Astrom Opt PID IEE Kosarac Olja

download Astrom Opt PID IEE Kosarac Olja

of 9

Transcript of Astrom Opt PID IEE Kosarac Olja

  • 8/17/2019 Astrom Opt PID IEE Kosarac Olja

    1/9

    PID CONTROL

    Design of PID controllers based on constrainedoptimisation

    H.Panagopoulos, K.J.Åström and T.Hägglund

    Abstract: A new design method for PID controllers is presented, based on optimisation of load disturbance rejection with constraints on robustness to model uncertainties. The design alsodelivers parameters to deal with measurement noise and set point response. Thus, the formulationof the design problem captures four essential aspects of industrial control problems, leading to aconstrained optimisation problem which can be solved iteratively.

    1 Introduction

    The PID controller is today’s most commonly used controlalgorithm   [1]. At the moment, there exist many differ-ent methods to find suitable controller parameters. Themethods differ in complexity, flexibility, and in the amount of process knowledge used. Depending on the application,there is a need to have several types of tuning method.There are simple, easy to use methods which require littleinformation, e.g. the method described in   [2], as well asmore sophisticated methods which require more informa-tion and more computations.

    There are several reasons to look for better methods todesign PID controllers. One is the significant impact it may

    have because of the widespread use of the controllers.Another is the benefit emerging auto-tuners and tuningdevices can derive from improved design methods.

    This paper describes a new design method for PIDcontrollers, where the primary design goal is to obtaingood load disturbance responses. This is done by minimis-ing the integrated control error   IE . Robustness is guaran-teed by requiring that the maximum sensitivity be less thana specified value   M  s . Measurement noise is dealt with byusing filtering. Good set point response is obtained byusing a structure with two degrees of freedom.

    The specifications are expressed in terms of a number of  parameters for which good default values can be found. Inthe simplest case good default values can be given to all

     parameters. The user simply supplies a model of the process and the design parameter, which is the maximumsensitivity,   M  s . Consequently, the method provides all the

     parameters of the PID controller: controller gain  k , integraltime   T i , derivative time   T d    and set point weight   b. Inaddition, the filters of the measured signal and the set 

     point are delivered.For related work, see for example [3–6].

    2 Problem formulation

    The design problem is illustrated in Fig. 1. A process withtransfer function   G ( s) is controlled with a PID controller with two degrees of freedom. The transfer function   G c( s)describes the feedback from process output   y   to controlsignal   u, and   G   ff  ( s) describes the feed forward from set 

     point   y sp   to   u. Three external signals act on the controlloop, namely set point  y sp , load disturbance l  and measure-ment noise  n.

    The design objective is to determine the controller  parameters in   G c( s) and   G   ff  ( s) so that the system behaveswell with respect to changes in the three signals  y sp ,  l  and n, as well as in the process model   G ( s). Hence, the

    specification will express requirements on   load disturbance response  robustness with respect to model uncertainties   measurement noise response  set point response

    2.1 Process and controller structures 

    The design problem is formulated so as to apply to a widevariety of systems. Consequently, the process is assumed to

     be linear, time invariant, and specified by a transfer func-tion  G ( s), which is analytic with finite poles, and possiblyan essential singularity at infinity. The description coversfinite dimensional systems with time delays and infinite

    dimensional systems described by linear partial differentialequations.

    Initially the controller is described by

    uðt Þ ¼ k ðby spðt Þ  yðt ÞÞ þ  k i

    ð t 0

    ð y spðtÞ  yðtÞÞd t

    þ k d    dyðt Þ

    dt 

    where  k ,  k i ,  k d  and  b   are controller parameters.It proves beneficial to replace the signals  y  and  y sp  with

    their filtered values   y  f   and   y sp  f   . The filtered signals are

    generated by

    Y  f  ð sÞ ¼ F  yð sÞY ð sÞ

    Y  f   spð sÞ ¼ F  spð sÞY  spð sÞ

    # IEE, 2002

     IEE Proceedings online no. 20020102

     DOI:   10.1049/ip-cta:20020102

    Paper received 23rd November 2001

    H. Panagopoulos is with the M-real Corporation, Technology Center Örnsköldsvik, Örnsköldsvik, Sweden

    K.J. Åström and T. Hägglund are with the Department of AutomaticControl, Lund Institute of Technology, Box 118, Lund S-221 00, Sweden

    32   IEE Proc.-Control Theory Appl., Vol. 149, No. 1, January 2002

  • 8/17/2019 Astrom Opt PID IEE Kosarac Olja

    2/9

    where the filters are low pass filters of  first or second order.The controller can thus be characterised by four parametersk ,  k i ,  k d ,  b, and two  filters  F  y  and  F  sp .

    2.2 Load disturbance attenuation 

    The primary design goal is to achieve good rejection of load disturbances. There are no detailed assumptions madeabout the load disturbances except that they are low-frequency. The most common performance criteria is tominimise IAE , the integrated absolute control error, at load disturbances. We have used the integrated error  IE  instead.The IE  criteria is a good approximation of  IAE , and the twocriteria are identical for non-oscillatory loops. By combin-

    ing the   IE  minimisation with a robustness criterion, well-damped control loops are obtained.

    The reason for using IE  is that its value is directly related to the controller parameters, and that it enables simple and ef ficient design algorithms. If a unit step load disturbanceis applied at the process input, the   IE   value becomes [7]:

     IE  ¼

    ð 10

    eðt Þdt  ¼  1

    k i

    The integral gain   k i   is thus inversely proportional to theintegrated error when a unit step load disturbance isapplied at the process input. By maximising the integralgain k i the effect of the load disturbance l  on the output  y  isminimised.

    2.3 Robustness 

    Sensitivity to modelling errors can be expressed as thelargest value of the sensitivity function, i.e.

     M  s  ¼ maxo

    1

    1 þ GG cðioÞ

    The quantity   M  s   is simply the inverse of the shortest 

    distance from the Nyquist curve of the loop transfer function to the critical point  1. Typical values of  M  s  arein the range 1 to 2.

    The sensitivity can also be expressed as the largest valueof the complementary sensitivity function, i.e.

     M  p  ¼ maxo

    GG cðioÞ

    1 þ GG cðioÞ

    ð1Þ

    Typical values of  M  p  are in the range 1.0 to 1.5.Another possibility is to use the  H

    1-norm

    g ¼  maxo

    1 þ jGG cðioÞj1 þ GG cðioÞ

    ð2Þ

    which is discussed in detail in  [8].

    2.4 Measurement noise 

    In traditional PID controllers the   filters are often onlyapplied on the derivative term. A common choice of derivative term is

     Dð sÞ ¼   kT d  s

    1 þ sT d  N 

    Y ð sÞ ¼   k d  s

    1 þ s k d kN 

    Y ð sÞ

    where  N   is a number in the range 2 – 10. This will reduce

    the high-frequency gain to  k (1 þ N ). Since the filter is onlyapplied on the derivative term and not on the proportionalterm, the high-frequency gain can never be made smaller than  k .

    In this study all terms in the controller are   filtered. For first-order   filters with   filter time constant   T   f  , the high-frequency gain becomes k d =T   f  . For second-order  filters thehigh-frequency gain goes to zero as the frequency goes toinfinity. A nice feature of the design is to provide asystematic way to determine  T   f  .

    2.5 Set point response 

    The transfer function relating set point to process output is

    given by

    G  spð sÞ ¼GG  ff  

    1 þ GG c F  y F  sp

    ¼  k i þ  bks

    k i þ  ks þ k d  s2

    GG c1 þ GG c F  y

     F  sp

    When the controller has been designed to give good attenuation of disturbances, the parameter   b   and the   filter 

     F  sp can be chosen to give an appropriate set point response.This is done by determining the maximum of  G  sp:

     M  sp ¼ maxo

    jG  spðioÞj

    2.6 Tuning parameter 

    The tradeoff between performance and robustness variesamong different control problems. Therefore, it is desirableto have a design parameter to change the properties of theclosed-loop system.

    For the proposed design method the robustnessconstraint is a good measure of the performance of thesystem. It has been shown in [9] that the variable M  s fulfillsall the requirements of a good design parameter.

    3 Difficulties of PID design

    The solution of the PID design can be formulated as a parameter optimisation problem: maximise integral gain  k isubject to the constraints that, (a) the closed loop system isstable, and (b) the Nyquist curve of the loop transfer function is outside a circle with centre at   s ¼ C   and radius  R. The constraint (b) can be formulated as

    C  þ   k    i

    oðk i   o

    2k d Þ

    G ðioÞ

    2

     R2 ð3Þ

    The constraint that the maximum sensitivity is smaller than M  s   corresponds to  C ¼ 1 and  R ¼ 1= M  s . It is also possibleto introduce constraints on the complementary sensitivity

    [9]. The solution to the optimisation problem gives good PIcontrollers as shown in   [9]. For the PID controller the

     problem is the lack of constraints, which prohibits theoptimisation of three parameters. This is understood by

    Gff  y  sp     u

    G

     –Gc

     n

     y 

    Fig. 1   Conceptual block diagram describing design problem

     IEE Proc.-Control Theory Appl., Vol. 149, No. 1, January 2002   33

  • 8/17/2019 Astrom Opt PID IEE Kosarac Olja

    3/9

    investigating the robustness constraint in (3). Theconstraint defines a set of controller parameters   k ,   k i   and k d    such that the maximum sensitivities are less than

     prescribed values. An example of such a set is shown inFig. 2. The Figure shows that the largest value of  k i occursat a ridge, which means that the solution is very sensitive to

     parameter variations. This phenomenon that occurs for most transfer functions   G ( s) illustrates one dif ficulty of using derivative action.

    3.1 Geometric interpretation 

    Assuming that the process has positive low-frequency gain,and introducing

    G ðioÞ ¼ r ðoÞeijðoÞ ¼ aðoÞ þ  ibðoÞ

    we  find that the constraint in (3) can be written as

    r 2

     R2  k  þ

     aC 

    r 2

      r 2

    o2 R2  k i   o

    2k d  þ obC 

    r 2

    2 1   ð4Þ

    For   fixed   k d   and  o   this represents the exterior of ellipseswith centre in   k ¼ aC =r 2 and   k i ¼o

    2k d 7obC =r 2. The

    ellipse has its axes parallel to the coordinate axes. Thehorizontal half axis has length R=r  and the vertical half axishas length   o R=r . This is illustrated in   Fig. 3. When   o

    ranges from 0 to   1   the ellipses have an envelope whichdefines one boundary of the sensitivity constraint. Sincethe constraint is quadratic in   k i   the envelope has two

     branches; only one branch corresponds to stable closed-loop systems. To have a stable closed-loop system it must also be required that  k i   is positive.

    Fig. 4 shows the envelope for different values of  k d . The

    Figure illustrates what happens if the integral gain   k i   ismaximised for a   fixed derivative gain   k d , where   k d ¼ 0corresponds to PI control. It also shows that the integralgain can be increased substantially by introducing deriva-tive action. Notice that the maximum of  k i on the envelopecoincides with the maximum of   k i   on the locus of thelowest vertex of the ellipses for small values of   k d . Thislocus is shown in dashed lines in the Figure. Also noticethat the envelopes have corners for larger values of  k d . TheFigure shows that the maximum of  k i will typically occur at a corner of the envelope. When this happens the optimumis very sensitive to parameter variations. There are alsoother drawbacks as will be illustrated by an example.

    3.2 Example 

    Consider the system with the transfer function

    G ð sÞ ¼  1

    ð s þ 1Þ4

      ð5Þ

    00

    0.5

    0.2

    0.4

    0.6

    0.8

    1.0

     k  i 

     k  1.0

    1.5   0  0.5

      1.0  1.5

      2.0   2.5

      3.0  3.5

     k d 

    Fig. 2   Geometric illustration of robustness constraint (3). Volume repre- sents parameters for PID controllers such that maximum sensitivity is less

    than 1.4. Curve is computed for process G(s) ¼ 1=(s þ 1)4

     k  i 

     k 

    R/r 

    R/r 

    Fig. 3   Graphical illustration of sensitivity constraint (4)

     k d  = 01.0

    0

    0.6

    0.8

    0.4

    0.2

     k d  = 1   k d  = 2

     k d  = 3   k d  = 3.1   k d  = 3.31.0

    0

    0.6

    0.8

    0.4

    0.2

    0 0.5   1.51.0–0.5   0 0.5   1.51.0–0.5   0 0.5   1.51.0–0.5

    Fig. 4   Cuts of robustness region in Fig. 2 for constant derivative gain k d . Curves computed for PID control of process G(s) ¼ 1=(s þ 1)4. Dashed line shows

    locus of lowest vertex of ellipses

    34   IEE Proc.-Control Theory Appl., Vol. 149, No. 1, January 2002

  • 8/17/2019 Astrom Opt PID IEE Kosarac Olja

    4/9

    Solving the constrained optimisation problem we  find that the controller gains are   k ¼ 0.925,   k i ¼ 0.9 and   k d ¼ 2.86.Fig. 5   shows the Nyquist diagram of the loop transfer function. Notice that the Nyquist curve has a cusp. Thiswill always occur when the maximum occurs at a ridge,

     because when there is a maximum at a ridge the Nyquist curve has a tangency to the sensitivity circle at twofrequencies. This happens when the controller has a

     phase lead that increases rapidly, a typical behaviour of acontroller with complex zeros. It is possible to get a veryrapid increase in phase if the relative damping of the zerosis small. The closed-loop system has two pairs of complex

     poles with relative damping   z ¼ 0.24 and   z ¼ 0.42, whichmeans that the time responses can be expected to beoscillatory.

    For comparison we have also designed a controller byanother method which gives the parameters   k ¼ 1.14,k i ¼ 0.51 and  k d ¼ 1.14. The Nyquist curve for this control-ler is shown dashed in Fig. 5. This controller has two pairsof complex poles with relative damping   z ¼ 0.59 and z ¼ 0.65, which is more reasonable. The Bode plot for the loop transfer functions obtained with the controller isshown in Fig. 6. The Figure shows that the controller that 

    maximises  k i  has a large phase lead above the gain cross-over frequency.

    Fig. 7 shows the responses of the closed-loop system tosteps in the setpoint and the load disturbance. The Figureshows that the controller which maximises   k i   givesresponses that are quite oscillatory, indicating that thedesign is not too good. The integrated absolute error for a unit step load disturbance,   IAE , gives a quantitativeassessment of the performance. For the controller that maximises integral gain we   find that   IAE ¼ 3.05 whichcan be compared with  IAE ¼ 2.43 for the controller shown

     by a dashed curve in  Fig. 7.The example shows how it is possible to increase

    integral gain substantially by the introduction of derivativeaction. To obtain large integral gains it is, however,necessary to introduce a lot of phase lead. By evaluatingtime and frequency responses of the obtained closed loopsystems we have found that the large phase lead required tomaximise integral gain has severe drawbacks. In the next Section we will introduce additional constraints to avoid these drawbacks.

    1.0

    0.5

    0

    –0.5     y  

    –1.0

    –1.5

    –2.0–2.0   –1.5   –1.0   –0.5   0   0.5

     x 

     k k k = 0.925, = 0.9, =2.86 i d  k k k = 1.14, = 0.511, =1.14 i d 

    _1

    Fig. 5   Nyquist curve of loop transfer function for PID control of processG(s) ¼ 1=(s þ 1)4

    101

            |   

            (   

            )           |   

            L

            i    ω    100

    10–1

    10–1

    ω 

    100

    10–1

    ω 

    100

    –100

          a       r      g   

            (   

            )   

            L

            i    ω 

    –120

    –160

    –180

    –140

    –200

     k k k = 0.925, = 0.9, =2. 86 i d 

     k k k = 1.14, = 0.511, =1. 14 i d 

    Fig. 6   Bode plot of loop transfer function for PID control of processG(s) ¼ 1=(s þ 1)4

    1.5

     k k k = 0.925, = 0.9, =2.86 i d  k k k = 1.14, = 0.511, =1.14 i d 

    1.0

    0.5

    0

    1.5

    1.0

    0.5

    0

    0   10   20 30   40 50

    1.5

    1.0

    0.5

    0

    0   10   20 30   40 50

    2.0

         y  

         u    u 

    0.4

    0.2

    0

    –0.2

         y  

    step in setpoint   step in load disturbance

    Fig. 7   Time responses for PID control of process G(s) ¼ 1=(s þ 1)4

     IEE Proc.-Control Theory Appl., Vol. 149, No. 1, January 2002   35

  • 8/17/2019 Astrom Opt PID IEE Kosarac Olja

    5/9

    4 PID design

    Having shown that a direct generalisation of the designmethod for PI controllers in   [9]   is not suitable for PIDcontrollers, we will now make some modifications. One

     possibility is to introduce additional constraints which prevents excessive phase leads of the controller. After several attempts, it has been found that good controllersare obtained by maximising integral gain if the followingconstraints are added to the robustness constraint.

    _vv €ww   €vv _ww

    ð_vv2 þ   _ww2Þ3=2

     <>>:

    ð9Þ

    where  o0   is the frequency where the sensitivity function

    has its maximum. Reasonable values of   N   are in theinterval 2 – 10. In  Table 1  the influence of the  filter on theloop transfer function at the critical frequency  o0 is shown

     by calculating the arg F  y(io0). Note that the special choicesof  T   f    in (9) for the  first- and second-order  filters will giveapproximately the same amount of influence of the looptransfer function at  o0  for a certain value of  N .

    The insertion of a   filter will modify the loop transfer function, but with suitable values of   N   these changes arekept small. Nevertheless, it is possible to take thesechanges into account by repeating the design with processG   replaced by  F  yG . The results of such a repeated designare shown in Table 1, where the process is given in (5).

    The trade-off between   filtering capacity and loss of 

    control performance is demonstrated in the Table. Alarge value of   M n   is obtained when the   IAE   value issmall. The advantage of the proposed design method isits systematic way to determine measurement noise fi lters,such that the noise level is reduced.

    6 Set point response

    To obtain a complete design it remains to   find a suitablevalue of the set point weight   b. One possibility is toconsider the transfer function from set point to output,and to make sure that the maximum magnitude of this

    transfer function is not larger than 1. This gives a set point response without overshoot for most systems. For a

    Table 1: Properties of PID controllers obtained for system   F y G  with  G (s ) ¼¼1/(s 1 1)4 and  M s ¼¼1.4 for different  filter of 

    order  n ¼¼1, 2

    n    1 1 1 2 2 2   7

    N    2 5 10 2 5 10   1

    arg  F y (i o0)   50. 12.57 6.35 59. 12.69 6.36 0.

    K    0.7895 0.9152 1.0009 0.6496 0.8161 0.9671 1.140

    T i    2.8334 2.3322 2.2867 2.8285 2.4033 2.2963 2.227

    T d    1.2979 1.0406 1.0130 1.3083 1.0716 1.0180 0.999

    o0   0.5091 0.6695 0.7227 0.4703 0.6226 0.7011 0.790IAE    4.2425 3.0711 2.7821 4.9524 3.4774 2.8825 2.4209

    M n    1.1392 3.7584 7.9840 1.0726 2.0550 6.1308   1

    36   IEE Proc.-Control Theory Appl., Vol. 149, No. 1, January 2002

  • 8/17/2019 Astrom Opt PID IEE Kosarac Olja

    6/9

    controller with setpoint weighting, the response to setpoint changes is given by the transfer function

    G  spð sÞ ¼G ð sÞG  ff  ð sÞ

    1 þ G ð sÞG cð sÞ F  yð sÞ

    ¼  k i þ  bks

    k i þ  ks þ k d  s2

    G ð sÞG cð sÞ

    1 þ G ð sÞG cð sÞ F  yð sÞ

    ð10Þ

    A straightforward search procedure can be used to deter-

    mine if there is a value of   b   that makes the maximum of jG  sp(io)j  equal to 1. Such a procedure will give a suitablevalue of  b   if one exists.

    Only nonnegative values of  b  are allowed, since negativevalues may result in inverse step responses in the controlsignal, which is an undesirable way to reduce overshoots. If jG  sp(io)j   is larger than 1 for  b ¼ 0, a low-pass  filtering of the set point may be used to reduce the magnitude of jG  sp(io)j  further.

    The set point   filter   F  sp( s) can be determined in thefollowing way. Let   m s   be the maximum of the transfer function in (10), and let  o sp   be the frequency where themaximum occurs. A  first-order  filter 

     F  sp  ¼  1

    1 þ sT  sp

    has the magnitude 1=m s   at the frequency  o sp   if the timeconstant is

    T  sp  ¼  1

    o sp

     ffiffiffiffiffiffiffiffiffiffiffiffiffiffim2 s    1

    Feeding the set point through a low-pass   filter designed in this way will reduce the magnitude at the frequencyo sp   to 1.

    7 Numerical solution of design problem

    Finally, a brief discussion of the numerical solution of theoptimisation problem for the design of PID controllers in(6) is given. The optimisation problem is non-convex and the solution is obtained numerically with the OptimisationToolbox in Matlab 5, which requires substantial calcula-tions. However, with today’s personal computers there areno major limitations.

    As for most numerical optimisation routines it is impor-tant to have good initial conditions and a suitable searchinterval. A natural choice of initial conditions will be thecontroller parameters   k   and   k i   from the PI design in   [9],that is,

    ½ k 0 k 0i   k 0d   ¼ ½ k k    k k i   0

    and a suitable search interval is given by

    o start  ¼   oo0=2

    o stop ¼ ð oo180 þ   oo270Þ=2

    ō 0  is the frequency at which the sensitivity function fromthe PI design has its maximum.   ō 180   and   ō 270   are thefrequencies where the argument of the loop transfer func-tion from the PI design is  180 and  270, respectively.

    The following procedure is used to solve the design problem:

    (i) Obtain a model of the process in terms of a transfer function.(ii) Choose the design parameter expressed by the maxi-mum of the sensitivity function  M  s .

    (iii) Determine the number of constraints, as it differsdepending on the considered system.(iv) Make a PI design to obtain the initial values [k ¯   k ¯i   0]and the frequencies [ō 0  ō 180  ō 270].(v) Solve the design problem with the Optimisation Tool-

     box in Matlab 5.(vi) Verify that the resulting controller parameters fulfilthe constraints. If not, adjust the initial values or settings inthe accuracy of the numerical routine.

    8 Examples

    The design method has been tested on a number of examples which illustrate its properties. The followingtransfer functions have been considered:

    G 1ð sÞ ¼  1

     sð s þ 1Þ3 ;   G 2ð sÞ ¼

      e5 s

    ð s þ 1Þ3

    G 3ð sÞ ¼  1

    ð s þ 1Þð1 þ 0:2 sÞð1 þ 0:04 sÞð1 þ 0:008 sÞ

    G nð sÞ ¼   1ð s þ 1Þn ;   n ¼  4 to 7;   G 8ð sÞ ¼   1  2 s

    ð s þ 1Þ3

    The   first seven models capture typical dynamics encoun-tered in the process industry. Model   G 1   is an integrating

     process and   G 2   models a process with long dead time.Model   G 8   has a zero in the right half-plane, which isuncommon in process control, but it has been included todemonstrate the wide applicability of the design procedure.

    Figs. 8 and 9 show the responses to changes in set point and load. The details of the design calculations and simulations are summarised in Table 2.  Note that the PIDcontroller obtained is compared to the corresponding PIcontroller to show the amelioration of the PID design.

    Although models  G 1 – G 8  represent processes with largevariations in process dynamics, Figs. 8 and 9 show that theresulting closed-loop responses for a load disturbance

     become similar for each value of   M  s . This is important  because it means that the proposed design procedure givesclosed-loop systems with desired and predictable proper-ties.

    There is also a clear similarity between the responsesobtained with the different values of the tuning parameter 

     M  s , which indicates its suitability as a tuning parameter.Responses obtained with   M  s ¼ 1.4 show little or no over-shoot, as is normally desirable in process control. Faster responses are obtained with  M  s ¼ 2.0. The settling time at 

    load disturbances, t  s , is significantly shorter with the larger value of   M  s . On the other hand, these responses areoscillatory with larger overshoots. This can be seen fromthe comparison between   IE   and the integrated absoluteerror   IAE  in Table 2.

    The controller gain  k  varies significantly with the design parameter   M  s: it is larger for designs when   M  s ¼ 2.0 thanfor those when M  s ¼ 1.4. However, integral time  T i  is fairlyconstant for the stable processes, i.e. all processes except G 1 . The derivative time   T d   is usually larger for designswith  M  s ¼ 1.4 than for those with M  s ¼ 2.0. In all cases thePID design generates a controller with complex zeros for 

     M  s ¼ 2.0. Thus, the controller will not be realisable inserial form.

    For  M  s ¼ 2.0 the  M  p  values are large. Consequently, theovershoots would be significant if the set point weight isb ¼ 1. However, acceptable set point responses areobtained by suitable choices of either the set point 

     IEE Proc.-Control Theory Appl., Vol. 149, No. 1, January 2002   37

  • 8/17/2019 Astrom Opt PID IEE Kosarac Olja

    7/9

    1.0

    0.5

    0

    2.0

         y  

    1.5 1.0

    0.5

    0

         y  

    1.5

    –0.10

    0.10

         u 

    1.0

    0.5

    0

         u 

    1.5

    0

    –0.05

    0

    0.05

    50 100   150   250200   0   20   40   60   80 100 120   140   160

    1.0

    0.5

    0

         y  

    1.5

    1.0

    0.5

    0

         y  

    1.5

    42

    –2

         u 

    10

    1.0

    0.5

    0

         u 

    1.5

    0

    68

    0 1   2   3   4   5   6   7   8   9   20   40100   30 50   60

    1.0

    0.5

    0

         y  

    1.5

    1.0

    0.5

    0

         y  

    1.5

    1.0

    0.5

    0

         u 

    1.5

    1.0

    0.5

    0

         u 

    1.5

    0   10   20   30 40   50   60   70   80   900   10   20   30   40   50 60   70   80

    1.0

    0.5

    0

         y  

    1.5

    1.0

    0.5

    0

         y  

    1.5

    1.0

    0.5

    0

         u 

    1.5

    1.0

    0.5

    0

         u 

    1.5

    0   10 20   30   40   50   60 70   80 90 100 110   0   10   20 30   40   50   60   70   80   90   100

     a   b

    c   d 

    e   f 

     g   h

    Fig. 8   Comparison between PID (solid line) and PI controller (dashed line) for M  s ¼ 1.4, showing step response followed by load disturbance of closed loop system

    a  system  G 1   e  system  G 5b  system  G 2   f   system  G 6c  system  G 3   g  system  G 7

    d  system  G 4   h  system  G 8

    38   IEE Proc.-Control Theory Appl., Vol. 149, No. 1, January 2002

  • 8/17/2019 Astrom Opt PID IEE Kosarac Olja

    8/9

    1.0

    0.5

    0

         y  

    1.5

    1.0

    0.5

    0

         y  

    1.5

    –0.2

    0.6

         u 

    1.0

    0.5

    0

         u 

    1.5

    0

    0.2

    0

    0.4

    50   100   150   0 20   40 60   80 100 120

    1.0

    0.5

    0

         y  

    1.5

    1.0

    0.5

    0

         y  

    1.5

    10

    –10

         u 

    30

    1.0

    0.5

    0

         u 

    1.5

    0

    20

    0 1   2   3   4   5   6 7 8   20   40100   30 50   70

    1.0

    0.5

    0

         y  

    1.5

    1.0

    0.5

    0

         y  

    1.5

    1.0

    0.5

    0

         u 

    1.5

    1.0

    0.5

    0

         u 

    1.5

    0   10   20 30   40 50 60 70   80   900   10   20 30   40   50   60   70

    1.0

    0.5

    0

         y  

    1.5

    1.0

    0.5

    0

         y  

    2.0

    1.0

    0.5

    0

         u 

    1.5

    1.0

    0.5

    0

         u 

    1.5

    0   10   20 30   40   50   60   70   80   90   100   0   10   20   30   40 50 70

     a   b

    c   d 

    e   f 

     g   h

    60

    –0.5

    1.5

    60

    Fig. 9   Comparison between PID (solid line) and PI controller (dashed line) for M  s ¼ 2.0, showing step response followed by load disturbance of closed loop system

    a  system  G 1   e  system  G 5b  system  G 2   f   system  G 6c  system  G 3   g  system  G 7

    d  system  G 4   h  system  G 8

     IEE Proc.-Control Theory Appl., Vol. 149, No. 1, January 2002   39

  • 8/17/2019 Astrom Opt PID IEE Kosarac Olja

    9/9

    weight   b   or the   filter   F  sp . According to   Table 2, it is not always enough to set   b ¼ 0 to obtain a small overshoot;filtering may also be needed.

    9 Conclusions

    PID controllers were designed to capture demands on load disturbance rejection, set point response, measurement noise and model uncertainty. Good load disturbanceresponses were obtained, minimising the integrated control

    error   IE . Robustness is guaranteed by requiring a maxi-mum sensitivity of less than a specified value M  s . Measure-ment noise is dealt with by   filtering. Good set point response is obtained by using a structure with two degreesof freedom.

    The design procedure has been applied to a variety of systems, stable and integrating, with long dead times and with right half-plane zeros. The method can also be used todevelop simple tuning rules which are significant improve-ments of the Ziegler  –  Nichols rules  [10].

    10 References

    1 YAMAMOTO, S., and HASHIMOTO, I.:  ‘Present status and futureneeds: the view from Japanese industry’. Proceedings of fourth interna-tional conference on   Chemical process control , Texas, USA, 1991

    2 ZIEGLER, J.G., and NICHOLS, N.B.: ‘Optimum settings for automaticcontrollers’,  Trans. ASME , 1942,  64 , pp. 759 – 768

    3 SCHEI, T.S.:   ‘Automatic tuning of PID controllers based on transfer function estimation’, Automatica, 1994,  30, (12), pp. 1983 – 1989

    4 VAN OVERSCHEE, P., and MOOR, B.D.:   ‘Optimal PID control of chemical batch reactor ’. Proceedings of 1999 European control confer-ence, Karlsruhe, Germany, 1999

    5 LANGER, J., and LANDAU, I.D.:   ‘Combined pole placement =sensitivity function shaping method using convex optimization criteria’,

     Automatica, 1999,  35 , (6), pp. 1111 – 11206 KRISTIANSSON, B., and LENNARTSSON, B.: ‘Optimal PID control-

    lers including roll off and Schmidt predictor structure’. Proceedings of 14th world congress of IFAC, Beijing, P.R. China, 1999, Vol. F, pp. 297 – 302

    7 ÅSTRÖM, K.J., and HÄGGLUND, T.:  ‘PID controllers: theory, designand tuning’  (Instrument Society of America, North Carolina, 1995)

    8 PANAGOPOULOS, H., and ÅSTRÖM, K.J.:   ‘PID control designand   H 

    1  loop shaping’,   Int. J. Robust Nonlinear Control , 2000,   10,

     pp. 1249 – 12619 ÅSTRÖM, K.J., PANAGOPOULOS, H., and HÄGGLUND, T.: ‘Design

    of PI controllers based on non-convex optimization’, Automatica, 1998,34, (5), pp. 585 – 601

    10 ÅSTRÖM, K.J., and HÄGGLUND, T.:   ‘ New tuning methods for PIDcontrollers’. Proceedings of European control conference, Rome, Italy,1995, pp. 2456 – 2462

    Table 2: Properties of obtained controllers for system  G 1–G 8  with different values of design parameter  M s 

    Process   M s    k T i    T d    b T sp    IE    IE =IAE    o0   t s    M p 

    G 1(s ) 1.4 0.324 6.59 2.35 0.00 0.17 20.4 0.67 0.77 15.3 1.53

    2.0 0.680 4.50 2.27 0.00 0.08 6.61 0.69 0.91 37.8 1.50

    G 2(s ) 1.4 0.325 3.55 1.69 0.69 0.00 10.9 0.99 0.26 48.2 1.00

    2.0 0.555 3.21 1.74 0.00 1.61 5.80 0.64 0.29 39.2 1.32

    G 3(s ) 1.4 15.96 0.212 0.15 0.00 0.26 0.013 0.57 19.1 2.99 1.52

    2.0 43.13 0.189 0.13 0.81 0.00 0.0044 0.75 25.6 3.35 1.65

    G 4(s ) 1.4 1.14 2.23 1.00 0.00 0.27 1.95 0.81 0.79 17.4 1.09

    2.0 2.27 1.91 0.98 0.00 0.53 0.84 0.61 0.95 15.3 1.62

    G 5(s ) 1.4 0.784 2.68 1.24 0.00 0.51 3.41 0.84 0.54 23.9 1.04

    2.0 1.47 2.33 1.25 0.00 0.72 1.59 0.56 0.63 21.0 1.55

    G 6(s ) 1.4 0.635 3.12 1.47 0.00 0.44 4.92 0.88 0.42 27.5 1.01

    2.0 1.15 2.74 1.49 0.00 0.97 2.38 0.56 0.48 23.3 1.50

    G 7(s ) 1.4 0.552 3.57 1.69 0.00 0.25 6.44 0.90 0.34 32.7 1.00

    2.0 0.982 3.14 1.73 0.00 1.24 3.20 0.57 0.39 28.2 1.47

    G 8(s ) 1.4 0.312 2.25 0.80 0.60 0.00 7.22 0.86 0.51 30.5 1.00

    2.0 0.542 2.07 0.79 0.00 1.03 3.82 0.62 0.58 22.4 1.31

    40   IEE Proc.-Control Theory Appl., Vol. 149, No. 1, January 2002