An Inexpensive RT-PCR Endpoint Diagnostic Assay for SARS-CoV … · 2020. 6. 8. · 6 Comparison of...

21
1 An Inexpensive RT-PCR Endpoint Diagnostic Assay for SARS-CoV-2 Using Nested PCR: Direct Assessment of Detection Efficiency of RT- qPCR Tests and Suitability for Surveillance Jayeshkumar Narsibhai Davda #1 , Keith Frank #1 , Sivakumar Prakash #1,2 , Gunjan Purohit 1 , Devi Prasad Vijayashankar 1,2 , Dhiviya Vedagiri 1,2 , Karthik Bharadwaj Tallapaka 1 , Krishnan Harinivas Harshan 1,2 , Archana Bharadwaj Siva 1 , Rakesh Kumar Mishra 1, , Jyotsna Dhawan 1 , Imran Siddiqi 1,2 * # These authors contributed equally to this work Affiliation: 1 CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad - 500007. India 2 Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Sector 19 ,Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh - 201002. India Author for correspondence: [email protected] Key words: Covid-19, nested PCR, endpoint assay, pooled testing, false negatives, . CC-BY-NC-ND 4.0 International license made available under a (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is The copyright holder for this preprint this version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477 doi: bioRxiv preprint

Transcript of An Inexpensive RT-PCR Endpoint Diagnostic Assay for SARS-CoV … · 2020. 6. 8. · 6 Comparison of...

  • 1

    AnInexpensiveRT-PCREndpointDiagnosticAssayforSARS-CoV-2

    UsingNestedPCR:DirectAssessmentofDetectionEfficiencyofRT-

    qPCRTestsandSuitabilityforSurveillance

    JayeshkumarNarsibhaiDavda#1,KeithFrank#1,SivakumarPrakash#1,2, GunjanPurohit1,Devi

    PrasadVijayashankar1,2,DhiviyaVedagiri1,2,KarthikBharadwajTallapaka1,Krishnan

    HarinivasHarshan1,2,ArchanaBharadwajSiva1,RakeshKumarMishra1,,JyotsnaDhawan1,

    ImranSiddiqi1,2*

    #Theseauthorscontributedequallytothiswork

    Affiliation:

    1CSIR-CentreforCellularandMolecularBiology(CSIR-CCMB),Hyderabad-500007.India

    2AcademyofScientificandInnovativeResearch,CSIR-HRDCCampus,Sector19,Kamla

    NehruNagar,Ghaziabad,UttarPradesh-201002.India

    Authorforcorrespondence:[email protected]

    Keywords:Covid-19,nestedPCR,endpointassay,pooledtesting,falsenegatives,

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 2

    Abstract

    WithaviewtoextendingtestingcapabilitiesfortheongoingSARS-CoV-2pandemicwehave

    developed a test that lowers cost and does not require real time quantitative reverse

    transcription polymerase chain reaction (RT-qPCR).We developed a reverse transcription

    nestedPCRendpointassay(RT-nPCR)andshowedthatRT-nPCRhascomparableperformance

    tothestandardRT-qPCRtest.Inthecourseofcomparingtheresultsofbothtests,wefound

    thatthestandardRT-qPCRtestcanhave lowdetectionefficiency(lessthan50%) inareal

    testing scenariowhichmay be only partly explained by low viral representation inmany

    samples.Thisfindingpointstotheimportanceofdirectlymonitoringdetectionefficiencyin

    testenvironments.Wealsosuggestmeasuresthatwouldimprovedetectionefficiency.

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 3

    Introduction

    ThecontinuingCovid-19pandemichascreatedanurgentneedforincreaseddiagnostictests

    worldwide.Therequirementoftestshasexceededthenormaltestingcapacitiesavailablein

    public and private hospitals and clinical research laboratories and also strained financial

    resources. Themostwidelydeployed typeof test for identifying individuals infectedwith

    SARS-CoV-2, based on recommendations of the World Health Organization (WHO) and

    national health centres such as theUS Centers for Disease Control and Prevention (CDC)

    detects the presence of viral RNA. The method employs real time quantitative reverse

    transcriptionpolymerase chain reaction (RT-qPCR)ofRNAextracted fromnasopharyngeal

    (NP)swabsamples,tomeasureamplificationofashortsegmentofaviralgeneinthecourse

    ofaPCRreactionfollowingreversetranscriptionofviralRNA.PerformingtheRT-qPCRtest

    requiresarealtimethermalcyclerwhichisanexpensiveinstrument.Mostmajorresearch

    laboratoriesareequippedwithonlyalimitednumberandsmallerlaboratoriesmayhavenone

    whichhasplacedconstraintsonthenumberoftestsaswellasplacesforconductingthem.

    Further, the need for fluorescent oligonucleotide probes adds to the cost of the tests. A

    numberofnewdiagnostictestingmethodsaimedatreducingthedependenceonexpensive

    equipmentandkitsthatareinshortsupplyhavebeenproposedandareunderdevelopment

    fordeployment(Broughtonetal.,2020;Rauchetal.,2020;Yanetal.,2020).However,given

    theenormousandwidespreadcurrentneedfordiagnostictestingindiverseenvironmentsit

    is equally important to increase the utilization of existing research capabilities that have

    potentialbutarecurrentlynotbeingusedfortesting,throughtheuseofteststhatemploy

    morewidelyavailableequipmentandreagentsusingsimpleestablishedmethods.

    In order to extend the scope of diagnostic testing for SARS-CoV-2we explored a reverse

    transcription nested PCR (RT-nPCR) approach that does not dependonRT-qPCRbut uses

    standardRT-PCRaspartofanendpointassay.WedevelopedandtestedaRT-nPCRprotocol

    comprisingamultiplexprimaryRT-PCRforamplificationoffourSARS-CoV-2ampliconsanda

    controlhumanRPP30ampliconfollowedbyasecondarynestedPCRforindividualamplicons

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 4

    andvisualizationbyagarosegelelectrophoresis.WealsoexaminedtheuseofRT-nPCR in

    pooledtestingandindirectamplificationwithoutRNAisolation.

    RNAisolatedfromNPswabsamplesthathadbeenpreviouslytestedusingoneoftwoRT-

    qPCRtestswasexaminedusingRT-nPCRandtheresultscompared.Wefoundthattakingboth

    standard RT-qPCR tests together, the RT-nPCR test was able to correctly identify 90% of

    samplesdetectedaspositivebyRT-qPCRandalsodetected13%samplesaspositiveamong

    samplesthatwerenegativebythestandardRT-qPCRtest(likelyfalsenegatives).Basedon

    the experimentally measured false negative rate by RT-nPCR tests from this study we

    estimatedthatasmanyas50%ofpositivesamplesmayescapedetectioninsinglepasstesting

    byRT-qPCRinanactualtestingscenario.

    Results

    NestedRT-PCRtestdevelopment

    Wedesigned40setsofnestedoligonucleotideprimersforspecificallyamplifyingdifferent

    regionsofSARS-CoV-2andnotSARS-CoVbasedonavailablesequenceinformation(Genbank

    IDNC_004718.3forSARS-CoVandMT050493.1forSARS-CoV-2).Theseprimersweretested

    foramplificationbyaprimaryPCR,followedbyasecondroundofnestedPCR.Thestarting

    templatewascDNApreparedfromapoolofRNAisolatedfromtwoNPswabsamplesthat

    hadpreviouslybeenidentifiedaspositiveusingaRT-qPCRdiagnostickit.Fromasetof40

    candidateampliconsweselected4ampliconsthatgavevisibleamplificationintheprimary

    PCR and strong bands in the secondary PCR reaction as visualized by agarose gel

    electrophoresis.Theprimersequencesfortheseampliconswerecheckedagainst78SARS-

    CoV-2sequencesfromIndianisolates.Exceptforasinglemismatchwithtwosequencesin

    the middle for two primers, all primers were 100% identical to all 78 sequences. These

    ampliconscomprisedportionsofOrf1ab,M,andNgenes(Figure1A;Table1).Theamplified

    bandswereexcisedfromtheagarosegel,theDNAwasextracted,andidentityofeachband

    wasconfirmedbysequencing.Similarlyasetofnestedprimerswasdevelopedforthehuman

    RPP30 gene as a control. To test efficiency of amplification we used a dilution series of

    ampliconsastemplatesinprimaryandsecondaryPCR.1-10moleculesofDNAindilutionsof

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 5

    isolatedviralampliconscouldbedetectedbynestedPCR(Figure1B).Todetectthepresence

    ofSARS-CoV-2inRNAisolatedfromNPswabsweperformedamultiplexone-stepRT-PCRon

    RNAfrompositiveandnegativesamplesusingpooledprimersforthefourviralamplicons

    togetherwithhumanRPP30control.Theproductoftheprimaryone-stepRT-PCRwasused

    astemplateinseparatenestedsecondaryPCRreactionsforeachoftheampliconsfollowed

    bydetectionusingagarosegelelectrophoresis.UsingthenestedRT-PCRassaywewereable

    to detect amplification of the four viral amplicons in RNA from positive samples and no

    amplificationwasdetectedinnegativesamples(Figure2).

    Pooledanddirecttesting

    PooledtestinghasbeenusedforSARS-Co-V2detection(Yelinetal.,2020).Inordertoassess

    thesuitabilityoftheRT-nPCRtestforanalysisofpooledsamples,weperformedtheteston

    threesetsofpooledsamplescomprisingRNAisolatedfromdifferentdilutionsofapositive

    sampleinapooloftennegativesamples.Forasamplehavingacyclethreshold(Ct)valueof

    38.7fortheEgene,theRT-nPCRtestgaverobustdetectioninRNAfromundilutedsample

    (positivefor3outof4viralamplicons)andlessrobustlyatadilutionof1:5(positivefor1out

    of4viralamplicons;Figure3).FortwosampleshavingaCtvalueof28.7and34.5,theRT-

    nPCRtestsuccessfullydetectedpresenceatadilutionof1:20.HencetheRT-nPCRtestwas

    abletodetectpresenceofallthreesamplesinapoolof1:5.

    Direct testingof samplesbyRT-qPCRwithoutRNA isolationhasbeendescribed in recent

    reports(Bruceetal.,2020;Merindoletal.,2020;Smyrlakietal.,2020).Weperformeddirect

    testingofheatinactivatedpositivesamplesbytheRT-nPCRtest.Using3µlofswabsample

    directly,whichcorrespondsto1/5oftheamountusedintestingofisolatedRNA,theRT-nPCR

    testdetectedapositivesamplehavinganEgeneCtvalueof27.9butnotasamplehavinga

    higherCtof32.7(Figure4).Usingahighervolumeofswabsamplegaveweakeramplification

    suggesting thepresenceof an inhibitor in theVTM.Weobserved improved amplification

    whenpolyvinylpyrrolidonewasincludedinthePCRreaction.Passageofthesamplethrough

    aSephadex-G50spincolumnalsorelievedthe inhibitionandgave improvedamplification.

    OveralltheRT-nPCRtestiscapableofdetectingpositivesdirectlyinswabsamplesbutata

    reducedsensitivitycomparedtoisolatedRNA.

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 6

    ComparisonofRT-nPCRwithRT-qPCR

    InordertocomparetheperformanceofRT-nPCRwiththatofstandardRT-qPCRwetested

    RNAsamplesthathadtestedpositivebyRT-qPCR.Samplesthatwerepositiveforatleasttwo

    ampliconsoutoffourbyRT-nPCRwerecalledpositive,samplesthatwerepositiveforone

    ampliconwereconsideredambiguousandnotincludedinthecomparison,andsamplesthat

    werenegativeforallfourampliconswerecallednegative.WecomparedRT-nPCRtestresults

    tosetsofpositiveandnegativeRNAsamplesthathadbeentestedbyeitheroftwoRT-qPCR

    protocols,oneprovidedbyNationalInstituteofVirology(NIV),India(derivedfromCharite,

    Berlin and CDC, USA protocols), and the other a commercial LabGun RT-qPCR kit

    (LabGenomics,Korea).TheresultsindicatedthattheagreementbetweentheRT-nPCRand

    NIVtestscouldberatedasmoderate(Cohen’sKappa=0.612,95%CI:0.42-0.81)(McHugh,

    2012)whilethatbetweentheRT-nPCRandLabGuntestscouldberatedasalmostperfect

    (Cohen’sKappa=0.905,95%CI:0.80-1.0;)(Figure5).TheloweragreementwiththeNIVset

    wasdueto10samplesthatwerenegativebytheNIVprotocolbutpositiveintheRT-nPCR

    test.Themeannumberofpositiveampliconsforthese10sampleswas3.3 indicatingthat

    theywere likely to be true positives (i.e. false negatives). Based on the number of RNA

    samples thatwere negative in the RT-qPCR tests but positive by RT-nPCRwe derived an

    estimate of the proportion of positive samples thatwere being detected by theNIV and

    LabGunRT-qPCRtests(Table2).TheNIVsetcovered400samplesandhadaprevalencerate

    (% positives) of 15%. The detection efficiency for this setwas calculated to be 0.47. The

    LabGun set comprised 1186 samples and had a prevalence rate of 3.7%. The detection

    efficiencyforthesecondsetwasestimatedtobe0.44.Thereforeourestimatesuggeststhat

    ahighproportionofpositivesamples(upto50%ormore)canbemissedbythestandardRT-

    qPCRtestinarealtestingscenario.

    Discussion

    TheRT-nPCRtestdescribedabovedoesnotrequireareal timethermalcyclerandcanbe

    performedinalaboratorythathasbasicmolecularbiologyequipment,athermalcycler,and

    a BSL2 roomwith Class II laminar flow hood. It useswell-establishedmethodologies and

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 7

    reagentsthatarewidelyavailableandcanserveasabasisforbroadeningthescopeoftesting

    forSARS-CoV-2.TheperformanceoftheRT-nPCRtestwascomparabletoRT-qPCRandthe

    costofconsumablesforthetestbasedonlistpricesisaroundUS$7pertestabouthalfof

    whichisthecostofRNAisolation.ThetestusestworoundsofPCRamplificationwhichdoes

    increasepotentialforcontamination.Howeverwefoundthatbyfollowingasetofpractices

    describedinadetailedprotocol(Supplementaryfile1),contaminationcouldbeavoided.

    InthecourseofcomparingtheRT-nPCRandstandardRT-qPCRtestsweestimatedfromthe

    rate of experimentally determined false negatives, that a high proportion (about 50%) of

    positive samples were beingmissed by the RT-qPCR test applied in a single pass testing

    protocol.Thisisahighescaperatewhichposesaconcerninindividualdiagnosisandmerits

    monitoringandgreatercomparisonofresultsacrosstestingscenarios.Wealsosuggestthat

    detectioncanbeimprovedbyrepeattestingofisolatedRNAandbyincreasingthenumberof

    ampliconstested.

    TheexistenceoffalsenegativesintheRT-qPCRtesthasbeeninferredinanumberofstudies

    thatcomparedclinicaltestandsymptomaticdatawithRT-qPCRtestinginformation(Kucirka

    etal.,2020;Lietal.,2020;Xiaoetal.,2020).Severalstudieshavecomparedtheperformance

    ofdifferentRT-qPCRkitsonRNAfromclinicalsamplesprimarilytoassesstheperformanceof

    thekits,andhavefoundagreementaswellasdifferencesthatalsopointtotheexistenceof

    falsenegativetestresults(Hoganetal.,2020;Pujadasetal.,2020;vanKasterenetal.,2020;

    Xiongetal.,2020).However,directexperimentalanalysisofRT-qPCRnegativeRNAsamples

    at testing centres using different but related RT-PCR based tests as a way of estimating

    detection efficiency has received limited attention likely because of the high demand for

    diagnostictests,shortageoftestingkits,andcostoftesting.Thelowdetectionefficiencythat

    wehaveestimatedmaynotbeentirelyexplainedbyalowrepresentationofthevirusinmany

    of the samples as the mean number of positive amplicons by RT-nPCR for the 12 false

    negatives (10 NIV + 2 LabGun) was 3.25 (Figure 5). Possible alternative explanations are

    variabilityintestperformanceorinrepresentationofdifferentportionsoftheviralRNA.Low

    detection efficiency could be a possible concern in other tests including those under

    development that are based on reverse transcription as a first step followed by DNA

    amplificationanddetection(Broughtonetal.,2020;Rauchetal.,2020;Yanetal.,2020).Many

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 8

    RT-qPCRtestsuseRNAcorrespondingtoabout1%ofswabsample.Increasingtheamountof

    sampleforRNAisolationandconcentrationofthesamplearepossibleoptionsforimproving

    detection,howeverthesewouldalsoincreasethenumberofoperationsandexpense,andit

    would need to be assessed whether this would be compatible with medium to high

    throughputprotocols.Protocolsbasedoninitialdetectionofasingleampliconfollowedbya

    confirmatory test fora secondampliconmayalsocontribute to falsenegativesand lower

    detection.

    In conclusion the RT-nPCR endpoint assay for SARS-CoV-2 described above uses widely

    availablereagents,lowerscosts,andobviatestheneedforarealtimetimethermalcycler.

    Theassaycanthereforebeperformedinalargenumberofclinicalanddiagnosticlaboratories

    lackingthisexpensivepieceofequipmentessentialforRT-qPCRtesting.Theperformanceof

    RT-nPCRiscomparabletoRT-qPCRandanalysisofRT-qPCRtestedsamplesbyRT-nPCRshows

    a high escape rate in detection of positives, highlighting a need for directly monitoring

    detectionefficiencythroughassessmentoffalsenegativesinrealtestingenvironments.As

    moreregionsoftheworldmoveintocommunitytransmissionphase,thereisalsoagreater

    need for surveillance testing. Pooled testing by RT-nPCR can contribute to meeting this

    requirement.

    MaterialsandMethods

    SampleCollection:

    NPswabsampleswerecollectedfrompatientssuspectedofbeinginfectedwithSARS-CoV-2

    andtheircontactsatdifferenthospitalsintheHyderabadvicinitybasedonIndianCouncilof

    Medical Research (ICMR) guidelines (http://www.nie.gov.in/images/leftcontent_attach/COVID-

    SARI_Sample_collection_SOP_255.pdf) and in accordancewith Institutional Ethics Committee

    guidelines.Sampleswerecodedandanonymizedbeforeprocessinganddatacollection.

    RNAisolation:

    140µlofNPswabsampleinViralTransportMedium(VTM)wasusedforRNAisolationbythe

    QIAamp®Viral RNA (cat# 52906) or equivalent kit as permanufacturer’s instructions. NP

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 9

    samplewaslysedinBSL3facility.RNAisolationstepswerecarriedoutinBSL2facility.RNA

    waselutedin50µlofwater.ForpooledsampleRNAisolation,positivesamplewaspooled

    withnegativesamplesin1:5,1:10and1:20ratioscomprising140µlofNPsampleandisolated

    asabove.AllsafetyprecautionswerefollowedasperICMR-NIVguidelines.

    PrimerdesignandPCR:

    SARS-CoV-2fulllengthgenomicsequenceofanisolatefromKerala-Indiawasdownloaded

    fromNCBI(GenbankIDMT050493.1).PrimersweredesignedforregionsspecificforSARS-

    CoV-2,butnotSARS-CoV(GenbankIDNC_004718.ForthehumanRPP30gene(GenbankID

    U77665.1) primers were designed on exon-exon junctions to avoid genomic DNA

    amplification.OligonucleotideswereobtainedfromBioserve,Hyderabad.PooledRNAfrom

    twopreviouslyidentifiedpositiveNPswabsampleswasusedforfirststrandcDNAsynthesis

    (Takaraprimescriptkitcat#6110A).20µlofthecDNAreactionwasdilutedten-foldandused

    forprimaryPCR.PrimaryPCRwasperformedusingEmeraldAmp®GTPCRMasterMix(Takara

    cat#RR310A)10ul,forwardandreverseprimers(5µM)1µleach,dilutedcDNA3µl,and

    water5µl.Thermalcyclingconditionswere1)95°C-2minutes2)95°C-15seconds3)60°C

    -15seconds4)72°C-30seconds5)Repeatsteps2-4for4cycles6)95°C-15seconds7)55

    °C-15seconds8)72°C-30seconds9)Repeatsteps6-8for39cycles10)72°C-2minutes

    11) 15 °C – hold. The primary PCR product was diluted fifty-fold and 1 µl was used for

    secondaryPCRusinganestedprimerpair.Thermalcyclingconditionswerethesameasfor

    primaryPCR.PCRproductswere separatedbyelectrophoresisona1.5%agarosegel and

    visualizedonaUVgeldocumentationsystem.Foramplicondilutionexperiments,bandswere

    excisedfromthegel,DNAwasextracted(Macherey-NagelNucleospinkit,Cat#740609.250)

    andsubclonedintopGEM-Tvector(Promega).TheinsertwasPCRamplifiedfromaplasmid

    DNAclone,followedbygelpurificationandextraction.DNAwasquantifiedbyaQubitdsDNA

    HSkit(ThermofisherCat#Q32851).

    RT-nPCR:

    PrimaryRT-PCRandsecondaryPCRwasperformedusingthePrimescriptIII1-stepRT-PCRkit

    andEmeraldAmpGTPCRMix(Takara;detailedprotocolprovidedinSupplementaryFile1).

    FordirecttestingofsamplewithoutRNAisolationNPsamplewasheatinactivatedat95°C

    for10minutesinBSL3.1µlof5%PVP40(Sigmacat#PVP40-500G)wasincludedinPrimary

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 10

    PCRandother conditionswere kept same. For SephadexG50 (Sigma cat#GE17-0042-01)

    experiment,aspincolumnwaspreparedasmentioned inSambrookandManiatismanual

    andotherconditionswerekeptsame.ThespincolumnwasusedoutsidethePCRareato

    avoidcontaminationfromaerosols.ImageswereeditedusingAdobePhotoshopandincluded

    removal of intervening lanes in the gel between samples andDNAmarker indicatedby a

    verticalline.

    RT-qPCR:

    NIVmethod:RT-qPCRforEgeneandRPP30genewasdonewith5µlofRNAtemplateby

    followingFirstlinescreeningassayaccordingtoNationalInsitituteofVirology(ICMR-NIV)

    https://www.icmr.gov.in/pdf/covid/labs/1_SOP_for_First_Line_Screening_Assay_for_2019_

    nCoV.pdf.BasedonEgeneresultRdRpandOrf1bweretestedwith5µlofRNAsampleby

    followingConfirmatoryassaygivenbyICMR-NIV

    https://main.icmr.nic.in/sites/default/files/upload_documents/2_SOP_for_Confirmatory_As

    say_for_2019_nCoV.pdf.

    LabGunmethod:RT-qPCRforEgeneandRdRpwasperformedalongwithinternalcontrolas

    per manufacturer’s instructions (LabGenomics - LabGunTM COVID-19 RT-PCR Kit cat#

    CV9032B).4µlofRNAtemplatewasusedforthereaction.

    Ethicalstatement:

    The work described in this study was carried out in accordance with institutional ethics

    committeeguidelines.

    Authorcontributions:

    JND, KF, SP, and IS designed the experiments. JND, KF, SP, GP, DPV, and DV performed

    experiments.KBT,KHH,RKM,andABSsupervisedprocessingandprovisionofsamplesand

    data.JND,KF,SP,ISandJDinterpretedtheexperimentalresults.IS,JND,SP,andKFwrotethe

    paperwithinputsfromJD.

    Acknowledgements:

    TheTelenganastategovernmentandDirectorateofMedicalEducationareacknowledgedfor

    providingtheswabsamplesusedinthisstudy.WethanktheCOVID-19teamofvolunteersat

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 11

    CCMBforprocessingthesamples.ThefulllistofvolunteersisprovidedasSupplementaryfile

    2.ThisworkwassupportedbytheCouncilofScientificandIndustrialResearch(CSIR,India).

    Competinginterests:

    Theauthorsdeclarenocompetinginterests

    References:

    Broughton,J.P.,Deng,X.,Yu,G.,Fasching,C.L.,Servellita,V.,Singh,J.,Miao,X.,Streithorst,

    J.A.,Granados,A.,Sotomayor-Gonzalez,A.,Zorn,K.,Gopez,A.,Hsu,E.,Gu,W.,

    Miller,S.,Pan,C.-Y.,Guevara,H.,Wadford,D.A.,Chen,J.S.,&Chiu,C.Y.(2020).

    CRISPR–Cas12-baseddetectionofSARS-CoV-2.NatureBiotechnology.

    https://doi.org/10.1038/s41587-020-0513-4

    Bruce,E.A.,Huang,M.-L.,Perchetti,G.A.,Tighe,S.,Laaguiby,P.,Hoffman,J.J.,Gerrard,D.

    L.,Nalla,A.K.,Wei,Y.,Greninger,A.L.,Diehl,S.A.,Shirley,D.J.,Leonard,D.G.B.,

    Huston,C.D.,Kirkpatrick,B.D.,Dragon,J.A.,Crothers,J.W.,Jerome,K.R.,&Botten,

    J.W.(2020).DirectRT-qPCRdetectionofSARS-CoV-2RNAfrompatient

    nasopharyngealswabswithoutanRNAextractionstep[Preprint].Microbiology.

    https://doi.org/10.1101/2020.03.20.001008

    Hogan,C.A.,Garamani,N.,Lee,A.S.,Tung,J.K.,Sahoo,M.K.,Huang,C.,Stevens,B.,

    Zehnder,J.,&Pinsky,B.A.(2020).ComparisonoftheAcculaSARS-CoV-2testwitha

    laboratory-developedassayfordetectionofSARS-CoV-2RNAinclinical

    nasopharyngealspecimens.JournalofClinicalMicrobiology.

    https://doi.org/10.1128/JCM.01072-20

    Kucirka,L.M.,Lauer,S.A.,Laeyendecker,O.,Boon,D.,&Lessler,J.(2020).Variationinfalse-

    negativerateofreversetranscriptasepolymerasechainreaction–basedSARS-CoV-2

    testsbytimesinceexposure.AnnalsofInternalMedicine.

    https://doi.org/10.7326/M20-1495

    Li,Y.,Yao,L.,Li,J.,Chen,L.,Song,Y.,Cai,Z.,&Yang,C.(2020).StabilityissuesofRT-PCR

    testingofSARS-CoV-2forhospitalizedpatientsclinicallydiagnosedwithCOVID-19.

    JournalofMedicalVirology.https://doi.org/10.1002/jmv.25786

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 12

    McHugh,M.L.(2012).Interraterreliability:Thekappastatistic.BiochemiaMedica,276–282.

    https://doi.org/10.11613/BM.2012.031

    Merindol,N.,Pépin,G.,Marchand,C.,Rheault,M.,Peterson,C.,Poirier,A.,Houle,C.,

    Germain,H.,&Danylo,A.(2020).SARS-CoV-2detectionbydirectrRT-PCRwithout

    RNAextraction.JournalofClinicalVirology,128,104423.

    https://doi.org/10.1016/j.jcv.2020.104423

    Pujadas,E.,Ibeh,N.,Hernandez,M.M.,Waluszko,A.,Sidorenko,T.,Flores,V.,Shiffrin,B.,

    Chiu,N.,Young-Francois,A.,Nowak,M.D.,Paniz-Mondolfi,A.E.,Sordillo,E.M.,

    Cordon-Cardo,C.,Houldsworth,J.,&Gitman,M.R.(2020).ComparisonofSARS-CoV-

    2detectionfromnasopharyngealswabsamplesbytheRochecobas®6800SARS-

    CoV-2testandalaboratory-developedreal-timeRT-PCRtest.JournalofMedical

    Virology.https://doi.org/10.1002/jmv.25988

    Rauch,J.N.,Valois,E.,Solley,S.C.,Braig,F.,Lach,R.S.,Baxter,N.J.,Kosik,K.S.,Arias,C.,

    Acosta-Alvear,D.,&Wilson,M.Z.(2020).AScalable,easy-to-deploy,protocolfor

    Cas13-baseddetectionofSARS-CoV-2geneticmaterial[Preprint].MolecularBiology.

    https://doi.org/10.1101/2020.04.20.052159

    Smyrlaki,I.,Ekman,M.,Lentini,A.,Vondracek,M.,Papanicoloau,N.,Aarum,J.,Safari,H.,

    Muradrasoli,S.,Albert,J.,Högberg,B.,&Reinius,B.(2020).Massiveandrapid

    COVID-19testingisfeasiblebyextraction-freeSARS-CoV-2RT-qPCR.MedRxiv,

    2020.04.17.20067348.https://doi.org/10.1101/2020.04.17.20067348

    vanKasteren,P.B.,vanderVeer,B.,vandenBrink,S.,Wijsman,L.,deJonge,J.,vanden

    Brandt,A.,Molenkamp,R.,Reusken,C.B.E.M.,&Meijer,A.(2020).Comparisonof

    sevencommercialRT-PCRdiagnostickitsforCOVID-19.JournalofClinicalVirology,

    128,104412.https://doi.org/10.1016/j.jcv.2020.104412

    Xiao,A.T.,Tong,Y.X.,&Zhang,S.(2020).False-negativeofRT-PCRandprolongednucleic

    acidconversioninCOVID-19:ratherthanrecurrence.JournalofMedicalVirology.

    https://doi.org/10.1002/jmv.25855

    Xiong,Y.,Li,Z.-Z.,Zhuang,Q.-Z.,Chao,Y.,Li,F.,Ge,Y.-Y.,Wang,Y.,Ke,P.-F.,&Huang,X.-Z.

    (2020).ComparativeperformanceoffournucleicacidamplificationtestsforSARS-

    CoV-2virus[Preprint].MolecularBiology.

    https://doi.org/10.1101/2020.03.26.010975

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 13

    Yan,C.,Cui,J.,Huang,L.,Du,B.,Chen,L.,Xue,G.,Li,S.,Zhang,W.,Zhao,L.,Sun,Y.,Yao,H.,

    Li,N.,Zhao,H.,Feng,Y.,Liu,S.,Zhang,Q.,Liu,D.,&Yuan,J.(2020).Rapidandvisual

    detectionof2019novelcoronavirus(SARS-CoV-2)byareversetranscriptionloop-

    mediatedisothermalamplificationassay.ClinicalMicrobiologyandInfection.

    https://doi.org/10.1016/j.cmi.2020.04.001

    Yelin,I.,Aharony,N.,ShaerTamar,E.,Argoetti,A.,Messer,E.,Berenbaum,D.,Shafran,E.,

    Kuzli,A.,Gandali,N.,Shkedi,O.,Hashimshony,T.,Mandel-Gutfreund,Y.,Halberthal,

    M.,Geffen,Y.,Szwarcwort-Cohen,M.,&Kishony,R.(2020).EvaluationofCOVID-19

    RT-qPCRtestinmulti-samplepools.ClinicalInfectiousDiseases:anofficial

    publicationoftheinfectiousdiseasessocietyofAmerica.

    https://doi.org/10.1093/cid/ciaa531

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 14

    FigureLegends:

    Figure1:NestedRT-PCRstrategyforSARS-CoV-2detection

    A) SchematicofnestedPCRapproach

    B) Detectionlimitbyserialdilutionofampliconsfrom1000–0.1molecules.

    Figure2:RepresentativegelpictureofpositiveandnegativeRNAsamples.

    Lanes1,2,and4:positivesamples;Lanes3,7,and8:negativesamples;Lane5:10

    NTC;Lane6:20NTC.

    Figure3:DetectionefficiencyofRT-nPCRtestinpooledsamples.

    Samples with different Ct values for E gene pooled at different dilutions with

    negative samples. Each pool was tested for amplification of 4 amplicons. UD:

    undiluted.

    Figure4:DetectionofSARS-CoV-2byRT-nPCRwithoutRNAisolation.

    A) Reliefofinhibitionathighersamplevolumesbyadding0.5%ofPVP.Lanes1-4:E

    geneCt=27.9;Lanes5-8:EgeneCt=32.7.Lanes1,5:1µl;2,6:3µl;3,7:5µl;4,8:

    5µl+0.5%PVP.

    B) Relief of inhibition at higher volume of NP swab sample by passing through

    SephadexG-50spincolumn.Lane1,2:3µland9µlofNPswabsample.Lane3,4:

    3µland9µlofNPswabsampleafterpassingthroughSephadexG-50column.

    Figure5:ComparisonofRT-nPCRandRT-qPCRtests

    A) ContingencytableofRT-nPCRwithRT-qPCRtests.Samplesthatwerepositivefor

    onlyoneampliconbyRT-nPCRwere consideredambiguousandexcluded from

    analysis. Thenumberof ambiguous sampleswas: fromNIV set: Positives0/20,

    Negatives3/50;LabGunset:Positives4/30,Negatives2/41.

    B) GraphshowingnumberofampliconsamplifiedbyRT-nPCRofsampleshavinga

    rangeofCtvaluesforEgene.Ct25-31(n=21),Mean=4.0;Ct31-37(n=18),Mean

    =3.61;Ct37-40(n=11),Mean=2.18.

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 15

    Table1:Listofprimers

    Name Purpose Target

    Gene

    Sequence(5’-3’) Coordinatesin

    MT050493.1

    N1F1 PrimaryRT-PCR N AGGAAATTTTGGGGACCAGGAA 29102-29123

    N1R1 PrimaryRT-PCR N CTGCTCATGGATTGTTGCAA 29491-29472

    N1F2 SecondaryPCR N GATTACAAACATTGGCCGCAAATTG 29142-29166

    N1R2 SecondaryPCR N GAAATCATCCAAATCTGCAGCAG 29462-29440

    Orf1abF1 PrimaryRT-PCR ORF1AB GGGAAATTGTTAAATTTATCTCAACCTG 2182-2209

    Orf1abR1 PrimaryRT-PCR ORF1AB CTGGTGTACCAACCAATGGAGC 2592-2571

    Orf1abF2 SecondaryPCR ORF1AB AATTGTCGGTGGACAAATTGTC 2219-2240

    Orf1abR2 SecondaryPCR ORF1AB ACTAGTAGGTTGTTCTAATGGTTG 2558-2535

    MF1 PrimaryRT-PCR M TGGCAGATTCCAACGG 26504-26519

    MR1 PrimaryRT-PCR M ACAGCGTCCTAGATGGTG 26979-26962

    MF2 SecondaryPCR M CCTTGAACAATGGAACCTAG 26550-26569

    MR2 SecondaryPCR M AGCAATACGAAGATGTCCAC 26958-26939

    N2F1 PrimaryRT-PCR N GCCTCGGCAAAAACGTAC 29024-29041

    N2R1 PrimaryRT-PCR N CTTGTGTGGTCTGCATGAG 29533-29515

    N2F2 SecondaryPCR N GTAACACAAGCTTTCGGC 29061-29078

    N2R2 SecondaryPCR N TGAGTTGAGTCAGCACTG 29506-29489

    RPPF1 PrimaryRT-PCR RPP30 GCATGGCGGTGTTTGCAG

    RPPR1 PrimaryRT-PCR RPP30 CTCCTTCTGATGGCCGAGG

    RPPF2 SecondaryPCR RPP30 CGGACTTGTGGAGACAGCC

    RPPR2 SecondaryPCR RPP30 CAAGCCTAGATTTGCCACGTC

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 16

    Table2:EstimateofDetectionEfficiencyofPositivesbyRT-qPCR

    TestKit No.of

    samples

    (S)

    RT-qPCR

    Positives(P)

    False

    Negative

    Rate(FNR)

    EstimatedFalse

    Negatives

    FNE=(FNR)(S-P)

    Detection

    Efficiency

    DE=P/(P+FNE)

    NIV 400 60 10/50

    =0.200

    68 0.47

    LabGun 1186 44 2/41

    =0.049

    56 0.44

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Fig1

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Fig2

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Fig4

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Fig5

    .CC-BY-NC-ND 4.0 International licensemade available under a(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

    The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.08.139477doi: bioRxiv preprint

    https://doi.org/10.1101/2020.06.08.139477http://creativecommons.org/licenses/by-nc-nd/4.0/