Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de...

38
Agentes Baseados Agentes Baseados em Utilidade em Utilidade Métodos da Computação Inteligente Métodos da Computação Inteligente Universidade Federal de Pernambuco Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Aluno: Rodrigo Barros de Vasconcelos Lima Lima

Transcript of Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de...

Page 1: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Agentes Baseados em Agentes Baseados em UtilidadeUtilidade

Métodos da Computação InteligenteMétodos da Computação InteligenteUniversidade Federal de PernambucoUniversidade Federal de Pernambuco

Aluno: Rodrigo Barros de Vasconcelos LimaAluno: Rodrigo Barros de Vasconcelos Lima

Page 2: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Parte I: Decisões Parte I: Decisões SimplesSimples

“Como um agente deve tomar decisões de modo que, em média, ele consiga o que quer”

Page 3: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Decision Theoretic AgentsDecision Theoretic Agents Agente capaz de ...

Tomar decisões racionais baseado no que acredita e deseja Tomar decisões em ambientes com incertezas e objetivos conflitantes

Possui uma escala contínua de medida de qualidade sobre os estados Valores associados a cada estado (utilidade) indicando a “felicidade” do agente !

Funções de Utilidade associam um valor a um estado Indica o “desejo” por estar nesse estado U(S) = utilidade estado S de acordo com o agente

Ex.: s1 = {rico, famoso}, s2 = {pobre, famoso}U(s1) = 10U(s2) = 5

Page 4: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Resulti(A): Todos os possíveis estados de saída de uma ação não-determinista A

Para cada saída possível é associado uma probabilidade: P (Resulti(A) | Do(A), E) Onde, E resume a evidência que o agente possuí do mundo

Do(A) indica que a ação A foi executada no estado atual

Utilidade esperada de uma ação A dado a evidência do mundo E:EU(A|E) = i P(Resulti(A)|Do(A),E) U(Resulti(A))

Problemas: Todas ações teriam que ser enumeradas P, Result nem sempre disponíveis EU pode ser de custo computacional proibitivo

Determinando Função de UtilidadeDeterminando Função de Utilidade

Page 5: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Exemplo: Utilidade EsperadaExemplo: Utilidade Esperada Robô deve transportar uma caixa

E = caixa é de metal

a1 = Chutar: s1, caixa no destino 20% U(s1) = 10s2, caixa no meio 30% U(s2) = 5s3, caixa longe destino 50% U(s3) = 0

a2 = Carregar: s1, balde no destino 80% U(s1) = 10 s2, balde na origem 20% U(s2) = 0

EU(a1) = 20x10 + 30x5 + 50x0 = 350EU(a2) = 80x10 + 20x0 = 800

Page 6: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Preferências RacionaisPreferências Racionais Principio da Maximização da Utilidade: agente racional deve escolher

ação que maximiza sua utilidade esperada

Preferências racionais permitem descrever o melhor comportamento como aquele que maximiza EU

Notação: A B: A é preferível a B A ~ B: agente indiferente entre A e B A B: agente prefere A à B ou é indiferente

Para ações não deterministas:

A e B são loterias, i.e., distribuições probabilísticas sobre um conjunto de estados de saída (os “prêmios” de uma loteria)

L = {p1.S1; p2. S2; ...; pn.Sn}

Page 7: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Restrições Sobre Preferências Restrições Sobre Preferências RacionaisRacionais

Axiomas da Teoria da Utilidade: Orderabilidade:

(A > B) ( B > A) (A ~ B)

Transitividade:(A > B) (B > C) (A > C)

Continuidade:A > B > C p [p.A; 1 - p.C] ~ B

Substitutability:A ~ B [p.A; 1 – p.C] ~ [p.B; 1 – p.C]

Monoticidade:A > B ( p q [p.A; 1 – p.B] [q.A; 1 –

q.B] )

Decomposabilidade:[p.A; 1 – p. [q.B; 1 – q.C] ] ~ [p.A; (1 – p)q.B; (1 – p)(1 – q). C]

Preferências que satisfaçam os axiomas garantem a existência de uma função real U, tal que:

U(A) > U(B) A > B U(A) = U(B) A ~ B U (p1.S1; ... ; pn.Sn) = i pi U(Si)

Page 8: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Restrições Sobre Preferências Restrições Sobre Preferências RacionaisRacionais

Violação das restrições levam a comportamentos irracionais

Exemplo: agente com preferências não transitivas pode ser induzido a dar todo o seu dinheiro:

Se B > C, então um agente que possuí C pagaria 1 centavo para obter B Se A > B, então um agente que possuí B pagaria 1 centavo para obter A Se C > A, então um agente que possuí A pagaria 1 centavo para obter C

Page 9: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Exemplo: A Utilidade do DinheiroExemplo: A Utilidade do Dinheiro Um jogador ganhou um prêmio de R$ 1.000.000 em um programa de TV

Apresentador oferece uma aposta: Se ele jogar a moeda e aparecer cara jogador perde tudo Se aparecer coroa jogador ganha R$ 3.000.000

O Valor Monetário Esperado da aposta é: 0.5 (R$ 0) + 0.5 (R$ 3.000.000) = $ 1.500.000

O Valor Monetário Esperado de recusar a aposta é de R$ 1.000.000 (menor)

Isso indica que seria melhor aceitar a aposta ?

Page 10: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Exemplo: A Utilidade do DinheiroExemplo: A Utilidade do Dinheiro Utilidade Esperada para cada uma das duas ações:

EU (Aceitar) = 0.5 U(Sk) + 0.5 U(Sk+3.000.000) EU (Rejeitar) = U(Sk+1.000.000)

Onde, Sk = riqueza atual do jogador

Deve-se atribuir valores de utilidade para cada estado de saída: Sk = 5; Sk+3.000.000 = 10; Sk+1.000.000 = 8

Ação racional: rejeitar !

Conclusão: Utilidade não é diretamente proporcional ao valor monetário Utilidade (mudança no estilo de vida) para o primeiro R$ 1.000.000 é muito alta

Page 11: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Funções de Utilidade Multi-AtributoFunções de Utilidade Multi-Atributo

Como tratar funções de utilidades com várias variáveis X1, ..., Xn ?

Ex.: Construir aeroporto - U(Mortes, Barulho, Custo)

Existem basicamente dois casos:

Decisões podem ser tomadas sem combinar os valores dos atributos em um único valor da utilidade (Dominância)

A utilidade resultante da combinação dos valores dos atributos pode ser especificada concisamente (Estrutura de Preferência e Utilidade Multi-atributo)

Page 12: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Dominância TotalDominância Total Se um estado S1 possui valores melhores em todos seus atributos do

que S2, então existe uma dominância total de S1 sobre S2

i Xi(B) Xi(A) (e portanto U(B) U(A))

Ex.: Local S1 para Aeroporto custa menos, gera menos poluição sonora e é mais seguro que S2

Dominância total raramente acontece na prática !!!

Page 13: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Dominância EstocásticaDominância Estocástica

Na prática, dominância estocástica pode geralmente ser definida usando apenas um raciocínio qualitativo Ex.: custo de construção aumenta com a distância para a cidade:

S1 é mais próximo da cidade do que S2 S1 domina S2 estocasticamente sobre o custo

$- 2,8-5.2

P

S1

S2

Exemplo, custo de construir aeroporto :Em S1 valor uniformemente distribuído entre $2,8 e $4,8 bilhões;Em S2 valor uniformemente distribuído entre $3 e $5,2 bilhões;

Dada a informação que utilidade decresce com custo:

S1 domina estocasticamente S2

Page 14: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Estrutura de Preferência e Utilidade Estrutura de Preferência e Utilidade Multi-AtributoMulti-Atributo

Supondo que existem n atributos com d possíveis valores: No pior caso, serão necessários dn valores (preferência sem regularidade!)

A Teoria da Utilidade Multi-atributo assume que preferências de agentes possuem certa regularidade (estrutura)

Tenta mostrar que a Utilidade de um agente possui uma função de utilidade do tipo:

U(x1 ... Xn) = f[ f1(x1) ..... f2(x2) ]

Onde f seja uma função o mais simples possível

Page 15: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Estrutura de Preferência Estrutura de Preferência (Situação Determinista) (Situação Determinista)

X1 e X2 são preferencialmente independente de X3 sss: Preferência entre {x1, x2, x3} e {x1’, x2’, x3} não depende em x3

Independência preferencial mútua (MPI): todos os pares de atributos são preferencialmente independente com relação aos demais

Com MPI, o comportamento preferencial do agente pode ser descrito como uma maximização da função: V (x1 ... xn) = i Vi(xi)

Para o caso não determinista, basta estender para lidar com loterias

Page 16: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Redes de DecisõesRedes de Decisões Formalismo para expressar e resolver

problemas de decisão: estende Redes Bayesianas adicionando ações e utilidades

Nós de Chance (ovais): representam variáveis como nas redes Bayesianas

Nós de Decisão (retângulo): pontos onde agente deve escolher uma ação

Nós de Utilidade (diamantes): representam as funções de utilidade do agente

Algoritmo de avaliação: 1. Atribuir os valores das variáveis para o estado corrente;2. Calcular o valor esperado do nó de utilidade dado a ação e os valores das variáveis;3. Retornar a ação com maior Utilidade Máxima Esperada

Page 17: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Teoria do Valor da InformaçãoTeoria do Valor da Informação Problemas anteriores assumiam que todas as informações estavam

disponíveis

O que acontece quando elas não estão? Cabe ao agente buscar as informações necessárias ...

No entanto ... Obtenção de informações tem um custo associado Ex.: solicitação de um exame por parte de um medico

A Teoria do Valor da Informação permite que o agente escolha quais informações adquirir

Page 18: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Calculo do Valor da Informação: Calculo do Valor da Informação: ExemploExemplo

Exemplo: comprar os direitos de exploração de reservas de petróleo: Dois blocos A e B, apenas um possui óleo com valor C; Probabilidade de comprar o bloco certo = 0,5 O preço de cada bloco é C/2 Consultor oferece uma pesquisa para detectar qual bloco possui petróleo. Qual o valor dessa informação?

Solução: Calcular o valor esperado da informação = valor esperado da melhor ação dada

a informação – valor esperado da melhor ação sem a informação; Pesquisador irá informar: “há óleo em A” ou “não há óleo em A” (p = 0,5) Então:

0,5 x valor de “comprar A” dado que “há óleo em A” + 0,5 x valor de “comprar B” dado que “não há óleo em A” – 0 == (0,5 x C/2) + (0,5 x C/2) – 0 = C/2

Page 19: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Valor da Informação: ExemploValor da Informação: Exemplo A1 e A2 duas rotas distintas através de uma montanha no inverno

A1 e A2 são as únicas ações possíveis, com EU = U1 e U2, respectivamente A1 = caminho mais baixo, sem muito vento A2 = caminho mais alto, com muito vento

U (A1) > U (A2)

Nova evidência NE produzirá novas utilidades esperadas U1’ e U2’ Vale a pena adquirir NE?

E se mudássemos o cenário? II) A1 e A2 são duas estradas onde venta muito, de mesmo tamanho e levamos

um ferido grave III) Mesmas estradas A1 e A2 mas agora no verão

Conclusão: uma informação só terá valor caso ela gere uma mudança de plano, e se esse novo plano for significante melhor do que o antigo !

Page 20: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Parte 2: Decisões Parte 2: Decisões ComplexasComplexas

“Métodos para decidir o que fazer hoje, dado que nós poderemos ter que decidir de novo amanhã”

Page 21: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Problemas de Decisões SeqüenciaisProblemas de Decisões Seqüenciais Exemplo:

Interação termina quando agente alcança um dos estados finais (+1 ou -1) Ações disponíveis: Up, Down, Left e Right Ambiente totalmente observável (agente sabe onde está!) Ações não confiáveis (locomoção estocástica)

1 2 43

3

2

1 INÍCIO

-1

+1 0.8

0.1 0.1

Page 22: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Processo de Decisão Markoviana (MDP)Processo de Decisão Markoviana (MDP) Definido pelos seguintes componentes:

Estado Inicial: S0 Modelo de Transição: T(s,a,s’) Função de Recompensa: R(s)

Modelo de Transição T(s, a, s’): probabilidade de chegar a s’ como resultado da execução da ação a em s

Hipótese de transições Markovianas: próximo estado depende apenas da ação atual e estado atual, não passados

Em cada estado s agente recebe uma Recompensa R(s): R(s) = -0.04 para todos estados não terminais Dois estados finais R(s) = +1 ou R(s) = -1

Utilidade pode ser dada pela soma das recompensas recebidas

Page 23: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Como são as soluções para esse Como são as soluções para esse problema?problema?

Seqüência fixa de ações não resolvem o problema

Uma solução deve especificar o que o agente deve fazer em qualquer um dos estados que ele possa chegar: Política (Policy): (s) = ação recomendada para estado s

Política Ótima: Política que produz a mais alta utilidade esperada Notação: *

1 2 43

3

2

1

-1

+1

Page 24: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Funções de Utilidade para Problemas Funções de Utilidade para Problemas SeqüenciaisSeqüenciais

Como definir funções de utilidades para problemas seqüenciais?

Uh ([s0, s1, ... , sn])

Primeiro deve-se responder as seguintes perguntas: O Horizonte Temporal para a tomada de decisão é Finito ou Infinito ? Como calcular a utilidade de uma seqüência de estados?

Page 25: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Horizontes Finitos e InfinitosHorizontes Finitos e Infinitos Horizontes finitos:

Existe um tempo limite N após o qual nada mais importa (game-over!) Uh ([s0, s1, ... , sn+k]) = Uh ([s0, s1, ... , sN]), para todo k > 0

Exemplo.: Supondo que o agente inicia em (3,1) N = 3 para atingir +1 agente deve executar ação Up N = 100 tempo suficiente para executar ação Left (rota mais segura)

Política ótima para um ambiente finito é não estacionária

Para horizontes infinitos: Ação ótima depende apenas do estado atual Política ótima é estacionária

1 2 43

3

2

1 INÍCIO

-1

+1

Page 26: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Cálculo de Utilidade para Seqüência de Cálculo de Utilidade para Seqüência de EstadosEstados

Com o que Uh ([s0, s1, ... , sn]) se parece ? Função de utilidade com vários atributos !

Deve-se supor que preferências entre seqüências de estados são estacionárias [s0, s1, s2, ... ] e [s0’, s1’, s2’, ... ],

se s0 = s0’ então,

[s1, s2, ... ] e [s1’, s2’, ... ] devem estar ordenados segundo a mesma preferência

Baseado no principio estacionariedade, existem apenas duas maneiras de atribuir utilidades a seqüência de utilidades: Recompensas aditivas Recompensas descontadas

Page 27: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

RecompensasRecompensas Recompensas Aditivas:

Uh ([s0, s1, ... , sn]) = R(s0) + R(s1) + R(s2) + ...

Recompensas Descontadas: Uh ([s0, s1, ... , sn]) = R(s0) + R(s1) + 2 R(s2) + ...

Onde é chamado fator de desconto com valor entre 0 e 1;

Fator de desconto: Descreve a preferência de um agente com relação a recompensas atuais sobre

recompensas futuras próximo a 0 recompensas no futuro distante são irrelevantes = 1 recompensa aditiva

Page 28: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Algoritmo Value IterationAlgoritmo Value Iteration Idéia: calcular a utilidade de cada estado e as usar para escolher uma ação

ótima em cada estado

Utilidade de cada estado definida em termos da utilidade das seqüências de ações que podem se seguir a partir dele

Utilidade de um estado é dado pela equação de Bellman: U(s) = R(s) + maxa s

’ T(s,a,s’) U(s’)

Exemplo: U(1,1) = -0.04 + max { 0.8 U(1,2) + 0.1 U(2,1) + 0.1 U(1,1), (Up) 0.9 U(1,1) + 0,1 U(2,1), (Left) 0.9 U(1,1) + 0.1 U(2,1), (Down) 0.8 U(2,1) + 0.1 U(1,2) + 0.1 U(1,1) } (Right)

1 2 43

3

2

1

0.812

0.762

0.705

0.812 0.918

0.660 -1

+1

0.655 0.611 0.388

Page 29: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Algoritmo Value IterationAlgoritmo Value Iteration Equações de Bellman são a base do algoritmo Value Iteration para resolver

MDPs

N estados = N equações

Algoritmo:1. Inicializar utilidades com valores arbitrários (tipicamente 0)2. Calcular o lado direito da equação para cada estado3. Atualizar valor da utilidade de cada estado4. Continuar até atingir um equilíbrio

Prova-se que essa iteração eventualmente converge para um único conjunto de soluções (algoritmo atinge equilíbrio !)

Page 30: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Algoritmo Policy IterationAlgoritmo Policy Iteration Idéia: se uma ação é claramente melhor que outras, então a magnitude

exata da utilidade de cada estado não necessita ser precisa

Alterna entre dois passos, iniciando a partir de uma política inicial 0: Avaliação da Política: dada política i , calcular Ui = U i

Melhora da Política: calcular nova política i+1

Para cada estado sse ( maxa s’ T(s,a,s’) U[s’] ) > ( s’ T(s, i(s),s’) U[s’]) então

[s] = argmaxa s’ T(s,a,s’) U[s’]

mudouPolítica = true;

Algoritmo encerra quando passo Melhora da Política não produz nenhuma mudança nas utilidades

Page 31: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Algoritmo Policy IterationAlgoritmo Policy Iteration Mais simples para Avaliar a Utilidade de um estado:

Policy Iteration: Ui(s) = R(s) + s

’ T(s, i(s), s’) Ui(s’)

Value Iteration: U(s) = R(s) + maxa s

’ T(s,a,s’) U(s’)

Exemplo: Ui (1,1) = 0.8 Ui(1,2) + 0.1 Ui(1,1) + 0.1 Ui(2,1)

1 2 43

3

2

1

-1

+1

Page 32: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

MDPs Parcialmente Observáveis MDPs Parcialmente Observáveis (POMDPs)(POMDPs)

MDPs assumem que o ambiente é totalmente observável Política ótima depende apenas estado atual

Em ambientes parcialmente observáveis agente não sabe necessariamente onde ele está

Quais os problemas que surgem? Agente não pode executar ação (s) recomendada para o estado Utilidade do estado s e a ação ótima depende não só de s, mas de quanto o

agente conhece sobre s

Exemplo: agente não tem menor idéia de onde está S0 pode ser qualquer estado menos os finais Solução: Mover Left 5 vezes

Up 5 vezes e Right 5 vezes

1 2 43

3

2

1

-1

+1

start

Page 33: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

MDPs Parcialmente Observáveis MDPs Parcialmente Observáveis (POMDPs)(POMDPs)

Possui os mesmo elementos de um MDP acrescentando apenas: Modelo de Observação: O(s, o) Especifica a probabilidade de perceber a observação o no estado s

Conjunto de estados reais que o agente pode estar = Belief State

Em POMDPs um Belief State b, é uma distribuição probabilística sobre todos os estados possíveis: Ex.: estado inicial na figura = {1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 0, 0}

b(s) denota a probabilidade associada ao estado s pelo Belief State b

Page 34: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

MDPs Parcialmente Observáveis MDPs Parcialmente Observáveis (POMDPs)(POMDPs)

b = Belief State atual

Agente executa a ação a e percebe a observação o, então: Novo Belief State b’ = FORWARD (b, a, o)

Ponto fundamental em POMDs: A ação ótima depende apenas do Belief State corrente do agente * (b): mapeamento de crenças em ações

Ciclo de decisão de um agente POMDP:1. Dado o Belief State corrente b, execute ação a = * (b)2. Receba observação o3. Atualize o Belief State corrente usando FORWARD (b, a, o)

Page 35: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Decisões com Múltiplos Agentes: Decisões com Múltiplos Agentes: Teoria dos JogosTeoria dos Jogos

O que acontece quando a incerteza é proveniente de outros agentes e de suas decisões? A Teoria dos Jogos trata essa questão !

Jogos na Teoria dos Jogos são compostos de: Jogadores Ações Matriz de Resultado

Cada jogador adota uma Estratégia (diretriz) Estratégia Pura: diretriz deterministica, uma ação para cada situação Estratégia Mista: ações selecionadas sobre uma distribuição probabilística

Perfil de Estratégia: associação de uma estratégia a um jogador

Solução é um perfil de estratégia racional

Page 36: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Teoria dos Jogos: Exemplo 1Teoria dos Jogos: Exemplo 1

Dois ladrões (Alice e Bob) são presos perto da cena do crime e interrogados separadamente

Matriz de resultados:

Dilema do Prisioneiro: Eles devem testemunhar ou se recusarem a testemunhar? Ou seja, qual estratégia adotar?

Estratégia Dominante: Estratégia que domina todas as outras É irracional não usar uma estratégia dominante, caso uma exista

Um resultado é dito “Pareto Dominated” por outro se todos jogadores preferirem esse outro resultado

Alice: testemunhar Alice: recusarBob: testemunhar A = -5; B = -5 A = -10; B = 0

Bob: recusar A = 0; B = -10 A = -1; B = -1

Page 37: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Teoria dos Jogos: Exemplo 1Teoria dos Jogos: Exemplo 1

Equilíbrio de Estratégia Dominante: Situação onde cada jogador possui uma estratégia dominante

Qual será a decisão de Alice se ela for racional ? Bob irá testemunhar, então {Testemunhar} !

Então, eis que surge o dilema: Resultado para o ponto de equilíbrio é Pareto Dominated pelo resultado

{recusar, recusar} !

Há alguma maneira de Alice e Bob chegarem ao resultado (-1, -1)? Opção permitida mais pouco provável Poder atrativo do ponto de equilíbrio !

Page 38: Agentes Baseados em Utilidade Métodos da Computação Inteligente Universidade Federal de Pernambuco Aluno: Rodrigo Barros de Vasconcelos Lima.

Equilíbrio de NashEquilíbrio de Nash Equilíbrio de Nash:

Agentes não possuem intenção de desviar da estratégia especificada Condição necessária para uma solução

Equilíbrio de Estratégia Dominante é um Equilíbrio de Nash

Esse conceito afirma que existem estratégias que se equilibram mesmo que não existam estratégias dominantes

Exemplo:

Dois equilibrios de Nash: {dvd, dvd} e {cd, cd}

Acme: DVD Acme: CDBest: DVD A = 9; B = 9 A = -4; B = -1

Best: CD A = -3; B = -1 A = 5; B = 5