ออกแบบเสาเข็ม

download ออกแบบเสาเข็ม

If you can't read please download the document

Transcript of ออกแบบเสาเข็ม

  • FFoundation oundation EEngineeringngineering

    ..

  • :: 33 (DEEP FOUNDATION : THEORY AND DESIGN)(DEEP FOUNDATION : THEORY AND DESIGN)

  • 3.1 3.1

    (Skin friction) (End bearing)

    2

    1) (Friction/Floating pile)

    2) (End bearing pile)

  • 3.1 3.1

  • 3.2 3.2

    )

    (Filled)

    ) (Cast-in-situ piles)

    (Precast or Prefabricated piles)

  • 3.2 3.2

    ) (Bored piles) (Driven

    piles) (Pre-auger piles)

    (Vibrating or Ramming)

    )

    (Very large displacement pile) ()

    (Small displacement pile) ( H)

    (No displacement pile) ()

  • 3.2 3.2

    Uncased pile Step-Tamper pile Base pile

  • 3.3 3.3

    (Reinforced concrete pile)

    (Pre-stressed pile)

    Solid square

    Steel pile Hollow square Steel box

    Circular (bored pile) Hexagonal

    Hollow circulaIWide flange,I or H

  • 3.3 3.3

    ()

  • 3.3 3.3

    Drop Hammer

    ( 2.5

    - 12 )

    (Free drop)

    ()

    3.3.1

    Drop Hammer

    Ram

    Hammer cushion

    Pile cap

    Pile

    Pile cushion

  • 3.3 3.3

    Single-Acting Hammer (Steam)

    (Air pressure) (Hydraulic

    pressure)

    2.5 - 20

    3.3.1

    Single-Acting Hammer

    Exhaust

    Cylinder

    Intake

    Ram

    Hammer cushion

    Pile cap

    Pile cushion

    Pile

  • 3.3 3.3

    Double-Acting Hammer

    Single-Acting Hammer

    3.3.1

  • 3.3 3.3

    Diesel Hammer

    () Diesel Hammer

    ( 1.8 - 4.5 )

    3.3.1

    Diesel Hammer

    Ram

    Hammer cushion

    Pile cap

    Pile cushion

    Pile

    Anvil

  • 3.4 3.4

    (Cohesive soils)

    (Boiling)

  • 3.4 3.4

    Casing

    1) 1 - 2 (

    )

  • 3.4 3.4

    2) (Drill rig)

  • 3.4 3.4

    3) 0.5

    ( .)

  • 3.4 3.4

    4) Drop chute

  • 3.4 3.4

    5)

  • 3.4 3.4

    6) 5-10

    2-3

  • 3.4 3.4

    7) (Seismic test)

  • 3.4 3.4

    8)

  • 3.4 3.4

    9)

  • 3.4 3.4

  • 3.4 3.4

  • 40-60

    1 2

    (Caving)

    3.53.5

  • 3.53.5

  • 3.53.5

    1)

    2) (Drilling fluid)

  • 1) ()

    2)

    50-150

    3.53.5

  • 3.53.5

    3)

    4)

    VibratoryDriver

    Water Table

    Caving Soil

    Cohesive Soil

  • 3.53.5

    (Slurry method)

    1) 3

    2) /

    (Drilling slurry)

    3)

    Cohesive Soil

    Caving Soil

    SoilSlurry

  • 3.53.5

    (Slurry method)

    4)

    5) Tremie

    Cohesive Soil Sump

    Caving Soil

    Cohesive Soil

    Caving Soil

  • 3.6 3.6

    (Hydraulic jack)

    1.0

    10-20

  • 3.6 3.6

    1)

  • 3.6 3.6

    2)

    5-10

    (Corrosion)

  • 3.6 3.6

    Reaction beam

    Reaction column

    Hydraulicjack

    Steelpile

    3) (Hydraulic jack) (Reaction

    beam)

  • 3.6 3.6

    4)

  • 3.6 3.6

    5)

  • 3.6 3.6

    6)

  • 3.6 3.6

    7)

  • 3.6 3.6

    ShoringI-Beam

    Existing pier

    Shoring

    8)

    (Shoring)

    9) I

  • 3.7 3.7

    (Skin friction)

    (End bearing)

    (Adhesion)

    1L

    2L

    3L

    4L

  • 3.7 3.7

    1)

    2)

    3) (Pile load

    test)

  • 3.7 3.7

    1)

    2)

    (Shear failure)

    3)

  • 3.83.8

    (

    ) (Total shear

    strength analysis)

  • 3.83.8

    (Failure load, Qf)

    (Qs) (Qb)

    sf bQ Q Q= +

    ( )p s s c uf b bP W c A N A S qA+ = + +

    Pf Wp As

    Ab Su cs

    Nc q

    (Overburden pressure)

  • 3.83.8

    (Wp) qAb (Pf)

    sf bP P P= +

    s s s ufP Q c A S= = =

    c ub bP N S A=

    (Adhesion factor) Pb Nc 9.0

    5.0 Nc

    5.0

  • 3.83.8

    Nc (Skempton, 1951)

    0 1 2 3 4 55

    6

    7

    8

    9

    10

    Bea

    ring

    capa

    city

    fact

    or, N

    c

    Ratio of pile length to pile diameter

    Nc 5.0

  • (Remolded state)

    1.0

    (Overconsolidation ratio)

    3.83.8

  • 3.83.8

    Su (Horpibulsuk and Kampala, 2007)

  • 3.83.8

    (Visic, 1977)

  • 3.83.8

    American

    Petroleum Institute (API)

    1.0 =

    25kPa1 0.5 50kPauS

    =

    0.5 =

    Su < 25 kPa (500 lb/ft2)

    25 kPa (500 lb/ft2) < Su < 75 kPa (15 lb/ft2)

    Su > 75 kPa (1500 lb/ft2)

  • 3.83.8

    (Stiff to very stiff clay)

    20

    0.4 8 20

    20

    1.0 =

    25kPa1 0.5 50kPauS

    =

    0.5 =

    Su < 25 kPa (500 lb/ft2)

    25 kPa (500 lb/ft2) < Su < 75 kPa (15 lb/ft2)

    Su > 75 kPa (1500 lb/ft2)

  • 3.83.8

    Skempton (1966) = 0.45

    0.45s u sP S A=

    9 ub bP wA S=

    w 0.8 0.75

    1.0

  • (Wp) 0.5BN

    3.93.9

    sf bP P P= +

    tans s s s vsP A f A K = =

    qb b b b vbP A q A N= =

    vb vs

    K

    Nq

  • 3.93.9

    / / 1.0

    / 0.8 - 1.0

    / 0.7 - 0.9

    / 0.5 - 0.7

    / 0.8 - 0.9

    (Stas and Kulhawy, 1984)

  • 3.93.9

    (Stas and Kulhawy, 1984)

    K/K0

    (Jetted pile) 0.5 - 0.67

    (Cast-in-situ) 0.67 - 1.0

    0.75 - 1.25

    1 - 2

  • 3.93.9

    Berezantzev et al. (1961)

    Berezantzev et al. (1961)

    90 (

    45 )

    (qT)

    (W)

    (T)

  • 3.93.9

    Nq ( Berezantzev et al., 1961)

    25 30 35 40 4510

    50

    100

    500

    1000

    Nq

    Internal friction angle (Degree)

    Poulos (2001)

    (Nq)

  • 3.93.9

    (Meyerhof, 1959)

    Meyerhof (1959)

    (Zone of

    volume change, b) 6 8

    (Failure zone, a) 4

  • 3.93.9

    (Kishida, 1963)

    Kishida (1963)

    3.5

  • Kishida and Meyerhof (1965)

    3.93.9

    01

    402

    + =

    1 0

    40 40

  • 3.93.9

    25 30 35 40 4510

    50

    100

    500

    1000

    Nq

    Internal friction angle (Degree)

    Poulos (2001)

    Nq

    (0 3)

    01

    402

    + =

  • 3.93.9

    (API 1984)

    fsl (..) qbl (..)

    4.8 190

    / 6.7 290

    / 8.0 480

    / 9.6 960

    11.5 1200

    API (1984) (qbl) (fsl )

    qb qbl fs fsl

  • 3.10 3.10

    (Closed-section pile)

    H (H pile) (Open-end pipe pile)

    (Open-section pile)

    H

  • 3.10 3.10

    Paikowsky and Whitman (1990) ; Miller and Lutenegger (1997)

    Paikowsky and Whitman (1990)

    10 20 25 35

  • 3.10 3.10

    H

    H

    Ab As

  • 3.113.11

    3.11.1

    qc 4B 1B

    (B ) 2.5

    12

    cb bP A q=

  • 3.113.11

    3.11.1

    H

    ( ) 2kN/m200c av

    sq

    f =

    ( ) 2kN/m400c av

    sq

    f =

  • Meyerhof (1956) (fs)

    (qb) SPT

    Decourt (1982 1995)

    3.113.11

    3.11.2

    260(2.8 10) kN/msf N= +

    260( ) kN/mb b bq K N=

    N60 1

    0.5 - 0.6

    60( )bN Kb

  • 3.113.11

    3.11.2

    325 165

    205 115

    165 100

    100 80

    (Decourt, 1995)

  • 3.123.12

    Wh

    Wp

    Y

    R

    s

    A

    L

    E

  • 3.123.12

    1

    ) (Impinging particle)

    )

    ) R

    WhY Rs

    hW Y Rs=

  • 3.123.12

    2

    ) (Impinging particle)

    )

    ) R

    (Rebound)

  • 3.123.12

    s

    OE C

    c

    D

    BA

    Displacement

    R

    = OABD

    = OABC + BDC

    ( /2)hW Y R s c= +

    c

    Drop Hammer:

    Single Acting-Hammer:

    ( 1.0)hW Y R s= +

    ( 0.1)hW Y R s= +

  • 3.123.12

    3

    2

    OAE

    Y0 WhY0

    OAE = CBD = Rc/2 WhY0 = Rc/2 ( /2)hW Y R s c= +

    0h hW Y Rs W Y= +

    Y0

    (Y) (s)

  • 3.123.12

    Y0

    Hei

    ght o

    f fal

    l of h

    amm

    er (

    H)

    Set (s)

    H0

    Y0 y

  • 3.123.12

    Morrison (1868) (s1 s2)

    Y1 Y2

    1 1 /2hW Y Rs Rc= +

    2 2 /2hW Y Rs Rc= +

    1 2 1 2( ) ( )hW Y Y R s s =

  • 3.123.12

    4

    ) (Impinging particle)

    (Coefficient of restitution) er

    )

    hW Y Rs U= +

    U

  • 3.123.12

    )

    M m V

    v M = Wh/g, m = Wp/g, V = (2gY)0.5

    v = 0

    2 2(1 ) ( )2( )re Mm V v

    M m

    +2(1 )

    ( )r p h

    ph

    e W W YU W W

    =

    + hW Y Rs U= +

    2( )( )

    r ph hph

    W Y W e W RsW W+

    =+

    2

    ( )h

    ph

    W Y RsW W =+ er = 0 Dutch Eytewein

  • 3.123.12

    5

    ) WY = Rs + U

    )

    R

    RL/AE R2L/2AE U

    = R2L/2AE

    2

    2hR LW Y Rs AE= + Weibach (1850)

  • 3.123.12

    6

    ) kWhY k

    1.0

    ) 5

    ) 4

    Janbu (1953 )2

    2(1.5 0.3 / )h

    p h

    kW Y R L RsAEW W = ++

  • 3.123.12

    hu

    W YR K s=

    1 1u dd

    K C C

    = + +

    0.75 0.15 pdh

    WC W= +

    2hW YL

    AEs =

  • 3.123.12

    7

    ) kWhY

    ) (2kWhYL/AE)0.5

    Danish 0.5

    22

    hh

    kW YLRkW Y Rs AE

    = +

  • 3.123.12

    8

    )

    )

    ) (cp)

    ) (cc)

    ) (cq)

    L, A, E

    2 2 2(1 )2 2 2( )

    qph h ph

    Rce R L R LkW Y Rs kW YW AE A EW W = + + + ++

  • 3.123.12

    2 2 2(1 )2 2 2( )

    qph h ph

    Rce R L R LkW Y Rs kW YW AE A EW W = + + + ++

    pRL cAE = c

    RL cA E =

    Hiley

    2( ) 1( )2( )ph h p c qph

    k W e W W Y R s c c cW W

    += + + +

    +

  • 3.123.12

    Hiley

    /2h

    c p q

    W YRs c c c

    =+ + +

    2( )/( )r p ph hk W e W W W = + +

    0.72p

    RLc A=

    21.8cRLc A=

    3.60q Rc A=

    L2 ()

    R, L A

  • 3.13 3.13

    Whitaker and Cooke (1966)

    (Load cell)

    0.5

    10 - 20

  • 3.13 3.13

    Total

    Shaft

    Base

    Settlement

    Load

    Total

    Shaft

    Base

    SettlementLo

    ad

    (a) (b)

  • 3.13 3.13

    s bas b

    PPP FS FS +

    FSs 1.2 1.5

    FSb 3.0

    s baP PP FS

    +

    FS 2.0 2.5

  • 3.14 3.14 ( (Negative Skin Friction Negative Skin Friction : : NFNF))

    (Highly compressive soil)

    (Neutral point)

  • 3.14 3.14 ( (Negative Skin Friction Negative Skin Friction : : NFNF))

  • 3.14 3.14 ( (Negative Skin Friction Negative Skin Friction : : NFNF))

    3.14.1 (Cause of Negative Skin Friction)

    1)

    (Neutral point)

    2)

    (Pore pressure)

    3)

    (Excess Pore Pressure)

    (Sensitivity)

  • 3.14 3.14 ( (Negative Skin Friction Negative Skin Friction : : NFNF))

    (Longterm)

    (Negative skin friction) (Burland, 1973)

    3.14.2 (Negative Skin Friction Analysis)

    ( )v avNF L =

    v(av) (Overburden) (Fill)

    (Perimeter of pile)

    L

  • 3.14 3.14 ( (Negative Skin Friction Negative Skin Friction : : NFNF))

    3.14.2 (Negative Skin Friction Analysis)

    (Burland, 1973)

    0.25 0.20 0.15 0.10

  • 3.15 3.15

    ()

    National Building Code (1991)

    250

  • 3.15 3.15

  • 3.15 3.15

  • 3.15 3.15

  • 3.15 3.15

  • 3.15 3.15

    () ()

    0 1,800 0

    1,800 3,000 1

    3,000 6,000 2

    6,000 9,000 3

    9,000 12,000 4

    Engel (1988)

  • 3.15 3.15

    30 90

    ASTM D-1143 7

    1) Standard Loading Procedure Slow Maintained Load Test

    25

    200

    2.0

    2) Cyclic Load Test Standard Loading Procedure

    50, 100 150

  • 3.15 3.15

    3) Loading in Excess of Standard Test Load

    Standard Loading Procedure

    25

    4) Constant Time Interval Loading Standard Loading

    Procedure 1

    5) Constant Rate of Penetration Method

    0.25 0.5

  • 3.15 3.15

    6) Quick Load Test

    4 6

    7) Constant Settlement Increment Loading Method

    (

    ) 1

    Standard Loading Procedure,

    Cyclic Load Test Quick Load Test

  • 3.15 3.15

    ) Standard Loading Procedure

    1) 200 %

    150%

    2) 25 %

    3)

    25%

    1

    -

    0.25 ./. 2

    -

    12

    0.25 .

    24

    -

    15%

  • 3.15 3.15

    ) Cyclic Loading

    1) .

    2) 50 , 100 150 %

    50

    100% 1

    20

    3)

    50 %

    20

    -

    )

  • 3.15 3.15

    ) Quick Load Test

    1) 10 15 %

    2.5

    2)

    5

    -

    -

    4

    5

  • 3.16 3.16

    30.5 19.0

    200

  • 3.16 3.16

    Davission (1972)

    INCHES 0.25 XINCHES 12 D

    120D0.15 X

    ==

    +=

    =L

    AE P

    PSI 610-4.3 E =

    0.15

    (4 ) D/120 D

  • 3.16 3.16

    Chin

    (Hyperbolic shape)

    1 2P c c

    = +

    21

    1P cc=

    +

    P

    c1 c2

  • 3.16 3.16

    De Beer

    0.05 0.10 0.15 0.20 0.30 0.40 0.50 1.00 1.50 2.00

    40

    50

    100

    30

    150

    200

    300

    186

    EXAMPLE 1DE BEER'S METHOD

    MOVEMENT (INCHES)

    Construction of De Beer's yield limit

    De Beer

    log P log

  • 3.16 3.16

    90% Brinch Hansen

    Brinch Hansen (1963)

    90

    (Trial and error)

  • 3.16 3.16

    80% Brinch Hansen

    P

    1 2C CP

    = +

    21 CCP

    +

    =

    80 Brinch Hansen

    (Pu) (u)

    1 2

    12u

    PC C

    =

    2

    1u

    CC =

  • 3.16 3.16

    Mazurkiewicz (1972)

    Mazurkiewicz (1972)

    ( X)

  • 3.16 3.16

    Fuller and Hoy Butler and Hoy

    Fuller

    and Hoy (1970)

    0.05 (0.14 )

    Butler and Hoy (1977)

    Fuller and Hoy (1970)

    0.05

  • 3.16 3.16

    Vander Veen

    ln1

    Ass

    umed

    u

    PP

    Vander

    Veen (1953)

    (Assumed Pu)

    ln (1 P/Assumed Pu)

  • 3.17 3.17

    (Pile cap)

    2

    (Piled foundation)

    (Free

    standing group of pile)

  • 3.17 3.17

  • 3.17 3.17

    (Efficiency, )

    ( )f group

    f

    Pn P =

    n

    Pf(group)

  • 3.17 3.17

    (Free

    standing group of pile) Whitaker (1976)

    Whitaker

    3.17.1

  • 3.17 3.17

    3.17.1

  • 3.17 3.17

    3.17.1

    S = 2D

  • 3.17 3.17

    3.17.1

    Whitaker (1976)

    (Block

    failure) (Individual

    failure of piles)

    (Critical spacing)

  • 3.17 3.17

    3.17.1

    ( ) 2 ( )c g g u g g gf group block ub fP N S B L S H B L nP = + + Lc) ( )0.5

    2 29 1.5 1.59

    yieldu u

    u

    MH S D e D e D

    S D

    = + +

  • 3.18.23.18.2

    2) (Fixed-Head Piles)

    (L < Lc) ( )

    3

    2p

    u

    DK LH

    e L

    =+

    ( )3 22 0ululc cp p

    H eHL L

    DK DK =

    (L > Lc) 23

    yieldul

    MH

    e f=

    +

    0.821.5

    ul

    p

    Hf

    DK

    =

  • 3.18.23.18.2

    2) (Fixed-Head Piles)

    (L < Lcs) ( )9 1.5u uH S D L D= 292

    18 16yield

    csu

    ML D

    S D

    = +

    ( cs clL L L ) ( )

    0.522918 0.75 0.5

    9 2 8yield

    u uu

    M LH S D D D LS D

    = + + +

    0.5 0.5

    2 42.259 9 2.25

    yield yieldcl

    u u

    M ML D

    S D S D

    = + +

    (L > Lcl) 0.5

    2 49 2.25 1.59u u yield

    H S D D M D = +

  • 3.18.23.18.2

    2) (Fixed-Head Piles)

    (L < Lcs) 21.5u pH DK L =

    1/ 3

    yieldcs

    p

    ML

    DK

    =

    ( cs clL L L ) 0.5yieldu p

    MH DK

    L = +

    3 00.5 0.5

    yieldulcl cl

    p p

    MHL L

    DK DK + =

    (L > Lcl) 2

    23

    yieldul

    MH

    e f=

    +

    0.821.5

    ul

    p

    Hf

    DK

    =

  • 3.18.23.18.2

    1) (Tension failure)

    2) (Compression failure)

    3) (Balanced failure)

  • 3.18.23.18.2

    Interaction diagram D/D = 0.90

  • 3.18.23.18.2

    Interaction diagram D/D = 0.80

    1.61.5

    1.4

    1.3

    1.2

    1.1

    1.0

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    00.05 0.10 0.15 0.20 0.25 0.30 0.350

    DD

    0.25

    MuD3fc

    0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    0.1

    pm = 1.0

    0

  • 3.18.23.18.2

    Interaction diagram D/D = 0.70

  • 3.18.23.18.2

    Interaction diagram D/D = 0.60

    e/D

    = 0

    .05

    0.10

    0.15

    0.20

    0.25 0.3

    0

    pm = 1.00.9

    0.80.7

    0.60.5

    0.40.3

    0.20

    0.1

    P u D2 f

    c

  • 3.19 3.19

    c st iS S S S= + +

    St (Total settlement)

    Si (Immediate settlement)

    Sc (Consolidation settlement)

    Ss (Secondary settlement)

  • 3.19 3.19

    (Immediate settlement)

    (Secondary

    settlement)

    (Consolidation settlement)

  • 3.19 3.19

    Terzaghi

    2/3

    2/3

    (Hard soil)

  • 3.19 3.19

  • 3.19 3.19

    g gVq B L=

    q

    Bg

    Lg

    V

  • 3.19 3.19

    q

    30 z (Bg + z)(Lg + z)

    ( )( )v g gV

    B z L z = + +

    v z

  • 3.19 3.19

    H Cc e logv (p) (Compression index) Cs e - logv

    (Swell index) v

    000

    log1vc vc

    v

    C HS e

    += +

    000

    log1vs vc

    v

    C HS e

    += +

    000 0

    log log1 1vps c vc pv

    C H C HS e e

    += + + +

    0 v pv +

    0 v pv + >

  • 3.19 3.19

    2 10 (St)

    US. Department of Navy (1982)

    0g

    tBS S B=

    S0

    Bg

    B

  • 33..11

    0.40 x 0.40 14

    API

  • 33..11

    1.0 =

    s u sP S A=

    (1)(2)(0.4 4 3.5) 11.2sP = =

    -

    Su < 2.5

    -

  • 33..11

    -

    3.5 : 0 (1.6 1) 3.5 2.1v = =

    0 2.1 (1.9 1) 2 3.9v = + =

    -

    5.5 :

    0 1 sin 1 sin30K = =

    0 0.5K =

  • 33..11

    -

    tans vsf K =

    2.1 3.9(0.5 1) tan(0.8 30 )2sf

    +=

    0.67sf = < fsl (6.7 )

    -

    s s sP A f=

    (0.4 4 2)(0.67)sP =

    2.1sP =

  • 33..11

    s u sP S A=

    -

    Su > 7.5

    -

    0.5 =

    (0.5)(9)(0.4 4 5.5)sP =

    39.6sP =

  • 33..11

    -

    11 :

    -

    14 :

    0 3.9 (1.9 1) 5.5 8.8v

    = + =

    0 8.8 (2.1 1) 3 12.1v

    = + =

    0 1 sin 1 sin41K = =

    0 0.34K =

  • 33..11

    -

    tans vsf K =

    < fsl (9.6 )

    -

    s s sP A f=

    8.8 12.1(0.34 1) tan(0.8 41)2sf

    +=

    2.3sf =

    (0.4 4 3)(2.3)sP =

    11.1sP =

  • 33..11

    -

    -

    12.1vb =

    qb vbq N= 040 40.52

    + = =

    12.1 200 2420bq = =

    Nq = 200

    qb = 960

    > qbl (960 )

    -

    b b vbP A =

    (0.4 0.4)(960) 153.6bP = =

  • 33..11

    - FS = 2.5

    11.2 2.1 39.6 11.1 64sP = + + + =( ) 64 153.6 217.6sf bP P P= + = + =

    - FSs = 1.5 FSb = 3.0

    217.6 87.02.5allP = =

    64 153.6 93.91.5 3allP = + =

    87

  • 33..22

    400 250

    100

    40 x 40

    29 9 100 0.4 144ub bP S A= = =

    0.5 100 4 0.4 80s u sP S A L L= = =

  • 33..22

    10.7

    80 144400 1.5 3L= +

    6.60L=

    80 144400 2.5L+=

    10.7L=

    80250 2.5L=

    7.81L= 10.7

  • 33..33

    Hiley Janbu

    20 4.0 4.5 60

    21 3.4 676

    ( 26 x 26 ) 10

    350

    80 er 0.25

  • 33..33

    ) Hiley

    2 20.80 4.5 3.4 0.250.484.5 3.4

    p rh

    ph

    k W W eW W

    + + = = =+ +

    0.72 20 4 21 1.79676pc = =

    1.8 20 4 0.10 0.02676cc = =

    3.6 20 4 0.43676qc = =

    0.48 4.5 6020 41.79 0.02 0.43

    2s

    =+ +

    +

    0.50s =

  • 33..33

    ) Janbu

    1.52.323 4270 350 282836.67E = =

    282.8E =

    3.40.75 0.15 0.864.5dC

    = + =

    2

    4.5 6020 44.5 60 21000.86 1 1

    676 282.8 0.86s

    s

    = + +

    0.84s =

    10 5.0 8.4

    Hiley Janbu

  • 33..44

    1.5 m

    4.0 m

    5.5 m

    4.0 m

    1.2 m

    1.2 m

    0.4 m-diameter-spun pile

    Soft claysat = 1.6 ton/m

    3

    Su = 1.7 ton/m2

    Stiff claysat = 1.8 ton/m

    3

    Su = 7 ton/m2

    Very stiff claysat = 2.0 ton/m

    3

    Su = 15 ton/m2

  • 33..44

    Spun () 20

    API

    Soft clay 1.0 =

    Stiff clay70 251 0.5 0.5550

    = =

    Very stiff clay 0.5 =

  • 33..44

    -

    Soft clay Stiff clay Very stiff clay( ) ( ) ( )s s s s s s sP A f A f A f= + +

    ( 0.4 4)(1 1.7) ( 0.4 5.5)(0.55 7) ( 0.4 4)(0.5 15)sP = + +

    8.5 26.6 37.7 72.8sP = + + =

    -

    -

    9 ub bP S A=

    2(9)(15) 0.4 17.04bP

    = =

    72.8 17.0fP = +

    89.8fP =

  • 33..44

    - FS = 2.5

    89.8 35.92.5allP = =

    72.8 17.0 54.21.5 3.0allP = + =

    - FSs = 1.5 FSb = 3.0

    35.9

  • 33..44

    -

    -

    143.6

    -

    ,( )1

    2( )n

    c u g g g g u i if group blocki

    P N S B L B L S H=

    = + +

    ( ) (9)(15)(1.6)(1.6) 2(1.6 1.6) (1.7 4) (7 5.5) (15 4)f group blockP

    = + + + +

    ( ) 345.6 673.9 1019.5f group blockP = + =

    ( )1019.5 407.82.5all group blockP = =

    ( ) aall group individualP P n =

    ( ) 35.9 4 143.6all group individualP = =

  • 33..55

    A =

    0.5 H/B = 6.0/1.6 = 3.75 c = 0.64 ()

  • 33..55

    (Stiff clay)

    (Medium dense sand) L 5

    (L) = (1.5 + 8 + 2 5/3) = 12.8

    z () v (..) v0 (..) p (

    ..)

    vf (

    ..)

    Sc(1-D)

    (.)

    4.7 50/(1.6 + 4.7)2 = 1.26 (1.51.5) + (0.58) + (0.83) +

    (0.94) + (0.91) = 21.25

    38.25 22.51 0.43

    6.7 0.72 21.25 + (0.92) = 23.05 41.49 23.77 0.23

    8.7 0.47 23.05 + (0.92) = 24.85 44.73 25.32 0.14

    0.80

    (1 ) 00log1

    vfsc D v

    C HS e

    = +

    (1 ) 0.64 0.80 0.51c c DS = =

  • 33..66

    1, 6, 8 9

    250 A 40

    Boring log

    y (+)

    1 2 3

    4 5 6

    7 8 9

    1.20 m

    1.20 m

    1.20 m 1.20 m

    x (+)

    0.35 m

    0.45 m

  • 33..66

    (Stiff clay)

    (Medium dense sand) L 5

    (L) = (1.5 + 8 + 2 5/3) = 12.8

    2 2y xVe y Ve xVP ny x

    =

    226 1.2 8.64x = =

    226 1.2 8.64y

    = =

    250 0.45 112.5yVe = =

    250 0.35 87.5xVe = =

    -

    -

  • 33..66

    1

    1

    112.5 1.2 87.5 1.2250 09 8.64 8.64P

    = + + =

    6

    87.5 1.2 112.5 0250 39.99 8.64 8.64P +

    = + + =

    8

    87.5 0 112.5 1.2250 43.49 8.64 8.64P

    += + + =

    9

    87.5 1.2 112.5 1.2250 55.69 8.64 8.64P + +

    = + + =

    6

    8

    9

  • 33..66

    9

    3

    1.0

    ( 55.6 )

    7

    1.5

  • 33..66

    1.5-3.0

    3.0-5.5

    5.5-7.0

    7.0 ()

    1 1.96 2.73 1 sin28.2 tan28.2 0.40 1.50 1.22sP

    = + =

    1 2.73 4.70 1 sin32.5 tan32.5 0.40 2.50 3.42sP

    = + =

    1 4.70 7.47 1 sin44 tan44 0.40 2.50 5.62sP

    = + =

    144 40 422

    + = =

    7.47 300 2241v qN = =

    21200 0.4 150.84bP= =

    > qbl (= 1200 )

  • 33..66

    1.2 3.4 5.6 150.8 161.0fP = + + + =

    161.0 64.42.5allP = =

    1.2 3.4 5.6 150.8 57.11.5 3.0allP

    + += + =

    57.1

    40 7

  • 33..77

    40 80 9

    (Free head

    pile) 28 (fc) 280 (fy) 4000

  • 33..77

    28 2.5 39.34stA

    = =

    2min

    0.5 80 25.13100 4stA= =

    32 2

    4 4 39.3 7.82 1080

    stApD

    = = =

    4000 16.810.85 2800.85y

    c

    fm f= = =

    37.82 10 16.81 0.13pm = =

    ... 0.5%

    < Ast OK.

  • 33..77

    D/D = 0.65/0.80 = 0.815, pm = 0.13 Pu = 0

    3 0.025u

    c

    MD f

    =

    30.025 80 280 0.7 2,508,800yieldM = =

    25.1yieldM =

    -

    -

  • 33..77

    0.59( ) 1.5 2.25

    yieldc

    u u

    ML ft D S D S D

    = + +

    1000.80 2.6730D= =2

    304 2.2 0.79100uS

    = =

    10025.1 2.2 1857.430yieldM = =0.5

    9 1857.41.5 0.79 25.232.25 0.79 2.670.79 2.67cL

    = + + =

    3025.23 7.57100cL = =

    (Lc)

    -

    < 9.0

    (Long pile)

  • 33..77

    0.52 2

    9 1.5 1.59yield

    u uu

    MH S D e D e DS D

    = + +

    0.52 2 1857.49 0.79 2.67 0 1.5 2.67 0 1.5 2.679 0.79 2.67uH

    = + +

    0.518.98 16.04 195.68 4.00uH

    = +

    200.25uH =

    200.25 91.022.2uH = =

  • 33..88

    3.6 x 100

    Myield

    12 -

    y (+)

    1 2 3

    4 5 6

    7 8 9

    1.20 m

    1.20 m

    1.20 m 1.20 m

    x (+)

    0.35 m

    0.45 m

  • 33..88

    x () 6

    1.0

    0.7

    100 14.39H = =

    1/3yield

    csp

    ML DK

    =

  • 33..88

    10012 2.2 8830yieldM = =

    0.51 1.5 0.79 2.5 1.11 1.50.805.5

    + + = =

    3300.80 2.2 0.048100

    = =

    1000.40 1.3330D= =

    28.2 1.5 32.5 2.5 44 1.534.55.5

    + + = =

    2 34.5tan 45 3.612pK

    = + =

    88 381.840.048 1.33 3.61csL

    = =

    30381.84 114.55100csL = =

    -

    > L

  • 33..88

    21.5u pH DK L= 2

    1001.5 0.048 1.33 3.61 5.5 116.230uH

    = =

    116.2 52.82.2uH = =

    52.8 0.7 2.5814.3FS= =