AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 (...

44
AMS as an Astroparticle Physics Exp AMS as an Astroparticle Physics Exp eriment eriment 제 4 제 제제제제제제 제제제제 6 제 19 제 ( 제 ) 제 제제

Transcript of AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 (...

Page 1: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

AMS as an Astroparticle Physics ExperimentAMS as an Astroparticle Physics Experiment

제 4 회 고에너지물리 여름학교

6 월 19 일 ( 토 )

김 귀년

Page 2: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Astroparticl Physics is

Connecting Quarks with the Cosmos

Page 3: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Periodic System of Elementary ParticlesPeriodic System of Elementary Particles

e-N eutrino e

-N eutrino

E lec tron eMuon Tau

C harge -1 C harge 0D ow n

B ottom

U p uC harmTop

C harge +2/3 C harge -1/3

ct b

sd1st Family:

2nd 3rd

G ravitation

Weak Interac tion

E lec tromagnetic Interac tion

S trong Interac tion

Family:Family:

uudduu

uudd dd NeutronNeutronNeutronNeutron

ProtonProtonProtonProton

e-N eutrino e

-N eutrino

E lec tron eMuon Tau

C harge -1 C harge 0D ow n

B ottom

U p uC harmTop

C harge +2/3 C harge -1/3

ct b

sd1st Family:

2nd 3rd

G ravitation

Weak Interac tion

E lec tromagnetic Interac tion

S trong Interac tion

Family:Family:

Page 4: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Inflation(Big Bang plus

10-34 Seconds)

Big Bang plus 300,000 Years

Big Bang plus 15 Billion Years

What Powered the Big Bang?

Nowgravitational waves

light

Page 5: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

What is the Dark Energy?

We do not know what 95% of the universe is made of!

Page 6: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Cosmic Rays

What are cosmic rays? Elementary particles,

nuclei, EM radiation of extra-terrestrial origin, including , ,

At the edge of the Earth's atmosphere

50% protons, 25% , 13% C/N/O nuclei, <1% e-, <0.1%

Discovery of cosmic rays Victor. F. Hess, Nobel Prize

in 1936

Page 7: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Where Cosmic Ray come from? Where Cosmic Ray come from?

S. Swordy

CR ASTRONOMY

Page 8: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Cosmic Rays composition in spaceCosmic Rays composition in space ~88% proton, ~ 9% He nuclei, ~88% proton, ~ 9% He nuclei,

~1% Z > 2 nuclei, ~ 2% electrons, <0.1% gamma~1% Z > 2 nuclei, ~ 2% electrons, <0.1% gammaDevelopment of Cosmic-Ray Air-Shower

Page 9: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

AMS AMS 실험은실험은

국제우주정거장에서 수행되는 세계최초의 고에너지물리실험국제우주정거장에서 수행되는 세계최초의 고에너지물리실험 20072007 년 년 77 월에 국제우주정거장월에 국제우주정거장 (ISS) (ISS) 설치되어 설치되어 3-5 3-5 년 동안 수행년 동안 수행 1414 개국 개국 4646 개 기관의 개 기관의 200200 명 이상의 과학자와 산업체가 참여하는 명 이상의 과학자와 산업체가 참여하는

다국적 국제공동연구다국적 국제공동연구

Page 10: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

International CollaborationInternational Collaboration~200 scientists + dozens of contractors from 14 countries

Spokesperson: TING, Samuel C. C.

Page 11: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

AMS 02 AMS 02 검출기의 특징검출기의 특징

► 우주에서 수행되는 최초의 고에너지 물리실험 검출기로서 3-5 년 동안 무인 우주실험에 사용됨으로 여러 가지 제약 점이 있다 .

질량 : 6200 kg 이내크기 : ~ 3.2 x 2.7 m소모전력 : 2 kW 이내이륙시 중력가속도 : 9 g작동온도 범위 : -180o + 50oC유출 기체 한계 : <10- 12 g/s/cm2

Trigger rate: ~ 200 HzData rate: ~ 3 Mb/s

질량 : 6200 kg 이내크기 : ~ 3.2 x 2.7 m소모전력 : 2 kW 이내이륙시 중력가속도 : 9 g작동온도 범위 : -180o + 50oC유출 기체 한계 : <10- 12 g/s/cm2

Trigger rate: ~ 200 HzData rate: ~ 3 Mb/s

Page 12: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

AMS02 : technological challengeAMS02 : technological challenge

AnticoincidenceAnticoincidence: veto plastic scintillators used in Trigger

Time of FlightTime of Flight: 2x2 planes of scintillator hodoscopeResolution T=120 ps .

Used in Trigger Velocity measurement L/ct1-ct2 /3.5% E/dx measurements

TrackerTracker : 8 planes of double sided Silicon (6 m2). 110 and 208 pitchResolution =17 in bending plane and 30 non bend.

Rigidity pc/Ze=0.3BR measurements up to ~3 TeVdE/dx ~ Z2 measurement.Conversion of gamma e+e-

Superconductive Magnet:Superconductive Magnet: B

dipol =0.87 Tesla I~459A

Size: d=1.2m l=0.8 m; Mass 2.3 tcooled to 1.8K by superfluid He (2500 l)

Page 13: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

AMS02 : technological challengeAMS02 : technological challenge

Ring Image Cherenkov Detector:Ring Image Cherenkov Detector: radiators (NaF n=1.336 and Aerogel n=1.035) +PMT's

velocity measurements (up to 20 GeV / 0.1%) Absolute charge measurements N

photons~Z 2 (=0.2)

up to Z=26

Electromagnetic Calorimeter:Electromagnetic Calorimeter: Pb+ scintillators fibers readout by 324 PMT's (2x2cm readout granularity)Overall 18 x-y planes. Size 65x65 cm2 . Weight 640 kg. Thickness ~16 X

o and ~ 0.5

nucl. .

Energy measurements for leptons dE/E=0.03+0.13/E[GeV]

Used in gamma triggere, / h separation ~10 3 E=1-1000 GeV

Transition Radiation Detector:Transition Radiation Detector: 20 layers of 6 mm straw tubes(Ntot=5248) filled with Xe/CO2 (44 kg Xe+3.7kg CO2) interposed with fleece radiator (22 mm).

dE/dx measurements .Separation e/h ~10 3 - 10 2 p=1-250 GeV

Page 14: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

AMS AMS 실험 목적은실험 목적은 우주에서의 반물질 검색우주에서의 반물질 검색 (( 세계 최고의 감도로세계 최고의 감도로 , , 세계 최초세계 최초 ))

– 우주 대폭발 ( 빅뱅 ) 시 물질 / 반물질 비 =1– 현재 우주는 대다수 반물질이 아닌 물질로 구성– 만일 100 억분의 하나가 반물질로 자연에 존재할 경우 , 이를 측정하고자 함 .– 현재 한계는 < 1.1 x 10-6 ( <100 GeV) - AMS 01 실험과 BESS 실험에 의하여

암흑물질 암흑물질 (( 우주물질의 우주물질의 90%90% 가량가량 ) ) 탐색탐색 (( 우주에서 직접 수행하는 세계 최초 실우주에서 직접 수행하는 세계 최초 실험험 ))– 암흑물질의 충돌로 반물질인 반양성자 , 양전자 , 광자 등이 다수 생성되며 ,– 이들의 스펙트럼에 bump 로 나타남 .– 따라서 , 반물질의 스펙트럼을 측정

우주선의 기원에 대한 연구우주선의 기원에 대한 연구 (( 직접 우주에서 수행하는 첫 실험직접 우주에서 수행하는 첫 실험 ))– 갤럭시 내에서 입자전파 현상에 대한 정보 제공 – 109 동위원소를 측정 (D, He, Li, Be, B, C 등 )– 이들의 측정 시 배후과정인 보통의 우주선 측정

직접 직접 s s 쿼크들로 구성된 쿼크들로 구성된 strangeletstrangelet 를 탐색를 탐색 (( 가설을 최초로 검증가설을 최초로 검증 ))– Strangelet 는 중성별과 같이 보통의 상태에서는 존재하지 않은 특별한 상태의 물질– S 쿼크는 실험실에서만 검출되었음

고에너지 감마선 검출고에너지 감마선 검출 (( 최고 에너지의 감마선 측정 능력 보유최고 에너지의 감마선 측정 능력 보유 ))

Page 15: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Is the Universe Composed only of Matter?

How to explain Baryon Asymmetry?Principles of Baryogenesis (D.Sakharov 1967)three conditions have to be fulfilled: non-conservation of baryons Violation both C and CP Deviation from thermal equilibruim

Different models of baryogenesis:✔Grand Unified Theory (GUT) inspired (D.Sakharov)✔SUSY condensate (I.Afleck et al)✔Spontaneous baryogenesis (A.Cohen et al)✔ Etc

Local domains of antimatter are not excluded by baryogenesis.antistars, antiblackholes...

Present bounds are coming from gamma rays and CMB spectra lB>10 Mpc

Unambiguous proof would be an observation of heavy (Z>=2) anti-nuclei in Cosmic rays (A.Dolgov et al)

Anti-matter Domain

Anti-CR

Us

Matter Domain

Page 16: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

(1) Indirect Search for Antimatter: Photons

If the Universe contains regions of antimatter and matter,annihilation radiation at the boundaries should occur viathe process:

This should result in:• a distortion of the cosmic microwave background (COBE measures a quite isotropic blackbody radiation for a distance up to about 10 Mpc)• a signal in the extragalactic diffuse -ray background induced by the (redshiffed) annihilation photons.Non-observation of this radiation excludes large zones of antimatter in our supercluster of galaxies.

sesNN ',,',0

ee

Page 17: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

(2) Direct Searches for Antimatter

Antiproton measurements do not provide evidence for extragalactic antimatter.

The p-flux near the earth can be explained mainly by secondary interactions of cosmic rays depending on: - incident spectra - interstellar gas composition - solar modulation at lower energies

However the probability to produce antinuclei by high energy interactions falls drastically with the amount of antinucleons. (more than 104 per antinucleon) - Discovery of antinucleus (e.g. antihelium) evidence for cosmologically significant amounts of antimatter. - Discovery of anticarbon nuclei antistars ?

Up to now, No antinucleus with Z2 has ever been found in the cosmic radiation.

Page 18: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

NHe/NHe = 1.1·10-6 , R ( pc/Ze)<100 GVSame spectrum for He, He

Any Spectrum from He

Antihelium Search (AMS 01 Results)(Ref. Phys. Lett. B461(1999)387-396)

Page 19: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Antimatter Search Results for Heavier Nuclei

Page 20: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

AMS02 discovery potential : AntimatterAMS02 discovery potential : Antimatter

Antimatter search Negative Z >=2 nuclear background He

secondary /He < 10 -12 ;

AMS01 limit 10 – 6, AMS02 expected ~10 -9 is limited by statistics

Page 21: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Dark Matter Search Dark Matter Search

►Direct search: nuclear interactions with detector (ground based experiments)► Indirect search: products of annihilation (in Space )

AMS 02 -indirect Search for the relic Dark Matter in Space

Supersymmetric Dark Matter is a prime candidateLightest Supersymmetric(mSUGRA) Particle (LSP) is heavy (>100GeV) stable (R parity conserved)weakly interacts with baryonic matter (WIMPS) < 10-42 cm2

can annihilate and produce stable SM particles (p,antiprotons, e+.e-, )

Different candidates : axions, magnetic monopoles etc.

Page 22: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Neutralino Dark MatterNeutralino Dark Matter

Properties of Neutalino Mass: ~ 100 GeV

Interactions: weak

The “typical” WIMP (but note: neutralinos are Majorana fermions – they are their own anti-particle)

• Direct detection: see Prof. S. Kim’s talk

• Indirect detection: annihilationin the halo to e’s: AMS-02, PAMELA…

in the center of the galaxy to ’s: GLAST, AMS/, telescopes,…

in the center of the Sun to ’s: AMANDA, NESTOR, ANTARES,…

Neutralinos:

Page 23: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Supersymmetric Dark MatterLSP is a bino-like neutralinoneutralino is a spin ½ Majorana particle and can annihilate

Neutralino is the Dark Matter candidate.

Page 24: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Signature of Dark Matter: eSignature of Dark Matter: e++, p, , p,

Background Cosmic Ray spectra is dominant by SM stable particles : p, He, e-Have chance to see signal from annihilation in e+, p and components where backgrounds from nuclear interactions is smaller.

Flux for i -component is :

Page 25: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Annihilation of neutralino

Monochromatic gamma lines E =m m mz

2/4m

Signal signatures : cross sectionsSignal signatures : cross sections

After hadronization and decays ->stable particles with continuum spectra

< eff

V> thermal averaged cross section depends strongly on tan , m

1/2 (m~0.4m

1/2, s~1/m

2) and m

o

Tree diagrams

1 loop diagrams

Dominant channel>90%

Page 26: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Hard Positron SignalHard Positron SignalTurner, Wilczek (1990)

Kamionkowski, Turner (1991)

Best hope: e+e- If are Majorana-like ( Pauli Jinit = 0), This process is highly suppressed

Next best hope: W+W-, ZZ e+…Problem: conventional wisdom in simple models,≈ B

ino, does not couple to SU(2) gauge bosons

We are left with soft e+: bb ce+n…

Page 27: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

AMS02 discovery potential : Dark MatterAMS02 discovery potential : Dark Matter

Hard PositronsMost promising channel.Specific bump at ~ 5-100 GeV.Small contamination and large significance

A.Baltz et al. Astro-ph/9808243MSSM scan

Signal flux is ~ 1/m4 . For the high m one

needs larger Boost factors to see signal

m=130 GeV m=336 GeV

(by V. Zhukov University of Karlsruhe)

Page 28: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

AMS02 discovery potential : DarkMatterAMS02 discovery potential : DarkMatter

Antiprotons AntiDeutronsDifficult case since the shapes of the signal and background are similar and at the low energy part(<10GeV) flux is prone to the solar modulation and the background is not well defined

p+n->d Significance can be better than for antiprotons

(by V. Zhukov University of Karlsruhe)

Page 29: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Signal signatures : DM halo profile Signal signatures : DM halo profile

From rotation curves - neutralino is spherically distributed around galactic center.Navarro, Frenk, White type Dark Matter halo profile :

define the slope

0 - local density 0.3-0.7 GeV/cm3

a -scale parameter (depends on 0)

We are here ro~ 8kpc

Local 'clumps ' of DM can significantly increase signal from the Dark Matter annihilation (Boost factors)

J.F.Navarro Et al Ap.J.462(1996)

L.Bergstrom et al astro-ph/9806072

Page 30: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Composition and Energy Spectrum of Conventional Cosmic Rays

The relative abundance of particles, elements and isotopes is related to:• Primordial nucleosynthesis for the particles created just after the Big-Bang:

• Astrophysical sources accelerating primary particles:

• Interactions with interstellar gas create secondaries:

(Spallation), 10Be/9Be ratio depends on propagation time• Propagation described by the Leaky Box model

LiHeHeDep 734 ,,,,,,

FeOCHepe ,,,,,

BBeLippe ,,,,,

Page 31: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

AMS02 discovery potential : CR compositionAMS02 discovery potential : CR composition

AMS 02 will measure chemical compositions up to ~1 TeV/nand will constrain a propagation model.

Propagation model:- describes propagation (diffusion, convection, reacceleration) of cosmic ray particles in galaxies- calculates nuclear interaction of primary produced particles with interstellar medium(ISM)

Predicts abundances of element. Estimates backgrounds.

I.Moskalenko and A.Strong Astro.J 509 (1998)

Main parameters of the model:diffusion constant, size of ISM disk, density of the ISM, reacceleration speed, etccan be fixed by ratios of abundances

Page 32: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

AMS02 discovery potential : CR compositionAMS02 discovery potential : CR composition

1 year

10Be (t1/2

=1.5myr) / 9Bewill allow to estimate thepropagation time andsize of the ISM

B is secondary produced in nuclear interaction, C is primary produced in stars. B/C is sensitive tothe diffusion constant

3He/4He ratio is sensitive to the densityof the ISM

6 months 1 day

Page 33: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

High Energy -ray Physics

• Astrophysical sources of -rays:

- point sources: blazars, GRBs, and pulsars - diffuse sources: ray background, from WIMP annihilation

GRBsGRBs

PulsarsPulsarsAGNsAGNs

Page 34: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Gamma ray astrophysics powerful tool to test the Univers

AMS02 discovery potential: Gamma AMS02 discovery potential: Gamma astrophysicsastrophysics

Detailed study of gamma spectrum.Extra Galactic F ~ E-2.7 and galactic component F ~ E-2.1

Probe the model of gamma rays production and propagation.

Study gamma rays profile vs galactic latitude and longitude.

●● Gamma from neutralino annihilation reflects the DM halo profile.

Monochromatic lines from neutralino annihilation->at E=m can

constrain the clumpiness.Experimental data , models and AMS02 projection

Diffuse gamma spectrum up to few hundred GeV

A.W.Strong Et al. Astr.J.537 (2000)

Page 35: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

AMS02 discovery potential : Gamma astrophysicsAMS02 discovery potential : Gamma astrophysics

Point sources: Active Galactic Centers(AGN), pulsars etc.EGRET(1991) third source Catalog

Point like sources observed by EGRET at E<30GeV 271 sources >100MeV

AMS02 angular resolution:< 2.5o ECAL mode E>10GeV< 0.1o Tracker conversion E >10GeV(EGRET 2-3o GLAST 0.1o)Acceptances: A(=0) 1750 cm2 ECAL

450 cm2 Tracker conversion (EGRET 1500cm2,GLAST 12000 cm2)

Time variable point sources: Gamma Ray Bursts(GRB), blazars

Source identification at E>20GeV

Energy spectra of sources

Page 36: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Sensitivity of –ray detectors

Page 37: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Energy vs Time for X and Gamma ray detectors

Page 38: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

SummarySummary

• AMS-02 : an exciting challenge - Cosmic rays will be measured with order of magnitude higher precision than before and up to the TeV region - Search for antinuclei (antihelium sensitivity: 10-9) - Search for dark matter - High energy gamma ray physics (0.3 < E<100 GeV)

- Physics beyond the standard model- Astrophysics- Strangelets and other exotics- ????

Page 39: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

The Space Experiment PAMELAThe Space Experiment PAMELAMirko Boezio – INFN TriesteMirko Boezio – INFN Trieste

The Satellite: Resurs DK1The Satellite: Resurs DK1

Page 40: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

TRDTRD

CalorimeterCalorimeter

ToFToF

AnticoincidenceAnticoincidenceshieldshield

Shower tail catcher Shower tail catcher scintillatorscintillator

Magnetic Magnetic spectrometespectrometerr

Page 41: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

PAMELA StatusPAMELA StatusDetectors are ready and compling with the design performances

Detectors tested at PS / SPSTest facilities as Prototypes and in FM configuration

Mass/Termal ModelsQualified, March-May 2003

Integration of PAMELA TechnologicalModel completed and delivery toRussia underwayIntegration of PAMELA FMunderway at INFN – Roma2

The PAMELA Launch is in 2004 from Baikonur

Page 42: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

PAMELA CapabilitiesPAMELA Capabilities

PAMELA will explore:Antiproton flux 80 MeV - 190 GeVPositron flux 50 MeV – 270 GeVElectron flux up to 400 GeVProton flux up to 700 GeVElectron/positron flux up to 2 TeVLight nuclei (up to Z=6) up to 200 GeV/nAntinuclei search (sensitivity of 10-7 in He/He)

Page 43: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

Cosmic-ray Antimatter SearchCosmic-ray Antimatter Search

Page 44: AMS as an Astroparticle Physics Experiment 제 4 회 고에너지물리 여름학교 6 월 19 일 ( 토 ) 김 귀년.

AGNsAGNs

SNRsSNRs Cold Dark MatterCold Dark Matter

PulsarsPulsars

GRBsGRBs

Tests of Quantum Tests of Quantum Gravity effectsGravity effects

Cosmological Cosmological -Ray Horizon-Ray Horizon

The MAGIC Physics TopicsThe MAGIC Physics Topics

Origin of Origin of Cosmic Cosmic RaysRays