AGUA Memoria Molécular y Clusters

download AGUA Memoria Molécular y Clusters

of 52

Transcript of AGUA Memoria Molécular y Clusters

  • 7/29/2019 AGUA Memoria Molcular y Clusters

    1/52

    Clatratos de agua y biomolculas

    Antonio Snchez Ruiz y Antonio Heredia

    Que la molcula de agua es nica es algo que aprenden muy pronto los estudiantes dequmica y biologa. Sus extraordinarias y singulares propiedades fsicas y qumicas hacende la misma un tema aparte. Su importancia a nivel estructural es enfatizada todava enmuchos trabajos de investigacin actuales; por otro lado, puede afirmarse que todavadesconocemos muchas caractersticas y propiedades de este lquido. Repasaremos en esteartculo algunas investigaciones recientes sobre la estructura de agrupaciones discretas demolculas de agua y sobre cmo stas ayudan a comprender mejor el efecto de solvatacinacuosa de biomolculas.

    Algunos datos termodinmicosEl calor de sublimacin del hielo a 0C es de 11,2 kcal/mol, de las cuales 1,4 representan laenerga cintica de las molculas en estado de vapor; las 9,8 kcal/mol restantes suponen laenerga requerida para romper los enlaces que mantienen unido al cristal de hielo. stos sonenlaces de hidrgeno casi exclusivamente, puesto que las interacciones de van der Waals,fundamentales en los cristales orgnicos, se pueden despreciar debido a su pequeacontribucin. Si comparamos este calor de sublimacin con el de fusin del agua,encontramos que este ltimo es casi 8 veces menor, lo que implica que la mayor parte de laestructura de enlaces de hidrgeno en el slido se mantiene tambin en el lquido. Adems,el alto calor especfico del agua lquida hay que atribuirlo a la dependencia con latemperatura de la energa de organizacin molecular, en lugar de a la energa de molculasindividuales. Clculos realizados con algunos modelos tericos dan como resultado unaenerga de los enlaces de hidrgeno ms apropiada para un cambio de conformacin quepara una reorganizacin de estos enlaces, por lo que se postula la existencia deagrupaciones discretas de molculas de agua unidas por enlace de hidrgeno, formandotrmeros, tetrmeros y pentmeros, fundamentalmente [Science, 271: 929-933, (1996)].

    Estructura de las agrupaciones (clusters)Para el dmero (H2O)2, la teora y los datos experimentales estn en buena concordancia;para el trmero, tetrmero y pentmero, clculos tericos ab-initio realizados con basesextensas, predicen estructuras planas en las que cada monmero acta como dador yaceptor de un solo enlace de hidrgeno, quedando el hidrgeno restante por encima odebajo del plano de la molcula. Para el heptmero y agrupaciones mayores, existe

    tendencia a formar estructuras tridimensionales (3D), siendo el hexmero una agrupacin ocluster intermedia entre una estructura cclica plana y una 3D. Estos clculos se venrespaldados por medidas llevadas a cabo mediante la espectroscopia de vibracin-rotacinde efecto tnel (VRT). Para las agrupaciones de trmero, tetrmero y pentmero, seencuentra que los niveles de energa siguen los patrones de un rotor simtrico (debido a lasimetra de la estructura cclica). En el caso del tetrmero y pentmero se determinaron dosconstantes rotacionales, suficientes para establecer sin ambigedades que las estructurasresponsables del espectro eran las predichas por los clculos. El estudio del espectro del

  • 7/29/2019 AGUA Memoria Molcular y Clusters

    2/52

    hexmero permiti sugerir unaestructura 3D tambin enbuena concordancia con losclculos efectuados [Science,271: 929-933, (1996)].

    Solvatacin acuosaUno de los objetivos msimportantes de estasinvestigaciones radica enelucidar los detalles delmecanismo de solvatacin, queen el caso del agua(hidratacin) es ms importanteque en ningn otro disolvente.La explicacin de la naturalezade esta solvatacin se ha

    resuelto en parte por el estudio de las agrupaciones o clusters que forma el agua.Recientemente se ha encontrado que al hidratar solutos hidrofbicos, las molculas de aguapasan de estar unidas por enlaces de hidrgeno y sin estructura fija, a formar icosaedrostruncados que envuelven la estructura o dominio molecular hidrofbico. Estas estructurasicosadricas estn formadas por pentgonos y hexgonos en una relacin 8:1. El pentmeroparece ser, pues, fundamental en los mecanismos de hidratacin de biomolculas, alproporcionar la curvatura necesaria para formar la "jaula" ordenada de molculas de aguaque rodean los dominios y estructuras ms apolares, lo que se conoce como estructura declatrato. La figura adjunta muesta una representacin esquemtica de una estructura declatrato alrededor de cadenas hidrocarbonadas apolares.

    Estudios de rayos X han demostrado que la protena crambina tiene hendidurashidrofbicas en las que 16 molculas de agua de hidratacin se organizan en una cpsula depentgonos concatenados que rodea al grupo metilo de residuos de leucina. Uncomportamiento similar se ha observado en otras protenas y en polmeros de DNA y, amedida que se incrementa la hidrofilia del soluto, existe una tendencia muy acusada aformar anillos de 6 y 7 miembros (la estructura 3D de stos evita que las molculas de aguase ordenen mucho y se cree una situacin energticamente desfavorable). Esto proporcionauna explicacin estructural de por qu el cambio de entropa que determina el efectohidrofbico es proporcional a la superficie del soluto (a mayor superficie encerrada, mayororden que se produce en el disolvente y menor es la entropa de la disolucin).Sin embargo, las agrupaciones icosadricas de molculas de agua descritas distan mucho de

    ser regulares, dado que al estar rodeadas por molculas de agua libres, las continuas yrpidas fluctuaciones de stas en el seno del lquido hacen que se produzcan cambiosestructurales constantes. Al tener el clatrato de disolvente un extremo abierto, las molculasde esa zona son ms susceptibles de ser arrancadas que las de una zona cerrada, por estarunidas con menos enlaces a la estructura. Por esta razn, la cadena hidrofbica de unamolcula anfiptica, incapaz de generar una estructura completa de molculas de agua a sualrededor, no tiene las mismas propiedades que una cadena hidrocarbonada totalmenteapolar. Es preciso destacar el comportamiento distinto de las molculas de agua que

  • 7/29/2019 AGUA Memoria Molcular y Clusters

    3/52

    hidratan la superficie externa de muchas protenas, las cuales construyen una matrizflexible que posibilita que las cadenas polipetdicas respondan de un modo eficaz al entornoqumico durante el plegamiento de la protena, durante los procesos de interaccin protena-protena o en la interaccin enzima-sustrato.Estos mecanismos tambin pueden explicar la anmala capacidad calorfica asociada con el

    efecto hidrofbico (al diluir un soluto parcial o totalmente apolar en agua, la capacidadcalorfica de la disolucin aumenta respecto al agua sola) puesto que la formacin de estasestructuras alrededor del soluto supone un aumento de la energa necesaria para aumentar latemperatura de la disolucin, al tener que romperse estructuras con ms cohesin que en ellquido puro.

    Antonio Snchez Ruiz es alumno de 3 de Qumicas y Antonio Heredia es Profesor Titular

    de Bioqumica en la Universidad de Mlaga

    Reduction of Physiological Effects ofAlcohol Abuse

    By Substitution of a Harmless AlcoholSurrogate

    Created by Application of a Spin Field(c) Robert Neil Boyd

    Robert Neil Boyd, Ph. D.Presented for consideration to:The National Institute of Health, Alcohol Abuse Center

    Abstract:

    It has been found through empirical experimentations that the spin field causes various properties ofa vast array of materials to be transferred, with varying degrees of intensity and various degrees ofimpermanency, into other various materials. This is most dramatically demonstrated whenapplication of the spin field transfers the inebriating properties of alcoholic beverages into pure de-ionized water. When this treated water is assayed, it is found to be chemically pure water, yet, whenconsumed, it has all the properties of an alcoholic beverage, with none of the damaging sideeffects, such as cellular damages, hangover, or a tendency to generate obesity. We find that thisresult is related to the memory property of water, and indeed to the memory of space itself, whichmemory is transferred by application of the spin field. It is suggested that further experimentationand clinical trials should be performed to investigate the possibility of applications of spin-alteredwater in alcohol abuse programs.

    Theory:

    HI HIHI......

  • 7/29/2019 AGUA Memoria Molcular y Clusters

    4/52

    The spin field is described rigorously by R. M. Kiehn: [1] [2] [3] From a topological viewpoint,Maxwell's electrodynamics indicates that the concept of chirality is to be associated with a third ranktensor density of Topological Spin induced by the interaction of the 4 vector potentials {A, phi } andthe field excitations (D, H). The distinct concept of helicity is to be associated with the third ranktensor field of Topological Torsion induced by the interaction of the 4 vector potentials and fieldintensities (E, B). The 4-divergence of the topological Spin is equal to the first Poincare Invariant ofclassical electromagnetism. The 4-divergence of the topological Torsion is equal to the secondPoincare Invariant. On space-time domains where either Poincare Invariant is zero, the closedintegrals of the Spin (respectively, Torsion) have values whose ratios are rational. That is, both theobjects of topological torsion and topological spin can be quantized by the deRham theorems.

    However, when the 4-divergence of Topological Torsion is not zero, the second Poincare invariant,E B, is not zero, and parity is not conserved. New time dependent wave solutions to the classicalhomogeneous Maxwell equations in the vacuum have been found. These waves are not transverse;they exhibit both torsion and spin; they have finite magnetic helicity, a non-zero Poynting vector, E xH and a non zero second Poincare invariant, E dot B.

    Two, four component, rank 3 tensors, constructed on topological grounds, in terms of the Fields andPotentials, are used to define the concepts of Torsion and Spin, even in domains with plasmacurrents. The divergence of the spin pseudo vector generates the Poincare invariant equivalent to

    the Lagrangian of the field,

    B dot H -D dot E -(A dot J - rho phi).

    The divergence of the Torsion pseudo vector generates the second Poincare invariant, E dot B. ThePoincare invariants have closed integrals, which are deformation invariants, and therefore can beused to define deformable coherent structures in a plasma. When the second Poincare invariant isnon-zero, there can exist solutions that are not time-reversal invariant.

    Put in simpler terms, the spin field can be described as a series of propagating helical vorticesobserved as carrying a dense interstitial flux of an array of particles, possibly ranging down to thesub-quantum, in size. [4] This flux of particles and the spin field helices act together, in some notwell understood manner, to temporarily copy the physical properties of substances into othersubstances. It is this flux of sub-quantum particles, which seems to be responsible for the copying

    ability of the spin f ield.

    In relation to positively charged particles, such as the proton, the motion of the spin field energy isdirected from the periphery to the center. For negatively charged particles, the field is directed fromthe center to the periphery. A spin field disturbance moves along a helical path in space, with apropagation velocity which is typically, significantly less than the speed of light. Propagation velocityis determined by the longitudinal moment of the impulse, and those parameters of the environmentwhich the change the density of the winding of the helix of the spin field. For the spin field createdby the spin field generator, as designed by A. A. Shpilman in 1995, [5] the longitudinal momentumof the spin field impulse is equal to the impulse of a proton, with an energy of 300 electron-volts inair, and 3 electron-volts in ferrite. The spin field helices are very sensitive to the magnitude anddirection of the magnetic vector potential. The helices are guided in the direction of the vectorpotential, but not in the direction of the magnetic field! Spin fields of protons are guided in the

    direction of the Poynting vector. The space between the spin field helices is saturated with particles,which are similar to the neutrino, having energy at rest of an electron-volt or less. These particlesare apparent as threads, composing closed toroidal knot-like structures, having various restmasses, topologies, characteristic sizes, and a broad spectrum of resonant frequencies. Apparently,the rules of gas dynamics apply to the interstitial particles associated with the spin field helix.

    The spin field and the torsion field have only recently begun to be investigated in this country.However, spin and torsion fields have been studied globally for many years. These studies havebeen particularly intensive in Russia, where the spin and torsion fields have been investigated for

  • 7/29/2019 AGUA Memoria Molcular y Clusters

    5/52

    some 50 years. There is now a fairly substantial literature on the spin and torsion fields by someprominent physics researchers, such as H. Kleinert,[6]

    R. M. Keihn, [7] [8] [9] V. Poponin [10], J. Sarfatti [11] [12] [13], A. Jadczyk [14], A. A. Shpilman [15],A. Shipov [16], B. Page [17], A. Frolov [18], S-P Sirag [19], A. Akimov [20], T. Smith [21], and A.Mishin [22], to name only a few. For example, here are some excerpts from an article by Yu. V.Nachalov and A. N. Sokolov. They link a variety of related and unusual observations, over a 40 year

    period, to spin and torsion fields:

    The experimental results obtained by various researchers in the period 1950-1990 are discussed.Since all experimental results under consideration could not be explained in the framework ofexisting theories, these results were placed under the category of "experimentally observedphenomena." It is shown that all of the experiments considered here, have demonstrated amanifestation of spin-torsion interactions.

    Over the course of the 20th century, various investigations in different countries, representing avariety of professional interests, repeatedly reported the discovery of unusual phenomena thatcould not be explained in the framework of existing theories. Since these authors could notunderstand the physics of the observed phenomena, they were forced to give their own names tothe fields, emanations and energies responsible for the creation of these phenomena.

    For instance, N. A. Kozyrev's "Time Emanation", W. Reich's "O-Emanation" or "Orgone", M. R.Blondlot's "N-Emanation", I. M. Shakhparonov's "Mon-Emanation", A. G. Gurvich's "MitogeneticEmanation", A. L. Chizhevsky's "Z-Emanation", A. I. Veinik's "Chronal field" and "M-field", A. A.Deev's "D-field", Yu. V. Tszyan Kanchzhen's "Biofield", H. Moriyama's "X-agent", V. V. Lensky's"Multipolar Energy", "Radiesthesietic Emanations", "Shape Power", "Empty Waves", and"pseudomagnetism", H.A.Nieper's "gravity field energy", T.T.Brown's "electrogravitation", "fifthforce", "antigravitation", and "free energy". This list can easily be continued...

    Experiment:

    Rather than involving ourselves exclusively with studies of the mathematical theory of the spin andtorsions field, or getting involved with the more esoteric energetic properties of spin and torsionfields, we have initiated a series of empirical experiments designed to verify the properties of the

    spin field, and its effects on organic living matter, and on inorganic materials. We have beenparticularly interested in observations, which have shown that the spin field has the remarkableproperty of copying certain attributes of materials into other materials [23], and laboratory resultswhich have shown that application of the spin field causes increases in the organization density ofmaterials and structures, for example, hardening stainless steel by some 30% beyond all knownhardening techniques [24].

    Our spin field generation experimental apparatus has been imported from Russia, with thegenerous assistance of A. A. Shpilman. (See patent, Republic of Kazakhstan N5366, G01N23/00,Bull.N4, 15.10.97)

  • 7/29/2019 AGUA Memoria Molcular y Clusters

    6/52

    We have recently obtained a new, Model G, spin field generator:

    This is the device we have been using in our most recent experiments. It has a more stable andpowerful output than the previous models. There is also a three phase model, with the schematic as

    shown:

  • 7/29/2019 AGUA Memoria Molcular y Clusters

    7/52

    At this stage in our researches, the three phase device is not designated as a required apparatus,as the model G spin field generator has proven adequate.

    We set up an experiment to test whether the transference of the inebriating properties of alcohol,into water, could be accomplished, as claimed by some of the Russian investigators. Very simply,we placed a food-grade plastic-coated paper container filled with alcohol, on the vertical axis abovea container filled with pure de-ionized water. We arranged the spin field generator on the verticalaxis centered above both containers as in the diagram below, with the generator at G, the alcohol at

    R, the water at W, where the spin field is denoted by the light blue cone, A.

  • 7/29/2019 AGUA Memoria Molcular y Clusters

    8/52

    We irradiated the stack of containers for the recommended 10 minutes. We tested the water forpurity. It was exactly as when we had put it in the container. We then drank the water. We wereastounded to discover that the spin field treated water had an intoxicating effect! As the writer isinordinately sensitive to alcohol, he was surprised to discover that there were no observable sideeffects. This result was later duplicated with several volunteer test subjects, to ensure the objectivityof the results. These volunteers reported no hangover symptoms after having consumed enough ofthe water to be the equivalent of a respectable "shot" of an 80 proof liquor. Based on these limitedtrials, in this simple experimental sequence, we have determined that the inebriating properties ofthe alcohol were indeed transferred into the water, where the energetic signature of the alcohol wasstored, as though a memory, with none of the toxic effects of actual alcohol.

    Discussions of Results:

    While this transference of the inebriating quality of alcohol into pure water might seem astounding,water memory is well known in the practices of homeopathy, but it is poorly understood how thehomeopathic memory of water functions. Brian Josephson, the Nobel Laureate, in a letter to theNew Scientist, http://www.newscientist.com/ns/971101/letters.html (expired link) says: "... advocatesof homeopathic remedies attribute their effects, not to molecules present in the water, but tomodifications of the water's structure. Simple-minded analysis may suggest that water, being a fluid,cannot have a structure of the kind that such a picture would demand. But cases such as that of

    liquid crystals, which while flowing like an ordinary fluid can maintain an ordered structure overmacroscopic distances, show the limitations of such ways of thinking. There have not, to the best ofmy knowledge, been any refutations of homeopathy that remain valid after this particular point istaken into account. ..."

    According to the Encyclopaedia Britannica, "... The water molecule is not linear but bent in a specialway. As a result, part of the molecule is negatively charged and part positively charged. It is thus ahighly polar molecule. Hydrogen atoms in water molecules are attracted to regions of high electrondensity and can form weak linkages, called hydrogen bonds, with those regions. This means thatthe hydrogen atoms in one water molecule are attracted to the non-bonding electron pairs of theoxygen atom on an adjacent water molecule. As a result, water molecules associate strongly. In anice crystal, the association is a highly ordered but loose structure.http://www.innerx.net/personal/tsmith/Sets2Quarks5.html

    When the ice melts, this orderly arrangement breaks down partially and the molecules pack moreclosely together. This makes the liquid denser than the solid, which is why ice forms on top of liquidwater. The associative force, however, is still strong enough to prevent water molecules fromseparating completely even at room temperature. This continued association in the liquid stateaccounts for the high boiling point of water. The structure of liquid water is believed to consist ofaggregates of water molecules that form and re-form continually. This short-range order, as it iscalled, accounts for other unusual properties of water, such as its high viscosity and surfacetension. The polarity of the water molecule plays a major part in the formation of aqueoussolutions...."

    We believe, as T. Smith, that water retains some crystalline properties, even beyond the boilingpoint. Apparently, due to this property of water, Jacques Benveniste, Yolene Thomas, and othersclaim to have established experimentally a "Memory of Water". http://www.oxytherapy.com/mail-

    archive/aug96/103.html (expired link).

    According to Keith Johnson, in physics/9807058,http://xxx.lanl.gov/abs/physics/9807058clusters ofwater molecules exist optimally in certain Magic Numbers and in configurations such as Buckyballpentagonal dodecahedral structures with a closed, ideally icosahedral symmetry formed by 20hydrogen-bonded water molecules, with their oxygen atoms at the vertices of 12 concatenatedpentagons and with 10 free exterior hydrogen atoms. Coupling of these delocalized oxygen orbitalswith the low-frequency cluster vibronic modes via the dynamical Jahn-Teller effect may make waterbuckyballs catalytic electron reservoirs and oxygenates in fuel combustion and active agents inbiological systems. The broad electronic and unique low-frequency vibronic spectra of water

    http://www.innerx.net/personal/tsmith/Sets2Quarks5.htmlhttp://xxx.lanl.gov/abs/physics/9807058http://xxx.lanl.gov/abs/physics/9807058http://xxx.lanl.gov/abs/physics/9807058http://www.innerx.net/personal/tsmith/Sets2Quarks5.htmlhttp://xxx.lanl.gov/abs/physics/9807058
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    9/52

    buckyballs may explain certain diffuse interstellar bands (DIBs) and far-infrared, ultraviolet and x-raycosmic background radiation.

    D. L. Marrin http://www.zynet.co.uk/imprint/Tucson/4.htm- Water's memory notes that thetetrahedral Hydrogen bonds of water are not 'fixed' in time and space. Even in frozen water Ice, thetetrahedral bonds from Oxygen to Oxygen are each half covalent and half Hydrogen, unlike thepurely covalent Carbon-Carbon tetrahedral bonds of Diamond. The tetrahedral Hydrogen water

    bonds are able to re-shuffle at the rate of about a trillion times per second. The manner in which thisre-shuffling occurs is described by a probability function and may be represented by a randombinary network, similar to that of a computer. From the perspective of cybernetics, the Hydrogenbond network in water may be considered a self-organizing system that behaves chaotically. Watermolecules that are in contact with other surfaces (e.g. air) or with solutes (e.g. salts, organicmolecules) arrange themselves into a variety of geometries that impart changes to the network. Inthis manner, water is capable of discerning 'self'' from 'non-self' and interacting with its environment.Recent findings suggest that the breaking and forming of Hydrogen bonds betweenmacromolecules and surrounding water molecules substantially influences the 3-D structure ofproteins and nucleic acids.

    According to Physics News Preview http://www.aip.org/physnews/previewand Physics NewsUpdate (Number 410) of the AIP, Isaacs, Shukla, Platzman, Hamann, Barbiellini, and Tulk, in the 18

    January 1999 issue of Physical Review Letters, "... [study] the properties of many Compton-scattered photons ... to measure ... [the] ... ground-state electronic wavefunction [of ice] ... Theground-state wavefunction in ice indicates that there is a quantum-mechanical overlap of theelectrons on neighboring H2O molecules, i.e., that the hydrogen bond is partly covalent. ... the weakhydrogen bonds between H2O molecules in ice get part of their identity from stronger covalentbonds within the H2O molecule. ... The two relatively strong electronic bonds that make up the H2Omolecule itself are represented in the figure by the darker yellow clouds ... While the intermolecularbonds, or hydrogen bonds, are primarily electrostatic in nature, in which the molecules are attractedby means of separated electric charges, [they] found that the bond is in part quantum mechanical,or covalent in nature, in which electrons are spread out and shared between atoms. The quantum-mechanical or wavelike aspect of this bond is depicted by the lighter yellow clouds.

    ... Figure courtesy of Bell Labs/Lucent Technologies... Delocalization also plays an important role indetermining the behavior of superconductors and other electrically conducting materials atsufficiently low temperatures. ... ".

    http://www.zynet.co.uk/imprint/Tucson/4.htmhttp://www.zynet.co.uk/imprint/Tucson/4.htmhttp://www.aip.org/physnews/previewhttp://www.zynet.co.uk/imprint/Tucson/4.htmhttp://www.aip.org/physnews/preview
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    10/52

    In a March 1996 seminar held at Cranfield University in Bedford, U. K., it was determined thatapplications of radio frequency E/M propagations to water result in changes in the rate of formationof scaling in plumbing by "hard water". It was demonstrated that this behavioral change, resultingfrom application of radio frequency propagations to water, persisted for as long as five days afterthe water had been exposed to low frequency R.F. This observation has been attributed to thememory of water. http://www.aewt.com/tech/science.html(Also see: "Influence of Ca+ in BiologicalEffects of Direct and Indirect ELF Magnetic Field Stimulation" from Electro- and Magnetobiology,Journal of the International Society for Bioelectricity, Volume 20 Issue 3, 2001, ISSN: 1061-9526,http://www.bion.si/research/Ca.htm

    To further explain the remarkable ability of the spin field generator to transfer properties betweenmaterials, we shall invoke the experimental results of V. Poponin, which show that even thevacuum, space itself, has this property of having a memory. http://www.rialian.com/rnboyd/dna-phantom.htm

    V. Poponins experiments at Lebedev University in Moscow, and at the Heart-Math Institute inArizona, have shown that the electromagnetic signature of a hermetically sealed sample of DNA willpersist in a vacuum chamber for periods as long as 30 days, after the sample is removed.

    According to Poponin, the memory of the vacuum can be described as a localized excitation in aFermi-Pasta-Ulam lattice. The FPU lattice is the Hamiltonian of an n-dimensional system of loosely

    coupled (anharmonic) oscillators.

    These experimental data suggest that localized excitations of DNA phantom fields are long livingand can exist in non-moving and slowly propagating states. This type of behavior is distinctlydifferent from the behavior demonstrated by other well known nonlinear localized excitations suchas solitons, which are currently considered to be the best explanation of how vibrational energypropagates through the DNA.

    It is a remarkable and striking coincidence that a new class of localized solutions to anharmonicFermi-Pasta-Ulam lattice (FPU), Nonlinear Localized Excitations (NLE), which have been recentlyobtained, demonstrate very similar dynamical features to those of the DNA phantom. Nonlinearlocalized excitations predicted by the FPU model also have unusually long life-times. Furthermore,they can exist in both stationary and slowly propagating forms. In Figure 3, one example of a NLE isshown which illustrates three stationary localized excitations generated by numerical simulation

    using the FPU model.

    It is worthy to note that this NLE has a surprisingly long life-time. Here, we present only one of themany possible examples of the patterns for stationary excitations which are theoretically predicted.Slowly propagating and long lived NLE are also predicted by this theory. Note that the FPU modelcan successfully explain the diversity and main features of the DNA phantom dynamical patterns.This model is suggested as the basis for a more general nonlinear quantum theory which mayexplain many of the observed subtle energy phenomena and eventually could provide a physicaltheory of consciousness.

    According to our current hypothesis, the DNA phantom effect may be interpreted as a manifestationof a new physical vacuum substructure which has been previously overlooked. It appears that thissubstructure can be excited from the physical vacuum in a range of energies close to zero energy

    provided certain specific conditions are fulfilled which are specified above.

    Furthermore, one can suggest that the DNA phantom effect is a specific example of a more generalcategory of electromagnetic phantom effects. This suggests that the electromagnetic phantomeffect is a more fundamental phenomenon which can be used to explain other observed phantomeffects including the phantom leaf effect and the phantom limb.

    From this, we think that the spin field is acting as a carrier of the non-linear excitations of thevacuum, by way of the previously described species of sub-quantum particles in the interstitialspaces internal to the spin field helices. What we are saying then, is that due to a memory

    http://www.aewt.com/tech/science.htmlhttp://www.aewt.com/tech/science.htmlhttp://www.bion.si/research/Ca.htmhttp://www.rialian.com/rnboyd/dna-phantom.htmhttp://www.rialian.com/rnboyd/dna-phantom.htmhttp://www.rialian.com/rnboyd/dna-phantom.htmhttp://www.aewt.com/tech/science.htmlhttp://www.bion.si/research/Ca.htmhttp://www.rialian.com/rnboyd/dna-phantom.htmhttp://www.rialian.com/rnboyd/dna-phantom.htm
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    11/52

    mechanism similar to the description by V. Poponin of the memory of the vacuum, that the spin fieldis transporting the actual particles that comprise the FPU lattice, into the volume of effect the spinfield, thereby transporting the memory of the vacuum which resided in that first location, into thevolume and any materials which are present at the second location.

    Thus, we feel that the spin field is duplicating the electromagnetic 4-vector patterning, which wascontained in the volume containing the alcohol, into the volume containing the water, where it

    should remain for some time. We intend to determine at a later date, the latency of the memorymedium, which is imparted by the spin field into water. At this time, our preliminary results haveshown that the memory thus imparted to the water will last for approximately 14 days.

    The most important application, we feel, for this remarkable property of spin field memory transfer,is in the treatment of alcohol abusers. Because, although the alcohol memory imparted into thewater structure has the capacity to cause inebriation, at the same time, preliminary sample testinghas shown that the water so treated does not engender any hangover. This is obvious, since weknow that the hangover is a by-product of the breakdown of the alcohol by the systems of thephysical body, while pure water has no such effect. Additionally, because this is just pure water,prolonged and dense consumption of spin field treated water will apparently not result in anyphysical damage to the body systems, such as jaundice, which can result from alcohol toxicity.There is no physical toxicity in the physical body related to ingestion of standard levels of pure

    water.

    We are concerned however, whether the toxic properties of the alcohol can be transferred in anydegree, however minute, into the water, by application of the spin field. Because no hangoverresults from the treated water, and because the volunteers have stated that the alcohol-likeexhilarations ceased in about an hour, relative to the normal eight hours which would be expectedin the case of the consumption of actual alcohol, we think that there will probably be no toxicityfound due to the treated water. Also, because it is just water, prolonged consumption of spin fieldtreated water should not be expected to result in any increase in obesity. We also expect that thecommon symptom of desiccation in alcohol abusers will be greatly alleviated, if not eliminated,when spin field treated water is substituted for actual alcohol. We expect incidences ofhospitalization due to the toxic effects of alcohol on the human physiology will be greatly reducedwhen this spin field derived ersatz alcohol is used to replace actual alcohol. We expect that theoverall health of alcohol abusers will be substantially improved when spin field treated waterreplaces alcohol consumption. This regimen would then reduce the concomitant economic andemotional burdens on the State, and the families of alcohol abusers, while prolonging the lifeexpectancy of abusers who use the water substitute.

    We think that it is possible that the treated water will alleviate some of the more dramatic effects ofalcohol detoxification. We think that it is also possible that the treated water may eliminate or reducealcohol dependencies, particularly physical dependencies. These two possibilities should beexamined experimentally.

    We suggest that a series of standard clinical trials should be performed to verify these variouspreliminary results of consumption of spin field treated water in alcoholics and to substantiate thepositive potentials for health improvements which may result by this application of the spin field inthe treatment of alcoholics. We further suggest that the spin field and its potential for additional

    medical applications should undergo intensive experimental study.

    Special thanks to Tony Smith for providing many of the references on water memory.

    1. R. M. Keihn "Chirality and Helicity vs. Topological Spin and Topological Torsion"http://www22.pair.com/csdc/pd2/pd2fre52.htm

    2. R. M. Keihn "Electromagnetic Waves in the Vacuum with Torsion and Spin"http://www22.pair.com/csdc/pd2/pd2fre54.htm

    http://www22.pair.com/csdc/pd2/pd2fre52.htmhttp://www22.pair.com/csdc/pd2/pd2fre52.htmhttp://www22.pair.com/csdc/pd2/pd2fre54.htmhttp://www22.pair.com/csdc/pd2/pd2fre54.htmhttp://www22.pair.com/csdc/pd2/pd2fre52.htmhttp://www22.pair.com/csdc/pd2/pd2fre54.htm
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    12/52

    3. R. M. Keihn "Spinors, Minimal Surfaces,Torsion,Helicity,Chirality,Spin, Twistors,Orientation, Continuity, Fractals, Point Particles, Polarization, the Light Cone and the HopfMap."http://www22.pair.com/csdc/car/carfre75.htm

    4. A.A.Shpilman ([email protected]) "Physical properties of axion (spin) fields"http://www.pmicro.kz/MISC/UFL/Almanach/N1_98/properties.htm

    5. A. A. Shpilman "Spin-field Generator"http://www.pmicro.kz/MISC/UFL/Almanach/N3_95/S4_1a.htm

    6. H. Kleinert "Theory of Fluctuating Nonholonomic Fields and Applications: StatisticalMechanics of Vortices and Defects and New Physical Laws in Spaces with Curvature andTorsion in: Proceedings of a NATO Advanced Study Institute on Formation and Interactionsof Topological Defects at the University of Cambridge, England, Plenum Press, New York,1995"http://xxx.lanl.gov/abs/cond-mat/9503030

    7. R. M. Keihn "Longitudinal, Transverse, and Torsional Waves"http://www22.pair.com/csdc/car/carfre41.htm

    8. R. M. Keihn "Links, Knots, and Braids" http://www22.pair.com/csdc/car/carfre63.htm9. R. M. Keihn "Dynamical Phase Transitions in Fluids"

    http://www22.pair.com/csdc/car/carfre43.htm

    10. V. Poponin "The DNA PHANTOM EFFECT: Direct Measurement of A New Field in theVacuum Substructure"DNA Phantom Effect

    11. J. Sarfatti "Star Gate AnholonomicTorsion Geometrodynamics Part I. The Classical Limit"http://stardrive.org/Jack/algebra.pdf

    12. J. Sarfatti "Vigier 2000 Conference" http://www.stardrive.org/vigier2000.shtml

    13. Sarfatti, Corum "Anholonomic Electrodynamics" http://www.stardrive.org/Jack/corum.pdf14. R. Coquereaux, A. Jadczyk "CONFORMAL THEORIES, CURVED PHASE SPACES,

    RELATIVISTIC WAVELETS AND THE GEOMETRY OF COMPLEX DOMAINS." CPT-89/P-2302, Sep 1989. 43pp. Published in Rev.Math.Phys. 2:1-44, 1990.http://www.cassiopaea.org/quantum_future/conformal_theories.htm

    15.A. A. Shpilman "Excitation of "Axion (Spin) Field" in Water"http://www.pmicro.kz/MISC/UFL/Almanach/4n99/WaterA.htm

    16.A. Shipov "Torsion Field Theory" http://stardrive.org/Jack/Shipov.pdf

    17. B. [email protected] "Cartan's theory of forms impotent for statistical

    mechanics of defects" from E-mail posted to closed list.

    18.A. Frolov "Comments on Dr. Shipov's paper about torsion fields, 2001"http://www.faraday.ru/axion.html

    19. S.-P. Sirag "Torsion in Superstring Theory" http://stardrive.org/Jack/sps17.pdf

    20. A. Akimov, V. Tarasenko, "Models of Polarized States of the Physical Vacuum and TorsionFields," Sov. Phys. J., p.214, March 1992.

    http://www22.pair.com/csdc/car/carfre75.htmhttp://www22.pair.com/csdc/car/carfre75.htmhttp://www22.pair.com/csdc/car/carfre75.htmhttp://www.pmicro.kz/MISC/UFL/Almanach/N1_98/properties.htmhttp://www.pmicro.kz/MISC/UFL/Almanach/N3_95/S4_1a.htmhttp://www.pmicro.kz/MISC/UFL/Almanach/N3_95/S4_1a.htmhttp://xxx.lanl.gov/abs/cond-mat/9503030http://xxx.lanl.gov/abs/cond-mat/9503030http://www22.pair.com/csdc/car/carfre41.htmhttp://www22.pair.com/csdc/car/carfre63.htmhttp://www22.pair.com/csdc/car/carfre63.htmhttp://www22.pair.com/csdc/car/carfre43.htmhttp://www.rialian.com/rnboyd/dna-phantom.htmhttp://www.rialian.com/rnboyd/dna-phantom.htmhttp://stardrive.org/Jack/algebra.pdfhttp://www.stardrive.org/vigier2000.shtmlhttp://www.stardrive.org/vigier2000.shtmlhttp://www.stardrive.org/Jack/corum.pdfhttp://www.stardrive.org/Jack/corum.pdfhttp://www.cassiopaea.org/quantum_future/conformal_theories.htmhttp://www.cassiopaea.org/quantum_future/conformal_theories.htmhttp://www.pmicro.kz/MISC/UFL/Almanach/4n99/WaterA.htmhttp://www.pmicro.kz/MISC/UFL/Almanach/4n99/WaterA.htmhttp://stardrive.org/Jack/Shipov.pdfmailto:[email protected]:[email protected]://www.faraday.ru/axion.htmlhttp://stardrive.org/Jack/sps17.pdfhttp://www22.pair.com/csdc/car/carfre75.htmhttp://www.pmicro.kz/MISC/UFL/Almanach/N1_98/properties.htmhttp://www.pmicro.kz/MISC/UFL/Almanach/N3_95/S4_1a.htmhttp://xxx.lanl.gov/abs/cond-mat/9503030http://www22.pair.com/csdc/car/carfre41.htmhttp://www22.pair.com/csdc/car/carfre63.htmhttp://www22.pair.com/csdc/car/carfre43.htmhttp://www.rialian.com/rnboyd/dna-phantom.htmhttp://stardrive.org/Jack/algebra.pdfhttp://www.stardrive.org/vigier2000.shtmlhttp://www.stardrive.org/Jack/corum.pdfhttp://www.cassiopaea.org/quantum_future/conformal_theories.htmhttp://www.pmicro.kz/MISC/UFL/Almanach/4n99/WaterA.htmhttp://stardrive.org/Jack/Shipov.pdfmailto:[email protected]://www.faraday.ru/axion.htmlhttp://stardrive.org/Jack/sps17.pdf
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    13/52

    21. T. Smith "3-form A /\ dA - Affine Torsion"http://www.innerx.net/personal/tsmith/topolophys.html#TorPhys

    22.A. M. Mishin "The Ether Model as Result of the New Empirical Conception"http://alexfrolov.narod.ru/mi-paper.htm

    23.A. A. Shpilman [Ibid] "Physical properties of axion (spin) fields"http://www.pmicro.kz/MISC/UFL/Almanach/N1_98/properties.htm

    24.A. A. Shpilman "Effect of Axion radiation on hardness of metal"http://www.pmicro.kz/MISC/UFL/Almanach/Exp/hardness.htm

    Home Physics Spirit and Consciousness e.e. cummings Artwork Harmony Dynamics PenetratingInsight Health Miscellaneous [email protected]

    The Saykally Group

    http://www.innerx.net/personal/tsmith/topolophys.html#TorPhyshttp://www.innerx.net/personal/tsmith/topolophys.html#TorPhyshttp://alexfrolov.narod.ru/mi-paper.htmhttp://alexfrolov.narod.ru/mi-paper.htmhttp://www.pmicro.kz/MISC/UFL/Almanach/N1_98/properties.htmhttp://www.pmicro.kz/MISC/UFL/Almanach/Exp/hardness.htmhttp://www.pmicro.kz/MISC/UFL/Almanach/Exp/hardness.htmhttp://www.rialian.com/rnboyd/index.htmhttp://www.rialian.com/rnboyd/index.htmhttp://www.rialian.com/rnboyd/physics.htmhttp://www.rialian.com/rnboyd/spirit.htmhttp://www.rialian.com/rnboyd/eecummings.htmhttp://www.rialian.com/rnboyd/eecummings.htmhttp://www.rialian.com/rnboyd/artwork.htmhttp://www.rialian.com/rnboyd/harmonydynamics.htmhttp://www.rialian.com/rnboyd/harmonydynamics.htmhttp://www.rialian.com/rnboyd/insight.htmhttp://www.rialian.com/rnboyd/insight.htmhttp://www.rialian.com/rnboyd/health.htmhttp://www.rialian.com/rnboyd/misc.htmhttp://www.rialian.com/rnboyd/misc.htmmailto:[email protected]://www.cchem.berkeley.edu/~rjsgrp/personnel/grpdir.htmlhttp://www.cchem.berkeley.edu/~rjsgrp/personnel/grpdir.htmlhttp://www.innerx.net/personal/tsmith/topolophys.html#TorPhyshttp://alexfrolov.narod.ru/mi-paper.htmhttp://www.pmicro.kz/MISC/UFL/Almanach/N1_98/properties.htmhttp://www.pmicro.kz/MISC/UFL/Almanach/Exp/hardness.htmhttp://www.rialian.com/rnboyd/index.htmhttp://www.rialian.com/rnboyd/physics.htmhttp://www.rialian.com/rnboyd/spirit.htmhttp://www.rialian.com/rnboyd/eecummings.htmhttp://www.rialian.com/rnboyd/artwork.htmhttp://www.rialian.com/rnboyd/harmonydynamics.htmhttp://www.rialian.com/rnboyd/insight.htmhttp://www.rialian.com/rnboyd/insight.htmhttp://www.rialian.com/rnboyd/health.htmhttp://www.rialian.com/rnboyd/misc.htmmailto:[email protected]://www.cchem.berkeley.edu/~rjsgrp/personnel/grpdir.html
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    14/52

    Professor Richard J. [email protected]

    College of Chemistry, University of California, Berkeley

    Saykally Group Research ProjectsActive projects include nonlinear chemical imaging

    nanomicroscopy(NCIN) of nanostructured materials,

    polymers, and biological systems, terahertz laser

    spectroscopy of water clusters, infrared cavity

    ringdown spectroscopy of ions and clusters,

    synchrotron X-ray spectroscopy of liquid surfaces,

    chemical reactions at liquid surfaces, and singlephoton counting IR emission spectroscopy of PAH

    molecules. We continue to focus on problems

    involving liquid water and its surface.

    Updated July 28 2002Questions/suggestions please email:[email protected]

    Far Infrared Vibrational Rotational

    Tunnelling Spectroscopy (FIR-VRT)

    This is a diagram depicting one of the two far-infrared spectrometers in our lab. Recentwork has focused on Van der Waals clusters, and recent discoveries include water tetramer,pentamer, and hexamer bands.

    mailto:[email protected]://www.cchem.berkeley.edu/http://www.berkeley.edu/http://www.cchem.berkeley.edu/~rjsgrp/research/research.htmlmailto:[email protected]:[email protected]:[email protected]:[email protected]://www.cchem.berkeley.edu/http://www.berkeley.edu/http://www.cchem.berkeley.edu/~rjsgrp/research/research.htmlmailto:[email protected]
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    15/52

    Recent Advances in cluster detection are in part due to the introduction of the pulsed slitvalve shown below. A four inch long .005" wide slit is operated in pulsed mode by drivinga poppet with three General Valve solenoids at up to 50Hz. Laser light from a mid or far-infrared laser is multi-passed in front of the supersonic expansion to provide absorptionpathlegnths of up to 3 meters. This source also has a detachable reservior for introcuction ofnon-volatile samples into the expansion by heating. The unit can be operated at up to250C.

    The pulsed slit source can be applied to spectroscopic measurements at any wavelegth.Some other recent applications have been in theCavity Ringdown Spectrometer, and forthe detection of nucleotide bases in the gas phase.

    http://www.cchem.berkeley.edu/~rjsgrp/research/crlas/precrlas.htmlhttp://www.cchem.berkeley.edu/~rjsgrp/research/crlas/precrlas.htmlhttp://www.cchem.berkeley.edu/~rjsgrp/research/crlas/precrlas.html
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    16/52

    This cluster source wasreviewed in the litererature.

    Return to Saykally Group Research Interests.Last Modified 26 September 1995

    [email protected]

    Cavity Ringdown Primer

    The Cavity Ringdown Spectrometeris being developed in the SaykallyLab to study new molecules inmolecular beams. Notablediscoveries include the coppertrimer, and the silicides of gold,

    silver, copper, and platinum,detection ao mid-infrared waterclusters and amorphous ice, andexpansion of the technique into theinfrared for high resolutionspectroscopy of gas phasebiological molecules..

    The Cavity Ringdown technique isdepicted in this cartoon. A highintensity pulsed tunable laserintersects a supersonic molecularbeam (a slit source is depicted, butwe commonly utilize a pinholesource) in a highly reflective mirrorcavity. The time-dependent decay ofthe light leaking through the mirrors is a function of the mirror reflectivity and theabsorption of molecules in between them. This technique makes possible the detection ofscarce quantities of novel molecular species by direct laser absorption in a molecular beam.

    Water VRT Primer

    http://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#pub178http://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#pub178http://www.cchem.berkeley.edu/~rjsgrp/research/research.htmlmailto:[email protected]://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#pub178http://www.cchem.berkeley.edu/~rjsgrp/research/research.htmlmailto:[email protected]
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    17/52

    Depicted in this cartoon is anexample of a tunneling motion thatoccurs in the water trimer (a clusterof three water molecules), alongwith the signature spectral signal for

    this motion obtained by VRT(Vibrational Rotational Tunneling)laser spectroscopy, and the potentialenergy barrier through which thetunnelling occurs.

    Note that in pure water clusters,tunneling involves exchange ofprotons within the individual watermolecules (monomers), and/orflipping of the water molecules(outside hydrogen pointing up or

    down) to yield a molecule withidentical energy and molecularsymmetry (though possiblly mirror-image reversed).

    For more detailed information, visit theFar-IRPages, or return to ourResearch Interests.Last Modified 31 July 2001

    R.J.Saykally Group Publications

    Saykally Group Cover Articles

    The following is a complete list ofpapers, in reverse order of publication, authored by TheSaykally Group.

    Published Papers

    2002

    Return toPublications Menu

    270. H.-S. Kim, and R.J. Saykally, "Single Photon Infraed Emission Spectroscopy of Gaseous Polycyclic Aromatic HydrocarbonCations: A Direct Test for Proposed Carriers of the Unidentified Infrared Emission Bands,"Astrophys. J. Supp. Series, 143, 455-467(2002).

    269.**F.N. Keutsch, David J. Wales, and R.J. Saykally, "Bifurcation tunneling dynamics in the water trimer," J. Chem. Phys.117, 8823(2002).**Featured in the November 1, 2002 issue of the Virtual Journal of Biological Physics Research.

    http://www.cchem.berkeley.edu/~rjsgrp/research/farir/farir.htmlhttp://www.cchem.berkeley.edu/~rjsgrp/research/farir/farir.htmlhttp://www.cchem.berkeley.edu/~rjsgrp/research/research.htmlhttp://www.cchem.berkeley.edu/~rjsgrp/bib/Cover%20Frameset/covers.htmlhttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#Publishedhttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#Publishedhttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/research/farir/farir.htmlhttp://www.cchem.berkeley.edu/~rjsgrp/research/research.htmlhttp://www.cchem.berkeley.edu/~rjsgrp/bib/Cover%20Frameset/covers.htmlhttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#Publishedhttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#top
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    18/52

    268. C. Leforestier, R.S. Fellers, and R.J. Saykally, "Determination of a flexible (12D) water dimer potential via direct inversion ofspectroscopic data,"J. Chem. Phys.117, 8710 (2002).

    267.**K.R. Wilson, R.D. Schaller, B.S. Rude, T. Catalano, D.T. Co, J.D. Bozek, and R.J. Saykally, "Surface relaxation in liquid waterand methanol studied by x-ray absorption spectroscopy,"J. Chem. Phys.117, 7738-7744 (2002).**Featured by Nature in "News and Views," and by Science as "Editors' Choice."

    266. R.D. Schaller, P.T. Snee, J.C. Johnson, L.F. Lee, K.R. Wilson, L.H. Haber, R.J. Saykally, T.-Q. Nguyen, and B.J. Schwartz,

    "Nanoscopic interchain aggregate domain formation in conjugated polymer films studied by third harmonic generation near-fieldscanning optical microscopy,"J. Chem. Phys.117, 6688-6698 (2002).

    265. R.D. Schaller, L.F. Lee, J.C. Johnson, L.H. Haber, J. Vieceli, H. Benjamin, T.-Q. Nguyen, B.J. Schwartz, and R.J. Saykally, TheNature of Interchain Excitations in Conjugated Polymers: Spatially-Varying Solvatochromism of MEH-PPV Films Studied by Near-fieldScanning Optical Microscopy (NSOM),J. Phys. Chem. B 106, 9496-9506 (2002).

    264. J.C. Johnson, H.-J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, and R.J. Saykally, Single Gallium Nitride Nanowire Lasers,Nature Materials1(2), 106-110 (2002).

    263. R.D. Schaller, J. Ziegelbauer, L.F. Lee, L.H. Haber, and R.J. Saykally, "Chemically Selective Imaging of Subcellular Structure inHuman Hepatocytes with Coherent Anti-Stokes Raman Scattering (CARS) Near-field Scanning Optical Microscopy (NSOM),"J. Phys.Chem. B106, 8489-8492 (2002).

    262. A.J. Huneycutt, R.J. Stickland, F. Hellberg, and R.J. Saykally, Characterization of gas-phase HC1-H2O clusters using pulsedinfrared cavity ringdown spectroscopy,Proceedings of the SPIE Conferences, Photonics West 2002, Proc. SPIE Vol. 4634, p. 70-77,

    Methods for Ultrasensitive Detection II, Charles W. Wilkerson; Ed. (2002).261. R.D. Schaller, J.C. Johnson, K.R. Wilson, L.F. Lee, L.H. Haber, and R.J. Saykally, Characterization of biological structures withnonlinear chemical imaging nanomicroscopy,Proceedings of the SPIE Conferences, Photonics West 2002, Proc. SPIE Vol. 4633, p. 62-68, Commercial and Biomedical Applications of Ultrafast and Free-Electron Lasers, Glenn S. Edwards; Joseph Neev; AndreasOstendorf; John C. Sutherland; Eds. (2002).

    260. R.N. Casaes and R.J. Saykally, Spectroscopy (CRLAS), The McGraw-Hill 2002 Yearbook of Science & Technology, Mark D.Licker, editor, pp. 331-333 (2001).

    259. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.-J. Choi, Controlled growth of ZnOnanowires and their optical properties,Adv. Funct. Mater.12, 323-331 (2002).

    258.* R.D. Schaller, J.C. Johnson, K.R. Wilson, L.F. Lee, L.H. Haber, and R.J. Saykally, Nonlinear Chemical ImagingNanomicroscopy: From Second and Third Harmonic Generation to Multiplex (Broad-bandwidth) Sum Frequency Generation Near-FieldScanning Optical Microscopy,J. Phys. Chem. B 106, 5143-5154 (2002).*Invited Cover Article.

    257. J.C. Johnson, H. Yan, R.D. Schaller, P.B. Petersen, P. Yang, and R.J. Saykally, "Near-Field Imaging of Nonlinear Optical Mixing inSingle Zinc Oxide Nanowires,"Nano Lett.2, 279-283 (2002).

    256. N. Goldman, R.S. Fellers, M.G. Brown, L.B. Braly, C.J. Keoshian, C. Leforestier, and R.J. Saykally, Spectroscopic Determinationof the Water Dimer Intermolecular Potential Energy Surface,J. Chem. Phys. 116, 10148 (2002).

    255. D. Kraus, V.E. Bondybey, and R.J. Saykally, Cavity-Ringdown Spectroscopy Studies of the B2+ X2+ System of AlO,ChemPhysChem4, 364-366 (2002).

    254. R.N. Casaes, R.A. Provencal, J.B. Paul, and R.J. Saykally, High resolution pulsed infrared cavity ringdown spectroscopy:Application to laser ablated carbon clusters,J. Chem. Phys. 116, 6640-6647 (2002).

    253.**K.R. Wilson, M. Cavalleri, B.S. Rude, R.D. Schaller, A. Nilsson, L.G.M. Pettersson, N. Goldman, T. Catalano, J.D. Bozek, andR.J. Saykally, Characterization of hydrogen bond acceptor molecules at the water surface using near-edge x-ray absorption fine-structure spectroscopy and density functional theory,J. Phys.: Condens. Matter14, L221-L226 (2002).

    **Featured by Science as Editors Choice.

    2001

    Return toPublications Menu

    252.* **J.C. Johnson, H. Yan, R.D. Schaller, L.H. Haber, P. Yang, and R.J. Saykally, Single Nanowire Lasers,J. Phys. Chem. B105,11387-11390 (2001).*Cover Article.**Featured by Science as Editors Choice.

    http://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#top
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    19/52

    251. L.F. Lee, R.D. Schaller, L.H. Haber, and R.J. Saykally, High Spatial Resolution Imaging with Near-field Scanning OpticalMicroscopy in Liquids,Anal. Chem.73, 5015 (2001).

    250. F.N. Keutsch, and R.J. Saykally, Water Clusters: Untangling the mysteries of the liquid, one molecule at a time,PNAS98, 10533-10540 (2001).

    249. E. Michael, C.J. Keoshian, S.K. Anderson, and R.J. Saykally, Rotational transitions in excited vibrational states of D2O,J. Mol.Spec.208, 219-223 (2001).

    248. F.N. Keutsch, N. Goldman, E.N. Karyakin, H.A. Harker, M.E.Sanz, C. Leforestier, and R.J. Saykally, Complete Characterizationof the (D2O)2 Ground State: High Ka Rotation Tunneling Levels, The Royal Society of Chemistry, Faraday Discussion 118, Cluster

    Dynamics, University of Durham, UK, Faraday Discuss.118, 79-93 (2001).

    247. H.-S. Kim, D.R. Wagner, and R.J. Saykally, "Single Photon Infrared Emission Spectroscopy of the Gas Phase Pyrene Cation:Support for a Polycyclic Aromatic Hydrocarbon Origin of the Uidentified Infrared Emission Bands,"Phys. Rev. Lett. 86, 5691 (2001).

    246. F.N. Keutsch, R.S. Fellers, M.G. Brown, M.R. Viant,P.B. Petersen, and R.J. Saykally, "Hydrogen Bond Breaking Dynamics of theWater Trimer in the Translational and Librational Band Region of Liquid Water,"J. Am. Chem. Soc.123, 5938-5941 (2001).

    245. **T.-Q. Nguyen, B.J. Schwartz, R.D. Schaller, J.C. Johnson, L.F. Lee, L.H. Haber, and R.J. Saykally, "Near-Field Scanning OpticalMicroscopy (NSOM) Studies of the Relationship Between Interchain Interactions, Morphology, Photodamage and Energy Transport inConjugated Polymer Films,"J. Phys. Chem. B105, 5153-5160 (2001).**Featured by Science as "Editor's Choice."

    244. R.J. Saykally and R. Casaes, "Cavity ringdown technique measures absorption,"Laser Focus World37, 159-162 (2001).

    243. E.A. Michael, C.J. Keoshian, D.R. Wagner, S.K. Anderson, and R.J. Saykally, "Infrared Water Recombination Lasers," Chem.Phys. Lett.338, 277-284 (2001).

    242.* K.R. Wilson, B. Rude, T. Catalano, R. Schaller, J.G. Tobin, D.T. Co, and R.J. Saykally, "X-Ray Spectroscopy of Liquid WaterMicrojets," J. Phys. Chem. B105, 3346-3349 (2001).*Cover Article.

    241. T.F. Giesen, A.O. Van Orden, J.D. Cruzan, R.A. Provencal, R. Gendriesch, F. Lewen, G. Winnewisser, R.T. Boreiko, A.L. Betz,and R.J. Saykally, "Interstellar Detection of CCC and High Precision Laboratory Measurements near 2 THz,"Astrophys.J. Lett.551:L181-L184 (2001).

    240.* T.F. Giesen, U. Berndt, K.M.T. Yamada, G. Fuchs, R. Schieder, G. Winnewisser, R.A. Provencal, F.N. Keutsch, A. Van Orden,and R.J. Saykally, "Detection of the Linear Carbon Cluster C10: Rotationally Resolved Diode Laser Spectroscopy," ChemPhysChem4,242-247 (2001).*Cover Article.

    239. T.F. Giesen, U. Berndt, G. Fuchs, G. Winnewisser, R.A. Provencal, F.N. Keutsch, A. Van Orden, and R.J. Saykally, "IR LaserSpectroscopy of Carbon Clusters,"Proceedings of the Nobel Symposium 117 on The Physics and Chemistry of Clusters, Visby, Sweden,E.E.B. Campbell and M. Larsson, editors, pp. 309-310 (2001).

    238. R.J. Saykally, "Water Clusters: Building Up the Liquid One Step at a Time,"Proceedings of the Nobel Symposium 117 on ThePhysics and Chemistry of Clusters, Visby, Sweden, E.E.B. Campbell and M. Larsson, editors, pp. 206-218 (2001).

    237.* R.D. Schaller, and R.J. Saykally, "Near-field Sum Frequency Generation Imaging of CVD Zinc Selenide,"Langmuir17, 2055-2058 (2001).*Cover Article.

    236. F.N. Keutsch, R.S. Fellers, M.R. Viant, and R.J. Saykally, "Far-IR VRT Spectroscopy of Water Clusters in the Librational BandRegion of Liquid Water," J. Chem. Phys.114, 4005-5015 (2001).

    235. F.N. Keutsch, M.G. Brown, P.B. Petersen, M. Geleijns, A. van der Avoird, and R.J. Saykally, "Terahertz VRT Spectroscopy of

    Water Clusters in the Translational Band Region of Liquid Water,"J. Chem. Phys.114, 3994-4004 (2001).

    234. F.N. Keutsch, E.N. Karyakin, A. van der Avoird, and R.J. Saykally, "The 583.2 GHz Torsional Hot-Band of (D2O)3," J. Chem.Phys. 114, 3988-3993 (2001).

    233.* N. Goldman, R.S. Fellers, C. Leforestier, and R.J. Saykally, "Water Dimers in the Atmosphere: Equilibrium Constant for WaterDimerization From the VRT (ASP-W) Potential Surface,"J. Phys. Chem. A 105, 515-519 (2001).*Cover Article.

    2000

  • 7/29/2019 AGUA Memoria Molcular y Clusters

    20/52

    Return toPublications Menu

    232. D.R. Wagner, H.-S. Kim, and R.J. Saykally,"Peripherally Hydrogenated Neutral Polycyclic Aromatic Hydrocarbons as Carriers ofthe 3 Micron Interstellar Infrared Emission Complex: Results from Single Photon Infrared Emission Spectroscopy,"Astrophys. J. 545,854-860 (2000).

    231. K.R. Wilson, J.G. Tobin, A.L. Ankudinov, J.J. Rehr, and R.J. Saykally, "Extended X-Ray Absorption Fine Structure from HydrogenAtoms in Water,"Phys. Rev. Lett.85, 4289 (2000).

    230. R.D. Schaller, J.C. Johnson, and R.J. Saykally, "Nonlinear Chemical Imaging Microscopy: Near-Field Third Harmonic GenerationImaging of Human Red Blood Cells,"Analytical Chemistry72, 5361-5364 (2000).

    229. D.R. Wagner, and R.J. Saykally, "Ringing the changes," Chemistry in Britain36, 47-49 (2000).

    228. L.B. Braly, K. Liu, M.G. Brown, F.N. Keutsch, R.S. Fellers, and R.J. Saykally, "Terahertz Laser Spectroscopy of the Water DimerIntermolecular Vibrations. II. (H2O)2,"J. Chem. Phys.112, 10314 (2000).

    227. L.B. Braly, J.D. Cruzan, K. Liu, R.S. Fellers, and R.J. Saykally, "Terahertz Laser Spectroscopy of the Water Dimer IntermolecularVibrations. I. (D2O)2,"J. Chem. Phys.112, 10293 (2000).

    226.* R.D. Schaller, C. Roth, D.H. Raulet, and R.J. Saykally, "Near-field Second Harmonic Imaging of Granular Membrane Structures inNatural Killer Cells,"J. Phys. Chem. B104, 5217 (2000).*Cover Article.

    225. R.A. Provencal, K. Roth, J.B. Paul, C.N. Chapo, R.N. Casaes, R.J. Saykally, G.S. Tschumper, and H.F. Schaefer, III, "HydrogenBonding in Alcohol Clusters: A Comparative Study by Infrared Cavity Ringdown Laser Absorption Spectroscopy,"J. Phys. Chem. A104,1423 (2000).

    1999

    Return toPublications Menu

    224. M.G. Brown, F.N. Keutsch, L.B. Braly, and R.J. Saykally, "High Symmetry Effects on Hydrogen Bond Rearrangement: The 4.1THz Vibrational Band of (D2O)4,"J. Chem. Phys.111, 7801 (1999).

    223. M.G. Brown, M.R. Viant, R.P. McLaughlin, C.J. Keoshian, E. Michael, J.D. Cruzan, R.J.-Saykally, and A. van der Avoird,"Quantitative Characterization of the Water Trimer Torsional Manifold by Terahertz Laser Spectroscopy and Theoretical Analysis. II.(H2O)3,"J. Chem. Phys.111, 7789 (1999).

    222. D. Kraus, R.J. Saykally, and V.E. Bondybey, "Cavity ringdown spectroscopy search for transition metal dimers," Chemical Physics247, 431-434 (1999).

    221. A. OKeefe, J.J. Scherer, J.B. Paul, and R.J. Saykally, "Cavity-Ringdown Laser Spectroscopy: History, Development, andApplications," 1997 ACS Symposium Series 720 on Cavity-ringdown spectroscopy: an ultratrace-absorption measurement technique,Kenneth W. and Marianna A. Busch, editors, pp. 71-92 (1999).

    220.* R.A. Provencal, J.B. Paul, C.N. Chapo, and R.J. Saykally, "Cavity Ringdown Laser Absorption Spectroscopy," Spectroscopy14,24 (1999).*Cover Article.

    219. E.N. Karaykin, G.T. Fraser, J.G. Loeser, and R.J. Saykally, "Rotation-Tunneling Spectrum of the Deuterated Ammonia Dimer,"J.Chem. Phys 110, 9555 (1999).

    218. D. Kraus, R.J. Saykally, and V.E. Bondybey, "Cavity Ringdown Laser Absorption Spectra of Tungsten Oxide," Chem. Phys. Lett.295, 285-288 (1998).

    217. R.A. Provencal, J.B. Paul, K. Roth, C. Chapo, R.N. Casaes, R.J. Saykally, G.S. Tschumper, and H.F. Schaefer, III, "Infrared cavityringdown spectroscopy of methanol clusters: Single donor hydrogen bonding,"J. Chem. Phys. 110, 4258 (1999).

    216. R.S. Fellers, L.B. Braly, C. Leforestier, and R.J. Saykally, "Fully Coupled Six Dimensional Calculations of the Water DimerVibration-Rotation-Tunneling States with Split Wigner Pseudospectral Method II: Improvements and Tests of Additional Potentials,"J.Chem. Phys.110, 6306 (1999).

    215. M.R. Viant, M.G. Brown, J.D. Cruzan, M. Geleijns, A. van der Avoird, and R.J. Saykally, "Quantitative Characterization of the(D2O)3 Torsional Manifold by Terahertz Laser Spectroscopy and Theoretical Analysis,"J. Chem. Phys.110, 4369 (1999).

    http://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#top
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    21/52

    214. C.J. Chapo, J.B. Paul, R.A. Provencal, K. Roth, and R.J. Saykally, "Is Arginine Zwitterionic or Neutral in the Gas-Phase? Resultsfrom IR Cavity Ringdown Spectroscopy,"J. Am. Chem. Soc.120, 12956-12957 (1998).

    213. J.B. Paul, R.A. Provencal, C. Chapo, K. Roth, R. Casaes, and R.J. Saykally, "Infrared Cavity Ringdown Spectroscopy of the WaterCluster Bending Vibrations," J. Phys. Chem. A 103, 2972 (1999).

    212. S. Henrichs, C.P. Collier, R.J. Saykally, Y.R. Shen and J.R. Heath, "The Dielectric Function of Silver Nanoparticle LangmuirMonolayers Compressed Through the Metal Insulator Transition,"J. Am. Chem. Soc.122, 4077-4083 (2000).

    211. R.S. Fellers, C. Leforestier, L.B. Braly, M.G. Brown, and R.J. Saykally, "Spectroscopic Determination of the Water Pair Potential,"Science284, 945 (1999).

    1998

    Return toPublications Menu

    210. M.G. Brown, F.N. Keutsch, and R.J. Saykally, "The Bifurcation Rearrangement in Cyclic Water Clusters: Breaking and MakingHydrogen Bonds," J. Chem. Phys.109, 9645 (1998).

    209. J.B. Paul, R.A. Provencal, C. Chapo, A. Pettersson, and R.J. Saykally, "Infrared Cavity Ringdown Spectroscopy of Water Clusters:O-D Stretching Bands," J. Chem. Phys.109, 10201 (1998).

    208. R.A. Provencal, J.B. Paul, E. Michael, and R.J. Saykally, "Cavity Ringdown Laser Absorption Spectroscopy,"Photonics Spectra32,159-166 (1998).

    207. J.D. Cruzan, M.R. Viant, M.G. Brown, D.D. Lucas, K. Liu, and R.J. Saykally, "Terahertz laser VRT spectrum of the waterpentamer-d10: Constraints on the bifurcation tunneling dynamics," Chem. Phys. Lett. 292, 667-676 (1998).

    206. J.B. Paul, R.A. Provencal, and R.J. Saykally, "Characterization of the (D2O)2 Hydrogen Bond-Acceptor Antisymmetric Stretch byIR-Cavity Ringdown Laser Absorption Spectroscopy,"J. Phys. Chem. A102, 3279 (1998).

    205. R.J. Saykally, "Water Clusters," in The 1999 McGraw-Hill Yearbook of Science & Technology, Sybil P. Parker, editor, pp. 397-399(1998).

    204.* J.B. Paul, R.A. Provencal, C. Chapo, E. Michael, A. Pettersson, and R.J. Saykally, "Infrared Cavity Ringdown Laser AbsorptionSpectroscopy of Transient Species in Pulsed Supersonic Expansions," 1997 ACS Symposium Series onCavity-Ringdown Spectroscopy:an ultratrace-absorption measurement technique, Kenneth W. and Marianna A. Busch, editors, pp. 162-173 (1999).*Cover article.

    203. J.J. Shiang, J.R. Heath, C.P. Collier, and R.J. Saykally, "Cooperative Phenomena in Artificial Solids Made from Silver QuantumDots: The Importance of Classical Coupling," J. Phys. Chem. B102, 3425 (1998).

    202.* S.E. Henrichs, J.L. Sample, J.J. Shiang, J.R. Heath, C.P. Collier, and R.J. Saykally, "High Contrast Read/Write Optical DataStorage Using Silver Quantum Dot Monolayers,"Nature (1999).*Cover article.

    201. M.G. Brown, M.R. Viant, and R.J. Saykally, "Far Infrared Laser VRT Spectroscopy of Water Clusters,"Proceedings of the 1997NATO-Advanced Study Institute Conference on Recent Theoretical and Experimental Advances in Hydrogen Bonded Clusters, Heraklion,Crete, Greece, S.S. Xantheas, editors,pp. 101-108 (2000).

    200.* A. Van Orden and R.J. Saykally, "Small Carbon Clusters: Spectroscopy, Structure, and Energetics," Chemical Reviews98, 6, 2313-2357(1998).*Cover article.

    199. D.J. Cook, S. Schlemmer, N. Balucani, D.R. Wagner, J.A. Harrison, B. Steiner, and R.J. Saykally, "Single Photon Infrared EmissionSpectroscopy: A Study of IR Emission from UV Laser Excited PAHs between 3 and 15 m," J. Phys. Chem. A102, 1465 (1998).

    198. D.J. Cook and R.J. Saykally, "Simulated Infrared Emission Spectra of Highly Excited Polyatomic Molecules: A detailed model ofthe PAH-UIR hypothesis,"Astrophys. J. 493, 793-802 (1998).

    1997

    Return toPublications Menu

    http://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#top
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    22/52

    197. C.P. Collier, R.J. Saykally, J.J. Shiang, S.E. Henrichs, and J.R. Heath, "Reversible Tuning of Silver Quantum Dot MonolayersThrough the Metal-Insulator Transition," Science 277, 1978 (1997).

    196. A.I. Boldyrev, J. Simons, J.J. Scherer, J.B. Paul, C.P. Collier, and R.J. Saykally, "On the ground electronic states of copper silicideand its ions,"J. Chem. Phys.108, 5728 (1998).

    195. M.R. Viant, J.D. Cruzan, D.D. Lucas, M.G. Brown, K. Liu, and R.J. Saykally, "Pseudorotation In Water Trimer Isotopomers UsingTerahertz Laser Spectroscopy,"J. Phys. Chem. A101, 9032 (1997).

    194. J.D. Cruzan, M.R. Viant, M.G. Brown and R.J. Saykally, "Terahertz Laser Vibration-Rotation-Tunneling Spectroscopy of the WaterTetramer,"J. Phys. Chem. A101, 9022 (1997).

    193. K. Liu, M.G. Brown, J.D. Cruzan, and R.J. Saykally, "Terahertz Laser Spectroscopy of the Water Pentamer: Structure and HydrogenBond Rearrangement Dynamics,"J. Phys. Chem. A101, 9011 (1997).

    192.* K. Liu, M.G. Brown, and R.J. Saykally, "Terahertz Laser Vibration-Rotation-Tunneling Spectroscopy and Dipole Moment of aCage Form of the Water Hexamer,"J. Phys. Chem. A101, 8995 (1997).*Cover article.

    191.* J.B. Paul, J.J. Scherer, A. O'Keefe, and R.J. Saykally, "Cavity Ringdown Laser Absorption Spectroscopy,"Laser Focus World33,71-80 (1997).*Cover article.

    190.* J.B. Paul and R.J. Saykally, "Cavity Ringdown Laser Spectroscopy Absorption,"Analytical Chemistry A69, 287 (1997).

    *Cover article.

    189. J.B. Paul, C.P. Collier, J.J. Scherer, A. O'Keefe, and R.J. Saykally, "Direct Measurement of Water Cluster Concentrations byInfrared Cavity Ringdown Laser Absorption Spectroscopy,"J. Phys. Chem. A101, 5211 (1997).

    188. J.R. Heath and R.J. Saykally, "Space Carbon: Neutral Pathways?," Science274, 1480 (1996).

    187. J.K. Gregory, D.C. Clary, K. Liu, M.G. Brown, and R.J. Saykally, "The Water Dipole Moment in Condensed Phases: InsightsThrough Cluster Studies," Science275, 814 (1997).

    186. C. Leforestier, L.B. Braly, K. Liu, M.J. Elrod, and R.J. Saykally, "Fully Coupled 6D Calculations of the Water Dimer VRT Stateswith a Split Wigner Pseudo-Spectral Approach,"J. Chem. Phys.106, 8527 (1997).

    1995 - 1996

    Return toPublications Menu

    185. A. Van Orden, R.A. Provencal, F.N. Keutsch, and R.J. Saykally, "Infrared Laser Spectroscopy of Jet-Cooled Carbon Clusters: The[nu]5 Band of Linear C9,"J. Chem. Phys.105, 6111 (1996).

    184. J.D. Cruzan, M.G. Brown, K. Liu, L.B. Braly, and R.J. Saykally, "The far-infrared vibration-rotation-tunneling spectrum of thewater tetramer-d8,"J. Chem. Phys. 105, 6634 (1996).

    183. E.H.T. Olthof, A. van der Avoird, P.E.S. Wormer, K. Liu, and R.J. Saykally, "Tunneling dynamics, symmetry, and far-infraredspectrum of the rotating water trimer, II. Calculations and experiments,"J. Chem. Phys. 105, 8051 (1996).

    182. K. Liu, J.K. Gregory, M.G. Brown, C. Carter, R.J. Saykally, and D.C. Clary, "Characterization of A Cage Form of The WaterHexamer,"Nature 381 , 501 (1996).

    181.* J.J. Scherer, D.J. Rakestraw, A. O'Keefe, J.B. Paul, C.P. Collier, and R.J. Saykally, "Cavity Ringdown Laser Spectroscopy: A NewUltrasensitive Absorption Technique," Spectroscopy 11 , 46-50 (1996).*Cover article.

    180. K. Liu, M.G. Brown, and R.J. Saykally, "Far-Infrared VRT Spectroscopy of Two Water Trimer Isotopomers: VibrationallyAveraged Structures and Rearrangement Dynamics,"Molecular Physics89, 1373 (1996).

    179.* K. Liu, J.D. Cruzan, and R.J. Saykally, "Water Clusters," Science 271 , 929 (1996) - Invited Article.*Cover article.

    178. K. Liu, R.S. Fellers, M.R. Viant, R.P. McLaughlin, M.G. Brown, and R.J. Saykally, "A Long Path Length Pulsed Slit ValveAppropriate for High Temperature Operation: Infrared Spectroscopy of Jet-cooled Large Water Clusters and Nucleotide Bases"Rev. Sci.

    Instrum. 67 , 410 (1996).

    http://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#top
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    23/52

    177. A. Van Orden and R.J. Saykally, "Carbon," in The 1997 McGraw-Hill Yearbook of Science & Technology, Sybil P. Parker, editor,pp. 71-73 (McGraw-Hill, Inc. 1996).

    176. K. Liu, M.G. Brown, J.D. Cruzan, and R.J. Saykally, "VRT Spectra of the Water Pentamer: Structure and Dynamics," Science 271 ,62 (1996).

    175. M.R. Viant, R.S. Fellers, R.P. McLaughlin, and R.J. Saykally, "Infrared Laser Spectroscopy of Uracil in a Pulsed Slit Source,"J.Chem. Phys.103 , 9502 (1995).

    174. J.J. Scherer, D. Voelkel, D.J. Rakestraw, J.B. Paul, C.P. Collier, A. O'Keefe, and R.J. Saykally, "Infrared Cavity Ringdown LaserAbsorption Spectroscopy (IR-CRLAS)," Chem. Phys. Lett. 245 , 273-280 (1995).

    173. J.B. Paul, C.P. Collier, J.J. Scherer, and R.J. Saykally, "Cavity Ringdown Laser Absorption Spectroscopy and Time-of-Flight MassSpectroscopy of Jet-cooled Platinum Silicides,"J. Chem. Phys.104 , 2782 (1996).

    172. J.D. Cruzan, L.B. Braly, K. Liu, J.G. Loeser, M.G. Brown, and R.J. Saykally, "Quantifying Hydrogen Bond Cooperativity in Water:VRT Spectroscopy of the Water Tetramer," Science 271 , 59 (1996).

    171. J.J. Scherer, J.B. Paul, and R.J. Saykally, "Cavity Ringdown Laser Absorption Spectroscopy of the Jet-cooled Aluminum Dimer,"Chem. Phys. Lett. 242 , 395-400 (1995).

    170. D.J. Cook, S. Schlemmer, N. Balucani, D.R. Wagner, B. Steiner, and R.J. Saykally, "Infrared emission spectra of candidateinterstellar aromatic molecules,"Nature380 , 227 (1996).

    169. J.J. Scherer, J.B. Paul, C.P. Collier, and R.J. Saykally, "Cavity Ringdown Laser Absorption Spectroscopy (CRLAS) and Time-of-Flight Mass Spectroscopy of Jet-cooled Gold Silicides,"J. Chem. Phys.103 , 9187 (1995).

    168. J.J. Scherer, J.B. Paul, C.P. Collier, and R.J. Saykally, "Cavity Ringdown Laser Absorption Spectroscopy (CRLAS) and Time-of-Flight Mass Spectroscopy of Jet-cooled Silver Silicides,"J. Chem. Phys.103 , 113 (1995).

    167. A. Van Orden, R.A. Provencal, T.F. Giesen, and R.J. Saykally, "Characterization of Silicon-Carbon Clusters by Infrared LaserSpectroscopy: The [nu]1 Band of SiC4," Chem. Phys. Lett. 237 , 77-80 (1995).

    166. J.J. Scherer, J.B. Paul, C.P. Collier, and R.J. Saykally, "Cavity Ringdown Laser Absorption Spectroscopy and Time-of-Flight MassSpectroscopy of Jet-cooled Copper Silicides,"J. Chem. Phys.102 , 5190 (1995).

    165. A. Van Orden, J.D. Cruzan, R.A. Provencal, T.F. Giesen, R.T. Boreiko, A.L. Betz, and R.J. Saykally, "A Search for the C3 CarbonCluster in the Interstellar Medium,"Proceedings of the 1994 Kuiper Airborne Astronomy Symposium, NASA-Ames Research Center,

    Moffett Field, CA, Astron. Soc. Pac. Conf. Ser., 73, 67-70 (1995).

    164. M.J. Elrod and R.J. Saykally, "Determination of the Intermolecular Potential Energy Surface for (HCl)2 from VRT Spectra,"J.Chem. Phys. 103 , 933(1995).

    163. M.J. Elrod and R.J. Saykally, "Vibration-Rotation-Tunneling Dynamics Calculations for the Four Dimensional (HCl)2 System: ATest of Approximate Models,"J. Chem. Phys. 103 , 921 (1995).

    1994

    Return toPublications Menu

    162. E.H.T. Olthof, A. van der Avoird, P.E.S. Wormer, J.G. Loeser, and R.J. Saykally, "The Nature of Monomer Inversion in theAmmonia Dimer,"J. Chem. Phys.101 , 8443 (1994).

    161. A. Van Orden, T.F. Giesen, R.A. Provencal, H.J. Hwang, and R.J. Saykally, "Characterization of Silicon-Carbon Clusters byInfrared Laser Spectroscopy: The [nu]3([sigma]u) Band of Linear Si2C3,"J. Chem. Phys.101 , 10237 (1994).

    160. G.C.M. van der Sanden, P.E.S. Wormer, A. van der Avoird, C.A. Schmuttenmaer, and R.J. Saykally, "Close coupling results forinelastic collisions of NH3 and Ar: A stringent test of a spectroscopic potential," Chem. Phys. Lett. 226 , 22-26 (1994).

    159. S. Schlemmer, D.J. Cook, J.A. Harrison, B. Wurfel, W. Chapman, and R.J. Saykally, "Are PAH Molecules Responsible for theUnidentified Interstellar Infrared Bands?," Science265 , 1686 (1994).

    158. T.F. Giesen, A. Van Orden, H.J. Hwang, R.S. Fellers, R.A. Provencal, and R.J. Saykally, "Infrared Laser Spectroscopy of the LinearC13 Carbon Cluster," Science265 , 756 (1994).

    http://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#top
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    24/52

    157. K. Liu, M.J. Elrod, J.G. Loeser, J.D. Cruzan, N. Pugliano, J.A. Rzepiela, M. Brown, and R.J. Saykally, "FIRVRTS of The WaterTrimer,"Faraday Division, The Royal Society of Chemistry, Discussion No. 97, "Structure and Dynamics of van der Waals Complexes,"

    Durham, U.K., Faraday Discuss. 97 , 35-41 (1994).

    156.* M.J. Elrod and R.J. Saykally, "Many-body Effects in Intermolecular Forces," in van der Waals Clusters II, a special thematic issueofChemical Reviews, J. Michl, Editor, 94 , 7, 1975-1997 (1994).*Cover article.

    155.* J.J. Scherer, J.B. Paul, A. O'Keefe, and R.J. Saykally, "Cavity Ringdown Laser Absorption Spectroscopy: History, Development,and Application to Pulsed Molecular Beams," Chemical Reviews97, 1, 25-51 (1997).*Cover article.

    154. C.A. Schmuttenmaer, R.C. Cohen, and R.J. Saykally, "Spectroscopic Determination of the Intermolecular Potential Energy Surfacefor Ar-NH3,"J. Chem. Phys.101 , 146 (1994).

    153. C.A. Schmuttenmaer, J.G. Loeser, and R.J. Saykally, "Vibration-Rotation-Tunneling Spectroscopy of Ar-NH3,"J. Chem. Phys.101 ,139 (1994).

    152. K. Liu, J.G. Loeser, M.J. Elrod, B.C. Host, J.A. Rzepiela, and R.J. Saykally, "Dynamics of Structural Rearrangements in the WaterTrimer,"J. Am. Chem. Soc.116 , 3507-3512(1994).

    151. J.J. Scherer, J.B. Paul, A. O'Keefe, and R.J. Saykally, "CRLAS: A New Analytical Technique for Cluster Science," inAdvances inMetal and Semiconductor Cluster, Volume 3 , M.A. Duncan, editor, pp. 149-180 (JAI Press Inc. 1995).

    150. M.J. Elrod, R.J. Saykally, A.R. Cooper, and J.M. Hutson, "Non-additive intermolecular forces from the spectroscopy of Van derWaals trimers: far-infrared spectra and calculations on Ar2-DC1,"Molecular Physics81 , 579-598 (1994).

    149. Richard J. Saykally, "Tunable Far Infrared Laser Spectroscopy of Clusters,"Proceedings of the 1993 Eleventh InternationalConference on Laser Spectroscopy, Hot Springs, Virginia, editors: L. Bloomfield, T. Gallagher, and D. Larson, AIP Press, ConferenceProceedings No. 290 , pp. 139-143 (1994).

    148. L. Dore, R.C. Cohen, C.A. Schmuttenmaer, K.L. Busarow, M.J. Elrod, J.G. Loeser, and R.J. Saykally, "Far Infrared Vibration-Rotation-Tunneling Spectroscopy and the Intermolecular Potential of Methane-Water: A Prototypical Hydrophobic System,"J. Chem.

    Phys.100 , 863 (1994).

    1993

    Return toPublications Menu

    147. D.W. Steyert, M.J. Elrod, and R.J. Saykally, "Far-Infrared Laser Vibration-Rotation- Tunneling Spectroscopy of the Propane-WaterComplex: Torsional Dynamics of the Hydrogen Bond,"J. Chem. Phys.99 , 7431 (1993).

    146. D.W. Steyert, M.J. Elrod, R.J. Saykally, F.J. Lovas, and R.D. Suenram, "The Fourier Transform Microwave Spectrum of thePropane-Water Complex: A Prototypical Water- Hydrophobe System,"J. Chem. Phys. 99 , 7424 (1993).

    145. A.L. Cooksy, M.J. Elrod, R.J. Saykally, and W. Klemperer, "Dipole Moment Analysis of Excited Van der Waals Vibrational Statesof ArH35Cl,"J. Chem. Phys.99 , 3200 (1993).

    144. A. Van Orden, H.J. Hwang, E.W. Kuo, and R.J. Saykally, "Infrared Laser Spectroscopy of Jet-Cooled Carbon Clusters: TheBending Dynamics of Linear C9,"J. Chem. Phys.98 , 6678 (1993).

    143. R.J. Saykally and G.A. Blake, "Molecular Interactions and Hydrogen Bond Tunneling Dynamics: Some New Perspectives," Science259 , 1570 (1993) - Invited Article.

    142. H.J. Hwang, A. Van Orden, K. Tanaka, E.W. Kuo, J.R. Heath, and R.J. Saykally, "Infrared laser spectroscopy of jet-cooled carbonclusters: The structure of triplet C6,"Molecular Physics79 , 769-776 (1993).

    141. M.J. Elrod, J.G. Loeser, and R.J. Saykally, "An Investigation of Three-body Effects in Intermolecular Forces III. Far Infrared LaserVibration-Rotation-Tunneling Spectroscopy of the Lowest Internal Rotor States of Ar2HC1,"J. Chem. Phys. 98 , 5352 (1993).

    140. H.J. Hwang, A.K. Van Orden, K. Tanaka, E.W. Kuo, J.R. Heath, and R.J. Saykally, "Infrared Laser Spectroscopy of Jet-CooledCarbon Clusters: The Structure and Spectroscopy of3[Sigma] C6," Proceedings of the 1993 Opt ical Society of America/High ResolutionSpectroscopy, Salt Lake City, Utah.

    139. R.J. Saykally, "Detecting Pure Carbon Clusters in the ISM,"Proceedings of the 1992 Conference on Astronomical InfraredSpectroscopy: Future Observational Directions, Calgary, Alberta, Canada, Sun Kwok (ed.), ASP Conference Series, Vol. 41 , 1993.

    http://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#top
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    25/52

    138. J.R. Heath, A.Van Orden, H.J. Hwang, E.W. Kuo, K. Tanaka, and R.J. Saykally, "Toward the Detection of Pure Carbon Clusters inthe ISM,"Proceedings of the Topical Meeting of theCOSPAR Interdisciplinary Scientific Commission F (Meeting F3) of the COSPARTwenty-ninth Plenary Meeting held in Washington, DC, U.S.A. 28 August-5 September, 1992,Adv. Space Res. Vol. 15 , No.3, pp. (3)25-(3)33, 1995.

    137. N. Pugliano, J.D. Cruzanys. 98 , 6600 (1993).

    136. **R.C. Cohen and R.J. Saykally, "Determination of an Improved Intermolecular Global Potential Energy Surface for Ar-H2O from

    Vibration-Rotation-Tunneling Spectroscopy,"J. Chem. Phys. 98 , 6007 (1993).**Selected as one of top ten papers in "What's Hot in chemistry..." by Current Contents, 1995.

    135. N. Pugliano and R.J. Saykally, "The Measurement of Quantum Tunneling Between Chiral Isomers of the Water Trimer," Science257 , 1937 (1992).

    134. M.J. Elrod, B.C. Host, D.W. Steyert, and R.J. Saykally, "Far Infrared Vibration- Rotation-Tunneling Spectroscopy of ArDCl: ACritical Test of the H6(4,3,0) Potential Surface,"Molecular Physics79 , 245-251 (1993).

    1992

    Return toPublications Menu

    133. J.W.I. van Bladel, A. van der Avoird, P.E.S. Wormer, and R.J. Saykally, "Computational Exploration of the Six-Dimensional

    Vibration-Rotation-Tunneling Dynamics of (NH3)2,"J. Chem. Phys. 97 , 4750 (1992).

    132. J.G. Loeser, C.A. Schmuttenmaer, R.C. Cohen, M.J. Elrod, D.W. Steyert, R.J. Saykally, R.E. Bumgarner, and G.A. Blake,"Multidimenional Hydrogen Tunneling Dynamics in the Ground Vibrational State of the Ammonia Dimer,"J. Chem. Phys. 97 , 4727(1992).

    131. N. Pugliano and R.J. Saykally, "Measurement of the [nu]8 Intermolecular Vibration of (D2O)2 by Tunable Far Infrared LaserSpectroscopy,"J. Chem. Phys. 96 , 1832 (1992).

    130. R.C. Cohen and R.J. Saykally, "Vibration-Rotation-Tunneling Spectroscopy of the van der Waals Bond: A New Look atIntermolecular Forces,"J. Phys. Chem. 96 , 1024 (1992) - Invited Article.

    1991

    Return toPublications Menu

    129. R.C. Cohen and R.J. Saykally, "Multidimensional Intermolecular Dynamics from Tunable Far Infrared Laser Spectroscopy:Angular-Radial Coupling in the Intermolecular Potential of Argon-H2O,"J. Chem. Phys. 95 , 7891 (1991).

    128. J.R. Heath and R.J. Saykally, "Probing the Structures and Vibrational Dynamics of Carbon Clusters," in On Clusters andClustering: From Atoms to Fractals , P.J. Reynolds, editor, pp. 7-21 (Elsevier Science Publishers B.V. 1993).

    127. J.R. Heath, A. Van Orden, E. Kuo, and R.J. Saykally, "The [nu]5 Band of C7," Chem. Phys. Lett. 182 , 17 (1991).

    126. M.J. Elrod, D.W. Steyert, and R.J. Saykally, "An Investigation of Three-Body Effects in Intermolecular Forces. II. Far InfraredVibration-Rotation-Tunneling Laser Spectroscopy of Ar2HC1,"J. Chem. Phys. 95 , 3182 (1991).

    125. J.R. Heath, J.M. Hawkins, P.A. Alivasatos, R.J. Saykally, T.A. Lewis, S.D. Loren, A. Meyer, Y. Shibato, S. Tolbert, and J. Shang,"C60 Research at the University of California at Berkeley,"Proceedings of the 1990Materials Research Science Conference, Boston, MA.

    124. C.A. Schmuttenmaer, R.C. Cohen, J.G. Loeser, and R.J. Saykally, "Far-Infrared Vibration-Rotation-Tunneling Spectroscopy of Ar-NH3: Intermolecular Vibrations and Effective Angular Potential Energy Surface,"J. Chem. Phys. 95 , 9 (1991).

    123. R.C. Cohen and R.J. Saykally, "Multidimensional Intermolecular Potential Surfaces from Vibration-Rotation-Tunneling (VRT)Spectra of van der Waals Complexes,"Ann. Rev. Phys. Chem. 42 , 369 (1991).

    122. J.M. Hawkins, T.A. Lewis, S.D. Loren, A. Meyer, J.R. Heath, R.J. Saykally, and F.J. Hollander, "A Crystallographic Analysis of C60(Buckminsterfullerene),"J. Chem. Soc., Chem. Commun. 775 (1991).

    121. G.A. Blake, K.B. Laughlin, R.C. Cohen, K.L. Busarow, D.-H. Gwo, C.A. Schmuttenmaer, D.W. Steyert, and R.J. Saykally, "TheBerkeley Tunable Far Infrared Laser Spectrometers,"Rev. Sci. Inst. 62, 1701 (1991).

    http://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#tophttp://www.cchem.berkeley.edu/~rjsgrp/bib/bib.html#top
  • 7/29/2019 AGUA Memoria Molcular y Clusters

    26/52

    120. G.A. Blake, K.B. Laughlin, R.C. Cohen, K.L. Busarow, D.-H. Gwo, C.A. Schmuttenmaer, D.W. Steyert, and R.J. Saykally,"Tunable Far Infrared Laser Spectrometers,"Rev. Sci. Inst. 62, 1693 (1991) - Invited Review.

    119. B.E. Wurfel, N. Pugliano, S.E. Bradforth, R.J. Saykally, and G.C. Pimentel, "Broadband Transient Infrared Laser Spectroscopy ofTrifluorovinyl Radical - C2F3*; Experimental andAb Initio Results,"J. Phys. Chem. 95 , 2932 (1991).

    118. M. Havenith, R.C. Cohen, K.L. Busarow, D.-H. Gwo, Y.T. Lee, and R.J. Saykally, "Measurement of the Intermolecular Vibration-Rotation-Tunneling (VRT) Spectrum of the Ammonia Dimer by Tunable Far Infrared Laser Spectroscopy,"J. Chem. Phys. 94, 4776

    (1991).

    117. J.R. Heath and R.J. Saykally, "The Structure of the C4 Cluster Radical,"J. Chem. Phys. 94, 3271 (1991).

    116. J.R. Heath and R.J. Saykally, "Infrared Laser Absorption Spectroscopy of the [nu]4 ([sigma]u) Fundamental and Associated [nu]11([pi]u) Hot Band of C7: Evidence for Alternating Rigidity in Linear Carbon clusters,"J. Chem. Phys. 94, 1724 (1991).

    115. M.J. Elrod, D.W. Steyert, and R.J. Saykally, "Tunable Far Infrared Laser Spectroscopy of a Ternary van der Waals Cluster Ar2HCl:A Sensitive Probe of Three-Body Forces,"J. Chem. Phys. 94 , 58 (1991).

    1990

    Return toPublications Menu

    114. J.M. Hawkins, T.A. Lewis, S.D. Loren, A. Meyer, J.R. Heath, Y. Shibato, and R.J. Saykally, "Organic Chemistry of C60(Buckminsterfullerene): Chromatography and Osmylation,"J. Org. Chem. 55 , 6250 (1990).

    113. D.-H. Gwo, M. Havenith, K.L. Busarow, R.C. Cohen, C.A. Schmuttenmaer, and R.J. Saykally, "Tunable Far-IR Laser Spectroscopyof van der Waals Bonds: The jkc = 10

  • 7/29/2019 AGUA Memoria Molcular y Clusters

    27/52

    101. R.J. Saykally, "Far-Infrared Laser Spectroscopy of van der Waals Bonds: A New Probe of Intermolecular Forces,"Accts. Chem.Res. 22 , 295 (1989). LBL-26553

    100. J.R. Heath, A.L. Cooksy, M.H.W. Gruebele, C.A. Schmuttenmaer, and R.J. Saykally, "Diode Laser Absorption Spectroscopy ofSupersonic Carbon Cluster Beams: The [nu]3 Spectrum of C5," Science 244 , 564 (1989).

    99. M. Polak, M.H.W. Gruebele, B.W. DeKock, and R.J. Saykally, "Velocity Modulation Infrared Laser Spectroscopy of Molecular Ions:The [nu]4 Band of Ammonium,Molec. Phys. 66 , 1193 (1989).

    98. K.L. Busarow, R.C. Cohen, G.A. Blake, K.B. Laughlin, Y.T. Lee, and R.J. Saykally, "Measurement of the Perpendicular Rotation-Tunneling Spectrum of the Water Dimer by Tunable Far Infrared Laser Spectroscopy in a Planar Supersonic Jet,"J. Chem. Phys. 90,3937 (1989). LBL-26174

    97. J.V. Coe, J.C. Owrutsky, E.R. Keim, N.V. Agman, D.C. Hovde, and R.J. Saykally, "Sub-Doppler Direct IR Laser AbsorptionSpectroscopy in Fast Ion Beams: The Fluorine Hyperfine Structure of HF+,"J. Chem. Phys. 90 , 3893 (1989).

    96. K.G. Lubic, D. Ray, D.C. Hovde, L. Veseth, and R.J. Saykally, "Laser Magnetic Resonance Rotational Spectroscopy of the HydrogenHalide Molecular Ions: H79Br+,"J. Mol. Spectrosc. 134, 21 (1989).

    95. K.G. Lubic, D. Ray, D.C. Hovde, L. Veseth, and R.J. Saykally, "Laser Magnetic Resonance Rotational Spectroscopy of the HydrogenHalide Molecular Ions: H35C1+ and H37C1+,"J. Mol. Spectrosc. 134 , 1 (1989).

    94. N.H. Rosenbaum, J.C. Owrutsky, and R.J. Saykally, "Velocity Modulation Infrared Laser Spectroscopy of HCS+: Analysis of HotBands and Perturbations,"J. Mol. Spectrosc. 133 , 365 (1989).

    93. K.B. Laughlin, G.A. Blake, R.C. Cohen, and R.J. Saykally, "Experimental Determination of Dipole Moments for Molecular Ions:Improved Measurements for ArH+,"J. Chem. Phys. 90 , 1358 (1989).

    92. J.V. Coe and R.J. Saykally, "Infrared Laser Spectroscopy of Molecular Ions," inIon and Cluster Ion Spectroscopy and Structure , J.P.Maier, editor, Elsevier Science Publishers, pp. 131-154 (1989).

    1988

    Return toPublications Menu

    91. M.B. Radunsky and R.J. Saykally, "Nonintrusive Measurement of Axial Electric Fields in Low Pressure Glow Discharges byVelocity Modulation Laser Spectroscopy," Chem. Phys. Lett. 152 , 419 (1988). LBL-23947

    90. G. Blake, K.L. Busarow, R.C. Cohen, K.B. Laughlin, Y.T. Lee, and R.J. Saykally, "Tunable Far-Infrared Laser Spectroscopy ofHydrogen Bonds: The Ka=O(u)->1(g) Rotation-Tunneling Spectrum of the HC1 Dimer,"J. Chem. Phys. 89 , 6577 (1988). LBL-25400

    89. M.H.W. Gruebele, E. Keim, A. Stein, and R.J. Saykally, "Experimental Potential Functions for Open and Closed Shell MolecularIons: Adiabatic and Nonadiabatic Corrections in X3[Sigma]- OH+ and X1[Sigma]+ ArH+,"J. Mol. Spectrosc. 131 , 343 (1988).

    88. R.C. Cohen, K.L. Busarow, K.B. Laughlin, G.A. Blake, M. Havenith, Y.T. Lee, and R.J. Saykally, "Tunable Far Infrared LaserSpectroscopy of van der Waals Bonds: Vibration-Rotation-Tunneling Spectra of Ar-H2O,"J. Chem. Phys. 89 , 4494 (1988). LBL-25399

    87. R.C. Woods and R.J. Saykally, "A Reanalysis of the Molecular Beam Electric Resonance Stark Effect Data for the a3[Pi] CarbonMonoxide," J. Chem. Phys. 89 , 2781 (1988).

    86. K.L. Busarow, G.A. Blake, K.B. Laughlin, R.C. Cohen, Y.T. Lee, and R.J. Saykally, "Tunable Far Infrared Laser Spectroscopy ofvan der Waals Bonds: Extended Measurements on the Lowest [Sigma] Bend of ArHC1,"J. Chem. Phys. 89 , 1268 (1988). LBL-24859

    85. M. Polak, M.H.W. Gruebele, G.S. Peng, and R.J. Saykally, "Velocity Modulation Infrared Laser Spectroscopy of Negative Ions: the(011)-(001) Band of Azide (N3- ),"J. Ch