讓氣體無所遁形的微小黏度計

28
7/21/2019 http://slidepdf.com/reader/full/5695cf301a28ab9b028cfd8c 1/28 臺灣二 O O 七年國際科學展覽會 別 :工程學 作 品 名 稱 :讓氣體無所遁形的微小黏度計 學校 作者 :臺北市立麗山高級中學 張瓈文 臺北市立麗山高級中學 林婉茹

description

讓氣體無所遁形的微小黏度計

Transcript of 讓氣體無所遁形的微小黏度計

  • O O

    /

  • i

    (Re)(St)

    Re-St

    2550100150200

    Re ---

    Abstract The purpose of this experiment is to measure the vortex-shedding frequency while the compressed air flow over a cylinder by hot-wire anemometer and all of the experiment is set up at the small testing environment. By this way, we can find out the relationship of Reynolds number and Strouhal number. We expect that research the relationship between Re and St while flow over a heated cylinder by using the concept of effective Reynolds number. We can get the effective Re by curving fitting the critical Re at 2550100150200each and derive out the viscosity of the air. After this, then we can measure the viscosity of the air everywhere after knowing the viscosity with respect to the specific temperature. We only discuss the phenomena at this part, because the limitation of the accuracy of the instrument. We also observe that a heated cylinder can stabilize the flow field effectively by the vortex-shedding frequency. We are going to enhance the accuracy of the instrument and fulfill the gas identification.

  • ii

    ............................................................................................................i Abstract.......................................................................................................i ............................................................................................................ii ...................................................................................................iii ...................................................................................................iv ..............................................................................................1

    1.1 .......................................................................................1 1.2 .......................................................................................1 1.3 .......................................................................................2

    1.3.1...................................................................2-3 1.3.2...............................................................3-5 1.3.3.......................................................5-6

    ..........................................................................7 2.1 ...........................................................................................7 2.2 ......................................................................8-10 2.3 ..........................................................................11

    2.3.1 ............................................................11 2.3.2 ....................................................................12

    2.4 ..........................................................................12 2.4.1Re-St.....................................12-15 2.4.2 ........................................16

    ................................................................................17 3.1 Re-St ..................................................17 3.2 .................................................17 3.3 ........................................................................................18-19

    ................................................................................20 4.1 .............................................................................................20 4.2 .....................................................................................20

    ..................................................................................................21

  • iii

    d

    f

    Re (Reynolds number)

    cRe

    effRe

    St (Strouhal number)

    Teff

    Tf

    WT

    T

    T* Tw T

    CU

    U

    eff

  • iv

    ............................ 2 John H. Lienhard St-Re .3 ...................6 .................................8 ...............................8 .........................................9 .......................9 ......................................10 ......................................10 ..................................10 ............................11 ..........................12 ........................13 ............14 ............15 [1]..................15 ........16 ..........................18

  • 1

    1.1

    2006

    1.2

    (Re)(St)

  • 2

    1.3

    1.3.1

    Re = 40~49

    (vortex)

    Von Krman (1911)

    Krman vortex street

    [An-Bang Wang, 2000]

  • 3

    John H. Lienhard (circular cylinder)

    Strouhal number/Reynolds number

    1.3.2

    Strouhal

    St, Strouhal number

    Re, Reynolds number

    John H. Lienhard St-Re

  • 4

    L+++=ReReFEDSt

    = dURe U d

    =UfdSt f

    (Roshko, Williamson, Brown)

    Re-St

    Lange (temperature ratio)

    TT

    T W WT (K) T (K)

    Lecordier

    (critical

    Reynolds number, cRe )

    40 49

  • 5

    (effective Reynolds, effRe )

    )/(ReRe ,, effCeffcc dU ==

    Dumouchel (effective

    kinematic viscosity, eff )

    +=T

    TTcTT weff 1 K

    2000 (Wang)

    c 0.28

    1.3.3

    (Poisseuilles law)

  • 6

    tV

    8r

    LP-PQ

    421 ==

    Q 1P 2P Lr

    Vt

    LP-Pr

    8214 =

    (Falling Ball Viscosimeter)

  • 7

    2.1

    Re-St

    Re-St

  • 8

    2.2

    1.8

  • 9

    (Contraction)

    (Thermocouples, Omega CHAL-005)

    1.1mm

    (16mm

    10mm )

    Thermal couple

    flow

    Hot-wire

    Open jet

    cylinder

  • 10

    (Hot-wire anemometer, TSI)

    L

    1.1mm

    1.118

    0-250CFM

    RTD

  • 11

    2.3

    2.3.1

  • 12

    2.3.2 (thermal couple)

    50 0

    2.4

    2.4.1 Re-St

    Honeycombs Screens Hot-wire

    Inlet

    Flow meter electronic processor Hot-wire electronic

    processor & FFT

    Out let

    Bluff body Flow meter

  • 13

    3000 FFT

  • 14

    V=1.76 Re=126 V=3.63 Re=260 V=4.33 Re=310 V=4.89 Re=350

    V=3.39 Re=243 V=3.90 Re=279 V=4.59 Re=328 V=5.24 Re=375

  • 15

    Velocity vs Frequency

    y = 178.86x - 138.15R2 = 0.9976

    0100200300400500600700800900

    1000

    0 1 2 3 4 5 6Frequency(Hz)

    Veloc

    ity(m

    /s)

    St Re Re-St

    0 ~ 2 m/s

    St vs Re

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0 100 200 300 400 500Re

    St

    reference[1]experiment

    [1]

  • 16

    2.4.2

    25 200

    Re-St

    T=28V=2.13Re=152 T=175V=2.20Re=157 T=208V=2.18Re=156

  • 17

    3.1 Re-St

    Re-St

    Re-St

    Re

    Re

    Recr

    3.2

    Re-St

  • 18

    3.3

    1

    Re

    0.8m/s

    2

    10

    2

    Fully developed velocity profile

    uDU0

    Entrance length

  • 19

    3

    4

    ( 1m/s )

    1.8cm

    (16mm 10mm

    )

  • 20

    4.1

    1 Re-St

    Re-St

    2

    4.2

    1

    2

    3

  • 21

    [1]K. A. Cliffe and S. J. Tavener, The effect of cylinder rotation and blockage ratio on the onset of periodic flow, Journal of Fluid Mechanics, Vol. 501, pp. 125-133, 2004. [2] An-Bang Wang, Zdenek Tra vncek, On the linear heat transfer correlation of a heated circular cylinder in laminar crossflow using a new representative temperature concept, Journal of Heat and Mass Transfer, Vol. 44, pp. 4635-4647, 2000. [3]An-Bang Wang, Zdenek Tra vncek, and Kai-Chien Chia, On the relationship of effective Reynolds number and Strouhal number for the laminar vortex shedding of a heated circular cylinder, Journal of Physics of Fluids, Vol. 12, No. 6, 2002, pp. 1401-1410. [4]Robert W. fox, Alan T. McDonald, Philip J. Pritchard, Introduction to Fluid Mechanics, John Wiley & Sons, Inc, 2004. [5]Merle C. Potter, David C. Wiggert, etc., Mechanics of fluids, 3rd BROOKS/COLE, Inc, 2001.

    [6]

    94

    [7]

    90

    [8] http://tw17.water.com.tw/index3.asp

  • Abstract