Alevel FP2

download Alevel FP2

of 70

Transcript of Alevel FP2

  • 8/16/2019 Alevel FP2

    1/70

  • 8/16/2019 Alevel FP2

    2/70

    F P 2

    2

    Algebraic techniques

    Simplify 4 13

    2 x x + ++

    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    Rewrite the fractions so that they each have denominator ( x + 1)( x + 2):

    41

    32

    4 21 2

    3 11 2 x x

    x x x

    x x x +

    ++

    ≡+

    + ++

    +

    + +

    ( )( )( )

    ( )( )( )

    Add the numerators: ≡ + + +

    + +

    4 2 3 11 2

    ( ) ( )( )( )

    x x x x

    Simplify: ≡ +

    + +

    7 11

    1 2

    x

    x x ( )( )

    Hence 41

    32

    7 111 2 x x

    x x x +

    ++

    ≡ +

    + +( )( )

    º means ‘is equivalent to’.º means ‘is equivalent to’.

    E XA

    MPL E 1

    Express 5 11 1 x

    x x −

    + −( )( ) as the sum of partial fractions.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    Write the fraction in the required form:

    5 11 1 1 1

    x x x

    A x

    B x

    + − + −≡ +

    ( )( ) ( ) ( )

    ≡ − + ++ −

    A x B x x x

    ( ) ( )( )( )

    1 11 1

    Compare numerators: 5 x - 1 º A( x - 1) + B( x + 1)

    Substitute appropriate values of x into this identity to find A and B:

    When x = 1, 4 = A(1 - 1) + B(1 + 1)i.e. 4 = 2B so B = 2

    Similarly, when x = -1 A = 3

    Hence, in partial fractions, 5 11 13

    12

    1 x

    x x x x −

    + − + −≡ +

    ( )( ) ( ) ( )

    A and B are constants. A and B are constants.

    Denominators are equal so thenumerators must also be equal.Denominators are equal so thenumerators must also be equal.

    You could also find A and B by comparing coefficients inthe identity

    5 x - 1 º A( x - 1) + B( x + 1)

    You could also find A and B by comparing coefficients inthe identity

    5 x - 1 º A( x - 1) + B( x + 1)

    E XA

    MPL E 2

    0.1

    You can simplify algebraic fractions by usingcommon denominators.

    See C3 and C4 for revision. This section providesbackground knowledgefor Chapters 1, 2, 3 and 6.

    See C3 and C4 for revision. This section providesbackground knowledgefor Chapters 1, 2, 3 and 6.

    You can split an algebraic fraction into its partial fractions.

  • 8/16/2019 Alevel FP2

    3/70

    0 Background knowledge for unit FP2

    F P2

    3

    You can rearrange an expression involving an algebraic fraction.

    Make x the subject of the equation y x x =

    +

    2 11

    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    Multiply both sides of the equation by the denominator ( x

    - 1): y x x

    = +

    2 11

    so y ( x - 1) = 2 x + 1

    Expand the bracket and collect terms in x :

    yx - 2 x = y + 1

    i.e. ( y - 2) x = y + 1

    so x y y = +

    12

    E XA

    MPL E 3

    You can expand expressions of the form (1 + x )n , where n is not apositive integer, by using the binomial theorem.

    a Expand ( )1 212+ x in ascending powers of x up to and

    including the term in x 2.

    b By substituting x = 14 into your expansion, estimate the

    value of 1 5. . Give your answer to 2 decimal places.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    a Apply the binomial theorem ( ) ... :( )

    !1 1 1

    2

    2+ = + + +− x nx x n n n

    ( ) ( ) ( )!1 2 1 2 212 21

    2

    12

    12

    2+ = + + +( ) ( )( )−

    x x x

    = + − +1 122 x x

    b Substitute x = 14

    into the approximation ( ) :1 2 112 21

    2+ ≈ + − x x x

    1 2 11414

    12

    14

    12 2+ ≈ + −( )( ) ( )

    i.e. 1 5 1 21875. .≈ Hence 1 5 1 22. .≈ (to 2 decimal places)

    1 2 1 51

    4

    12+ =( )

    .1 2 1 51

    4

    12+ =( )

    .

    E XA

    MPL E 4

  • 8/16/2019 Alevel FP2

    4/70

    F P 2

    4

    0 Background knowledge for unit FP2

    You can use the binomial theorem to find the expansion of analgebraic fraction.

    Express x x 1 − as a series of ascending powers of x up to and

    including the term in x 4.

    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    x x x x 1 1

    1

    − = − −( )

    Use the binomial theorem to expand ( ) :1 1− − x

    ( ) ( ) ( )( )( ) ( )( )!( )( )( )

    !1 11 2 31 1 22

    1 2 33− = + + + +

    − − − − −− − − − − x x x x

    = + + + +1 2 3 x x x Multiply through by x :

    x x x x x x ( ) ( )1 11 2 3− = + + + +−

    = + + + + x x x x 2 3 4

    Hence x x x x x x 12 3 4

    − = + + + + The expansion is validfor - 1 < x < 1.

    The expansion is validfor - 1 < x < 1.

    E XA

    MPL E 5

    Exercise 0.11 Simplify these expressions.

    Factorise your answers as far as possible.

    a 22

    41 x x + −+

    b 34

    11 x x − +−

    c x

    x x

    x + ++3 1 d 2 1

    11

    2 1 x x x

    ++ −+

    e x x x + +−4

    11

    2 Express these fractions in partial fractions.

    a 4 32 3

    x x x

    ++ −( )( )

    b x x x +

    + +2

    4 3( )( )

    c 5 642

    x x

    −−

    d x x x

    2

    27

    1 2−

    − +( )( )

    3 Rearrange these equations to make x the subject.a y x x = −

    32 1

    b y x x = +2 3

    4

    c y x x = +

    +2 1

    1 d y x x =

    −+

    1 33 1

  • 8/16/2019 Alevel FP2

    5/70

    F P2

    0 Background knowledge for unit FP2

    5

    4 Use the binomial theorem to express these functions as a seriesof ascending powers of x up to and including the term in x 3.a (1 + x )-1

    b 11 2 3( )+ x

    c ( )1 323− x

    5 It is given that ( )1 112 2 31

    218

    116+ = + − + − x x x x

    a Find the expansion of ( )1 412+ x in ascending powers of

    x up to and including the term in x 3.

    b By substituting the value x = −18 into your expansion inpart a estimate the value of 2.

    Give your answer to 2 decimal places.

    6 Express these functions as ascending powers of x up to andincluding the term in x 3.a x

    x ( )1 2 2+

    b x x

    −+

    11

    c 4 31 3 1 2

    x x x

    ++ −( )( )

    Replace x with 4 x in thegiven expansion.Replace x with 4 x in thegiven expansion.

  • 8/16/2019 Alevel FP2

    6/70

    F P 2

    6

    0.2 Inequalities

    You can use a graphical approach to solve an inequality. See C2 for revision. This is background knowledgefor Chapter 1.

    See C2 for revision. This is background knowledgefor Chapter 1.

    Use a graphical approach to solve the inequality x 2 - 5 x + 4 < 0••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    Sketch the graph with equation y = x 2 - 5 x + 4:

    x

    y

    1 4

    The inequality x 2 - 5 x + 4 < 0 has solution 1 < x < 4.

    x 2 - 5 x + 4 º ( x - 1)( x - 4) The graph cuts the x -axis when y = 0i.e when (x - 1)(x - 4) = 0

    The graph has roots x = 1, x = 4.

    x 2 - 5 x + 4 º ( x - 1)( x - 4) The graph cuts the x -axis when y = 0i.e when (x - 1)(x - 4) = 0

    The graph has roots x = 1, x = 4.

    x 2 - 5 x + 4 < 0 is satisfied byvalues of x for which the graph

    y = x 2 - 5 x + 4 lies on or belowthe x -axis.

    x 2 - 5 x + 4 < 0 is satisfied byvalues of x for which the graph

    y = x 2 - 5 x + 4 lies on or belowthe x -axis.

    E XA

    MPL E 1

    You can also solve an inequality by using algebra.

    Use algebra to solve the inequality x 2 + 3 4 x ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    Express the inequality in the form f( x ) 0 where f( x ) is factorised:

    x 2 - 4 x + 3 0 i.e. ( x - 1)( x - 3) 0

    Solve the equation f( x ) = 0 where f( x ) = ( x - 1)( x - 3):( x - 1)( x - 3) = 0 for x = 1, x = 3

    Use appropriate values of x to find the sign of f( x ) in the intervals x < 1, 1 < x < 3, x > 3:

    x

    x > 3

    3f( x) < 0f( x) > 0

    1

    x < 1

    f( x) > 0

    1 < x < 3

    e.g. f(0) = 3 ( >0) f(2) = - 1 ( 0)

    Hence the inequality x 2 + 3 4 x has solution x 1, x 3.

    The inequality is satisfied forvalues of x for which f( x ) 0.

    The inequality is satisfied forvalues of x for which f( x ) 0.

    Remember to include x = 1 and

    x = 3 in the solution of f( x ) 0.

    Remember to include x = 1 and

    x = 3 in the solution of f( x ) 0.

    E XA

    MPL E 2

  • 8/16/2019 Alevel FP2

    7/70

    0 Background knowledge for unit FP2

    F P2

    7

    Exercise 0.21 Use any appropriate technique to solve these inequalities.

    a x 2 - 5 x + 6 0

    b 2 x 2 + 5 x - 3 < 0

    c 4 x 2 - 1 > 0d x 2 - 7 x + 10 5 - x

    e x 2 - 3 x + 2 2 x + 8

    f 2 x 2 - 2 x - 12 > 3 - x

    2 Solve the inequality x 2 - 2 x - 4 < 0 Give your answers in surd form.

    3 Use a graphical approach to show that the inequality

    x 2

    - 6 x + 10 < 0 has no solution.

    4 Solve these inequalities.a x ( x + 2)( x + 4) > 0

    b ( x + 1)( x 2 - 9) 0

    c x 3 + 2 x 2 + x < 0

  • 8/16/2019 Alevel FP2

    8/70

    F P 2

    8

    0.3 Modulus and exponential graphs

    To sketch a graph with equation y = |f( x )|: sketch the graph y = f( x )

    reflect the ‘negative’ part of your graph in the x -axis.

    See C3 for revision. This is background knowledgefor Chapters 1, 4 and 5.

    See C3 for revision. This is background knowledgefor Chapters 1, 4 and 5.

    Sketch the graph with equation y = | x 2 - 4|••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    Sketch the graph with equation y = x 2 - 4, drawing the partof the graph that lies beneath the x -axis as a broken line.

    Reflect the dotted section in the x -axis:

    (The reflected part has equation y = 4 - x 2)

    4

    –4

    O x

    y

    y = x2 – 4

    y = | x2 – 4|

    y = x2 – 4

    2–2

    y = 4 – x2

    Most graphical calculatorscan plot the graph of amodulus function.Look for the ABS key.

    Most graphical calculatorscan plot the graph of amodulus function.Look for the ABS key.

    The y -axis crossing point (0, 4) isthe reflection of the point (0, - 4)in the x -axis.

    The y -axis crossing point (0, 4) isthe reflection of the point (0, - 4)in the x -axis.

    This is the ‘negative’ part ofthe graph.

    This is the ‘negative’ part ofthe graph.

    Label each section of the graphwith its equation.Label each section of the graphwith its equation.

    E XA

    MPL E 1

    You can sketch the graph with equation y = Aekx , where A and k are constants.

    Sketch the graph with equation y = 3e-2 x ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    The graph with equation y = 3e- 2 x resembles that withequation y = e- x

    y = 3e –2 x

    y

    x

    3

    O

    When x = 0, y = 3e -2(0) = 3,i.e. the y -intercept of thegraph is 3.

    When x = 0, y = 3e -2(0) = 3,i.e. the y -intercept of thegraph is 3.

    The positive x -axis is anasymptote to the graph.

    The positive x -axis is anasymptote to the graph.

    E XA

    MPL E 2

  • 8/16/2019 Alevel FP2

    9/70

    F P2

    0 Background knowledge for unit FP2

    9

    Exercise 0.31 On separate diagrams, sketch the graphs with these equations.

    Label all axis-crossing points with their values and the sectionsof the graph with their equations.a y = |2 x + 1|

    b y = |2 - 3 x |

    c y = | x 2 + 4 x + 3|

    d y = |3 x - 2 x 2|

    2 On separate diagrams, sketch the graphs of these equations.

    Label all axis-crossing points with their values, giving answersin surd form where appropriate.a y = | x 3- 1|

    b y = |( x + 3)2 ( x - 1)|c y = |(3 - x )( x 2 - 2)|

    3 On separate diagrams, sketch the graphs with these equations.a y = 2e3 x

    b y = - e- x

    c y = 3e x + 1

    d y = 3 - e-2 x

    4 On separate diagrams, sketch the graphs with these equations.a y = |e- x - 1|

    b y = |e x - 2|

    5 Given that x < e x for all x 0,a show that x 2 < e2 x for all x 0

    b deduce that x e-2 x is approximately zero for large positivevalues of x .

  • 8/16/2019 Alevel FP2

    10/70

    F P 2

    10

    0.4 Trigonometry

    You can use a trigonometric identity to simplify an equation.You should know these identities:

    cos cos sin cos sin2 2 1 1 22 2 2 2q q q q q ≡ − ≡ − ≡ −

    sin sin cos2 2q q q ≡ tan tantan

    2 21 2

    q q

    q ≡ −

    tan sec2 21q q + ≡ 1 2 2+ ≡cot cosecq q

    See C3 for revision. This is background knowledgefor Chapters 3 and 7.

    See C3 for revision. This is background knowledgefor Chapters 3 and 7.

    sin2 q + cos 2 q º 1sin2 q + cos 2 q º 1

    tan sincos

    q q q

    ≡ (for cos q ¹ 0)tan sincos

    q q q

    ≡ (for cos q ¹ 0)

    Solve the equation cos 2 q + cos q = 0 for 0 q p .Give answers in exact form.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    Replace cos 2 q with 2cos 2 q - 1 in the equation:

    cos 2q + cos q = 0so 2cos2 q - 1 + cos q = 0i.e. (2cos q - 1)(cos q + 1) = 0

    Hence cos q = 12 or cos q = - 1

    cos q = 12 when q p = 13

    cos q = - 1 when q = p

    Hence cos 2q + cos q = 0 has solutions q p p = 13 , for 0 q p .

    This is a quadraticequation in cos q .

    This is a quadraticequation in cos q .

    Since 0 q p Since 0 q p

    Give answers in exact form(i.e. in terms of p ).Give answers in exact form(i.e. in terms of p ).

    E XA

    MPL E 1

    You can use identities to reduce the number of differenttrigonometric functions in an expression.

    Express sin 2q cos q in terms of sin q only.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    Use the double-angle identity sin 2 q º 2 sin q cos q : sin 2q cos q º (2 sin q cos q )cos q º 2 sin q cos2q º 2 sin q (1 - sin2 q )

    Hence sin 2 q cos q º 2sin q (1 - sin2q )

    sin 2q cos q involves twotrigonometric functions.sin 2q cos q involves twotrigonometric functions.

    cos 2 q º 1 - sin2 q cos 2 q º 1 - sin2 q

    RHS depends only on sin q .RHS depends only on sin q .

    E XA

    MPL E 2

  • 8/16/2019 Alevel FP2

    11/70

    F P2

    0 Background knowledge for unit FP2

    11

    Exercise 0.41 Solve these equations.

    Give answers in exact form.a sin 2q = cos q for 0 q p

    b sin 2q = tan q for 0 q p

    c cos 2q = 3 sin q + 2 for - p q p

    d 3cos 2q = cos q for −1212

    p q p

    2 a Express 3sin q + cos q in the form R sin(q + a ),

    where R > 0 and 0 12<

  • 8/16/2019 Alevel FP2

    12/70

    F P 2

    1.1

    12

    You need to know these standard results of differentiation:

    d

    d e e

    x

    ax ax a( ) = dd x x

    ax ln( ) = 1

    dd x ax a ax sin cos( ) =

    dd x ax a ax cos sin

    ( ) = −where a is a non-zero constant.

    You can use rules and standard results of differentiation to findthe first and second derivatives of a function.

    See C3 and C4 for revision. This is background knowledgefor Chapters 4, 5, 6 and 7.

    See C3 and C4 for revision. This is background knowledgefor Chapters 4, 5, 6 and 7.

    These include the chain, productand quotient rules.

    These include the chain, productand quotient rules.

    0.5 Differentiation

    If y = x e2 x find dd

    dd

    y x

    y x

    and 2

    2 .

    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    Use the product rule, dd

    dd x

    dd

    uv u v v x

    u x

    ( ) = + , to find dd y x :

    y = x e2 x so dd e y x x

    x x = +( )2 12 2e ( )

    Factorise: = +( )2 1 2 x x e

    Use the product rule on dd y x

    to find dd

    2

    2 x y :

    dd e y x x

    x = +( )2 1 2 so dd

    e e2

    22 22 1 2 2 y

    x x x x = + +( )( ) ( )

    = + = +( ) ( )2 2 2 4 12 2e e x x x x

    Hence dd

    dd

    e e y x y

    x x x x x = + = +( ) ( )2 1 4 12 2 2 2and

    dd x

    x x e 2e2 2( ) = using the chain rule.dd x

    x x e 2e2 2( ) = using the chain rule.

    E XA

    MPL

    E 1

    Find f ¢( x ) when f( x ) = sin x (cos x + 1)••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    f( ) sin cos

    sin cos sinsin sin

    x x x

    x x x x x

    = +( )

    = += +

    1

    12 2

    Use the chain rule, d 12

    12

    sin2 2cos 2 cos 2 :d x

    x x x ( ) = ( ) =′ = +f ( ) cos cos x x x 2

    f¢( x ) is the first derivative of f( x ).f¢( x ) is the first derivative of f( x ).

    Using sin 2 x º 2sin x cos x Using sin 2 x º 2sin x cos x

    E XA

    MPL E 2

    You can use a trigonometric identity to simplify thedifferentiation process.

  • 8/16/2019 Alevel FP2

    13/70

    F P2

    0 Background knowledge for unit FP2

    13

    Exercise 0.5

    1 Find dd y x for these equations. Simplify each answer as far as possible.

    a y = e x sin x b y = ln(1 + x 2)

    c y x x = +1e d y = ln(sin 2 x )

    2 Find the exact maximum value of these functions over thegiven interval. You should show each answer is a maximum.a f(q ) = sin q + cos q for 0 q p

    b f(q ) = sin2 q - 1 for 0 12< q p

    3 Using trigonometric identities, or otherwise, differentiate these equations.Simplify each answer as far as possible.

    a y = sin xcos 2 x + cos xsin 2 x b y = 4cos2 xsin2 x

    c y = (1 - 2sin2 2 x )2

    4 Use implicit differentiation to find an expression for these derivatives.

    a dd x y

    3( ) b dd x xy 2( ) c dd

    dd x y x x

    2( )5 If y = ux , where u is a function of x ,

    a find an expression for dd y x .

    b Hence show that dd

    dd

    dd

    2

    2

    2

    22 y

    x u x

    u x

    x = +

    You can use the chain rule to differentiate implicitly.

    Find an expression for dd x y

    2( ).••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    Use the chain rule:d

    ddd

    dd x y y x y y

    2 2( ) ( )= ×

    = 2 y y x dd

    dd y

    y y 2 2( ) = since y 2 is beingdifferentiated with respect to y .

    dd y

    y y 2 2( ) = since y 2 is beingdifferentiated with respect to y .

    E XA

    MPL E 3

  • 8/16/2019 Alevel FP2

    14/70

    F P 2

    14

    Integration

    You need to know these standard integrals:

    1 1

    ax a x x c d = +ln

    e d eax ax x c

    a= +1

    cos sinax x ax c a( ) ( )= +d 1

    sin cos( )ax x ax c ad = +− ( )

    1

    You can use the rules and standard results of integration tointegrate more complicated functions.

    See C3 and C4 for revision. This is background knowledgefor Chapters 4 and 7.

    See C3 and C4 for revision. This is background knowledgefor Chapters 4 and 7.

    a is a non-zero constant.a is a non-zero constant.

    These rules include integrationby substitution and by parts.

    These rules include integrationby substitution and by parts.

    0.6

    Using the substitution u = 2 x 2, find x x x cos( )2 2 d

    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    Replace the term 2 x 2 with the variable u:

    x x x cos( )2 2 d = xcos u d x

    = x u u x cos d

    4

    Cancel the x terms: = 14 cosu ud

    = +14 sin u c

    Replace u with 2 x 2: = ( ) +14 2 2sin x c

    You could also use inspection(the reverse chain rule) to findthis integral.

    You could also use inspection(the reverse chain rule) to findthis integral.

    u = 2 x 2 so dd

    u x

    x = 4 , i.e. d d x u x

    =4

    u = 2 x 2 so dd

    u x

    x = 4 , i.e. d d x u x

    =4

    Remember the constant ofintegration, c.

    Remember the constant ofintegration, c.

    E XA

    MPL E 1

    You can use integration to solve a differential equation.

    Find the general solution of the differential equation3 2 y x x y x sec

    dd =

    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    Separate the variables and integrate each side:

    3 2 y x x y x sec d

    d = so 3 y 2d y = xcos xd x

    3 y 2d y = y 3 + c 1

    x x x x x x c cos sin cosd = + + 2

    Hence the general solution is given by y 3 = xsin x + cos x + c

    i.e. y x x x c = + +sin cos3

    A differential equation is anequation that involves a derivative.A differential equation is anequation that involves a derivative.

    sec 1cos

    x x

    ≡sec 1cos

    x x

    Integrate xcos x by parts:

    u x u x

    = =, 1dd

    and

    dd

    v x

    x v x = =cos sin,

    Integrate xcos x by parts:

    x x

    = =, 1dd

    and

    dd

    v x

    x v x = =cos sin,

    c = c2 - c1 You only need one arbitraryconstant in the general solution ofa first order differential equation.

    c = c2 - c1 You only need one arbitraryconstant in the general solution ofa first order differential equation.

    E XA

    MPL E 2

  • 8/16/2019 Alevel FP2

    15/70

    F P2

    0 Background knowledge for unit FP2

    15

    You can express information as a differential equation to model areal-life situation.

    E XA

    MPL E 3

    When added to a container of water, a quantity of coloureddye begins to spread out in such a way that, t seconds from

    the start of the process, the dye forms a circular shape ofradius r cm and area A cm2. It is assumed that, at all times,the rate of increase of A is inversely proportional to A.After 4 seconds the area of the circle is 6 cm 2.a Formulate a differential equation for A.b Find A in terms of t . Comment on the validity of your

    answer in the long term.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    a The rate at which A is increasing is dd At .

    Hence dd At A∝

    1

    i.e. dd At

    k A= for k a positive constant.

    b Separate the variables and integrate each side:

    dd At

    k A= so A d A = k dt

    hence 122 A kt c = +

    i.e. A kt = +2 1c

    Substitute the values t = 0, A = 0 into A kt c= +21 to find c

    1:

    kt c = +2 1 so 0 0 1= + c i.e. c 1 = 0

    Hence A kt = 2Substitute the values t = 4, A = 6 into A kt = 2 to find k :

    A kt = 2 so 6 2 4= ( )k 36 = 8k i.e. k = 4.5

    Hence the equation for A in terms of t is A t t t = ( ) = =2 4 5 9 3.As t increases, the function 3 t increases without limit.Since the dye is inside a container, the equation A t = 3 is an unrealistic model for A in the long term.

    P is inversely proportional toQ if P

    Q∝

    1 P is inversely proportional toQ if P

    Q∝

    1

    k > 0 since the area is increasingover time.k > 0 since the area is increasingover time.

    k is a constant so k dt = kt + ck is a constant so k dt = kt + c

    The arbitrary constant hasbeen replaced by c1.c1 = 2c

    The arbitrary constant hasbeen replaced by c1.c1 = 2c

    At the start, the circle doesnot exist and so whent = 0, A = 0.

    At the start, the circle doesnot exist and so whent = 0, A = 0.

  • 8/16/2019 Alevel FP2

    16/70

    F P 2

    16

    0 Background knowledge for unit FP2

    You can use trigonometric identities to find an integral.

    Use a suitable double-angle identity to find (2cos q + 1)2 dq

    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    Expand the brackets:(2cos q + 1) 2 = 4cos2 q + 4cos q + 1 = 2(cos 2q + 1) + 4cos q + 1

    So (2cos q + 1)2 dq = 2cos 2q + 4cos q + 3 dq

    = sin 2q + 4sin q + 3q + c

    Hence (2cos q + 1)2 dq = sin 2q + 4sin q + 3q + c

    Using cos 2 q º 2cos 2 q - 1Using cos 2 q º 2cos 2 q - 1

    2cos 2 q dq

    = =( )2 2 212 sin sinq q 2cos 2 q dq

    = =( )2 2 212 sin sinq q

    E XA

    MPL E 4

    Exercise 0.61 Find these integrals. Give evaluations in exact form where appropriate.

    a x sin x d x

    b x (2 x 2 - 1)3 d x

    c 4 x (2 x + 1)4 d x

    d−1

    0

    x e- x d x

    e

    0

    2p

    cos q (1 + sin q )2 dq

    f1

    2

    9 x 2 ln x d x

    2 By writing tan x as sincos

    x x

    ,

    a differentiate tan x and hence find sec 2 2 x d x

    b show that tan x d x = ln |sec x | + c

    Use the substitution u = 2 x + 1Use the substitution u = 2 x + 1

  • 8/16/2019 Alevel FP2

    17/70

    F P2

    0 Background knowledge for unit FP2

    17

    3 Find the general solution of these differential equations.Give each answer as an explicit function.

    a dd y x xy = 2

    b t x x

    t

    d

    d + = 0

    c secq dd e y y q =

    d dd e y x x

    x y = −2

    4 Find the particular solution of these differential equations.In each case, make y the subject.

    a x y y x 2 2d

    d = for which y = 12 when x = 1

    b x y y x 2 1 2− =( )

    dd for which y = 1 when x = 3

    c cos2 x y y x dd = for which y = 1 when x = p

    5 When first noticed, a damp patch on a ceiling of a classroomhad area 25 cm 2 and was spreading at a rate of 10 cm 2 per day.t days later, the area A cm2 of the patch was increasing at a rateproportional to the square root of A.a Formulate a differential equation for A.

    b Hence show that A can be modelled by the equation

    A = (t + 5) 2

    c Comment on the suitability of this model for A in the long term.

    d Find the number of days the patch was on the ceiling beforebeing noticed. State any assumption made in arriving at your answer.

    6 Use appropriate trigonometric identities to find these integrals.

    a 2 sin2 q dq

    b tan 2 q dq

    c (sin q + cos q )2 dq

  • 8/16/2019 Alevel FP2

    18/70

    F P 2

    1.1

    18

    Complex numbers0.7

    You can use complex numbers to solve any quadratic equation. See FP1 for revision. This is background knowledgefor Chapters 3 and 5.

    See FP1 for revision. This is background knowledgefor Chapters 3 and 5.

    Solve the equation x 2 - 6 x + 13 = 0••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    Use the quadratic formula x b b aca

    = − ± −2 4

    2:

    x 2 - 6 x + 13 = 0 so x = − − −± −( ) ( ) ( )( )( )

    6 6 4 1 132 1

    2

    = 6 162

    ± −

    = 6 4

    2

    ± i

    = 3 ± 2iThe equation x 2 - 6 x + 13 = 0 has solutions x = 3 ± 2i.

    − −= ×16 16 1( ) = ± 4i

    − −= ×16 16 1( ) = ± 4i

    E XA

    MPL E 1

    You can use Pythagoras’ theorem and trigonometry to find themodulus and argument of a complex number.

    Find the modulus and argument of z = 3 - 3i••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    z = + −3 32 2( ) = 18

    = 3 2For any complex number z = a + bi in the 4th quadrant,

    arg : z ba

    = − ( )tan 1

    arg tan tan ( )z = =− − −( ) −1 133 1 = − 14 p

    Hence z = 3 - 3i has modulus 3 2 and(principal) argument − 14

    p .

    The modulus of z = a + bi

    is z a b= +2 2 The modulus of z = a + bi

    is z a b= +2 2

    Draw a diagram: z = 3 - 3i liesin the 4th quadrant.Draw a diagram: z = 3 - 3i liesin the 4th quadrant.

    Give the principal argumentunless told otherwise.Give the principal argumentunless told otherwise.

    Give answers in exact formunless told otherwise.Give answers in exact formunless told otherwise.

    E XA

    MPL E

    2

  • 8/16/2019 Alevel FP2

    19/70

    0 Background knowledge for unit FP2

    F P2

    19

    Exercise 0.7

    1 Solve these quadratic equations.a x 2 - 2 x + 10 = 0

    b 4 x 2 + 4 x + 5 = 0

    c x x 2 2 2 3 0− + =2 Find the exact modulus and argument of these complex numbers.

    a 5 + 5i b 2 2 3− i

    c − +6 2 3i d − −6 6i

    3 The diagram shows the points P and Q which representthe complex numbers z and w respectively.

    OP = 4 and angle POQ = 12p .

    a Given that w z − = 8 show that w = 4 3

    b Given further that arg z = 16p show that arg( )w z − = 56

    p

    4 Let z = cos q + i sin q

    Use suitable double-angle identities to show that z 2 = cos 2q + i sin 2q

    O

    Q

    P

    Im

    Re4

    O

    Q

    P

    Im

    Re4

    You can represent complex numbers geometrically.

    The diagram shows the points P and Q , which representthe complex numbers z and w respectively.

    OP = 3, OQ = 4 and P QO=

    13

    p

    Find the exact value of z w − .

    ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

    The complex number ( z - w ) can be represented

    by the vector QP .

    Apply the cosine rule to find QP :

    QP 2 2 23 4 2 3 4 13= + − ( )( )( )cos p = + − ×9 16 24 1

    2 = 13

    Hence z w − = 13

    O

    Q

    P

    4

    3

    Im

    Re

    r13

    O

    Q

    P

    4

    3

    Im

    Re

    r13

    O

    Q

    P

    4

    3

    Im

    Re

    r13

    O

    Q

    P

    4

    3

    Im

    Re

    r13

    a b c bc A2 2 2 2= + − cosa b c bc A2 2 2 2= + − cos

    Since ( z - w ) is represented byQP , z w QP − = .Since ( z - w ) is represented byQP , z w QP − = .

    E XA

    MPL E 3

  • 8/16/2019 Alevel FP2

    20/70

    F P 2

    20

    Answers

    Exercise 0.1

    1 a 6 12 1

    ( )( )( )

    x x x

    ++ −

    b 2 74 1 x

    x x +

    − +( )( )

    c 2 23 4

    x x x x

    ( )( )( )

    ++ +

    d x x x x ( )

    ( ) ( )4 11 2 1

    ++ −

    e ( )( )( )( ) x x x x

    + −+ +

    2 24 1

    2 a 12

    33( ) ( ) x x + −+ b

    24

    13( ) ( ) x x + +−

    c 4 21

    2( ) ( ) x x + −+ d 3

    11

    11

    2( ) ( ) ( ) x x x + − +− −

    3 a x y y

    = −2 3 b x y = −3

    4 2

    c x y y = −

    −1

    2 d x y y =

    −+

    13 1( )

    4 a 1 - x + x 2 - x 3 + ¼

    b 1 - 6 x + 24 x 2 - 80 x 3 + ¼

    c 1 - 2 x - x 2 − 43 x 3 - ¼

    5 a 1 + 2 x - 2 x 2 + 4 x 3 - ¼

    b 2 ≈ 1.421875 = 1.42 (2 d. p.)

    6 a x - 4 x 2 + 12 x 3 - ¼ b − + − + −1 32

    78

    1116

    2 3 x x x .. .

    c 3 + x + 17 x 2 - 11 x 3 + ¼

    Exercise 0.21 a x 2, x 3 b -3 < x < 1

    2 c x x < >−12

    12

    , d x 1, x 5

    e -1 x 6 f x < −52 , x > 3

    2 1 5 1 5− < < + x 4 a -4 < x < - 2, x > 0 b x - 3, - 1 x 3 c x < 0, x ¹ -1

    Exercise 0.31 a

    O

    y = 2 x + 1 y = –(2 x + 1) y

    x

    1

    12

    b

    O

    = 2 – 3 x y = –(2 – 3 x) y

    x

    2

    23

    c

    O

    = x2 + 4 x + 3 y = x2 + 4 x + 3

    y = –( x2 + 4 x + 3)

    y

    x

    3

    –3 –2 –1

    d

    O

    = – x (3 – 2 x) y = – x(3 – 2 x)

    y = x (3 – 2 x)

    y

    x32

    2 a

    O

    y

    x

    1

    1

    b

    O

    y

    x

    9

    1–3

    c

    O

    y

    x

    6

    3√2–√2

  • 8/16/2019 Alevel FP2

    21/70

    F P2

    21

    Answers

    3 a

    O

    y

    x

    2

    b

    O

    y

    x

    –1

    c

    O

    y

    x

    4

    1

    d

    O

    y

    x

    2

    3

    In 3– 12

    4 a

    O

    y

    x

    1

    b

    O

    y

    x

    2

    In 2

    Exercise 0.4

    1 a q p p p = 1612

    56

    , , b q p p p = 0 1434

    , , ,

    c q p p p = − − −16 12 56, , d q p = ±16

    2 a 2 16

    sin q p +( ) b q p = 0 23,3 a (1 - 2sin2 q )sin q b 2(1 - cos2 q )cos q

    c 12

    sin 4q d cos 2q

    4 b BC = k , 3k

    Exercise 0.51 a e x (cos x + sin x ) b 2

    1 2 x x +

    c − x x e d 2cot x

    2 a 2 b 03 a 3cos 3 x b 2sin 4 x c -4sin 8 x

    4 a 3 2 y dy dx

    b 2 2 xy y dy dx + c x x

    d y dx

    dy dx

    22

    2 2+

    5 a u x dudx +

    Exercise 0.61 a - x cos x + sin x + c b 1

    16 2 12

    4 x c − +( )

    c

    16

    152 1 2 1

    6 5

    ( ) ( ) x x c + − + + d -1 e 7

    3 f 24ln 2 - 7

    2 a ∫ sec22 x dx = 12 tan 2 x + c 3 a y A x = e 2 b x A

    t = c y = - ln |c - sin q | d y = ln |e x (2 x - 2) + c |

    4 a y x x = +1 b y

    x x = −

    +( )2 11 c y = etan x

    5 a dAdt

    A= 2 c The model predicts that A® ¥ as t ® ¥ .

    This is unrealistic. d 5 days. This answer assumes the given modelling

    assumptions held prior to the patch being noticed.6 a q − 12sin 2q + c b tan q - q + c

    c q q − +12 2cos c

    Exercise 0.71 a x = 1 ± 3i b x i= ±−12 c x i= ±2

    2 a z z = =5 2 14, arg( ) p

    b z z = = −4 13, arg( ) p

    c z z = =4 3 56, ( )arg p

    d z z = = −2 3 34, arg( ) p

  • 8/16/2019 Alevel FP2

    22/70

    Exam-style assessment

    Further Pure FP2© Oxford University Press 2009

    1. Solve the inequality x x

    2 21

    +

    − < x

    2. Find the complete set of values of x for which x x x +

    +−2

    312

    3. Find the set of values of x for which x x x − +>

    11

    3

    4. (a) Use algebra to solve the equation | x 2 - 5 x + 6 | = 4 x - 8

    (b) On the same diagram, sketch the graphs with equations y = | x 2 - 5 x + 6 | and y = 4 x - 8

    (c) Hence, or otherwise, solve the inequality | x 2 - 5 x + 6 | < 4 x - 8

    5. (a) On the same diagram, sketch the graphs with equations y = | x 2 - 9 | and y = |2 x - 1 |. Label, with their coordinates, the axis-crossing points ofeach graph.

    (b) Find the values of x where these two graphs intersect. Give answers insimplified surd form where appropriate.

    (c) Hence solve the inequality | x 2 - 9 | |2 x - 1|

    6. (a) On the same diagram, sketch the graphs with equations y = |2 x + a | and

    y = |3 x + a |, where a is a positive constant. Label, with their coordinates,the axis-crossing points of each graph.

    (b) Hence solve, in terms of a , the inequality |2 x + a | < |3 x + a |

    7. (a) Sketch the graph with equation y = | x 2 - 2kx | where k is a positive constant.Label the stationary point with its coordinates.

    (b) Hence, or otherwise, solve the inequality | x 2 - 2kx | k 2, giving your answerin terms of k .

    1 Inequalities

  • 8/16/2019 Alevel FP2

    23/70

    © Oxford University Press 2009

    Inequalities

    Exam-style mark scheme

    1

    Further Pure FP2

    Question Solution Marks Number

    1 x x

    x 2 2

    10

    +

    − − < M1

    x x

    +

    − 1

    13

    0 M1

    ( )( )(( ) x

    x x +

    − + >1

    1 3

    2

    0 M1 A1

    Critical values: x = - 3, - 1 and 1 M1 A1 Considering change of sign of factors gives:

    Hence x > 1 or x < - 3 A2 7

    4 a ( x - 3) 2( x - 2) 2 = 16( x - 2) 2 M1oe ( x - 3) 2( x - 2) 2 - 16( x - 2) 2 = 0 M1 ( x - 2) 2[( x - 3) 2 - 16] = 0 M1 Then x = 2, 7 and - 1 (ignore x = - 1, it does not satisfy the A2 (5)

    original equation).

    b

    O

    6

    2 3

    y = 4 x – 8

    y = |x 2 – 5 x + 6|

    y

    x

    B2 (2)

    c 2 < x < 7 A2 (2) 9

  • 8/16/2019 Alevel FP2

    24/70

    © Oxford University Press 2009 Further Pure FP2

    5 a

    O x

    1

    1–1–2–3–4 2 3 4

    2

    3

    4

    5

    6

    7

    8

    9

    10

    12

    y

    B2 (2)

    b For x > 3 or - 3 < x < 0.5 then x 2 - 9 = 2 x - 1 M1 x 2 – 2 x – 8 = 0, then x = 4 or x = - 2 M1 A1 For 0.5 < x < 3 or x < - 3 then x 2 - 9 = - (2 x - 1) M1 x 2 + 2 x - 10 = 0, then x = − ±1 11 M1 Hence x = 4, - 2, ±1 11 A3 (6)

    c From part b and the graph x x x − − −− +1 11 2 1 11 4, , A2 (2) 10

    6 a

    x

    y

    y = |3 x + a |

    y = |2 x + a |

    (0, a )

    )a2–( , 0 )a3–( , 0

    B3 (3)

    b For − a2 < x < − a

    3, then 2 x + a = - (3 x + a) M1 A1

    x = − 25a A1

    Hence x < - 0.4a or x > 0 A1 (4) 7

    7 a

    x

    y

    (k, k2)

    2k

    B3 (3)

    b x 2 – 2k x - k 2 = 0, x = k 1 2±( ) M1 A1 Hence k ( )1 2− x k ( )1 2+ A2 (4) 7

  • 8/16/2019 Alevel FP2

    25/70

    Exam-style assessment

    Further Pure FP2© Oxford University Press 2009

    1. (a) Simplify r (r + 2) - r (r - 2)

    (b) Hence use the method of differences to prove that r r

    n

    =∑ =1 12 n (n + 1)

    2. (a) Express 69 12 52r r − −

    in partial fractions.

    (b) Hence show that 89 12 5

    15 2 13 1 3 222 r r

    n n

    n nr

    n

    − −=

    +( ) −( )+( ) −( )=

    (c) Evaluate the series 89 12 526

    15

    r r r − −=∑ , giving your answer to 3 significant figures.

    3. (a) Find constants A , B and C such that

    84 1 2 3 2 1 2 1 2 32r r

    A

    r

    B

    r

    C

    r −( ) +( )≡

    −( ) +

    +( ) +

    +( ) for allr 1

    (b) Hence show that 34 1 2 3

    22 1 2 321 r r

    n n

    n nr

    n

    −( ) +( )=

    +( )+( ) +( )=

    4. (a) Show that 11

    11 2

    21 2r r r r r r r +( )

    −+( ) +( )

    =+( ) +( )

    for all r 1

    (b) Hence, or otherwise, find an expression for4

    1 21 r r r r

    n

    +( ) +( )=∑

    giving your answer in fully factorised form.

    (c) Deduce 41 21 r r r r

    n

    +( ) +( )=∑ < 1 for all n > 1

    5. (a) Simplify (3 r + 1) 3 - (3 r - 2) 3

    (b) Hence, or otherwise, show that r r

    n2

    1

    16=

    ∑ = n (n + 1)(2 n + 1)

    You can use the result r r

    n

    =∑ =

    1

    12

    n (n + 1) without proof.

    6. (a) Express 8 2 14 1

    3

    2r r

    r

    − −−

    in the form Ar + B

    r

    C

    r 2 1 2 1−( ) +

    +( ), for constants A , B

    and C to be determined.

    (b) Hence find an expression for 8 2 14 1

    3

    21

    r r

    r r

    n − −−=

    ∑ giving your answer in terms ofn and in fully factorised form.

    (c) Evaluate the series 8 2 14 13

    27

    24 r r r r − −

    −=∑ , giving your answer to 3 significant figures.

    2 Series

  • 8/16/2019 Alevel FP2

    26/70

    Further Pure FP2© Oxford University Press 2009

    7. (a) Express 3 21 2r

    r r r −

    +( ) +( ) in partial fractions.

    (b) Hence show that 3 21 2 1 21

    r

    r r r

    n

    n nr

    n −+( ) +( )

    =+( ) +( )=

    (c) Find the value of the positive integer N for which3 2

    1 2

    8

    151

    r

    r r r r

    N −

    +( ) +( ) =

    =

    8. (a) Express 312

    −−( )r

    r r in the form

    Ar

    Br

    C r −

    + ++1 1 where

    A , B and C

    are constants.

    (b) Hence, using the method of differences, show that

    31

    1122

    −−( )

    = −+( )=

    ∑ r r r

    n

    n nr

    n

    for n > 2

  • 8/16/2019 Alevel FP2

    27/70

    © Oxford University Press 2009

    Series

    Exam-style mark scheme

    2

    Further Pure FP2

    Question Solution Marks Number

    1 a r 2 + 2 r - r 2 + 2 r = 4 r A1 (1)

    b 4 2 21 1

    r r r r r r

    n

    r

    n

    = =∑ = + − −[ ]∑ ( ) ( )

    4(1) = 1(3) - 1( - 1) 4(2) = 2(4) - 2(0) 4(3) = 3(5) - 3(1) 4(4) = 4(7) - 4(2) 4( n - 2) = (n - 2)( n ) - (n - 2)( n - 4) 4( n - 1) = (n - 1)( n + 1) - (n - 1)( n - 3) M1 A1 4(n ) = n (n + 2) - n (n - 2) Adding:

    4(1 + 2 + 3 + … + n ) = 1 + (n - 1)( n + 1) + n (n + 2) M1 A1 = 2n 2 + 2n

    Hence r n nr

    n

    =∑ = +

    1

    12

    1( ) A1 (5) 6

    2 a 13 5

    13 1r r −

    − + B1 A2 (3)

    b 69 12 5 13 5 13 122 2r r r r r

    n

    r

    n

    − − = − − +( )= =∑ ∑ r = 2, 1 1

    7−

    r = 3, + −14

    110

    r = 4, + −17

    113

    ..................

    r = n - 2, + − − −1

    3 111

    3 5n n

    r = n - 1, + − − −13 81

    3 2n n M1 A1

    r = n , + − − +1

    3 51

    3 1n n

    Adding:

    1 141

    3 21

    3 145 39 64 3 1 3 2

    2− − − + =

    − −+ −n n

    n nn n( )( ) M1 A1

    8

    9 12 586

    69 12 522

    22r r r r r

    n

    r

    n

    − − =

    − −= =∑ ∑ M1

    Hence 89 12 5

    15 13 23 1 3 2 15 2 13 122

    2

    r r n n

    n nn n

    nr

    n

    − − = − −+ − = + −+=∑ ( )( ) ( )( )( )(33 2n − ) M1 A1 (7) 10

  • 8/16/2019 Alevel FP2

    28/70

    © Oxford University Press 2009 Further Pure FP2

    c 89 12 526

    15

    r r r − −∑=

    = −− − − −

    ∑∑==

    89 2 5

    89 12 52 22

    5

    2

    15

    r r r r r r

    = × + −− + − +− +

    ( )( )( )( )

    ( )( )( )

    15 15 2 15 145 2 45 1

    75 2 415 2 15 1

    = ×

    × − ×

    ×227 1443 46

    77 413 16

    = 0.126 10

    3 a 12 1

    22 1

    12 3r r r −

    − + + + M1 A3 (4)

    b r = 1: 1 23

    15

    − +

    r = 2: + − +1325

    17

    r = 3: + − +15

    27

    19

    ….. …………..

    r = n - 2: + − − − + −1

    2 52

    2 31

    2 1n n n

    r = n - 1: + − − − + +1

    2 32

    2 11

    2 3n n n

    r = n: + − − + + +1

    2 12

    2 11

    2 3n n n M1 A1

    Adding:

    23

    12 1

    12 3

    8 163 2 1 2 3

    2− + + + =

    ++ +n n

    n nn n( )( )

    M1 A1

    Hence 34 1 2 3

    38

    84 1 2 3

    22 1 221

    21( )( ) ( )( )

    ( )( )(r r r r

    n n

    n nr

    n

    r

    n

    − + =

    − + = ++ += =

    ∑ ∑33) B1 A1 (6)

    10

  • 8/16/2019 Alevel FP2

    29/70

    © Oxford University Press 2009 Further Pure FP2

    4 a LHS = ( )( )( ) ( )( )r r

    r r r r r r + −

    + + = + +2

    1 22

    1 2 M1 A1 (2)

    b 21 2

    11

    11 21 1r r r r r r r r

    n

    r

    n

    ( )( ) ( ) ( )( )+ +∑ = + − + +∑= =

    B1

    r = 1: 12

    16

    r = 2: + −1

    6

    1

    12

    ……… ………

    r = n - 1: + − − +1

    11

    1( ) ( )n n n n

    r = n : + + − + +1

    11

    1 2n n n n( ) ( )( ) M1 A1

    Adding:

    12

    11 2

    32 1 2

    − + + = ++ +( )( )( )

    ( )( )n nn n

    n n M1 A1

    Hence 41 2 31 21 r r r n n

    n nr

    n

    ( )( ) ( )( )( )+ +∑ = ++ += M1 A1 (7)

    c 41 23

    1 23

    3 2

    2

    21 r r r

    n n

    n nn n

    n nr

    n

    ( )( )( )

    ( )( )+ + = ++ + =

    ++ +

    ∑=

    Now n 2 + 3n < n 2 + 3n + 2

    As n > 1, n 2 + 3n + 2 > 0 so thatn n

    n n

    2

    23

    3 21

    ++ +

    <

    Therefore 41 211r r r

    r

    n

    ( )( )+ +∑=<

    9

    5 a 27 r 3 + 27 r 2 + 9 r + 1 - (27 r 3 - 54 r 2 + 36 r - 8) = 9(9 r 2 - 3 r + 1) M1 A1 (2)

    b 9 9 3 1 3 1 3 221

    3 3

    1( ) ( ) ( )r r r r

    r

    n

    r

    n

    − +∑ = + − − ∑= =

    B1

    r = 1: 4 3 - 13r = 2: + 73 - 43

    ….. ……….r = n - 1: + (3 n - 2) 3 - (3 n - 5) 3 M1 A1

    r = n : + ( 3 n + 1) - (3 n - 2) 3 M1 A1 Adding:

    (3n + 1) 3 - 1 = 9n (3 n 2 + 3n + 1) B1

    Hence ( ) ( )9 3 1 3 3 121

    3r r n n nr

    n

    − +∑ = + +=

    r n n n r nr

    n

    r

    n2

    1

    2

    1

    19

    3 3 1 3= =∑ = + + + ∑ −( ) B1

    = 19

    [n (3n 2 + 3n + 1) + 32 n (n + 1) - n ]

    = n18

    [6n 2 + 6n + 2 + 3n + 3 - 2]

    = n

    6[2n 2 + 3n + 1] M1 A1 (9)

    = 16n (n + 1)(2 n + 1)

    11

  • 8/16/2019 Alevel FP2

    30/70

    © Oxford University Press 2009 Further Pure FP2

    6 a 2 12 2 1

    12 2 1

    r r r

    − − + +( ) ( ) M1 A3 (4)

    b 8 2 14 121

    r r

    r r

    n 3 − −−

    ∑=

    = + + − −∑=2 1

    2 2 11

    2 2 11r

    r r r

    n

    ( ) ( )

    = ++

    −−

    ∑∑==

    2 12

    12 1

    12 111

    r r r r

    n

    r

    n

    ( ) ( )

    = n (n + 1) + −1213 1

    + −15

    13

    + .....

    + −− −1

    2 11

    2 3n n

    + −+ −1

    2 11

    2 1n n

    = + +

    + −n n

    n( )112

    12 1 1

    = + − +n n n

    n( )1

    2 1

    = + + −[ ]

    +n n n

    n

    ( )( )1 2 1 12 1

    = ++ = +

    +n n n

    n

    n n

    n( ) ( )2 3

    2 12 3

    2 1

    2 2

    c = − =∑ − ×∑∑===

    24 5149

    36 1513

    2

    1

    6

    1

    24

    7

    24 ( )r r r

    » 558 (3sf)

    7 a − + + − +1 5

    14

    2r r r M1 A3 (4)

    b 3 21 21 5

    14

    211r

    r r r r r r r

    n

    r

    n −+ + = + + − +∑∑

    −== ( )( )

    = + −−1 5243

    − + −12

    53 1

    − + −13

    54

    45

    + .....

    − − ++ −1

    15 4

    1n n n

    − + −+ +1 5

    14

    2n n n

    = + − + −− + +152

    12

    11

    42n n

    = + + − −+ +12 4 4

    1 2n n

    n n( )( )

    = + + − −+ +n n n

    n n

    2

    3 2 3 21 2( )( )

    = + +n

    n n

    2

    1 2( )( ) as required.

  • 8/16/2019 Alevel FP2

    31/70

    © Oxford University Press 2009 Further Pure FP2

    c 15 N 2 = 8( N + 1)( N + 2) B1 7 N 2 - 24 N - 16 = 0 (7 N + 4)( N - 4) = 0, Hence N = 4 M1 A1 (3) 11

    8 a 1 13 2

    1r r r − − + + B1 A1 (2)

    b 31

    11

    3 2122 1

    −−∑ = − − + +∑= =r

    r r r r r r

    n

    r

    n

    ( ) B1

    r = 2: 1 32

    23

    − +

    r = 3: + − +12

    1 24

    r = 4: + − +13

    34

    25

    …… ………..

    r = n - 2: +−

    −−

    +−

    1

    3

    3

    2

    2

    1n n n

    r = n - 1: + − − − +1

    23

    12

    n n n

    r = n : + − − + +1

    13 2

    1n n n M1 A1

    Adding:

    1 3212

    2 3 21

    1 21

    − + + − + + = + +−n n n n n M1 A1

    Hence 31

    1122

    −−

    ∑ = −+=r

    r r

    nn nr

    n

    ( ) ( ) A1 (6)

    8

  • 8/16/2019 Alevel FP2

    32/70

    Exam-style assessment

    Further Pure FP2© Oxford University Press 2009

    1. (a) Using de Moivre’s theorem, or otherwise, prove that

    cos 4q

    º 8cos4 q

    - 8cos2 q

    + 1 (b) Solve the equation cos 4 q + 4cos 4 q = 0 for 0 q p When not exact, give each answer correct to 2 decimal places.

    2. The transformation T from the z-plane to the w-plane is given by

    w = z z + +1 2i , z ¹ - 1 - 2i

    (a) Show that T maps the line y = 2 x to part of the real axis in the w-plane.

    (b) Find the locus of points in the z-plane which are mapped to theline u = 0 in the w-plane.

    3. (a) Shade on an Argand diagram the region R given by| z - 1 | | z - i |

    The transformation T from the z-plane to the w-plane is given by

    w = z z+

    −3i , z ¹ i

    (b) Show that T maps | z - 1 | = | z - i | to a circle in the w-plane.Give the cartesian equation of this circle.

    (c) On a separate Argand diagram shade the region in the w-plane

    which is the image of R under T . 4. Point P represents the complex number z where | z - 3 | = 2 | z - 3i |

    (a) Use algebra to show that the locus of P is a circle, giving the centreC and radius of this circle.

    Point Q represents the complex number z where arg( z + 1 - 4i) = 34

    p

    (b) On the same Argand diagram sketch the locus of P and the locus of Q ,marking clearly the point A where the two loci intersect.

    (c) Find the complex number a which represents A and express the equation

    of the tangent to this circle at A in the form| z + 1 - 4i | = | z - b| for b a complex number to be stated.

    5. (a) Solve the equation z3 = 4 - 4 3i giving your answers in the form r eiq where r > 0 and exact q , - p < q p

    (b) Illustrate your values from a on an Argand diagram.

    (c) Hence, or otherwise, show that, if p and q are two distinct cuberoots of 4 - 4 3i then | p + q | = 2

    3 Further complex numbers

  • 8/16/2019 Alevel FP2

    33/70

    Further Pure FP2© Oxford University Press 2009

    6. (a) Solve the equation z4 = 2 3 + 2i giving your answers in exact modulus-argument form.

    Give arguments as principal values.

    (b) Illustrate your values from ( a ) on an Argand diagram.

    (c) Prove that the points representing these values form the vertices of a square.

    (d) State the two possible values of | p - q| where p and q are two distinctfourth roots of 2 3 + 2i

    7. (a) Given that z = cos q + isin q , use de Moivre’s theorem to show that

    zn - 1 zn

    = 2isin nq where n is a positive integer.

    (b) Express 4sin 3 q in the form Asin q + Bsin 3 q for integers A and B tobe stated.

    O

    y

    R

    ir

    The diagram shows the curve with equation y = 2 3sin q for 0 q p . R is theregion bounded by this curve, the q -axis and the lines q = 0 and q = p

    (c) Find the exact volume formed when region R is rotated once around the q -axis.

    8. Point P represents the complex number z, where | z + 2i | = k | z - 3 - i |,where k is a constant. Point A, which represents the complex number 6 + 4i,lies in the locus of P .

    (a) Show that k = 2

    (b) Use algebra to show that the locus of P is a circle C .Give the centre and radius of this circle.

    Point Q represents the complex number z, where arg( z - 4 - 2i) = 14

    p

    (c) Shade, on a single Argand diagram, the region of points on or inside

    C and which satisfy 14

    p arg( z - 4 - 2i) p and find the exact areaof this region.

    The transformation T from the z-plane to the w-plane is given by

    w = z z

    +

    − −

    23

    ii, z ¹ 3 + i

    (d) Show that T maps the locus of P to a circle in the w-plane.

  • 8/16/2019 Alevel FP2

    34/70

    Further Pure FP2© Oxford University Press 2009

    9. Points A and B represent the complex numbers 0 - 3i and 4 + 0i respectively.

    Point P represents the complex number z, where arg z z

    +

    −( ) =34 23i p (a) Sketch on an Argand diagram the locus of P . Indicate on your sketch the

    position of points A and B.

    (b) Given that point Q in this locus is such that AQ = BQ

    ( i) show that AQ = 53 3 , ( ii) find the exact area of triangle AQB .

    10. Point P represents the complex number z, where | z - 2 | = 2 | z - 4i |

    Point Q represents the complex number z where arg z z

    −( ) =24 14i p (a) Use algebra to show that the locus of P is a circle. Give the centre and

    exact radius of this circle.

    (b) Given that p = z z

    24i

    , where z is the complex number which

    belongs to both of these loci ( i) show that p = 1 + i, ( ii) find z.

    (c) On a single Argand diagram, sketch the locus of P and the locus of Q.

    11. (a) Solve the equation z5 = 1 giving your answers in the form e iq for - p < q p

    (b) Given that w is any complex 5th root of 1

    (i) state the value of 1 + w + w2

    + w3

    + w4

    (ii) hence find the value of1 1 2

    4

    +( ) +( )w ww

  • 8/16/2019 Alevel FP2

    35/70

    Further Pure FP2© Oxford University Press 2009

    Further complex numbers

    Exam-style mark scheme

    3

    Question Solution Marks Number

    1 a (cos sin ) cos sinq q q q + = +i i4 4 4 M1 (cos sin ) cos cos sin cos sinq q q q q q q + = + −i i4 4 3 2 24 6 M1 - 4i cos q sin 3 q + sin 4 q Considering the real parts:

    cos 4 q = cos 4 q - 6cos 2 q sin 2 q + sin 4 q = − − + −cos cos ( cos ) ( cos )4 2 2 2 26 1 1q q q q M1 A1 (4) = − +8 8 14 2cos cosq q

    b cos 4 q + 4cos 4 q = 0 Þ 8c4 - 8c2 + 1 + 4c4 = 0 where c = cos q

    Þ 12 c4

    - 8c2

    + 1 = 0 Þ c2 8 4

    24= ±

    Hence cos ,2 1216

    q =

    Þ cos ,q = ± ±12

    16

    cos ,q q p p q p = ± ⇒ =12

    14

    34

    0for

    cos . , .q q q p = ± ⇒ =16

    1 150 1 991 0 for

    Hence q p p = 14 34 1 15 1 99 2, , . , . ( )c c decimalplaces

    2 a Let P be any point on y = 2 x , then P = (k , 2k ), where k ∈ M1 w k ik

    k ik i= ++ + +

    22 1 2

    = ++ + + = ++ +

    k ik i k

    k ik i

    ( )( )

    ( )( )( )

    1 21 2 1

    1 21 1 2

    B1

    = + ∈ ≠ −k

    k k

    1 1, A1 (3)

    b w iv x iy x iy i= + = ++ + +0 1 2 B1

    = ++ + + × + − +

    + − + x iy

    x i y x i y x i y( ) ( )( ) ( )( ) ( )1 2

    1 21 2

    M1

    = + + + + −+ + +

    x x y y i y x x y

    2 2

    2 22 2

    1 2( )

    ( ) ( ) B1

    Considering the real part of w = 0: B1 x 2 + x + y2+ 2 y = 0 ( x + 0.5) 2 + ( y + 1) 2 = 5

    4 , M1

    Hence the locus is a circle centre ( - 0.5, - 1), radius 52 (excluding the point ( - 1, - 2)) A1 (6) 9

  • 8/16/2019 Alevel FP2

    36/70

    Further Pure FP2© Oxford University Press 2009

    3 a

    O

    1

    1

    –2

    2

    11–2 2

    y

    x

    B2 (2)

    b z iwwi u iv

    u iv= +

    − = + +

    + −3

    13

    1( ) M1

    = − +− + × − −

    − −( )( )

    ( )( )

    31

    11

    v iuu iv

    u ivu iv M1

    = + − + − − +− +

    ( ) ( )( )

    3 3 31

    2 2

    2 2u v i u u v v

    u v B1

    Since | z - 1 | = | z - i|, then the real part of z = the imaginary part of z: A1 (4) Then 3 u + v - 3 = u2 - u - 3v + v2

    u2 - 4u + v2 - 4v + 3 = 0 (u - 2) 2 + (v - 2) 2 = 5

    c

    O

    4

    5

    y

    x

    B2 (2)

    10

    4 a ( x - 3) 2 + y2 = 4[ x 2 + ( y - 3) 2] M1 x 2 + 2 x + y2 - 8 y + 9 = 0 B1 ( x + 1) 2 + ( y - 4) 2 = 8 C (- 1, 4), radius = 2 2 A2 (4)

    b

    O

    4

    6

    8

    2

    –5

    A

    C

    y

    x

    3 r

    4

    B3 (3)

    c From Argand diagram: a = - 3 + 6i A1 | z + 1 - 4 i| = | z + 5 - 8 i| so b = - 5 + 8 i A1 (2) 9

  • 8/16/2019 Alevel FP2

    37/70

    Further Pure FP2© Oxford University Press 2009

    5 a 4 4 3 8 123

    2− = −( )i i B1oe q

    p = =− 3 8, r A1

    z ei n3 3 28= − +( )

    p p M1

    z ei n= − +( )2 3 3 2

    p p A1

    If n = 0, then z e i0 92= − p

    If n = 1, then z ei

    1

    592=

    p

    and z ei

    3

    792= −

    p

    A2 (6)

    b z 1

    z 0

    z 2

    2

    –2

    y

    x

    2 r

    3

    r

    9

    B2 (2)

    c | z0| = | z1| = | z2| = 2 and the angle between any two distinctroots p and q = 2

    3p , B1oe

    p q+ = =( )2 2 23cos p M1 A1 (3) 11 6 a z i4 4 3

    212= +

    B1oe

    = + + +( ) ( )4 2 26 6cos sinp p p p n i n B1 z in n= + + +( ) ( )2 24 2 24 2cos sinp p p p M1 If n = 0 then z i0 2 24 24= +( )cos sinp p

    If n = 1 then z i1 213

    24

    13

    24= +

    ( )cos sinp p and A2

    z i2 21124

    1124= −( )cos sinp p A1 (7)

    If n = 2 then z i3 22324

    2324= −( )cos sinp p B2 (2)

  • 8/16/2019 Alevel FP2

    38/70

    Further Pure FP2© Oxford University Press 2009

    b z 1

    z 0

    z 2

    z 3O

    y

    x

    c | z0| = | z1| = | z2| = | z3| = 2 and

    arg( z1) - arg( z0) = p

    2 = arg( z3) - arg( z1) = arg( z2) - arg( z3) B2oe (2)

    Then z0, z1, z2, z3 are the vertices of a square.

    d | p - q| = 2 or 2 2 11

    7 a zn = cos nq + isin nq M1 z- n = cos nq - isin nq M1 zn - z- n = 2i sin nq A1 (3)

    b (2 i sin q )3 = −( ) z z13

    = z3 - 3 z + −3 13 z z = − − −( ) z z z z3 31 13 = 2 i sin 3 q - 6 i sin q Hence 4 sin 3 q = - sin 3 q + 3sin q so A = 3, B = - 1

    c V = p p

    0

    4sin 3 q d q = p p

    0

    (3sin q - sin 3 q )d q M1

    = +−

    =

    p q q p

    p

    3 313163

    0cos cos M2

    A1 (4) 12

  • 8/16/2019 Alevel FP2

    39/70

    Further Pure FP2© Oxford University Press 2009

    8 a |6 + 6 i| = k |3 + 3 i| Þ k = 2 M1 A1 (2)

    b x 2 + ( y + 2) 2 = 4[( x - 3)2 + ( y - 1)2] M1 x 2 + y2 + 4 y + 4 = 4( x 2 - 6 x + 9 + y2 - 2 y + 1) B1 3 x 2 - 24 x + 3 y2 - 12 y + 36 = 0 ( x - 4) 2 + ( y - 2)2 = 8 M1 Centre (4, 2), radius = 2 2 A2 (5)

    c

    O

    4

    2C

    5

    y

    x

    r

    4

    B3

    Area = 1212

    34

    2 8r q p = × × M1

    = 3p

    A1 (5)

    d w z i

    z i= =+− −

    23

    2 (using part a above) M1oe

    |w| = 2 is a circle centre (0, 0) radius = 2 A1 (2) 14

    9 a

    O

    –2

    –4

    Q

    A

    B

    arg( z + 3 i )

    y

    x

    arg( z + 3 i ) – arg( z – 4) =2 r3

    arg( z – 4)

    B3 (3)

    b i Angle ABQ = p

    6 , AB = 4 32 2+ = 5 M1

    AQ = 521

    6

    52

    23

    53

    3× = × =cos

    p M1 A1

    ii Area = 12

    53

    23

    25 312

    32

    ( ) =sin p M1 A1 (5) 8

  • 8/16/2019 Alevel FP2

    40/70

    Further Pure FP2© Oxford University Press 2009

    10 a ( x - 2) 2 + y2 = 2[ x 2 + ( y - 4) 2] M1 x 2 - 4 x + 4 + y2 = 2 x 2 + 2 y2 - 16 y + 32 x 2 + 4 x + y2 - 16 y + 28 = 0 B1 ( x + 2) 2 ( y - 8) 2 = 40 M1 Centre ( - 2, 8) and radius 2 10 A2 (5)

    b i Since | z - 2 | = 2 | z - 4 i| and arg z z i−−( ) =24 14 p , then B1

    | p | = 2 and arg( ) p = 14 p p i i= = ++( )2 14 4cos sinp p M1 A1 ii z ip p=

    −−

    4 21 , substitute p = 1 + i: M1 A1 (6)

    iii= = +

    − −4 4 2 4 6

    c

    O

    4

    6

    8

    10

    12

    14

    2

    (2, 0)

    (0, 4)

    (–2, 8)

    –5 5

    P

    y

    x

    B3 (3)

    14

    11 a z i n n5 2 21 1= = =+e e i(0 p p ) B1

    z ei n=25

    p M1

    If n = 0, then z0 = ei0 = 1 A1

    If n = ±1, then z e z ei i

    1

    25

    2

    25= = −

    p p

    , A2

    If n = ±2, then z e z ei i

    3

    45

    4

    45= =

    −p p , A2 (7)

    b i (w5 – 1) = (w – 1)( w4 + w3 + w2 + w + 1) = 0 A1 Hence w4 + w3 + w2 + w + 1 = 0 M1 ii w3 + w2 + w + 1 = - w4 A1 (3)

    ( )( )1 12

    4 1+ + = −w w

    w

    10

  • 8/16/2019 Alevel FP2

    41/70

    Exam-style assessment

    Further Pure FP2© Oxford University Press 2009

    1. (a) Find the general solution of the differential equation

    tan( ) ,2 2 014 x y x

    y x

    dd = < −dd

    where

    (a) Find the general solution of this differential equation, giving youranswer in the form y = f( x )

    (b) Given that the curve passes through the point P (0, 5) find the equation of C .

    3. (a) Express 212 y −

    in partial fractions.

    (b) Hence show that the particular solution of the equation 2 1 2 x y y x

    dd

    + = ,

    where y > 1, x > 0, and for which y = 2 when x = 13 is given by y = 1

    1+

    x x

    4. (a) Show that x 2 1+ is an integrating factor for the differential equation

    112

    1 x

    y x

    y x

    dd

    ++

    =

    (b) Hence find the particular solution of this differential equation for which y = 13 when x = 0. Sketch the graph of this solution.

    5. (a) Find the general solution of the differential equation dd y x

    + 2 ytan x = 1

    (b) Hence show that the particular solution of the given equation for which y = 12

    when x = 1

    4p is given by y = 1

    2sin 2 x .

    6. As part of a training exercise, an athlete undertakes a 20 km run. After t hoursshe has run x km. During the run she varies her speed in such a way that therate of increase of x is directly proportional to x multiplied by the distanceshe has left to run.

    (a) Formulate a differential equation for x

    (b) Given that after 1 hour she has run 10 km and that after 90 minutes she has run15 km, solve this differential equation to show that

    x

    x t

    209 1

    −=

    (c) Calculate the total distance run after 2 hours.

    4 First order differential equations

  • 8/16/2019 Alevel FP2

    42/70

    Further Pure FP2© Oxford University Press 2009

    7. (a) Use integration by parts to show that x e x d x = ( x - 1)e x + c

    (b) Hence find the general solution of the differential equation

    ( x + 1) dd y x

    + ( x + 2) y = x

    8. The equation of a curve C satisfies the differential equation x dd y x

    - y = 2 y2 x

    (a) Show that the substitution y = ux transforms the given differentialequation into the equation dd

    u x = 2u

    2 x

    (b) Find the general solution for u and hence find y in terms of x .

    (c) Given that C passes through the point with coordinates ( - 1, 1),find the equation of the curve C and sketch its graph.

    9. The equation of a curve C satisfies the differential equation

    x 2 dd y x

    - xy = 2 y( y + x ) (1)

    (a) Show that the substitution y = ux transforms equation (1) into the differentialequation d

    du

    x u u

    x =

    +( )2 1 (2)

    (b) Hence show that the general solution of equation (1) can be expressed as

    y = Ax Ax

    3

    21 −,

    for A an arbitrary constant.

    The curve C passes through the point (1, - 2).

    (c) Find the equation of C and the coordinates of all the points where C intersectsthe line y = x .

  • 8/16/2019 Alevel FP2

    43/70

    Further Pure FP2© Oxford University Press 2009

    First order differential equations

    Exam-style mark scheme

    4

    Question Solution Marks Number

    1 a dy y

    x x

    dx = 2 22cossin

    B1

    ln | y| = ln |sin 2 x | + ln c M3 y = k sin 2 x A1 (4)

    b - 2 = k sin p 6

    , then k = - 4 M1 A1

    y = - 4sin 2 x A1 ft (3)

    O

    –4

    y

    xr4 B1

    8

    2 a dy y

    x x

    dx − = +44

    2 1 B1

    ln | y - 4 | = 2 22 1

    − +( ) x dx M2 ln | y - 4| = 2 x - ln |2 x + 1| + ln c M1

    y ce x

    x − =

    +4

    2

    2 1 B1

    y ce x

    x = + +4

    2

    2 1 A1 (6)

    b 5 = 4 + c A1 c = 1

    y e x x

    = + +42

    2 1 A1 ft (2) 8

    3 a 11

    11 y y− − +

    M1 A1 (2)

    b 212

    dy y

    dx x − =

    B1

    11

    11 y y

    dx x

    dy− − +

    = M1

    ln ln ln y y

    x c−+ = +11 M2oe

    y y kx −+ =

    11 A1

    k = 1 since when y x = =( )2 13 A1 y - 1 = yx + x M1 y x

    x = +

    −11

    A1 (8) 10

  • 8/16/2019 Alevel FP2

    44/70

    © Oxford University Press 2009 Further Pure FP2

    4 a dydx

    x x

    y x ++

    =2 1 B1

    e e x

    x x

    dx x 22

    112

    1 2 1+ +∫ = = +ln( )

    M1 A1 (3)

    b y x ( )2121+ = x x dx c( )2

    121+ + M1

    y x x c( ) ( )212 2

    321 11

    3+ + += M1 A1

    c = 0 A1

    y = 13( x 2 + 1) A1ft

    O x

    2

    B2 (7)

    10

    5 a The integrating factor is e e x x dx

    x 2

    2 2(tan )

    lncos sec∫ = =− M1 ysec 2 x = (sec 2 x ) dx = tan x + c M1 A1 (3)

    b Substitute y = 12

    and x = p 4

    , c = 0 A1

    Particular solution:

    y x x x x

    x = = =tan

    secsin cos sin2 2

    2 M1 A1 (3) 6

    6 a dx

    dt kx x = −( )20 A1 (1)

    b dx x x ( )20 − = kdt M1

    120

    1 120 x x dx kt c+ −( ) = + B1 M1 A1 1

    20 20ln x

    x Kt C − = + M1 A1

    Substitute x = 10 and t = 1: K + C = 0 (1)

    Substitute x = 15 and t = 1.5: 3 2 3110

    K C + = ln (2) M1

    From (1) and (2): K = 110

    3ln and C = − 110 3ln A2

    Hence 120 20

    110

    1 3ln ln x x

    t − ( )= − M1 A1 (11)

    i.e. ln ln ln ln x x

    t t t 20

    1 2 3 1 9 9 1− ( ) ( )= − = − = −

    Therefore x x

    t

    209 1− = − as required

    c When t = 2, x x 20

    9− = Therefore x = 180 - 9 x , so x = 18 km 12

  • 8/16/2019 Alevel FP2

    45/70

    © Oxford University Press 2009 Further Pure FP2

    7 a Let u = x , then du = dx B1 Let dv = e x dx , v = e x

    xe x dx = xe x - e x dx = ( x - 1) e x + c M1 A1 (3)

    b dydx

    x x

    x x

    y+ =++ +21 1

    M1

    The integrating factor is e e x e

    x x

    dx x

    dx x

    ++

    + +

    = ∫

    = +

    21

    11

    1

    1( ) M1 A1 ( x + 1) e x y =

    x x +1( x + 1) e

    x dx = xe x dx M1 A1

    (x + 1)e x y = ( x - 1) e x + c so y x e c x e

    x

    x = −( ) +

    +( )1

    1 M1 A1

    10

    8 a dydx

    dudx

    u x = + M1

    x u x ux u x dudx + − =( ) 2 2 3 M1

    dudx

    u x = 2 2 A1 (3)

    b u- 2du = 2 x dx B1

    − = +1 2u x c M1 A1

    − = + x y x c2 B1

    y x x c

    = −+2

    A1 (5)

    c c = 0 A1

    y x

    = −1 A1oe

    O

    –2

    y

    x

    2

    B1 (3)

    11

  • 8/16/2019 Alevel FP2

    46/70

    © Oxford University Press 2009 Further Pure FP2

    9 a Substitute y = ux anddydx

    dudx

    u x = + in (I): M1

    x u x x ux ux ux x dudx

    2 2+ − = +( ) ( ) ( ) B1 du

    dx u u

    x = +2 1( ) A1 (3)

    b du

    u u

    dx

    x ( )+ =

    1

    2

    1 11u u

    du− +( ) = 2dx x B1 ln u - ln(u + 1) = 2ln x + ln A M1

    uu

    Ax + =12 M1

    u - Ax 2u = Ax 2 M1

    u Ax Ax

    =−

    2

    21

    Substitute u y x = : Bloe

    y Ax Ax

    =−

    3

    21 A1 (6)

    c − = −2 1 A

    A, then A = 2 A1

    y x x

    =−2

    1 2

    3

    2 A1

    Substitute y = x :

    x x x = −21 23

    2

    x (1 - 2 x 2) = 2 x 3 M1

    x (4 x 2 - 1) = 0 B1 (0, 0), (0.5, 0.5) and ( - 0.5, - 0.5) A2 (6) 15

  • 8/16/2019 Alevel FP2

    47/70

    Exam-style assessment

    Further Pure FP2© Oxford University Press 2009

    1. (a) Find the general solution of the differential equation dd

    dd

    2

    2 0 y

    x y x

    k + = , giving y in terms of x and the positive constant k .

    (b) Describe the behaviour of y as x increases, where x > 0

    2. An object is oscillating about a fixed point P . After t seconds the object is x metresfrom P where x is modelled by the differential equation

    dd

    2

    2 x t

    + 4 x = 0

    (a) Given that x = 3 when t = 0 and when t = 14

    p , solve this differential equation to

    show that x = 3cos 2 t + 3sin 2 t

    (b) Express x in the form R sin (2 t + a ), where R > 0 and 0 < a < 1

    2p are both exact.

    (c) Hence find the maximum possible distance of the object from point P .Give your answer in simplified surd form.

    3. (a) Find the general solution of the differential equation

    4 42

    2dd

    dd

    y x

    y x + + 5 y = 2cos x - 8sin x

    A curve C has equation which satisfies this differential equation.

    The curve crosses the x -axis when x = 0 and whe