AMS-02 nella ISS - Istituto Nazionale di Fisica · PDF file · 2002-02-05Earth...

36
AMS-02 nella ISS

Transcript of AMS-02 nella ISS - Istituto Nazionale di Fisica · PDF file · 2002-02-05Earth...

AMS-02 nella ISS

AMS / ISS

­ Il volo precursore nel 1998

­ Gli obiettivi di fisica

­ L’apparato sperimentale

­ L’attività del gruppo di Roma

­ Conclusione

AMS-01 on Discovery duringSTS-91 Flight

AMS-01 Configuration on STS-91 Flight

STS-91 Flight, June 2-12th, 1998• Magnet: Nd2Fe14B, BL2= 0.15 TM2

• T.o.F: Four planes of scintillators;

β and Z measurements, up/down separation

• Tracker: Six planes of ds silicon detectors;Charge sign, dE/dX up to Z=8, Rigidity (p/Z)

• Anticounters: Veto stray trajectories and bckgndparticles from magnet walls

• Aerogel Threshold Cerenkov:

β measurements (1÷3 GeV/c) for better e/pseparation

• Low Energy Particle Shielding (LEPS):

Carbon fibre, shield from low energy (<5MeV)particles

Earth Magnetic Field vs shuttle orbit

35th Rencontres de Moriond The AMS Experiment (page 9)

Results & Perspectives

B.Bertucci

University of Perugia and INFN

Example of L shell

35th Rencontres de

Moriond

The AMS Experiment (page 19)

Results & Perspectives

B.Bertucci

University of Perugia

AMS 01- Le fasce

Fasce di Van Allen Fasce AMS

Energia 1 – 100 Mev 1 – 10 Gev

Composizione e - p e + e - p 3He

Posizione alta quota1000-3000 Km

bassa quota400 Km

Vita media anni secondi

Origine decadimenti neutroni secondari x atmosfera

This experimentCAPRICE [12]LEAP [13]

This experimentBESS [14]IMAX [15]

Flu

x *

E K

2.5

EK (GeV)

a)

b)

2

3

4

5

6

7

2

3

4

5

6

7

20 40 60 80 100 120 140 160 180 200

Figure 8: The primary proton spectrum multiplied by E2.5K in units of GeV2.5/(m2 sec sr MeV) as

measured by this experiment (total errors shown) in comparison with some recent balloon basedmeasurements.

143

Rigidity (GV)

Flu

x (m

2 se

c sr G

V)-1

0 < |ΘM| < 0.40.4 < |ΘM| < 0.80.8 < |ΘM|

10-3

10-2

10-1

1

10

10 2

1 10 102

Figure 1: Helium flux spectra for the zenith pointing separated according to the geomagnetic latitude,|ΘM|, at which they were detected.

157

This experimentCAPRICE [7]RICH [5]

This experimentBESS [8]IMAX [9]

Flu

x * E K

2.5

EK (GeV/A)

a)

b)

150

200

250

300

350

400

450

150

200

250

300

350

400

450

20 40 60 80 100

Figure 3: Comparison with recent measurements of the primary helium flux spectrum multiplied byE2.5

K in units of m−2 sec−1 sr−1 ( GeV/A)1.5.

159

Mass (GeV/c2)

Eve

nts

0

5

10

15

20

25

30

35

0 1 2 33He 4He

4 5 6

Figure 7: Reconstructed mass distribution for the second spectrum helium for |ΘM| < 0.6 comparedwith the masses of 3He and 4He.

163

AMS01 Results

Eve

nts

1

10

10 2

10 3

10 4

10 5

-150 -100 -50 0 50 100 150

HeHe2.86×106 events0 events

Sign×Rigidity GV

AMSSTS - 91

Published Conservative Limits

Rigidity (GV)

Antim

atte

r/Mat

ter U

pper

Lim

it 9

5% C

L Z=

2

Smoot et al. (1975)

Buffington et al. (1981)

Golden et al. (1997)

BESS 1993-1995

AMS 1998

10-6

10-5

10-4

10-3

1 10 102

Physics AC-IKirn 10

AMS01 Results

Li

Be

B

C

N

∆ETracker (MIPS)

Eve

nts

0

200

400

600

800

1000

1200

1400

10 15 20 25 30 35 40 45

10-4

10-5

10-3

3 10 70

Rmin=1.6 GV

An

tiM

att

er/

Ma

tte

r U

pp

er

Lim

it

RmaxGV

Excluded

AMSSTS - 91

2 < |Z| < 8

Rigidity (GV)

Antima

tter/Ma

tter Up

per Lim

it 95%

CL Z>

2

Golden et al. (74)

Smoot et al. (75)

Smoot et al. (75)

AMS 98

10-5

10-4

10-3

10-2

1 10 102

Physics AC-IKirn 11

La fisica di AMS

Ø ricerca antimateria nucleare con sensibilità 10-9

Ø ricerca materia oscura via χ + χ —> e+ e- ; γ + X; p…..

Ø sorgenti γ, γ burst

Ø origine e propagazione dei CR —> 10Be/9Be

AMS / ISS

L’apparato sperimentaleLa collaborazioneIl magneteIl trackerIl transition radiation detectorIl cerenkov ad immagineIl tempo di voloIl calorimetro elettromagnetico

The magnet will be completed at the end of 2002. The detectors will be completed at the

beginning of 2002 and we have arranged for extensive beam tests in the later half of 2002.

Integration and assembly of the detectors into the magnet and support structure will occur in

March 2003 and the entire system will be tested again in the CERN accelerator beams in the

summer of 2003, followed by an extensive thermal vacuum test at NASA Johnson Space Center

before delivery to Kennedy Space Center at the end of 2003.

It should be noted that the major construction of AMS-02 is being done in Europe and

Asia, particularly in Taiwan for the electronics (see Figure 1 and the electronics section VIII).

The graph below shows the participation of some of the senior AMS-02 physicists from different

European Institutes.

Turku

Finland

Germany

France

Spain

Italy

RomaniaSwitzerland

Portugal

Aachen I & III

Munich

AMS-02 Europe

Bucharest

Annecy

Geneva

G. Barreira,F. Barao

JP. Vialle

M. BuenerdG. CoignetS. Lees-Rosier

M. Aguilar, C. Mana,J. Alcaraz, J. Berdugo,J. Casaus, M. Cerada,

A. Zichichi, A.Contin G.Laurenti, F.Palmonari

K.Luebelsmeyer, S.Schael,G. Fluegge, V. Commichau

P.G. Rancoita

F. Cervelli

R. Battiston, B. Alpat, B.Bertucci, M.Pauluzzi, M. Menichelli, W. Burger

B. Borgia, S.Gentile

A. Mihul

S. Truemper

J. TorstiH. HoferF. PaussG. Viertel

M. BourquinP. ExtermannM. Pohl

S. Urpo

Grenoble

ETH

CIEMAT

Bologna

Milano

Pisa

Perugia

Roma

Lisbon

Helsinki

European Participation in AMS-02 construction.

173

SienaP. Marrocchesi

Trieste P.Trampus

AMS-02 Superconducting Magnet

Nominal Bending Power: 0.85 Tm2

Peak Field in coil: 6.6 T

N. of Coils: 2 Dipoles, 20 racetracks

Magnetic Torque: 0.272 Nm

Conductor: NbTi wire, Aluminum stabilized

Operating Temperature: 1.8K @ 20 mbar (2600 lt superfluid Helium)

Operating Current: 450 A

Power: 1.5 kW (peak, during ramp), 400 W (maintenance)

Endurance: 27 to 33 months (w cryocoolers)

Weight: about 3 tons

Dimensions: 2.7 m of diameter and 1.5 m of max height

AMS-02 Tracker

z Scopo:

v Rigidity (P/Ze)

v Segno della carica

z 8 piani sottili di microstrips Si doppio strato, risoluzione

spaziale < 10 µm, ≈ 200.000 canali, potenza ≈ 800 W.

ζ ≈ 6 m2 di superficie attiva, il più esteso costruito prima di LHC

@ CERN.

AMS-02 Tracker(da AMS-01)

Rigidity Resolution of P and He in AMS-02

AMS-02 Transition RadiationDetector

z Scopo:

v Identificazione di particelle

↔ π p elettroni

« Reiezione e/p 1.5 - 4 10-3 @ 90%÷95% εe

z 6 mm diameter, 1.3 to 2 m long straw tubes

z Radiatore: Foam (Airex)

z Miscela Gas : Xe/CO2 80/20, guadagno ≈ 2.5 104

z Operating temperature interval: +10° C to + 25° C (gradient ± 1 K)

z Peso: 484 kg (350 kg rivelatore)

z Test beam e± p (3.5 - 15 GeV)

AMS-02 Ring ImagingCerenkov Detector

z Scopo:v Velocità delle particelle, determinazione della massa

« dM/M=dP/P - γ2 dβ/β« dβ/ β ≈ 0.1 %, p=1.7 to 7.3 GeV/c/amu (for n=1.15)

v identificatione isotopi A < ≈25 (10Be/9Be, 3He/4He etc.)∂ m/m ≈ 0.2 % up to 10 GeV

z Radiatore (NaF) : n=1.15 (2 cm) / n=1.34 (1 cm)z Light Yield (Nγ) : ≈ 50

z PMT Hamamatsu R5900 pixel (16 pixels, 0.45x0.45cm2 each)

Counters and PMs in planes 1 and 2 of the TOF system.Note that the PMs of plane 1 are shown on one side only

AMS-02 Time of Flight System(T.o.F. risoluzione da AMS 01)

AMS-02 ElectromagneticCalorimeter (1)

z Scopo:v separazione e/h @ 10-4 intervallo 1 ÷ 1000 GeVϖ Rivelazione γ con risoluzione angolare e di energiav Misura albedo neutro (γ,n)

z Risoluzione in energia≈ 6.1 % ± 3.1 % @ 1 GeV

≈ 4.4 % ± 1.2 % @ 10 GeV ≈ 1.46 % ± 0.2 % @ 100 GeV

AMS-02 ElectromagneticCalorimeter

AMS-02 ElectromagneticCalorimeter

Cosmic Particle Spectrum

103

/ s

1 / d

1 / min

1 / y

10-6

10-3

103

10-18

Inte

nsi

ty [

m-2

s-1sr

-1eV

-1]

Energy/Nucleon

p

He

e+ + e-

γ

AM

S rate

[GeV]

10-12

100

Th. SiedenburgPhysics AC-I

2

AMS02 - Acquisizione dati

# canali/ rivelatore« Tracker 196600« TOF + ACC 384« RICH 33800« TRD 6200

« ECAL 2600

z Dimensione evento 5 Mbit

z Trigger rate 200-2000 Hz

z Raw Data rate 1-10 Gbit/s

z Reduced Data rate <2 Mbit/s>

AMS / ISS

L’attività del gruppo di Roma

AMS Romaz Alessandro Agneni Dip. Ingegneria Aerospaziale

z Stefania Baccaro ENEA/Casaccia

z Alessandro Bartoloni INFN Roma 1

z Bruno Borgia Dip. Fisica

z Carlo Bosio INFN Roma 1

z Corrado Gargiulo INFN Roma 1

z Simonetta Gentile Dip. Fisica

z Giovanni Laneve Dip. Ingegneria Aerospaziale

z Marco Montecchi ENEA/Casaccia

z Giovanni Vittorio Pallottino Dip. Fisica

z Antonio Paolozzi Dip. Ingegneria Aerospaziale

z Piero Rapagnani Dip. Fisica

z Corinne Rossi Dip. Fisica

z Enzo Valente INFN Roma 1

z M.Di Ruscio, U.Ponzi, C. Ulivieri Centro Progetto S.Marco

AMS Romaz Elettronica di controllo sistema gas del TRD

v progettazione ed ingegnerizzazione elettronicav qualificazione dei componenti per radiazionev qualificazione moduli termo-vuoto, vibrazionev produzione sistema di controllo

z Meccanica sistema gas del TRDv calcolo strutturale box S

z Test sul fascio del TRD completo di controlli

z Calcolov sviluppo del sistema di data storage e computer farmv simulazione montecarlo eventi nel TRDv simulazione eventi

z Analisi dei dati