𝑧.• Bayesian Inference is exact:

𝑝𝜃 𝑧𝑘 𝑥 = Bern 𝜎 𝑥⊤𝑊:𝑘 + 𝑏𝑘𝑧 .

• Generation: Gibbs sampling.Iterate:

𝑝𝜃 𝑧𝑘 𝑥 = Bern 𝜎 𝑥⊤𝑊:𝑘 + 𝑏𝑘𝑧 ,

𝑝𝜃 𝑥𝑘 𝑧 = Bern 𝜎 𝑊𝑘:𝑧 + 𝑏𝑘𝑥

.𝑥

𝑧

2019/10/10 清华大学-MSRA 《高等机器学习》 120

Page 121: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Markov Random FieldsDeep Energy-Based Models:

No latent variable; 𝐸𝜃 𝑥 is modeled by a neural network.∇𝜃𝔼 ො𝑝 𝑥 log 𝑝𝜃 𝑥 = −𝔼 ො𝑝 𝑥 ∇𝜃𝐸𝜃 𝑥 + 𝔼𝑝𝜃 𝑥′ ∇𝜃𝐸𝜃 𝑥′ .

• [KB16]: learn a generator𝑥 ∼ 𝑞𝜙 𝑥 ⟺ 𝑧 ∼ 𝑞 𝑧 , 𝑥 = 𝑔𝜙 𝑧 ,

to mimic the generation from 𝑝𝜃 𝑥 :

argmin𝜙

KL 𝑞𝜙 , 𝑝𝜃 = argmin𝜙

𝔼𝑞 𝑧 𝐸𝜃 𝑔𝜙 𝑧 − ℍ 𝑞𝜙approx. by batch

normalization Gaussian

2019/10/10 清华大学-MSRA 《高等机器学习》 121

Page 122: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Markov Random FieldsDeep Energy-Based Models:

No latent variable; 𝐸𝜃 𝑥 is modeled by a neural network.∇𝜃𝔼 ො𝑝 𝑥 log 𝑝𝜃 𝑥 = −𝔼 ො𝑝 𝑥 ∇𝜃𝐸𝜃 𝑥 + 𝔼𝑝𝜃 𝑥′ ∇𝜃𝐸𝜃 𝑥′ .

• [DM19]: estimate 𝔼𝑝𝜃 𝑥′ [⋅] by samples

drawn by the Langevin Dynamics.

2019/10/10 清华大学-MSRA 《高等机器学习》 122

Page 123: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Markov Random FieldsDeep Energy-Based Models:

No latent variable; 𝐸𝜃 𝑥 is modeled by a neural network.∇𝜃𝔼 ො𝑝 𝑥 log 𝑝𝜃 𝑥 = −𝔼 ො𝑝 𝑥 ∇𝜃𝐸𝜃 𝑥 + 𝔼𝑝𝜃 𝑥′ ∇𝜃𝐸𝜃 𝑥′ .

• [DM19]: estimate 𝔼𝑝𝜃 𝑥′ [⋅] by samples drawn by the Langevin Dynamics

𝑥 𝑘+1 = 𝑥 𝑘 − 𝜀∇𝑥𝐸𝜃 𝑥 𝑘 +𝒩 0, 2𝜀 .

• Replay buffer for initializing

the LD chain.

• 𝐿2-regularization on the

energy function.

2019/10/10 清华大学-MSRA 《高等机器学习》 123

Page 124: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

* Markov Random FieldsDeep Energy-Based Models:

• [DM19]

ImageNet32x32 Generation2019/10/10 清华大学-MSRA 《高等机器学习》 124

Page 125: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Generative Model: Summary• Summary

Plain Generative Models

Latent Variable Models

Autoregressive Models

Deterministic Generative Models Bayesian Generative Models

GANs Flow-Based BayesNets MRFs

+ Easy learning+ Easy generation- No abstract

representation- Slow generation

+ Abstract representation and manipulated generation- Harder learning

+ Flexible modeling+ Easy and good generation

+ Robust to small data and adversarial attack+ Principled inference+ Prior knowledge

- Hard inference- Hard learning

+ Easy inference+ Stable learning- Hard model design

+ Causal information+ Easier learning+ Easy generation

+ Simple dependency modeling- Harder learning- Hard generation

𝑧

𝑥

𝑥 ∼ 𝑝𝜃(𝑥|𝑧)

𝑝 𝑧

𝑝𝜃 𝑥

𝑧

𝑥

𝑝𝜃 𝑥, 𝑧 ∝ exp −𝐸𝜃 𝑥, 𝑧

𝑝𝜃 𝑥 𝑥

𝑧

𝑥

𝑥 = 𝑓𝜃(𝑧)(invertible)

𝑝 𝑧

𝑝𝜃 𝑥

𝑧

𝑥

𝑥 = 𝑓𝜃(𝑧)(Neural Nets)

𝑝 𝑧

𝑝𝜃 𝑥2019/10/10 清华大学-MSRA 《高等机器学习》 125

Page 126: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

Questions?

Page 127: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References

Page 128: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Plain Generative Models• Autoregressive Models• [Fre98] Frey, Brendan J. (1998). Graphical models for machine learning and digital

communication. MIT press.

• [LM11] Larochelle, H. and Murray, I. The neural autoregressive distribution estimator. In Proceedings of the International Conference on Artificial Intelligence and Statistics, 2011.

• [UML14] Uria, B., Murray, I., & Larochelle, H. (2014). A deep and tractable density estimator. In International Conference on Machine Learning (pp. 467-475).

• [GGML15] Germain, M., Gregor, K., Murray, I., & Larochelle, H. (2015). MADE: Masked autoencoder for distribution estimation. In International Conference on Machine Learning(pp. 881-889).

• [OKK16] Oord, A. V. D., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759.

• [ODZ+16] Oord, A. V. D., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., & Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. arXiv preprint arXiv:1609.03499.

2019/10/10 清华大学-MSRA 《高等机器学习》 128

Page 129: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Deterministic Generative Models• Generative Adversarial Networks• [GPM+14] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672-2680).

• [ACB17] Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In International Conference on Machine Learning (pp. 214-223).

• Flow-Based Generative Models• [DKB15] Dinh, L., Krueger, D., & Bengio, Y. (2015). NICE: Non-linear independent

components estimation. ICLR workshop.

• [DSB17] Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2017). Density estimation using real NVP. In Proceedings of the International Conference on Learning Representations.

• [PPM17] Papamakarios, G., Pavlakou, T., & Murray, I. (2017). Masked autoregressive flow for density estimation. In Advances in Neural Information Processing Systems (pp. 2338-2347).

• [KD18] Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. In Advances in Neural Information Processing Systems (pp. 10215-10224).2019/10/10 清华大学-MSRA 《高等机器学习》 129

Page 130: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Bayesian Inference: Variational Inference• Explicit Parametric VI:• [SJJ96] Saul, L. K., Jaakkola, T., & Jordan, M. I. (1996). Mean field theory for sigmoid belief

networks. Journal of artificial intelligence research, 4, 61-76.• [BNJ03] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of

Machine Learning Research, 3(Jan), pp.993-1022.• [GHB12] Gershman, S., Hoffman, M., & Blei, D. (2012). Nonparametric variational inference.

arXiv preprint arXiv:1206.4665.• [HBWP13] Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. (2013). Stochastic variational

inference. The Journal of Machine Learning Research, 14(1), 1303-1347.• [RGB14] Ranganath, R., Gerrish, S., & Blei, D. (2014). Black box variational inference.

In Artificial Intelligence and Statistics (pp. 814-822).• [RM15] Rezende, D.J., & Mohamed, S. (2015). Variational inference with normalizing flows. In

Proceedings of the International Conference on Machine Learning (pp. 1530-1538).• [KSJ+16] Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M. (2016).

Improved variational inference with inverse autoregressive flow. In Advances in neural information processing systems (pp. 4743-4751).

2019/10/10 清华大学-MSRA 《高等机器学习》 130

Page 131: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Bayesian Inference: Variational Inference• Implicit Parametric VI: density ratio estimation• [MSJ+15] Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey, B. (2016). Adversarial Autoencoders.

In Proceedings of the International Conference on Learning Representations.• [MNG17] Mescheder, L., Nowozin, S., & Geiger, A. (2017). Adversarial variational Bayes: Unifying

variational autoencoders and generative adversarial networks. In Proceedings of the International Conference on Machine Learning (pp. 2391-2400).

• [Hus17] Huszár, F. (2017). Variational inference using implicit distributions. arXiv preprint arXiv:1702.08235.

• [TRB17] Tran, D., Ranganath, R., & Blei, D. (2017). Hierarchical implicit models and likelihood-free variational inference. In Advances in Neural Information Processing Systems (pp. 5523-5533).

• [SSZ18a] Shi, J., Sun, S., & Zhu, J. (2018). Kernel Implicit Variational Inference. In Proceedings of the International Conference on Learning Representations.

• Implicit Parametric VI: gradient estimation• [VLBM08] Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008). Extracting and composing

robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning (pp. 1096-1103). ACM.

• [LT18] Li, Y., & Turner, R. E. (2018). Gradient estimators for implicit models. In Proceedings of the International Conference on Learning Representations.

• [SSZ18b] Shi, J., Sun, S., & Zhu, J. (2018). A spectral approach to gradient estimation for implicit distributions. In Proceedings of the 35th International Conference on Machine Learning (pp. 4651-4660).

2019/10/10 清华大学-MSRA 《高等机器学习》 131

Page 132: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Bayesian Inference: Variational Inference• Particle-Based VI• [LW16] Liu, Q., & Wang, D. (2016). Stein variational gradient descent: A general purpose

Bayesian inference algorithm. In Advances In Neural Information Processing Systems (pp. 2378-2386).

• [Liu17] Liu, Q. (2017). Stein variational gradient descent as gradient flow. In Advances in neural information processing systems (pp. 3115-3123).

• [CZ17] Chen, C., & Zhang, R. (2017). Particle optimization in stochastic gradient MCMC. arXivpreprint arXiv:1711.10927.

• [FWL17] Feng, Y., Wang, D., & Liu, Q. (2017). Learning to Draw Samples with Amortized Stein Variational Gradient Descent. In Proceedings of the Conference on Uncertainty in Artificial Intelligence.

• [PGH+17] Pu, Y., Gan, Z., Henao, R., Li, C., Han, S., & Carin, L. (2017). VAE learning via Stein variational gradient descent. In Advances in Neural Information Processing Systems (pp. 4236-4245).

• [LZ18] Liu, C., & Zhu, J. (2018). Riemannian Stein Variational Gradient Descent for Bayesian Inference. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (pp. 3627-3634).

2019/10/10 清华大学-MSRA 《高等机器学习》 132

Page 133: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Bayesian Inference: Variational Inference• Particle-Based VI• [CMG+18] Chen, W. Y., Mackey, L., Gorham, J., Briol, F. X., & Oates, C. J. (2018). Stein

points. arXiv preprint arXiv:1803.10161.

• [FCSS18] Futami, F., Cui, Z., Sato, I., & Sugiyama, M. (2018). Frank-Wolfe Stein sampling. arXivpreprint arXiv:1805.07912.

• [CZW+18] Chen, C., Zhang, R., Wang, W., Li, B., & Chen, L. (2018). A unified particle-optimization framework for scalable Bayesian sampling. In Proceedings of the Conference on Uncertainty in Artificial Intelligence.

• [ZZC18] Zhang, J., Zhang, R., & Chen, C. (2018). Stochastic particle-optimization sampling and the non-asymptotic convergence theory. arXiv preprint arXiv:1809.01293.

• [LZC+19] Liu, C., Zhuo, J., Cheng, P., Zhang, R., Zhu, J., & Carin, L. (2019). Understanding and Accelerating Particle-Based Variational Inference. In Proceedings of the 36th International Conference on Machine Learning (pp. 4082-4092).

2019/10/10 清华大学-MSRA 《高等机器学习》 133

Page 134: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Bayesian Inference: MCMC• Classical MCMC• [MRR+53] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M.N., Teller, A.H., & Teller, E. (1953).

Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), pp.1087-1092.

• [Has70] Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), pp.97-109.

• [GG87] Geman, S., & Geman, D. (1987). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. In Readings in computer vision (pp. 564-584).

• [ADDJ03] Andrieu, C., De Freitas, N., Doucet, A., & Jordan, M. I. (2003). An introduction to MCMC for machine learning. Machine learning, 50(1-2), 5-43.

2019/10/10 清华大学-MSRA 《高等机器学习》 134

Page 135: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Bayesian Inference: MCMC• Dynamics-Based MCMC: full-batch• [Lan08] Langevin, P. (1908). Sur la théorie du mouvement Brownien. Compt. Rendus, 146, 530-533.• [DKPR87] Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D. (1987). Hybrid Monte Carlo. Physics

letters B, 195(2), pp.216-222.• [RT96] Roberts, G. O., & Tweedie, R. L. (1996). Exponential convergence of Langevin distributions

and their discrete approximations. Bernoulli, 2(4), 341-363.• [RS02] Roberts, G.O., & Stramer, O. (2002). Langevin diffusions and Metropolis-Hastings algorithms.

Methodology and computing in applied probability, 4(4), pp.337-357.• [Nea11] Neal, R.M. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov chain Monte

Carlo, 2(11), p.2.• [ZWC+16] Zhang, Y., Wang, X., Chen, C., Henao, R., Fan, K., & Carin, L. (2016). Towards unifying

Hamiltonian Monte Carlo and slice sampling. In Advances in Neural Information Processing Systems (pp. 1741-1749).

• [TRGT17] Tripuraneni, N., Rowland, M., Ghahramani, Z., & Turner, R. (2017, August). Magnetic Hamiltonian Monte Carlo. In Proceedings of the 34th International Conference on Machine Learning-Volume 70 (pp. 3453-3461).

• [Bet17] Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. arXivpreprint arXiv:1701.02434.

2019/10/10 清华大学-MSRA 《高等机器学习》 135

Page 136: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Bayesian Inference: MCMC• Dynamics-Based MCMC: full-batch (manifold support)• [GC11] Girolami, M., & Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian

Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2), 123-214.

• [BSU12] Brubaker, M., Salzmann, M., & Urtasun, R. (2012, March). A family of MCMC methods on implicitly defined manifolds. In Artificial intelligence and statistics (pp. 161-172).

• [BG13] Byrne, S., & Girolami, M. (2013). Geodesic Monte Carlo on embedded manifolds. Scandinavian Journal of Statistics, 40(4), 825-845.

• [LSSG15] Lan, S., Stathopoulos, V., Shahbaba, B., & Girolami, M. (2015). Markov chain Monte Carlo from Lagrangian dynamics. Journal of Computational and Graphical Statistics, 24(2), 357-378.

2019/10/10 清华大学-MSRA 《高等机器学习》 136

Page 137: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Bayesian Inference: MCMC• Dynamics-Based MCMC: stochastic gradient• [WT11] Welling, M., & Teh, Y. W. (2011). Bayesian learning via stochastic gradient Langevin

dynamics. In Proceedings of the International Conference on Machine Learning (pp. 681-688).• [CFG14] Chen, T., Fox, E., & Guestrin, C. (2014). Stochastic gradient Hamiltonian Monte Carlo. In

Proceedings of the International conference on machine learning (pp. 1683-1691).• [DFB+14] Ding, N., Fang, Y., Babbush, R., Chen, C., Skeel, R. D., & Neven, H. (2014). Bayesian

sampling using stochastic gradient thermostats. In Advances in neural information processing systems (pp. 3203-3211).

• [Bet15] Betancourt, M. (2015). The fundamental incompatibility of scalable Hamiltonian Monte Carlo and naive data subsampling. In International Conference on Machine Learning (pp. 533-540).

• [TTV16] Teh, Y. W., Thiery, A. H., & Vollmer, S. J. (2016). Consistency and fluctuations for stochastic gradient Langevin dynamics. The Journal of Machine Learning Research, 17(1), 193-225.

• [LPH+16] Lu, X., Perrone, V., Hasenclever, L., Teh, Y. W., & Vollmer, S. J. (2016). Relativistic Monte Carlo. arXiv preprint arXiv:1609.04388.

• [ZCG+17] Zhang, Y., Chen, C., Gan, Z., Henao, R., & Carin, L. (2017, August). Stochastic gradient monomial Gamma sampler. In Proceedings of the 34th International Conference on Machine Learning-Volume 70 (pp. 3996-4005).

• [LTL17] Li, Y., Turner, R.E., & Liu, Q. (2017). Approximate inference with amortised MCMC. arXivpreprint arXiv:1702.08343.

2019/10/10 清华大学-MSRA 《高等机器学习》 137

Page 138: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Bayesian Inference: MCMC• Dynamics-Based MCMC: stochastic gradient (manifold support)• [PT13] Patterson, S., & Teh, Y.W. (2013). Stochastic gradient Riemannian Langevin dynamics on

the probability simplex. In Advances in neural information processing systems (pp. 3102-3110).• [MCF15] Ma, Y. A., Chen, T., & Fox, E. (2015). A complete recipe for stochastic gradient MCMC.

In Advances in Neural Information Processing Systems (pp. 2917-2925).• [LZS16] Liu, C., Zhu, J., & Song, Y. (2016). Stochastic Gradient Geodesic MCMC Methods. In

Advances in Neural Information Processing Systems (pp. 3009-3017).

• Dynamics-Based MCMC: general theory• [JKO98] Jordan, R., Kinderlehrer, D., & Otto, F. (1998). The variational formulation of the

Fokker-Planck equation. SIAM journal on mathematical analysis, 29(1), 1-17.• [MCF15] Ma, Y. A., Chen, T., & Fox, E. (2015). A complete recipe for stochastic gradient MCMC.

In Advances in Neural Information Processing Systems (pp. 2917-2925).• [CDC15] Chen, C., Ding, N., & Carin, L. (2015). On the convergence of stochastic gradient

MCMC algorithms with high-order integrators. In Advances in Neural Information Processing Systems (pp. 2278-2286).

• [LZZ19] Liu, C., Zhuo, J., & Zhu, J. (2019). Understanding MCMC Dynamics as Flows on the Wasserstein Space. In Proceedings of the 36th International Conference on Machine Learning(pp. 4093-4103).2019/10/10 清华大学-MSRA 《高等机器学习》 138

Page 139: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Bayesian Models• Bayesian Networks: Topic Models• [BNJ03] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of

Machine Learning Research, 3(Jan), pp.993-1022.• [GS04] Griffiths, T.L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the

National academy of Sciences, 101 (suppl 1), pp.5228-5235.• [SG07] Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. Handbook of latent

semantic analysis, 427(7), 424-440.• [MB08] Mcauliffe, J.D., & Blei, D.M. (2008). Supervised topic models. In Advances in neural

information processing systems (pp. 121-128).• [ZAX12] Zhu, J., Ahmed, A., & Xing, E. P. (2012). MedLDA: maximum margin supervised topic

models. Journal of Machine Learning Research, 13(Aug), 2237-2278.• [PT13] Patterson, S., & Teh, Y.W. (2013). Stochastic gradient Riemannian Langevin dynamics on

the probability simplex. In Advances in neural information processing systems (pp. 3102-3110).• [ZCX14] Zhu, J., Chen, N., & Xing, E. P. (2014). Bayesian inference with posterior regularization

and applications to infinite latent SVMs. The Journal of Machine Learning Research, 15(1), 1799-1847.

2019/10/10 清华大学-MSRA 《高等机器学习》 139

Page 140: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Bayesian Models• Bayesian Networks: Topic Models• [LARS14] Li, A.Q., Ahmed, A., Ravi, S., & Smola, A.J. (2014). Reducing the sampling complexity

of topic models. In Proceedings of the ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 891-900).

• [YGH+15] Yuan, J., Gao, F., Ho, Q., Dai, W., Wei, J., Zheng, X., Xing, E.P., Liu, T.Y., & Ma, W.Y. (2015). LightLDA: Big topic models on modest computer clusters. In Proceedings of the 24th International Conference on World Wide Web (pp. 1351-1361).

• [CLZC16] Chen, J., Li, K., Zhu, J., & Chen, W. (2016). WarpLDA: a cache efficient o(1) algorithm for latent Dirichlet allocation. Proceedings of the VLDB Endowment, 9(10), pp.744-755.

2019/10/10 清华大学-MSRA 《高等机器学习》 140

Page 141: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Bayesian Models• Bayesian Networks: Variational Auto-Encoders• [KW14] Kingma, D.P., & Welling, M. (2014). Auto-encoding variational Bayes. In Proceedings of the

International Conference on Learning Representations.• [GDG+15] Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., & Wierstra, D. (2015). DRAW: A

recurrent neural network for image generation. In Proceedings of the 32nd International Conference on Machine Learning.

• [BGS15] Burda, Y., Grosse, R., & Salakhutdinov, R. (2015). Importance weighted autoencoders. arXiv preprint arXiv:1509.00519.

• [DFD+18] Davidson, T.R., Falorsi, L., De Cao, N., Kipf, T., & Tomczak, J.M. (2018). Hypersphericalvariational auto-encoders. In Proceedings of the Conference on Uncertainty in Artificial Intelligence.

• [MSJ+15] Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey, B. (2016). Adversarial Autoencoders. In Proceedings of the International Conference on Learning Representations.

• [CDH+16] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., & Abbeel, P. (2016). InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. In Advances in neural information processing systems (pp. 2172-2180).

• [MNG17] Mescheder, L., Nowozin, S., & Geiger, A. (2017). Adversarial variational Bayes: Unifying variational autoencoders and generative adversarial networks. In Proceedings of the International Conference on Machine Learning (pp. 2391-2400).2019/10/10 清华大学-MSRA 《高等机器学习》 141

Page 142: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Bayesian Models• Bayesian Networks: Variational Auto-Encoders• [TBGS17] Tolstikhin, I., Bousquet, O., Gelly, S., & Schoelkopf, B. (2017). Wasserstein Auto-

Encoders. arXiv preprint arXiv:1711.01558.• [FWL17] Feng, Y., Wang, D., & Liu, Q. (2017). Learning to Draw Samples with Amortized Stein

Variational Gradient Descent. In Proceedings of the Conference on Uncertainty in Artificial Intelligence.

• [PGH+17] Pu, Y., Gan, Z., Henao, R., Li, C., Han, S., & Carin, L. (2017). VAE learning via Stein variational gradient descent. In Advances in Neural Information Processing Systems (pp. 4236-4245).

• [KSDV18] Kocaoglu, M., Snyder, C., Dimakis, A. G., & Vishwanath, S. (2018). CausalGAN: Learning causal implicit generative models with adversarial training. In Proceedings of the International Conference on Learning Representations.

• [LWZZ18] Li, C., Welling, M., Zhu, J., & Zhang, B. (2018). Graphical generative adversarial networks. In Advances in Neural Information Processing Systems (pp. 6069-6080).

2019/10/10 清华大学-MSRA 《高等机器学习》 142

Page 143: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Bayesian Models• Markov Random Fields• [HS83] Hinton, G., & Sejnowski, T. (1983). Optimal perceptual inference. In IEEE Conference on

Computer Vision and Pattern Recognition.• [Smo86] Smolensky, P. (1986). Information processing in dynamical systems: Foundations of

harmony theory. In Parallel Distributed Processing, volume 1, chapter 6, pages 194-281. MIT Press.• [Hin02] Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence.

Neural computation, 14(8), 1771-1800.• [LCH+06] LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., & Huang, F. (2006). A tutorial on energy-

based learning. Predicting structured data, 1(0).• [HOT06] Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief

nets. Neural computation, 18(7), 1527-1554.• [SH09] Salakhutdinov, R., & Hinton, G. (2009, April). Deep Boltzmann machines. In AISTATS (pp.

448-455).• [Sal15] Salakhutdinov, R. (2015). Learning deep generative models. Annual Review of Statistics and

Its Application, 2, 361-385.• [KB16] Kim, T., & Bengio, Y. (2016). Deep directed generative models with energy-based probability

estimation. arXiv preprint arXiv:1606.03439.• [DM19] Du, Y., & Mordatch, I. (2019). Implicit generation and generalization in energy-based

models. arXiv preprint arXiv:1903.08689.2019/10/10 清华大学-MSRA 《高等机器学习》 143

Page 144: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

References• Others• Bayesian Models• [KYD+18] Kim, T., Yoon, J., Dia, O., Kim, S., Bengio, Y., & Ahn, S. (2018). Bayesian model-agnostic

meta-learning. In Advances in Neural Information Processing Systems (pp. 7332-7342).• [LST15] Lake, B.M., Salakhutdinov, R., & Tenenbaum, J.B. (2015). Human-level concept learning

through probabilistic program induction. Science, 350(6266), pp. 1332-1338.

• Bayesian Neural Network• [LG17] Li, Y., & Gal, Y. (2017). Dropout inference in Bayesian neural networks with alpha-

divergences. In Proceedings of the International Conference on Machine Learning (pp. 2052-2061).

• Related References• [Wil92] Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine learning, 8(3-4), 229-256.• [HV93] Hinton, G., & Van Camp, D. (1993). Keeping neural networks simple by minimizing the

description length of the weights. In in Proc. of the 6th Ann. ACM Conf. on Computational Learning Theory.

• [NJ01] Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In Advances in neural information processing systems (pp. 841-848).

2019/10/10 清华大学-MSRA 《高等机器学习》 144

Page 145: 生成模型 - Chang Liu · •Bayesian Inference (variational inference, MCMC) •Bayesian Networks •Topic Models (LDA, LightLDA, sLDA) •Deep Bayesian Models (VAE) •Markov

The End