Autonomous Landing UAV

download Autonomous Landing UAV

of 58

Transcript of Autonomous Landing UAV

  • 8/12/2019 Autonomous Landing UAV

    1/58

  • 8/12/2019 Autonomous Landing UAV

    2/58

    Autonomous Landing UAV

    Session 2008/2009

    I | P a g e

    Summary

    ThisthesispresentsthesystemarchitectureforlandinganUnmannedAerialVehicle

    (UAV)fromahoveringpositionwithouttheinterventionofahumanoperator.

    Throughtheuseoffeedbackinformationfromaheightsensor,theUAVis

    commandedtoperformcontrolleddescentwiththedesiredlandingparametersby

    implementationoftheflightcontrollaws.

    Theplantmodelofthesystemwasdeterminedinordertosimulatethesystem

    usingMatlab,Simulink.Throughtheuseofsimulations,thevariablesofthe

    controllersarevariedtodeterminethemostappropriategainsthatwillresultinthe

    mostpreferredlandingprofile.

    Inthis

    project,

    the

    vertical

    component

    which

    controls

    the

    climb

    and

    descends

    of

    the

    platformwasisolatedfromtheroll,pitchandyawthroughtheuseofajig.Therefore,

    thiscurrentprojectonlycommandstheheightoftheplatformbutcanbefully

    expandedtocommandtheroll,pitchandyawwithadditionsensorssuchasrate

    gyro.

  • 8/12/2019 Autonomous Landing UAV

    3/58

    Autonomous Landing UAV

    Session 2008/2009

    II | P a g e

    Acknowledgement

    Theauthorwouldliketoexpresshisappreciationtotheprojectsupervisor,

    AssociateProfessorGerardLengSiewBing,fortheopportunitytoworkonthis

    project,aswellasforhispatientguidanceinthevariousaspectsoftheproject.

    Theauthorwouldalsoliketoextendhissincereappreciationtothefollowingpeople

    fortheirassistanceduringthecourseofthisproject:

    1. MrMuhamadAzfarbinRamli,GraduatestudentoftheCOSYlab,forhiskindassistancetothevariousproblemsthatwasencounteredduringthecourse

    ofthisproject.

    2. MsAmyChee,MsPriscillaLee,MrChengKokSengandMrAhmadBinKasa,StaffoftheDynamics&Vibrationlab,fortheirhelpandsupportwith

    necessary

    equipments.

    3. MrRonaldTanHanRongforhissupportandassistanceduringtheconstructionphaseofthecoandereffectflyingsaucer.

  • 8/12/2019 Autonomous Landing UAV

    4/58

    Autonomous Landing UAV

    Session 2008/2009

    III | P a g e

    ContentsSummary .................................................................................................................................... I

    Acknowledgement .................................................................................................................... II

    ListofFigures ............................................................................................................................V

    ListofTables ............................................................................................................................ VI

    ListofSymbols ........................................................................................................................ VII

    1. Introduction...................................................................................................................... 1

    1.1. Objective ................................................................................................................... 1

    1.2. Historicalbackground ............................................................................................... 1

    2.Theory............................................................................................................................... 3

    2.1. HelicopterAerodynamics.......................................................................................... 3

    2.2. PIDSystem ................................................................................................................ 4

    3. HardwareandSetup........................................................................................................ 5

    3.1. UAVPlatform ............................................................................................................ 5

    3.1.1. CoanderEffectFlyingsaucer............................................................................. 5

    3.1.2. DraganflyerTiV................................................................................................. 6

    3.2. Testbedconstruction ............................................................................................... 7

    3.3. Sensorwithmounting............................................................................................... 8

    3.4. Microcontroller:BasicStamp.................................................................................... 8

    3.5. Communication......................................................................................................... 9

    3.6. Problemsencountered ........................................................................................... 10

    3.6.1. Pausewidth..................................................................................................... 10

    3.6.2. Trimmedsignal................................................................................................ 10

    3.6.3. LagtimebetweenPulseTrain......................................................................... 10

    3.7.

    Programmingalgorithm.......................................................................................... 13

    4. Experimentsconducted................................................................................................. 14

    4.1. OperationoftheFutabaRFtransmitter ................................................................. 14

    4.2. ExperimentsonDraganflyer ................................................................................... 15

    5. ResultsandDiscussions.................................................................................................. 18

  • 8/12/2019 Autonomous Landing UAV

    5/58

    Autonomous Landing UAV

    Session 2008/2009

    IV | P a g e

    5.1. Testingandcalibrationofultrasonicsensor ........................................................... 18

    5.2. Determinerelationshipbetweenthrottleandthrust............................................. 19

    5.3. MeasurementofPWMsignalfromradiotransmitter............................................ 19

    5.4.

    Relationshipbetween

    helicopter

    controls

    and

    pulse

    width ................................... 21

    5.5. Determinesystemplantmodel .............................................................................. 22

    5.6. SimulationsusingMatlab,Simulink ........................................................................ 23

    5.6.1. ZieglerNicholsmethod ................................................................................... 23

    5.6.2. ProportionalDerivativecontrol:TrialandErrormethod ............................... 23

    5.7. Flighttest ................................................................................................................ 24

    5.7.1. Flight1:Scheduledproportionalcontrol ........................................................ 24

    5.7.2. Flight2:Throttlereductionof20% ................................................................. 25

    5.7.3. Flight3:ProportionalDerivativecontrol ........................................................ 25

    5.7.4. Flight4:Hovertosetpoint ............................................................................. 26

    5.8. Analysiswithsimulatedplot ................................................................................... 27

    5.8.1. Comparingsimulationandactualplot............................................................ 27

    5.8.2. Rootlocusanalysis.......................................................................................... 27

    6. Conclusions..................................................................................................................... 30

    7. RecommendationsforFurtherWork............................................................................ 31

    7.1.

    Integratingcontroller

    for

    Roll,

    Pitch

    and

    Yaw......................................................... 31

    7.2. Camerasystemtolocatelandingzone ................................................................... 31

    References .............................................................................................................................. 32

    AppendixI. FiguresandTables ...................................................................................... 34

    AppendixII. Fourworkingstatesofarotorinaxialflight ............................................. 37

    AppendixIII. Coandereffect ............................................................................................ 39

    AppendixIV. ZieglerNicholstuningmethod................................................................... 40

    AppendixV. CoanderEffectflyingsaucerexperiment .................................................. 41

    AppendixVI. Autonomouslandingprogram(Basic) ....................................................... 45

  • 8/12/2019 Autonomous Landing UAV

    6/58

    Autonomous Landing UAV

    Session 2008/2009

    V | P a g e

    ListofFigures

    Figure1:(A)WakebehaviourOGE/IGE;(B)ThrustratioVsDistance ..........................3

    Figure2:

    Block

    Diagram

    of

    PID

    Control

    system ............................................................ 4

    Figure3:ConstructionoftheCoanderEffectUAV ....................................................... 5

    Figure4:FlightcontroloperationoftheDraganflyerVTi............................................6

    Figure5:ConstructedTestbed.....................................................................................8

    Figure6:UltrasonicdistancesensorattachedtoUAV .................................................8

    Figure7:Communicationofcontrolsystem.................................................................9

    Figure8:Lagtimebetweenpulsetrain ......................................................................11

    Figure9:

    New

    communication

    system........................................................................12

    Figure10:Flowchartofautonomouslandingsystem................................................13

    Figure11:ExperimentalsetuptomeasurePWMsignal.............................................14

    Figure12:Experimentalsetuptomeasuregeneratedthrust ....................................15

    Figure13:SystemplantmodelledinSimulink............................................................16

    Figure14:(A)Ultrasonicsensorresults;(B)Percentageerrorbelow40cm ..............18

    Figure15:PlotofThrustVsThrottle...........................................................................19

    Figure16:

    PWM

    Signals

    from

    Futaba

    transmitter ...................................................... 19

    Figure17:Sevenchannelsfromsinglepulsetrain .....................................................21

    Figure18:(a)PlotofThrottleVsPulsewidth;(b)PlotofThrustVsPulsewidth ....... 21

    Figure19:PlotsofRateofdescentVsPulsout ...........................................................22

    Figure20:Systemsplantmodel.................................................................................23

    Figure21:SimulationsusingZieglerNicholsmethod.................................................23

    Figure22:SimulationsusingPDcontrol ..................................................................... 24

    Figure23:

    Results

    using

    scheduled

    proportional

    control ........................................... 24

    Figure24:Resultsusingthrottlereductionmethod...................................................25

    Figure25:ResultsusingPDcontrol:(a)Kp:1.0/Kd:1.0;(b)Kp:3.0/Kd:1.0..................25

    Figure26:HoveringtosetpointusingPDcontrol......................................................26

  • 8/12/2019 Autonomous Landing UAV

    7/58

    Autonomous Landing UAV

    Session 2008/2009

    VI | P a g e

    Figure27:Comparisonbetweensimulatedandactualplot.......................................27

    Figure28:Rootlocusplot ........................................................................................... 28

    Figure29:ModelofCoandereffectUAVusingSolidworks........................................34

    Figure30:

    Test

    bed

    model

    in

    Solidworks .................................................................... 34

    Figure31:PinOutdiagramofRFtransmitter,FutabaSkysport6T6YG ..................... 35

    Figure32:Modifiedwiringintotrainerport...............................................................35

    Figure33:Futabatransmittercontrolsdiagram.........................................................35

    Figure34:Serialcommunicationwithflowcontrol....................................................36

    Figure35:DescriptionofPulsewidthVsChannel ...................................................... 36

    Figure36:FlowvisualizationatvariousdescentvelocitiesusingShadowgraphy......37

    Figure37:Flowacrossalimitingsurface.................................................................... 39

    Figure38:ModificationtoPlatform ...........................................................................41

    Figure39:J.Naudinsexperimentalsetup..................................................................42

    Figure40:Naudinsresult ........................................................................................... 42

    Figure41:Experimentalsetupforairspeedmeasurement........................................43

    Figure42:Variablesofexperiment.............................................................................43

    ListofTables

    Table1:ZieglerNicholstuningchart ..........................................................................40

    Table

    2:

    Airspeed

    test

    results......................................................................................44

  • 8/12/2019 Autonomous Landing UAV

    8/58

    Autonomous Landing UAV

    Session 2008/2009

    VII | P a g e

    ListofSymbols

    h Altitude,displacementfromgroundAltituderatechange

    e Error

    or Proportionalgain

    Integralgain

    Derivativegain

    Integralcontrollerscaler

    Derivativecontrollerscaler

    Ultimateperiod

    Controllertransferfunction

    Open

    loop

    transfer

    function

    Closedlooptransferfunction

    Risetime

    Peaktime

    Settlingtime

    Maximumovershoot

  • 8/12/2019 Autonomous Landing UAV

    9/58

    Introduction

    Session 2008/2009

    1 | P a g e

    1. Introduction1.1.Objective

    ThisprojectaimstodevelopanautonomouslandingsystemthatwillenableaUAV

    tolandautonomouslywithouttheinterferenceofahumanoperator.Thescopeof

    thisprojectwaslimitedtothealtitudecontrolonly,withouttheinterventionofthe

    Roll,PitchandYawmotion.However,thedevelopedconceptsandcontrollawscan

    alsobefurtherextendedtoencompassRoll,PitchandYawcontrolwithadditional

    sensorssuch

    as

    the

    rate

    gyro

    or

    the

    tilt

    sensor.

    Someotherobjectivesaretheselectionandtestingofasuitablealtitudesensor,the

    implementationoftheflightcontrollawsusingtheProportionalIntegralDerivative

    (PID)controller,thetuningofthePIDgainsusingvariousmethodsandlastlyaflight

    demonstrationtovalidatetheautonomouslandingsystem.

    1.2.HistoricalbackgroundTheconceptofUAVbeganduringtheAmericanCivilWar,whentheNorthandthe

    Southattemptedtobombeachothersammunitiondepotbylaunchingballoons

    carryingexplosivedevicewhichwouldbereleasedatacontrolledtiming.However,

    theactualbeginningstartedduringWorldWarII,whenacompanyChanceVought

    Aircrafthadproposedbuildingmissileswithlandinggear,inordertosavecost.

  • 8/12/2019 Autonomous Landing UAV

    10/58

    Introduction

    Session 2008/2009

    2 | P a g e

    Recently,UAVsuchastheGlobalHawkandthePredator,haveachieved

    considerablepopularity,whenitwasemployedtoprovideaerialsurveillanceaswell

    asattack

    missions

    in

    Afghanistan.

    There

    are

    many

    other

    useful

    applications

    of

    UAV

    suchashomelandsecurity,cropdustingandtrafficmonitoring.

    UAVcanbeclassifiedundertwodistinctcategories,FixedwingandRotary.Some

    examplesofRotaryUAVincludehelicopter,MicroAirVehicleandOrganicAir

    Vehicle,whereastheGlobalHawkandPredatorrepresentsFixedwingaircraft.

    AccordingtoReinHardt[2],thenextgenerationofUAVswillbesmallerinsize,more

    affordable,easiertotrainandmoreprecisethantheexistingUAVs.Also,UAVsare

    expectedtobecapableofdetectingnuclear,biological&chemicalweapons,looking

    intodoublecanopyjunglesandprovidelowcost,reliablecommunicationsanddata

    relayacrossthebattlefield.Inurbanbuiltupareas,whereairspaceisoftenlimited,

    VerticalTakeOffandLanding(VTOL)UAVisoftenemployed.

    TheremotepilotingofaVTOLUAVisaverychallengingtaskwhichrequiresgreat

    operatorskillandattention[4].Furthermore,mostmaneuverswouldrequirethe

    pilottomaintainfullvisualcontactwiththeUAVatalltimes,especiallyduringthe

    landingphase.Inaddition,someotherfactorsthatmightaffecttheRemotecontrol

    (RC)performancearepoorpositionalaccuracy,pooraltitudeaccuracyandpilot

    fatigue[4].

  • 8/12/2019 Autonomous Landing UAV

    11/58

    Theory

    Session 2008/2009

    3 | P a g e

    2. Theory2.1.HelicopterAerodynamics

    ThefourworkingstatesofarotorinaxialflightaredescribedinAppendixII.In

    particular,thevortexringstateshouldbeavoidedduringdescentasitmightresult

    inhighlyunsteadyflowwithnonlinearityasaffirmedbyYaggy&Mort(1963).This

    unsteadinesscancausesignificantbladeflapping,uncommandeddropindescent

    rate,lossofcontroleffectiveness,andexcessivethrustfluctuations.

    Figure1:(A)WakebehaviourOGE/IGE;(B)ThrustratioVsDistance

    Groundeffectcanalsoaffecttheperformanceofahelicopter.Figure1Ashowsthe

    wakebehaviorfromahoveringstateInandOutofgroundeffectandfigure1B

    showstheincreaseinthrustratioatdifferenthoveringheightastestedby

    Fradenburgh(1972)andHayden(1976).Theseresultssuggestsignificanteffectson

    hoveringperformanceforheightsoflessthanonerotordiameter,wherethereisa

    sharpincreaseinthrust.

  • 8/12/2019 Autonomous Landing UAV

    12/58

    Theory

    Session 2008/2009

    4 | P a g e

    2.2.PIDSystem

    Figure2:BlockDiagramofPIDControlsystem

    TheclassicalcontroltheorywithaclosedloopPIDcontrollerisusedtocontrolthe

    altitudeoftheUAVasillustratedbytheblockdiagraminfigure2.Theultrasonic

    sensorattached

    to

    the

    UAV

    provides

    range

    feedback

    for

    the

    closed

    loop

    system

    and

    itsdataisalsocapturedbythecomputerfordataloggingpurposes.Severalmethods

    oftuningthegainsofthecontrollerareproposed.

  • 8/12/2019 Autonomous Landing UAV

    13/58

    Hardware and Setup

    Session 2008/2009

    5 | P a g e

    3. HardwareandSetup3.1.UAVPlatform

    Forthisproject,arotarytypeplatformwasselectedasitisabletomaintaina

    hoveringpositionbeforethelandingcommandisinitiated.Duringtheinitialstage,a

    hovercraftwhichusescoandereffecttoproduceliftwasexplored.However,dueto

    thenatureofthisproject,aswellastheproblemsencountered,itwaseventually

    replacedwithanotherofftheshelfplatform,thedraganflyerVTi.

    3.1.1. CoanderEffectFlyingsaucerThephenomenonwhichcausesflownearlimitingsurfacetofollowthegeometrical

    shapeofthesesurfacesisknownastheCoandereffect.Accordingtoresearcher

    JeanLouisNaudin,theVTOLplatformwasabletoattaingoodcontrol,stabilityand

    thrustwhichiscomparableorevenbetterthanaconventionalRChelicopter.In

    accordancewith

    his

    built

    plan,

    asimilar

    platform

    was

    modelled

    using

    CAD

    software,

    SolidworksinAppendixI,figure29,andbuiltcarefullyasshowninfigure3.

    Figure3:ConstructionoftheCoanderEffectUAV

  • 8/12/2019 Autonomous Landing UAV

    14/58

    Hardware and Setup

    Session 2008/2009

    6 | P a g e

    However,subsequenttestsconductedontheplatformconcludedthatthecoander

    effectwasunabletoproducesufficientliftaspromised.Detailedexperimentsthat

    wereconducted

    to

    verify

    the

    lift,

    as

    well

    as

    some

    minor

    modifications

    to

    the

    UAV

    areattachedtoAppendixVforreference.

    3.1.2. DraganflyerTiVTheflightcontrolsoftheDraganflyeroperatesolelyondifferentialthrustbetween

    thefrontrearandleftrightmotor,wherebyanetresultantmomentcanbe

    generatedalong

    the

    roll

    axis

    (x

    axis)

    or

    the

    pitch

    axis

    (y

    axis)

    to

    produce

    aroll

    or

    a

    pitchmotionasshowninfigure4.

    Figure4:FlightcontroloperationoftheDraganflyerVTi

    Forinstance,topitchtheUAVup,thefrontmotorwillrotatefasterthantherear

    motor.Anotheradvantageofthisplatformisthatnomechanicallinkageisrequired

    asthereisnocontrolsurface.

  • 8/12/2019 Autonomous Landing UAV

    15/58

    Hardware and Setup

    Session 2008/2009

    7 | P a g e

    3.2.TestbedconstructionInordertoinvestigateandtunetheentireUAVsystem,differentjigswithdifferent

    degreeof

    freedom

    (DOF)

    are

    required.

    For

    example,

    in

    order

    to

    tune

    the

    PID

    controllerfortherollmotion,atestbedwhichrestrictstheUAVmotiontotheroll

    axisonlyisrequired.Generally,thePIDcontrollermustbetunedseparatelyforthe

    individualroll,pitchandyawaxis[11].

    Forthisproject,thePIDcontrollerthatmustbetunedisinthetranslationalz

    direction,withreferencetofigure4.Therefore,atestbedwith1DOFinthe

    translationalzdirectionisrequired.Thetestbeddesignismodelledusing

    SolidworksasshowninAppendixI,figure30.Thedimensionoftheceilingframeis

    modelledaccordingtotheactualdimensioninthelaboratory.TheUAVismounted

    onacarbonfibrecrossbar,andthecrossbarisjoinedtotheverticalpolystyrene

    supportsby

    four

    prismatic

    joints,

    which

    allows

    translational

    displacement

    along

    the

    verticalsupportsonly.Therefore,thissetupcaneffectivelyconstraintheUAVtothe

    translationalzdirectionasshowninfigure5.

  • 8/12/2019 Autonomous Landing UAV

    16/58

    Hardware and Setup

    Session 2008/2009

    8 | P a g e

    Figure5:ConstructedTestbed

    3.3.SensorwithmountingThePING)))Ultrasonicrangesensorisattachedtoamountingmadeofbalsawood

    andhighdensityfoamisusedtoprotectthesensorfromimpactwiththeground.

    Figure6:UltrasonicdistancesensorattachedtoUAV

    3.4.Microcontroller:BasicStamp

  • 8/12/2019 Autonomous Landing UAV

    17/58

    Hardware and Setup

    Session 2008/2009

    9 | P a g e

    ThemicrocontrollerBasicstampBS2pxandBS2pefromparallaxwasusedtoprocess

    theinformationfromtheultrasonicsensorandtogeneratetherequiredsignal.

    3.5.Communication

    Figure7:Communicationofcontrolsystem

    Figure7illustratestheoriginalcommunicationsofthelandingsystem.Tosimplify

    theproblem,theconnectionbetweentheultrasonicsensorandthemicrocontroller

    wasphysicallywired.Initially,asinglemicrocontrollerBasicstampBS2pxwasused

    tocalculate

    the

    distance

    from

    the

    range

    sensor

    as

    well

    as

    processing

    the

    data

    and

    generatingthenecessarysignaltotheRadiofrequency(RF)transmitter.The

    transmitterwillthenrelaythesignalstotheUAVviathetrainerport.

    APinOutdiagramoftheFutabatransmitterisshowninAppendixI,figure31.In

    ordertocontroltheUAVusingthemicrocontroller,thesixpinplugismodifiedand

    only

    three

    of

    the

    pins

    are

    used:

    Pin

    2

    (PPM

    Out),

    Pin

    3

    (PPM

    In)

    and

    Pin

    7

    (Ground

    shield).Pin2isusedtomonitorthesignalsgeneratedbythetransmitterandPin3is

    usedtoreceivethesignalsfromthemicrocontrollerintothetransmitter.TheRadio

    FrequencysignalisfinallytransmittedtothereceiveronboardtheUAV.

  • 8/12/2019 Autonomous Landing UAV

    18/58

    Hardware and Setup

    Session 2008/2009

    10 | P a g e

    3.6.Problemsencountered3.6.1. Pausewidth

    Forbasic

    stamp

    microcontroller,

    the

    command

    PAUSE

    will

    cause

    adelay

    where

    no

    signalwillbetransmittedtothepin.However,thesmallestunitis1millisecond

    whereasthepauserequiredbetweenchannelsisonly0.4ms.Toovercomethis

    problem,anotherpulsesignalwassenttoanotherdummypin,whichwillresultin

    aninduceddelaytotheactualpinthatisconnectedtothetransmitter.

    3.6.2. TrimmedsignalItwasobservedthatthetrimmingsonthetransmitteraffectthesignalsthatare

    generatedquitesignificantly.AppendixI,figure33showstheFutabatransmitter

    withthetrimcontrol.Thus,theUAVattachedtothetestbedshouldbeproperly

    trimmedtomaintainhoverbeforethegeneratedsignalsaremeasured.

    3.6.3. LagtimebetweenPulseTrain

  • 8/12/2019 Autonomous Landing UAV

    19/58

    Hardware and Setup

    Session 2008/2009

    11 | P a g e

    Figure8:Lagtimebetweenpulsetrain

    Figure8ashowsthelagtimeof98msforthefulllandingprogramand8bshowsthe

    reducedoroptimizedprogram,havingalagtimeof56ms.However,itisstillfar

    fromthedelayrequiredof0.4ms.

    Tosolvethisproblem,analternativecommunicationsystemisrequired.Figure9

    showsthenewcommunicationsystemthatrequirestwomicrocontrollersto

    operatesimultaneously.BS2pewasusedtocollectfeedbackdatafromthe

    ultrasonic

    sensor

    and

    acts

    as

    the

    PID

    controller

    to

    processes

    the

    retrieved

    data.

    It

    is

    alsoconnectedtothecomputerwhichwillsavetheinformationfordatalogging

    purposes.AnothermicrocontrollerBS2pxwasconnectedtoBS2pethroughserial

    communication.TheprimaryfunctionofBS2pxistogenerateregularpulsesof

    signalstotheRFtransmitter.Thisisverycrucialaslonglagtimewillregisterasa

    temporarylossoflinkwhichwillcausetheUAVtobecomeuncontrollableand

    twitchesviolently.Therefore,thefasteststampBS2pxwithprocessingspeedofup

    to19,000instructionspersecondwasemployedtoperformthisduty.

  • 8/12/2019 Autonomous Landing UAV

    20/58

    Hardware and Setup

    Session 2008/2009

    12 | P a g e

    Figure9:Newcommunicationsystem

    Uponfurtherinvestigation,itwasdeducedthattheultrasonicsensor,runningat

    about20Hz,iscausingthelonglagtime.Thus,theusageoftwobasicstampscan

    effectivelyisolatetheinherentlagtimeproblemthatiscausedbythesensor.

    AppendixI,figure34showstheconnectionsbetweenthetwostampswithflow

    control.OneofthelimitationsofStampisthatwhenitissendingorreceivingdata,

    itcannot

    execute

    other

    instruction

    and

    vice

    versa.

    The

    Stamp

    does

    not

    have

    aserial

    bufferwhichispresentinothercomputers.Also,evenwhenrunningatthehighest

    serialbaudrates,thereisinsufficienttimefortheStamptoreceivedata,processit

    andexecuteanotherreceivingdatacommandintimetocatchthenextstreamof

    data,unlesstherearesignificantpausesbetweendatatransmissions.Fortunately,

    flow

    control

    can

    be

    used

    to

    overcome

    this

    problem

    whereby

    the

    receiver

    can

    tell

    the

    senderwhenitisreadytoreceivethenextstreamofdata.Also,stampcanonly

    transmitasinglebyteatatime.Therefore,thesignalthatwillbesentwasscaled

    downby10inordertostaywithinthesinglebytelimitofvaluesbetween0255.

  • 8/12/2019 Autonomous Landing UAV

    21/58

    Hardware and Setup

    Session 2008/2009

    13 | P a g e

    3.7.Programmingalgorithm

    Figure10:Flowchartofautonomouslandingsystem

    Theflowchartabovesummarizestheprogrammingalgorithmfortheentire

    autonomouslandingsystem.Atimeoutfunctionisprovidedtoaccountforcases

    wherelag

    time

    exceeds

    0.8ms.

    In

    such

    cases,

    this

    function

    will

    generate

    asimilar

    pulsetrainastheonebefore.Thisistoensurethatthereisaregulargenerationof

    pulsesignaltopreventlossoflink.

    Anotherconditionthatisusedinthisalgorithmistocheckwhetherthecalculated

    distanceislessthan20cm.Ifitistrue,thethrottlewhichcorrespondstolandingis

    initiatedinstead

    of

    the

    PID

    controller

    output.

  • 8/12/2019 Autonomous Landing UAV

    22/58

    Experiment

    Session 2008/2009

    14 | P a g e

    4. Experimentsconducted4.1. OperationoftheFutabaRFtransmitter

    Figure11:ExperimentalsetuptomeasurePWMsignal

    Experiment1:MeasurementofPWMsignalfromradiotransmitter

    ThesignalsgeneratedbythetransmitterarePulseWidthModulation(PWM)signals.

    ThisexperimentinvolvesthemeasurementofthePWMsignalgeneratedbythe

    FutabaRFtransmitter,atdifferentsticksettings.Theequipmentthatwasusedin

    thisexperimentisshowninfigure11.UsingaprobetotapthesignalfromPin2at

    thetrainerport,therespectivepulsewidthatdifferentstickpositionscanbe

    measuredusingadigitaloscilloscope(TectronixTDS3012).

  • 8/12/2019 Autonomous Landing UAV

    23/58

    Experiment

    Session 2008/2009

    15 | P a g e

    4.2. ExperimentsonDraganflyer

    Figure12:

    Experimental

    setup

    to

    measure

    generated

    thrust

    Experiment2:DeterminerelationshipbetweenThrottleandThrust

    Asimpleexperimentwassetuptoestimatethegeneratedthrustatdifferent

    throttlesettingasshowninfigure12.TheUAVwasattachedtoaweightandthe

    platformwasplacedontoadigitalweighingscale.Theresultantthrustcanbe

    measuredbytheweighingscaleatdifferentthrottlepositions.Twodifferentsetups

    aredesignedtomeasurethethrustgeneratedattwodifferentaltitudes.Thisisdone

    toestimatethethrustgeneratedIGEandOGE.Theassumptionisthattheattached

    weightandweighingscaledonotinterferewiththethrustgeneratedbytherotors.

    Experiment3:Testingandcalibrationofultrasonarsensor

    TheParallaxPING)))ultrasonicsensorisusedtomeasurethealtitudeoftheUAV.It

    ischosenprimarilybecauseofitsavailabilityinthelaboratoryaswellasthesuitable

    rangeof2cmto3mwhichsatisfytherequirementofthisproject. Also,itisfully

  • 8/12/2019 Autonomous Landing UAV

    24/58

    Experiment

    Session 2008/2009

    16 | P a g e

    compatiblewiththemicrocontrollerBasicStamp.Inthisexperiment,theultrasonic

    sensoristestedandcalibratedwiththeactualdistance.

    Experiment4:Determinesystemplantmodel

    Theaimofthisexperimentistodeterminetheplantmodelofthesystem.Froma

    hoveringaltitudeof100cm,thethrottlewassteppeddownandtheheightvariation

    datawasloggeddownusingthesoftwareStampPlotPro.Fromtheserawdata,the

    rateofdescent(R.D)canbedetermined.Themagnitudeofthestepswasvariedand

    thecorresponding

    R.D

    was

    analysed

    to

    determine

    the

    systems

    plant

    model.

    Experiment5:SimulationsusingMatlab,Simulink

    Usingthederivedsystemplantmodel,thesystemwasmodelledusingMatlab,

    Simulinkasshowninfigure13.

    Figure13:SystemplantmodelledinSimulink

    Simulationsarecarriedouttoexaminethetheoreticaloutputresponseofthe

    systemgiven

    astep

    down

    input.

    The

    gains

    for

    the

    PID

    controller

    are

    varied

    to

    determinethesystemresponse.ThetwomethodsoftuningthePIDcontroller,the

    ZieglerNicholsmethodandtheTrialanderrormethod,wassimulated.

  • 8/12/2019 Autonomous Landing UAV

    25/58

    Experiment

    Session 2008/2009

    17 | P a g e

    Experiment6:Flighttest

    Flight1:ScheduledProportionalcontrol

    Twodifferent

    values

    of

    proportional

    gains

    are

    used

    depending

    on

    the

    height

    of

    the

    UAV.Forheightofabove45cm,againof2.0isusedandforheightbelowthat,a

    gainof1.0isused.Thisistoensurethattherateofdescentisreducedasit

    approachestheground.

    Flight2:Throttlereductionby20%

    Thehovering

    throttle

    of

    the

    UAV

    was

    reduced

    by

    20%

    and

    the

    rate

    of

    descent

    of

    the

    UAVwasinvestigated.

    Flight3:ProportionalDerivativecontrol

    ItwasdeterminedthataPDcontrollerissufficientastheintegraltermwhichwill

    compensateforsteadystateerrorisnotrequiredinthisautonomouslanding

    system.The

    appropriate

    proportional

    and

    derivative

    gains

    that

    are

    obtained

    from

    thesimulationsusingSimulinkareusedinthisexperiment.Also,theactualsystem

    responsecanbecomparedwiththesimulatedresponse.

    Flight4:Hoveraboutsetpoint

    UsingsimilarPDcontroller,UAVwascommandedtohoveratadesiredsetpoint.

  • 8/12/2019 Autonomous Landing UAV

    26/58

    Results and Discussions

    Session 2008/2009

    18 | P a g e

    5. ResultsandDiscussions5.1. Testingandcalibrationofultrasonicsensor

    Figure14:

    (A)

    Ultrasonic

    sensor

    results;

    (B)

    Percentage

    error

    below

    40cm

    ItwasobservedthatnocalibrationoftheultrasonicsensorisrequirediftheStamp

    usedtoreceivethesensordataisBS2pe.However,calibrationisrequiredifthe

    StampusedisBS2px.Referringtofigure14A,themeasuredistance(Blue)isfound

    tobedeviatedfromtheactualdistance(Green).Sincethedeviationislinear,a

    correctionfactorof0.408wasdeterminedempirically.Thecorrecteddistanceis

    depictedbytheredline.Itwasalsoobservedthatthepercentageerrorincreases

    significantlywhenthesensorwasbelow40cm.Subsequently,anothercorrection

    factorof0.440wasdeterminedthesamewayfordistancebelowtherangeof40cm.

    Thedifferenceinpercentageerrorplotisshowninfigure14B.

  • 8/12/2019 Autonomous Landing UAV

    27/58

    Results and Discussions

    Session 2008/2009

    19 | P a g e

    5.2. Determinerelationshipbetweenthrottleandthrust

    Figure15:PlotofThrustVsThrottle

    Figure15showstherelationshipbetweenthethrottlestickpositionandthe

    resultantthrustproducedbythefourrotors.Withthisestimation,theapproximate

    throttlepositionthatisrequiredtodescendtheUAVofvaryingweightscanbe

    calculatedaccordingly.

    5.3. MeasurementofPWMsignalfromradiotransmitter

    Figure16:PWMSignalsfromFutabatransmitter

  • 8/12/2019 Autonomous Landing UAV

    28/58

    Results and Discussions

    Session 2008/2009

    20 | P a g e

    Figure16showsthePWMpulsetrainthatwascapturedbytheoscilloscope.Itwas

    observedthatthetimespanforasinglepulsetrainis20msregardlessofthestick

    configurationsand

    there

    are

    atotal

    of

    seven

    channels.

    Also,

    the

    pause

    width

    betweendifferentpulsesis0.4ms.However,thesynchronizationpulsevariesfrom

    8.11msto8.83ms,dependingonthedifferentstickcombination.Thisisamore

    accuraterepresentationofthesynchronizationpulseascomparedtotheconstant

    valueof9msthatwasproposedbyKarWei[14].Theactualsynchronizationpulse

    canbecalculatedasfollows:

    Figure17showsthesevenpulsesthatarepresentinasinglepulsetrain.Eachof

    thesepulsescorrespondstoachannelandtherefore,thereareatotalof7channels.

    Channel1controlsaileron,channel2controlselevator,channel3controlsthrottle,

    channel4controlsrudder,channel5controlsthermalintelligenceandlastly

    channels6and7controlsthelandinggearswitchandflapknobwhicharenotused

    inthisUAV.Also,therangeofpulsewidthforthethrottlecontrolismeasuredtobe

    from0.74msto1.4ms.

  • 8/12/2019 Autonomous Landing UAV

    29/58

    Results and Discussions

    Session 2008/2009

    21 | P a g e

    Figure17:Sevenchannelsfromsinglepulsetrain

    5.4. Relationshipbetweenhelicoptercontrolsandpulsewidth

    Figure18:(a)PlotofThrottleVsPulsewidth;(b)PlotofThrustVsPulsewidth

    Sincethisprojectinvolvesthemanipulationofthethrottlecontrol,thedifferent

    throttlepositionswhichcorrespondtothepulsewidthofchannel3isexaminedin

    detail.TheresultofPercentagethrottleagainstPulsewidthisshowninfigure18a.

    Usinginformationfromsection5.2,theplotofThrustagainstPulsewidthis

    obtainedandplottedinfigure18b.Fromthisresult,therequiredthrustcanbe

    generatedwiththecorrectpulsewidth.

  • 8/12/2019 Autonomous Landing UAV

    30/58

    Results and Discussions

    Session 2008/2009

    22 | P a g e

    Therestofthepulsewidthsfromotherchannelsthatcorrespondstothe2extremes

    ofthestickpositionareplottedinAppendixI,figure35.Forinstance,fullaileron

    rightcorresponds

    to

    aminimum

    pulse

    width

    of

    0.78

    ms

    and

    full

    aileron

    left

    correspondstoamaximumpulsewidthof1.42ms.

    5.5. Determinesystemplantmodel

    Figure19:PlotsofRateofdescentVsPulsout

    Thedescentratesatdifferentstepthrottledowninshowninfigure19ac.Atotalof

    threetrialsareconductedandresultsareplottedinfigure19d.Thesystemsplant

    modelcanbederivedfromthegradientofthelinewhichisabout1.7.

    Therelevantequationstoderivetheplantmodelareshownbelow:

  • 8/12/2019 Autonomous Landing UAV

    31/58

    Results and Discussions

    Session 2008/2009

    23 | P a g e

    where canberepresentedby and represente ydb

    Laplacetransform

    SinceKis1.7, theplantmodelcanberepresentedbytheblockdiagrambelow.

    Figure20:Systemsplantmodel

    5.6. SimulationsusingMatlab,Simulink5.6.1. ZieglerNicholsmethod

    Figure21:SimulationsusingZieglerNicholsmethod

    ThesimulatedresultsusingtheZieglerNicholsmethodisshowninfigure21.Both

    resultsshowshighovershootwithcomparativelylongsettlingtime.

    5.6.2. ProportionalDerivativecontrol:TrialandErrormethod

  • 8/12/2019 Autonomous Landing UAV

    32/58

    Results and Discussions

    Session 2008/2009

    24 | P a g e

    ThesimulationresultsusingthePDcontrollerisshowninfigure22.Thesettlingtime

    ismuchmoreacceptablecomparedtothepreviousmethod.Thus,thismethodwill

    beused

    in

    the

    actual

    flight

    test.

    Figure22:SimulationsusingPDcontrol

    5.7. Flighttest5.7.1. Flight1:Scheduledproportionalcontrol

    Figure23:Resultsusingscheduledproportionalcontrol

    Figure23showstheactualflightresultsusingscheduledproportionalcontrol

    methodasdescribedearlier.Theresultisgoodwithfastsettlingtimeofabout1.7s

    andcontrolledsmoothlanding.

  • 8/12/2019 Autonomous Landing UAV

    33/58

    Results and Discussions

    Session 2008/2009

    25 | P a g e

    5.7.2. Flight2:Throttlereductionof20%

    Figure24:Resultsusingthrottlereductionmethod

    Thelandingusingthrottlereductionof20%showssimilarlysmoothdescent.

    However,theUAVhoverstoapointofabout20cmwhereitencountersground

    effect.Asaresult,manualcontrolisrequiredtoforceittoland.

    5.7.3. Flight3:ProportionalDerivativecontrol

    Figure25:ResultsusingPDcontrol:(a)Kp:1.0/Kd:1.0;(b)Kp:3.0/Kd:1.0

    ThesamegroundeffectisencounteredusingthePDcontrollerwithproportional

    gainof1.0asshowninfigure25a.Forthiscase,theUAVhoveredtoaheightof

    about40cmandrefusestodescendanyfurther.Thiscanbeovercomebyincreasing

  • 8/12/2019 Autonomous Landing UAV

    34/58

    Results and Discussions

    Session 2008/2009

    26 | P a g e

    theproportionalgainto3.0infigure25bwherethelandingissmoothwithquick

    settlingtimeofabout1.3s.

    5.7.4. Flight4:Hovertosetpoint

    Figure26:HoveringtosetpointusingPDcontrol

    UsingthesamePDcontrollerwithproportionalgainof3.0andderivativegainof1.0,

    theUAViscommandedtoadesiredheightasshowninfigure26.Thecommandwas

    initiatedataheightof35cmanditrisesquicklytothedesiredaltitudeafter1

    oscillation.

    Thetransientperformanceiscalculatedasfollows:

    Risetime: (From0%to100%)

    Peaktime:

  • 8/12/2019 Autonomous Landing UAV

    35/58

    Results and Discussions

    Session 2008/2009

    27 | P a g e

    Settlingtime: (Timetoreachandstaywithin5%limit)

    Maximum%overshoot:

    Thissystemcanbefurthertunedtoreduceovershootbyloweringtheproportional

    gainandreducingthesteadystateerrorbyincludinganintegraltermintothe

    controller.However,thesteadystateerrorisreasonableasitiswithinthe5%limit.

    5.8. Analysiswithsimulatedplot5.8.1. Comparingsimulationandactualplot

    Figure27:Comparisonbetweensimulatedandactualplot

    Thesimulatedandactuallandingprofileisplottedforcomparisoninfigure27.The

    redlineshowsthesimulatedplotusingMatlabandtherestoftheplotscorrespond

    totheactualtestflightdata.Itcanbeconcludedthattheactualplotsfitthe

    simulatedplot

    reasonably

    well.

    5.8.2. RootlocusanalysisReferringtofigure13,thetransferfunctionofthesystemisderivedas:

  • 8/12/2019 Autonomous Landing UAV

    36/58

    Results and Discussions

    Session 2008/2009

    28 | P a g e

    Assumingunityfeedback:

    ProportionalDerivativeControl:

    OpenLooptransferfunction:

    ClosedLooptransferfunction:

    TakingKp=3,Kd=1,K=1.7,

    ClosedLooptransferfunction:

    Theopenlooptransferfunctioncanalsobewrittenintheform:

    wherezandparethezeroandpoleoftheopenlooptransferfunction.Asthegain

    changes,thevaluesofthecloselooppoleswillchangeandthusthetransient

    responseand

    stability.

    The

    root

    locus

    plot

    is

    aplot

    of

    the

    loci

    of

    the

    close

    loop

    poles

    onthesplaneasthegainKvariesfrom0toinfinity.

    Figure28:Rootlocusplot

  • 8/12/2019 Autonomous Landing UAV

    37/58

  • 8/12/2019 Autonomous Landing UAV

    38/58

    Conclusion

    Session 2008/2009

    30 | P a g e

    6. ConclusionsThisthesishaspresentedacompletesystemtocontroltheheightofaUAVusing

    feedbackcontrol

    from

    an

    ultrasonic

    sensor.

    The

    method

    of

    communication

    between

    thedifferentmicrocontrollersandtransmitterwerediscussedaswellassomeofthe

    problemsthatareassociatedwiththecommunications.Differentmethodsoftuning

    thePIDcontrolsystemwereexploredwiththeaidofsimulationsusingMatlab,

    Simulink.Finally,actualtestflightsarecarriedouttovalidatetheautonomous

    landingsystem.

    All

    the

    objectives

    of

    this

    project

    were

    well

    met.

  • 8/12/2019 Autonomous Landing UAV

    39/58

    Recommendation

    Session 2008/2009

    31 | P a g e

    7. RecommendationsforFurtherWork7.1. IntegratingcontrollerforRoll,PitchandYawInthisproject,aheightsensorisusedtoprovidefeedbackforthePIDcontrollerfor

    altitudecontrol.However,thiscanbefurtherextendedtotheroll,pitchandyaw

    motion.Inordertodoso,additionalsensorsarerequiredtoprovidefeedback

    informationabouttheUAVsorientationorangularvelocity.Tiltsensorsorrategyro

    canbeusedinsuchcasestoprovidecompensationfortheroll,pitchandyaw

    motion.In

    the

    thesis

    by

    KarWei

    [14],

    he

    had

    successfully

    used

    atilt

    sensor

    to

    compensatefortherollandpitchmoment.

    Anotheralternativemethodistoextracttherawdatadirectlyfromthethreepiezo

    electricgyrothatarealreadypresentonthecircuitboardDraganflyerVTi.However,

    thiswouldrequireknowledgeaboutthecircuitboardtopreventdamageonanyof

    thecomponentsonit.

    7.2. CamerasystemtolocatelandingzoneAcamerasystemcanbeintegratedintotheUAVtolocatethelandingzonefrom

    anotherposition.InthethesisbyZhikang[17],hehadusedcolorsegmentationto

    segmentacoloredlandingzoneandapanandtiltcameratotrackontothetarget.

    Finally,thepositionoftheUAVwascorrectedtothelandingzoneandsubsequently

    landed.InordertocommunicatebetweenacomputerandaRFtransmitter,an

    interfacePCTxbyEndurancewasused.

  • 8/12/2019 Autonomous Landing UAV

    40/58

    References

    32 | P a g e

    References

    [1]HaniphLatchman(2003,January17).BriefhistoryofUAVS.RetrievedMarch10,2009,fromhttp://aln.list.ufl.edu/uav/UAVHstry.htm

    [2]ReinHardtJ.R.,JamesJ.E.&FlanaganE.M.(1999).FutureEmploymentofUAVs,JointForceQuarterly.RetrievedMarch10,2009,from

    http://www.dtic.mil/doctrine/jel/jfq_pubs/0822b.pdf

    [3] JoshuaHintze(2004,April).Autonomouslandingofarotaryunmannedaerialvehicleinanoncooperativeenvironmentusingmachinevision.BrighamYoung

    University,DepartmentofElectricalandComputerEngineering

    [4]TeinHau,Tan(2008,May).AutopilotUnmannedAerialVehicle.NationalUniversityofSingapore,DepartmentofMechanicalEngineering

    [5] J.Gordon(2006).PrinciplesofHelicopterAerodynamics.CambridgeUniversityPress.

    [6]A.R.S.Bramwell,G.Done&D.Balmford(2000).BramwellsHelicopterDynamics.ElsevierLtd.

    [7]TomasB.Co(2004,February13).ZieglerNicholsMethod.MichiganTechnologicalUniversity.RetrievedMarch11,2009,from

    http://www.chem.mtu.edu/~tbco/cm416/zn.html

    [8] J.L.Naudin(2007,February25).TheGFSUAVproject,ACoandereffectflyingsaucer.RetrievedMarch11,2009,fromhttp://jlnlabs.online.fr/gfsuav/index.htm

    [9]ChrisSmith(2009).TheAerodynamicsofaPingpongball.RetrievedMarch11,2009,from

    http://www.thenakedscientists.com/HTML/content/kitchenscience/exp/the

    aerodynamicsofapingpongball/

  • 8/12/2019 Autonomous Landing UAV

    41/58

    References

    33 | P a g e

    [10] W.KlausandI.S.Martin(1999,May20).MisinterpretationsofBernoulli'sLaw.UniversityFrankfurt,DepartmentofPhysics.RetrievedMarch11,2009,

    fromhttp://user.unifrankfurt.de/~weltner/

    [11] WaiWeng,Kong&M.S.b.Zainal(2006).DesignandControlofaQuadRotorFlyingRobotforAerialSurveillance.UniversitiTeknologiMalaysia,Centerfor

    ArtificialIntelligenceandRobotic.

    [12] J.Martin,J.Williams,K.Gracey,A.Alvarez&S.Lindsay(2005,February).BASICStampSyntaxandReferenceManualVersion2.2.RetrievedMarch11,

    2009,fromwww.parallax.com

    [13] M.Azfar(2007).AerodynamicsandPropulsionofanIndoorUAV.NationalUniversityofSingapore,DepartmentofMechanicalEngineering

    [14] KarWei,Chin(2007).FlightDynamicsandControlforanIndoorUAV.NationalUniversityofSingapore,DepartmentofMechanicalEngineering

    [15] MartinHebel(2009).PrimertoUsingStampPlotPro,SelmaWareSolutions.RetrievedMarch11,2009,from

    http://www.selmaware.com/stampplot/index.htm

    [16] NickSacco(2002).HowtheDraganflyerFlies.RotoryMagazine.RetrievedMarch11,2009,from

    http://www.rctoys.com/pdf/draganflyer3_rotorymagazine.pdf

    [17] Zhikang,Lin(2008).Camerabasedvisionsystemforunmannedairvehicles(UAVs)operations.NationalUniversityofSingapore,DepartmentofMechanical

    Engineering

  • 8/12/2019 Autonomous Landing UAV

    42/58

    Appendix I

    34 | P a g e

    AppendixI. FiguresandTables

    Figure29:ModelofCoandereffectUAVusingSolidworks

    Figure30:TestbedmodelinSolidworks

  • 8/12/2019 Autonomous Landing UAV

    43/58

    Appendix I

    35 | P a g e

    Figure31:PinOutdiagramofRFtransmitter,FutabaSkysport6T6YG

    Figure32:Modifiedwiringintotrainerport

    Figure33:Futabatransmittercontrolsdiagram

  • 8/12/2019 Autonomous Landing UAV

    44/58

    Appendix I

    36 | P a g e

    Figure34:Serialcommunicationwithflowcontrol

    Figure35:DescriptionofPulsewidthVsChannel

  • 8/12/2019 Autonomous Landing UAV

    45/58

    Appendix II

    37 | P a g e

    AppendixII. Fourworkingstatesofarotorinaxialflight

    Figure36:FlowvisualizationatvariousdescentvelocitiesusingShadowgraphy

    Figure36showsthefourworkingstatesofrotorinaxialflightandthedescriptions

    ofeachstatearesummarizedbelow:

    a) NormalWorkingstate:Thetipvorticesfollowsmoothhelicoidaltrajectories.Theflowishighlyperiodicwith

    asmoothslipstreamboundaryfreeofanysignificantdisturbances.Thisstate

    encompassesclimb,withthelimitbeingthehoveringstate.

    b) VortexRingstate:Forlowrateofdescent,thetipvortexfilamentsareconvectedclosertotheplaneof

    therotorbutalsomoveradiallyoutwardawayfromit.Athigherdescentrates,the

    tipvorticescomeveryclosetotherotorplaneandconsiderableunsteadiness

    becomesapparent.Thiscanbeseenbythecontortionsinthetipvortextrajectories

  • 8/12/2019 Autonomous Landing UAV

    46/58

  • 8/12/2019 Autonomous Landing UAV

    47/58

    Appendix III

    39 | P a g e

    AppendixIII.CoandereffectThephenomenonwhichcausesflownearlimitingsurfacetofollowthegeometrical

    shapeofthesesurfacesisknownastheCoandereffect.Itonlyoccurswhentheflow

    isnotforcedtochangeitsdirectiontooabruptlyinordertopreventtheformation

    ofturbulenceandseparation.Theclassicexampleisaflowacrossaflatplanewith

    anadjacenthalfcylinderasshowninfigure37below.

    Figure37:Flowacrossalimitingsurface

    In37a,theflowinitiallyfollowsthesurfaceofthecylinderwhicheventually

    separatesatsomepointonthecurvedsurface.Anothersimpleexampleis

    demonstratedin

    5c,

    when

    water

    is

    dripped

    down

    the

    back

    of

    aspoon,

    it

    will

    tend

    to

    sticktothesurfaceandgetdeflected.Thisimportantbehaviourholdsforallflows

    limitedbysmoothlycurvedsurfaceslikeaerofoils,streamlinedobstaclesandsails.

    TheCoandereffectcanbeexplainedbyconsideringtheeffectsofviscosityofafluid.

    In37b,duetoviscosity,somelayersoftheadjacentairattheendoftheflatsurface,

    depictedby

    dots,

    are

    carried

    away

    by

    the

    main

    stream

    flow.

    As

    aresult,

    aregion

    of

    lowpressureisformedwhichgiverisetoanetforcewhichwillpulltheflowtowards

    thecurvedsurface.

  • 8/12/2019 Autonomous Landing UAV

    48/58

    Appendix IV

    40 | P a g e

    AppendixIV.ZieglerNicholstuningmethodTable1:ZieglerNicholstuningchart

    where Kcistheproportionalgain

    Iistheparameterthatscalestheintegralcontroller

    Distheparameterthatscalesthederivativecontroller

    KUistheultimategain

    Kp,KiandKdaretheproportional,integralandderivativegains

    ThetuningchartfollowsthePIDequation:

    Inordertodeterminetheparameters,thefollowingstepsarecarriedout:

    1. Setthecontrollertoproportionalcontrolonly.2. StepincrementthecontrollergainKcandwaitforasteadystateoutputbefore

    increasingbyanothersubsequentstep.

    3. ThecriticalorultimategainKu,isthevalueofKcthatwillresultsinasustainedperiodicoscillationintheoutput.

    4. TheperiodofthisoscillationisknownastheultimateperiodPu.5. TherespectiveKc,IandDcanbedeterminedfromtheultimategainand

    ultimateperiodaccordingtothechartabove.

  • 8/12/2019 Autonomous Landing UAV

    49/58

    Appendix V

    41 | P a g e

    AppendixV. CoanderEffectflyingsaucerexperimentModificationstoUAV

    Figure38:ModificationtoPlatform

    SomemodificationswerecarriedouttoimprovetheUAVaftertheinitialmotortest.

    1. Themotoraswellasthepropellerarerealignedtoensurethatitwasinthehorizontal

    plane.

    This

    is

    important

    as

    slight

    misalignment

    will

    cause

    the

    propeller

    tooscillateandvibrateexceedinglywhenthemotorrotates.Thiswasdoneusing

    acircularairbubble.

    2. Thespacingbetweenthepetalandtheductwasreducedtoincreaseairflow.3. Theairductwasdoublelayered.Thiswasdonetoimproveonitsrigidityto

    maintain

    its

    cylindrical

    structure

    during

    flight.

    As

    the

    inner

    diameter

    of

    the

    duct

    wasalsoreducedtoimproveontheairspeed,anyslightdeformationoftheduct

    willcausethepropellertocollidewiththeduct.Lastly,theentranceandexitof

    theductwaschamferedtoimproveairflow.

  • 8/12/2019 Autonomous Landing UAV

    50/58

    Appendix V

    42 | P a g e

    J.L.NaudinExperiment

    Experimentalsetup

    AthrustexperimentdesignedbyJeanLouisNaudinwaspublishedonhiswebsite.

    Figure39:J.Naudinsexperimentalsetup

    Inhisexperiment,heusedablowertoblowacrossonepetaltosimulateairthat

    movesthroughtheairductoverthesurfacesofthepetals.Aweightwasattachedto

    theotheredgeofthepetalandwasplacedontoaweighingscale.Ananemometer

    wasusedtomeasuretheairspeedatthedifferentlocationsofthepetal.

    Results

    Theresultthatwasobtainedfromhisexperimentisplottedinthegraphbelow:

    Figure40:Naudinsresult

  • 8/12/2019 Autonomous Landing UAV

    51/58

    Appendix V

    43 | P a g e

    Fromthisplot,itcanbededucedthataminimumairspeedof21m/sisrequiredat

    theoutletoftheductedfaninordertogenerate533gofthrust,whichwasthe

    overallweight

    of

    his

    platform.

    In

    other

    words,

    the

    take

    off

    thrust

    required

    is

    533g.

    Experimentconducted:Airspeedmeasurement

    ExperimentalsetupandResults

    Figure41:Experimentalsetupforairspeedmeasurement

    Asimpleexperimentwasconductedtoverifytheairspeedatthedifferentpositions

    ofthe

    petal,

    in

    order

    to

    deduce

    the

    thrust

    that

    would

    be

    generated

    according

    to

    Naudinsresult.

    Figure42:Variablesofexperiment

  • 8/12/2019 Autonomous Landing UAV

    52/58

    Appendix V

    44 | P a g e

    Theairspeedsatthethreelocations,using2differenttypesofpropeller,are

    measuredandtheresultistabulatedbelow:

    Table2:

    Airspeed

    test

    results

    Predictedthrustiscalculatedusingequationthatwasderivedinhisexperiment:

    Conclusion

    Itwasobservedthatthe2bladepropellerwasabletoproducemorethrustthanthe

    3bladepropeller.Themaximumthrustthatcouldbeproducedbyalltheeight

    petalswasevaluatedtobeonly143.8g.Thiswasbarelysufficienttoliftoffthe

    platformwhichhasanoverallweightof570g,withoutincludingothercomponents

    suchasservosandsensors.Thus,theusageofthisplatformforthisprojectwas

    ruledout.

  • 8/12/2019 Autonomous Landing UAV

    53/58

    Appendix VI

    45 | P a g e

    AppendixVI.Autonomouslandingprogram(Basic)Processor

    Scheduledproportional

    control

    '~~~~~~~~SENDER/PROCESSOR~~~~~~~~~~~~~~~~

    '{$STAMPBS2pe}

    '{$PBASIC2.5}

    '{$PORTCOM8}

    '~~~~~~~~~~~~~~~~~~SetPin~~~~~~~~~~~~~~~~~~

    SO PIN 1 'SerialOutPin

    FC PIN 0 'FlowcontrolPin

    '~~~~~~~~~~~BaudrateSelect~~~~~~~~~~~~~~~~

    #SELECT$STAMP

    #CASEBS2PET4800CON16572

    T9600CON16468

    #CASEBS2PX

    T4800CON17197

    T9600CON16780

    #ENDSELECT

    BaudCONT9600

    '~~~~~~~~~~~~~ThrottleConfig~~~~~~~~~~~~~~~

    'tMin CON 1600

    'tMax

    CON

    1800

    tLand CON 1400

    tHover CON 1630

    throttle VAR Word

    throtsend VAR Byte

    '~~~~~~~~~~~~~~PIDVariables~~~~~~~~~~~~~~~~

    setpoint CON 5

    error VAR Word

    p VAR Word 'Proportionalterm

    '~~~~~~~~~~~~~~~~~PING)))Variables~~~~~~~~~~~~~~

    cmConstant

    CON

    2260

    cmDistance VAR Word

    time VAR Word

    PAUSE500 'ForPlotting

    DEBUG"!SPAN0,200",CR 'Altitudeaxis

    DEBUG"!TMAX180",CR 'Timeaxis

  • 8/12/2019 Autonomous Landing UAV

    54/58

    Appendix VI

    46 | P a g e

    DEBUG"!PNTS4000",CR 'Datapointsperplot

    DEBUG"!TITLAltituteLog",CR 'Titletheform

    DEBUG"!SHFTON",CR 'Plotshiftatmax

    DEBUG"!TSMPOFF",CR

    DEBUG"!SAVD

    ON",CR

    DEBUG"!SAVMON",CR

    DEBUG"!NAMDPlotData.txt",CR

    DEBUG"!NAMMPlotMsg.txt",CR

    DEBUG"!PLOTON",CR 'Enableplotting

    DEBUG"!RSET",CR 'ResetPlot

    DO

    PULSOUT15,5 'ToutfromPING)))

    PULSIN15,1,time 'TintoPING)))>Timevariable

    cmDistance=cmConstant**time 'DistancefromPING)))

    DEBUGDECcmDistance,CR 'ForPlotting

    error=setPoint cmDistance

    IFcmDistance>45THEN 'AugmentProportionalGains

    p=2*error

    ELSEIFcmDistance

  • 8/12/2019 Autonomous Landing UAV

    55/58

  • 8/12/2019 Autonomous Landing UAV

    56/58

    Appendix VI

    48 | P a g e

    DEBUG"!PNTS4000",CR '4000datapointsperplot

    DEBUG"!TITLAltituteLog",CR 'Titletheform

    DEBUG"!SHFTON",CR 'Allowplottoshiftatmax

    DEBUG"!TSMPOFF",CR

    DEBUG"!SAVD

    ON",CR

    DEBUG"!SAVMON",CR

    DEBUG"!NAMDPlotData.txt",CR

    DEBUG"!NAMMPlotMsg.txt",CR

    DEBUG"!PLOTON",CR 'Enableplotting

    DEBUG"!RSET",CR 'ResetPlot

    DO

    PULSOUT15,5 'ToutfromPING)))

    PULSIN15,1,time 'TintoPING)))>Timevariable

    cmDistance=cmConstant**time 'DistancefromPING)))

    DEBUGDECcmDistance,CR

    error(current)=setPoint cmDistance 'Calculateerror

    p=3*error(current) 'ProportionalGain=3

    error(delta)=error(current) error(previous)

    d=error(delta) 'DerivativeGain=1

    throttle=p+tHover+d MIN1500MAX 1800

    IFcmDistance

  • 8/12/2019 Autonomous Landing UAV

    57/58

    Appendix VI

    49 | P a g e

    Signalgenerator

    '~~~~~~~~~RECEIVER/SIGNALGENERATION~~~~~~

    '{$STAMPBS2px}

    '

    {$PBASIC

    2.5}

    '{$PORTCOM5}

    '~~~~~~~~~~~~~~~~~~SetPin~~~~~~~~~~~~~~~~~~

    SI PIN 0 'SerialInPin

    FC PIN 1 'FlowcontrolPin

    PP PIN 5 'PausePin

    TP PIN 13 'TrainerPin

    '~~~~~~~~~~StampBaudrateSelect~~~~~~~~~~~

    #SELECT$STAMP

    #CASEBS2PE

    T4800CON16572

    T9600CON

    16468

    #CASEBS2PX

    T4800CON17197

    T9600CON16780

    #ENDSELECT

    BaudCONT9600

    '~~~~~~~~~~~~~~CALIBRATIONDATA~~~~~~~~~~~~~

    ch1 CON 1115 'AileronStick:(1775)LeftMid(1375)Right(975)

    ch2 CON 1380 'Elevator:(1725)UpMid(1400)Down(1025)

    ch4 CON 1400 'Rudder

    ch5

    CON

    2100

    'Thermalch6 CON 1400

    ch7 CON 1400

    sync CON 10305 'Synchropulse

    delay CON 375 'Pausepulse

    lastdelay CON 260

    '~~~~~~~~VariablesfromSerialINPUT~~~~~~~~~~~~~

    throttle VARByte

    prevthrottle VARWord

    throtgen VARWord

    DO

    SERINSI\FC,Baud,2,timeout,[throttle] 'timeout:2units=0.8ms

    throtgen=throttle*10

    PULSOUTTP,ch1

    PULSOUTPP,delay

    PULSOUTTP,ch2

  • 8/12/2019 Autonomous Landing UAV

    58/58

    Appendix VI

    PULSOUTPP,delay

    PULSOUTTP,throtgen

    PULSOUTPP,delay

    PULSOUTTP,ch4

    PULSOUTPP,

    delay

    PULSOUTTP,ch5

    PULSOUTPP,delay

    PULSOUTTP,ch6

    PULSOUTPP,delay

    PULSOUTTP,ch7

    PULSOUTPP,delay

    PULSOUTTP,sync

    prevthrottle=throtgen 'Storeslastsignal

    LOOP

    timeout: 'Generatelastsignal

    throtgen=prevthrottle

    PULSOUTTP,ch1

    PULSOUTPP,delay

    PULSOUTTP,ch2

    PULSOUTPP,delay

    PULSOUTTP,throtgen

    PULSOUTPP,delay

    PULSOUTTP,ch4

    PULSOUTPP,

    delay

    PULSOUTTP,ch5

    PULSOUTPP,delay

    PULSOUTTP,ch6

    PULSOUTPP,delay

    PULSOUTTP,ch7

    PULSOUTPP,delay

    PULSOUTTP,sync

    RETURN