Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT...

26
Analytical Options for Biochar Adsorption and Surface Area Characterization of Biochar Materials Hugh McLaughlin (Alterna Biocarbon Inc.), Frank Shields (Control Laboratories Inc.), Jacek Jagiello & Greg Thiele (Micromeritics Analytical Services presenting)

description

Analytical_Options_for_BioChar_Adsorption_and_Surface_Area_characterization_of_Biochar_materials_PPT_2012

Transcript of Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT...

Page 1: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

Analytical Options for Biochar Adsorption and Surface Area ‐Characterization of Biochar 

Materials

Hugh McLaughlin (Alterna Biocarbon Inc.), Frank Shields (Control Laboratories Inc.), Jacek Jagiello & Greg Thiele (Micromeritics 

Analytical Services ‐ presenting)

Page 2: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

Goal of Study and Presentation• To provide comparison and guidance when trying to decide which technique(s) to use to characterize Biochar materials

• To support the recently released IBI Testing Guideline for Biochar

• Test same biochars using research and established commercial analytical methods

• Same raw material (wood pellets), two types of biochar, Retort and TLUD, over wide range of production conditions

Page 3: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

Samples

• 4 TLUD Chars prepared at 0V, 3V, 6V, and 9V• 4 Retort Chars prepared at 364, 500, 700, and 900 C

• Samples prepared by Alterna Biocarbon• Homogenized, ground to a coarse powder, and split

• Characterization performed by Micromeritics Analytical Services, Control Labs, and Alterna 

Page 4: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

Analytical Techniques chosen

• R134a adsorption mapping using GACS analytical technique

• Butane working capacity• N2 BET according to ASTM D6556• CO2 adsorption capacity and micropore volume

• Water vapor adsorption isotherms

Page 5: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

GACS – R134a adsorption test

• Specialized test from Activated Carbon industry – measures actual adsorption over wide range of adsorption energies

• Adsorbate is R134a = 1,1,1,2 Tetra‐Fluoro Ethane (Refrigerant in automobile AC systems)

• R134a is dense (heavy molecule), relatively large, and hard to adsorb compared to other probe molecules (N2, CO2, Butane)

• Assay adapted to biochars – less well behaved

Page 6: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

GACS – R134a adsorption test

0.10%

1.00%

10.00%

100.00%

0 50 100 150 200 250 300

temperature in Celsius

wt %

upt

ake

of R

134a

on

Com

mer

cial

AC

s

Std A = 1G Toucan @ 0V = ND

Std B = 1G Toucan @ 3V

Std C = 1G Toucan @ 6V

Std D = 1G Toucan @ 9V

Well behaved over the entire range of temperatures for all TLUD chars

Page 7: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

GACS – R134a adsorption test

Not as well behaved, Highest temperature char much lower capacity

0.10%

1.00%

10.00%

100.00%

0 50 100 150 200 250 300

temperature in Celsius

wt %

upt

ake

of R

134a

on

Com

mer

cial

AC

s

Std G = BWP 700C

Std H = BWP 900C

Std F = BWP 500C

Std E = R3 #6 @ 364C

Page 8: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

Butane Working Capacity

• ASTM D5742 ‐ 95(2010) Standard Test Method for Determination of Butane Activity of Activated Carbon (applied to biochar)

• Weight gain by bone‐dry char sample after equilibration in pure butane at one atm.

• Essentially represents the total micropore volume of the porous adsorbent 

• Low equipment cost and relatively fast• Sample must be bone‐dry – water interferes

Page 9: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

Butane Working CapacityButane

Sample A ‐ TLUD 0V 3.77%

Sample B ‐ TLUD 3V 5.85%

Sample C ‐ TLUD 6V 7.99%

Sample D ‐ TLUD 9V 11.28%

Sample E ‐ Retort 364C 2.89%

Sample F ‐ Retort 500C 4.47%

Sample G ‐ Retort 700C 6.27%

Sample H ‐ Retort 900C 3.07%

• TLUD chars • well behaved and saw an increase in butane adsorption with increased char temperature

• Retort chars • decrease in activity with the highest temperature Retort char, very similar to R134a GACS results

Page 10: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

BET Surface Area

• Widely used in many industries including carbon, carbon black, activated carbon, etc

• Multiple ASTM and ISO methods available– IS0 9277– ASTM D6556, C1274, C1069, D3663, ….

• Calculation of the external surface area of a material from the volume of gas adsorbed at 0.05 to 0.3 relative pressures– Assumes multi‐layer adsorption on non‐porous surface– Pressure range modified to fit microporous materials

Page 11: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

N2, BET resultsInitial BET result (m2/g)

Repeat BET result (m2/g)

Sample A TLUD 0V 216 182

Sample B TLUD 3V 361 333

Sample CTLUD 6V 403 386

Sample D TLUD 9V 472 472

Sample ERetort 2 3

Sample FRetort 500 C 9 4

Sample G Retort 700 C 389 370

Sample H Retort 900 C 80 3

• TLUD chars• Increase in BET surface area with an 

increase in activation energy• Reasonable repeatable

• Retort chars • Decrease in BET surface area with 

highest temperature• Poor repeatability• Likely due to the small pore sizes 

created during activation and the slow kinetics of N2 gas equilibrating in the small pores

• We have seen this many times in past with activated carbons and zeolites that have pores near 5 Angstrom

• Run time range from 5 to 24 hours

Page 12: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

CO2 Adsorption Isotherms at 0 C

• Originally used by carbon industry to calculate pore size of microporous materials before high‐quality vacuum systems and low pressure transducers became widely available and affordable

• Not as popular today with automated instruments, but still used as an adsorbent probe for extremely small pore carbons

• Fast, Easy• Use some unique modeling and fitting algorithms

– Dubinin and DFT for micropore volume and area

Page 13: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

CO2 adsorption resultsDFT Surface Area ‐ Run1 (m2/g)

DFT Surface Area ‐ Run2 (m2/g)

DubininMicropore 

volume (cc/g)

Sample A TLUD 0V 300 287 0.166

Sample B TLUD 3V 330 319 0.182

Sample CTLUD 6V 349 345 0.186

Sample D TLUD 9V 365 360 0.21

Sample ERetort 103 NA 0.05

Sample FRetort 500 C 251 NA 0.139

Sample G Retort 700 C 348 NA 0.188

Sample H Retort 900 C 375 NA 0.207

• Both TLUD and Retort  samples see an increase in DFT surface area and micropore volume with an increase in activation energy

• The repeatability is much better than we experienced with N2 adsorption

• CO2 adsorption is performed at 0 C and at much higher relative pressures, so it equilibrates more quickly than N2

• Run time on the order of 3‐5 hours, but could be reduced to 1‐2 hours if needed

Page 14: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

CO2 adsorption results – TLUD Chars

Relative Pressure (p/p°)0.0000.000 0.005 0.010 0.015 0.020 0.025 0.030

Qua

ntity

Ads

orbe

d (c

m³/g

STP

)

00

10

20

30

40

50

60

70

Isotherm Linear Plot0V TLUD Gasifier Biochar Sample A 3V TLUD Gasifier Biochar Sample B6V TLUD Gasifier Biochar Sample C 9V TLUD Gasifier Biochar Sample D

Page 15: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

CO2 adsorption results – Retort Chars

Absolute Pressure (mmHg)00 100 200 300 400 500 600 700 800

Qua

ntity

Ads

orbe

d (c

m³/g

STP

)

00

10

20

30

40

50

60

Isotherm Linear Absolute Plot364 C 11-BFPC-D Retort Biochar sample E BWP 500Cp8-96 Retort Biochar Sample FBWP700C p8-97 Retort Biochar Sample G BWP900C p8-98 Retort Biochar Sample H

Page 16: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

CO2 adsorption results

Pore Width (Å)4 5 6 7 8 9 10

Diff

eren

tial S

urfa

ce A

rea

(m²/g

)

00

500

1,000

1,500

2,000

2,500

3,000

Differential Surface Area vs. Pore Width0V TLUD Gasifier Biochar Sample A CO2 3V TLUD Gasifier Biochar Sample B CO26V TLUD Gasifier Biochar Sample C CO2 9V TLUD Gasifier Biochar Sample D CO211-BFPC-D Retort Biochar sample E CO2 BWP 500Cp8-96 Retort Biochar Sample F CO2BWP700C p8-97 Retort Biochar Sample G CO2 BWP900C p8-98 Retort Biochar Sample H CO2

All samples have the presence of 0.5 nm pores; however the lowest temperature chars are less defined 

Page 17: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

Water Vapor Adsorption Isotherms at 25 C

• Measures the uptake and loss of water vapor gravimetrically using an ultra‐microbalance

• Mimics behavior of biochar in soils – water uptake & release versus relative humidity

• May measure critical biochar dynamic in soil ‐ need research guidance

Page 18: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

Water Vapor adsorption results

0.00

5.00

10.00

15.00

20.00

25.00

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 95.0

0V TLUD Sample A

3V TLUD Sample B

6V TLUD Sample C

9V TLUD Sample D

% m

ass  gain

Relative Humidty

Increase in activation energy with a corresponding increase in water vapor adsorption

Adsorption at 70%RH used for comparisons

Page 19: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

Water Vapor adsorption results

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 95.0

Retort Sample E

Retort Sample F 500C

Retort Sample G 700C

Retort Sample H 900C

% m

ass  gain

Relative Humidty

Similar Increase in activation energy with a corresponding increase in water vapor adsorptionRetort Samples much lower total water adsorption for the higher surface area materials 

Adsorption at 70%RH used for comparisons

Page 20: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

Table of resultsA B C D E F G H

TLUD‐0V TLUD‐3V TLUD‐6V TLUD‐9V Retort@350C

Retort@500C

Retort@700C

Retort@900C

HM R134a 1.79% 3.64% 4.74% 8.05% 1.84% 4.56% 4.86% 0.68%

FS C3 3.77% 5.85% 7.99% 11.28% 2.89% 4.47% 6.27% 3.07%

N2 – BET (m2/g) 216 361 403 472 2 9 389 80

70% RH 7.69% 10.06% 10.99% 12.74% 6.44% 7.76% 9.43% 11.45%

CO2 – DFT(m2/g) 300 330 349 365 103 251 348 375

CO2 vol ads (cc/g) 53 58 62 68 17 45 62 67

CO2 Micropore

volume (cc/g)

0.166 0.182 0.186 0.21 0.05 0.139 0.188 0.207

Page 21: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

Summary of all TLUD results

0

50

100

150

200

250

300

350

400

450

500

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

TLUD‐0V TLUD‐3V TLUD‐6V TLUD‐9V

HM R134a 70% RH

FS C3 CO2 upore vol D‐R

N2 ‐ BET

Page 22: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

Summary of all Retort results

Page 23: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

Correlation to 70% RH adsorption (TLUD Chars)

Page 24: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

Correlation to 70% RH adsorption (Retort Chars)

Page 25: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

Summary Characterization Results• All techniques and probes did a nice job of measuring increased capacity, 

surface area, or activity for the TLUD chars

• CO2 and Water were the only probes which measured increased capacity with high temperature Retort chars 

• Potentially due to kinetics for N2, and size of adsorbate molecule for Butane and R134a

• R134a, Butane, and BET reported similar decreases in activity for the highest temperature Retort char

• Pores in high temp Retort chars may collapse and exclude adsorbate

• CO2 provides a faster, more repeatable adsorption isotherm and allows calculation of micropore distribution and micropore volume

• Further studies and soil application research is needed to determine which technique truly provides the best prediction of performance

Page 26: Analytical Options for BioChar Adsorption and Surface Area Characterization of Biochar Materials PPT 2012

Thank You• Thanks to Dan Burnett of Surface Measurement Systems for the water vapor 

adsorption data and input

• Thanks to Hugh McLaughlin for organizing and leading this research

• Thanks to Frank Shields from Control Labs

• Thanks to Dr. Jacek Jagiello, colleague from Micromeritics for his input and expertise with activated carbons