A Simple Layered RGB BRDF Model Xavier Granier - Wolfgang Heidrich IMAGER / University of British...

31
A Simple Layered A Simple Layered RGB BRDF Model RGB BRDF Model Xavier Granier - Wolfgang Heidrich IMAGER / University of British Columbia
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    219
  • download

    1

Transcript of A Simple Layered RGB BRDF Model Xavier Granier - Wolfgang Heidrich IMAGER / University of British...

A Simple LayeredA Simple LayeredRGB BRDF ModelRGB BRDF Model

Xavier Granier - Wolfgang HeidrichIMAGER / University of British Columbia

2 IMAGER / UBCA Simple layered RGB BRDF

MotivationsMotivations

Increase the range of possible effects For graphic content creation

Work in Color Space RBG - XYZ - LMSCurrently limited to linear reflection

Convincing and simple modelNot a full simulationEffect as realistic as possible

3 IMAGER / UBCA Simple layered RGB BRDF

MotivationsMotivations

Wavelength effectsInterferenceColour dispersion

Investigation Framework

4 IMAGER / UBCA Simple layered RGB BRDF

OverviewOverview

Previous Work General Configuration Glossy Case Diffuse Case Results Conclusion

5 IMAGER / UBCA Simple layered RGB BRDF

OverviewOverview

Previous Work General Configuration Glossy Case Diffuse Case Results Conclusion

6 IMAGER / UBCA Simple layered RGB BRDF

Uniform BRDFUniform BRDF

Phong models [Phong75,Lafortune94-97,…]Most commonly used

Simplified models [Ward92,Schlick94,…]Faster / Better for Global illumination

Micro-facet [Torrance67,Ashikhmin00,…]

Physically based [He91,Hanrahan93,…]

No wavelength dependent effects

7 IMAGER / UBCA Simple layered RGB BRDF

Wavelength effectsWavelength effects

Diffraction [Stam99,Sun00,…]

InterferencesRecursive Ray-Tracing [Hirayama00-01,…]Full model [Icart99-00,…]

Fine Spectral representation RGB based BRDF Interferences + Colour dispersion

8 IMAGER / UBCA Simple layered RGB BRDF

OverviewOverview

Previous Work General Configuration Glossy Case Diffuse Case Results Conclusion

9 IMAGER / UBCA Simple layered RGB BRDF

Approach Approach

Semi-transparent layerInterferences effects

Local prism configurationOne refraction index by colour componentNon-parallel layer interfacesColour dispersion

RGB colour spaceCommonly used in image production

10 IMAGER / UBCA Simple layered RGB BRDF

Layer configurationLayer configuration

0

1

20n

1n

d

i

o

ir

it

tirot

Air

Layer

Support

11 IMAGER / UBCA Simple layered RGB BRDF

Interference : Phase ChangeInterference : Phase Change

0

1 , nttdr

oi

Uncorrelated layers

Resulting energy from interferences trtr IIIII 2cos2

0

1 ,2 ntdr

i

Parallel layers

12 IMAGER / UBCA Simple layered RGB BRDF

Color dispersion : AssumptionColor dispersion : Assumption

i o

o

i

i o

13 IMAGER / UBCA Simple layered RGB BRDF

BRDF BRDF general general expressionexpression

k{r,g,b} R (reflected BRDF)

3 (RGB) lobe-like models T (transmitted BRDF)

3 (RGB) lobe-like models Ex: using Phong models

koiTkoiRkoi

koiTkoiRkoi

,,,,,,2cos2

,,,,,,

14 IMAGER / UBCA Simple layered RGB BRDF

OverviewOverview

Previous Work General Configuration Glossy Case Diffuse Case Results Conclusion

15 IMAGER / UBCA Simple layered RGB BRDF

Reflected partReflected part

Phong 0,,,,e

i orkifkoiR

0n

1n

i o

ir

16 IMAGER / UBCA Simple layered RGB BRDF

Transmitted partTransmitted part

Assumption No absorption Only one reflection

1,,,,,e

otio trkttkitkoiT

Transmitted term

d

i

it

tirot

kvfkvt ,1,

i

ot

17 IMAGER / UBCA Simple layered RGB BRDF

Main ParametersMain Parameters

Normally r0(k) 1 (air/vacuum) Local geometric configuration : layer-normal Material properties : exponents - indices Fully determined by 4-12 parameters

2-6 Exponents (control transition smoothness)1-3 RGB refraction indices (rB rG rR)1 Layer size 0-2 Normal variation (colour dispersion)

18 IMAGER / UBCA Simple layered RGB BRDF

OverviewOverview

Previous Work General Configuration Glossy Case Diffuse Case Results Conclusion

19 IMAGER / UBCA Simple layered RGB BRDF

AssumptionsAssumptions

kTkRkkTkRk dddddd 2cos2

Similar expression

kRTkTkRk 2cos2

Diffuse case Average along direction

Rd average reflected energy

No colour dispersion

20 IMAGER / UBCA Simple layered RGB BRDF

Diffuse componentDiffuse component

kTkTk

dkrk ddd

1

)(4cos21 1

Phase change for orthogonal incidence

)(4 1

k

dkr

Final expression

No absorption at the interface kRkT dd 1

21 IMAGER / UBCA Simple layered RGB BRDF

OverviewOverview

Previous Work General Configuration Glossy Case Diffuse Case Results Conclusion

22 IMAGER / UBCA Simple layered RGB BRDF

Diffuse componentDiffuse component

1 - 30 nm67 - 73 nm 1 - 210 nm

23 IMAGER / UBCA Simple layered RGB BRDF

Layer Size ChangeLayer Size Change

1-30 nm 79-106 nm 148-200 nm

Constant normal deviation

24 IMAGER / UBCA Simple layered RGB BRDF

Constant deviationConstant deviation

Parallel Interfaces Constant deviation

25 IMAGER / UBCA Simple layered RGB BRDF

Size / Normal correlationSize / Normal correlation

1-10 nm 1-90 nmrR = 1.5 rG = 1.7 rB = 1.8

26 IMAGER / UBCA Simple layered RGB BRDF

OverviewOverview

Previous Work General Configuration Glossy Case Diffuse Case Results Conclusion

27 IMAGER / UBCA Simple layered RGB BRDF

ConclusionConclusion

RGB ModelInterferences and colour dispersionContinuous along direction

Two modelsPhong - like for specularityDiffuse

ValidationSuch effects are possible in colour space

28 IMAGER / UBCA Simple layered RGB BRDF

Future WorkFuture Work

With current modelHardware acceleration (shader)Try to fit some measured BRDF

Investigate otherIncrease accuracy / More physicalInvestigate colour spacesKeep simplicity

Multi-layer

29 IMAGER / UBCA Simple layered RGB BRDF

AcknowledgementsAcknowledgements

IMAGER / University of British ColumbiaPost-doctoral position

PIMS Post-doctoral Fellowship

Wolfgang Heidrich & Lionel BastardUseful comments and support

30 IMAGER / UBCA Simple layered RGB BRDF

The EndThe End

31 IMAGER / UBCA Simple layered RGB BRDF

Reflected partReflected part

Phong reflection

0,,,,e

i orkifkoiR

2

10

10

5

0,11,

krr

krrkF

nvkFFkvf Fresnel term (Schlick approximation)