杉山 弘晃

79
杉杉 杉杉 杉杉杉杉杉杉 杉杉杉 杉杉杉杉杉 杉杉杉杉杉 杉杉杉杉杉杉 @、 2014 杉 杉杉 杉 杉 517

description

素粒子の質量. 宇宙の質量. 杉山 弘晃. 京都産業大学 益川塾 博士研究員. 天文学講座@神山天文台、 2014 年5月17日. もくじ. 益川塾ってどんなところ?. 素粒子. 細かくしてみよう. “ ちから” ( 相互作用 ) も素粒子. 役に立つの?. 素粒子の質量. LHC実験でのヒッグス粒子発見. ヒッグス場と素粒子質量. 宇宙の質量. 暗黒物質. 益川塾ってどんなところ?. 2008年に益川さんに訪れた 「とある事件」 ( 益川さん談 ) によって設立. 毎年塾生を募集して、1号館の4階で 主に「 素粒子 物理学理論」を研究しています. - PowerPoint PPT Presentation

Transcript of 杉山 弘晃

Page 1: 杉山 弘晃

杉山 弘晃京都産業大学 益川塾 博士研究員

天文学講座@神山天文台、 2014 年5月17日

Page 2: 杉山 弘晃

2/79

益川塾ってどんなところ?

素粒子

素粒子の質量

宇宙の質量

細かくしてみよう“ ちから” ( 相互作用 ) も素粒子役に立つの?

LHC実験でのヒッグス粒子発見ヒッグス場と素粒子質量

暗黒物質

もくじ

Page 3: 杉山 弘晃

3/79

益川塾ってどんなところ?益川塾ってどんなところ?

2008年に益川さんに訪れた 「とある事件」 ( 益川さん談 ) によって設立

毎年塾生を募集して、1号館の4階で 主に「素粒子物理学理論」を研究しています

Page 4: 杉山 弘晃

4/79

入塾証授与式 入塾証

益川塾ってどんなところ?益川塾ってどんなところ?

Page 5: 杉山 弘晃

5/79

研究室 眺め

益川塾ってどんなところ?益川塾ってどんなところ?

Page 6: 杉山 弘晃

6/79

研究発表風景 議論風景

益川塾ってどんなところ?益川塾ってどんなところ?

Page 7: 杉山 弘晃

7/79

益川塾ってどんなところ?

素粒子

素粒子の質量

宇宙の質量

細かくしてみよう“ ちから” ( 相互作用 ) も素粒子役に立つの?

LHC実験でのヒッグス粒子発見ヒッグス場と素粒子質量

暗黒物質

もくじ

Page 8: 杉山 弘晃

8/79

素粒子って何?素粒子って何?

モノを作る最も小さい材料

素粒子と思われていたものがもっと小さい材料から作られていることが判明することもある。

科学の発展によって変わっていく。

「いろいろなモノは何からできているのだろう?」 という素朴な疑問への答えとなる概念。

Page 9: 杉山 弘晃

9/79

古代の素粒子 ( 元素 )古代の素粒子 ( 元素 )

古代中国:五行

古代ギリシャ:四大元素

木・火・土・金・水

地・水・火・空気

惑星や曜日のなまえ

ファンタジーの世界

古代インド:五大 ( 五輪 )

地・水・火・風・空宮本武蔵の五輪書の巻名

Page 10: 杉山 弘晃

10/79

細かくしてみよう細かくしてみよう

ほしみ~るちゃん(神山天文台マスコットキャラクター)

Fe鉄原子

Page 11: 杉山 弘晃

11/79

(神山天文台マスコットキャラクター)

鉄原子

細かくしてみよう細かくしてみよう

電子

原子核

(素粒子!)

Fe

Page 12: 杉山 弘晃

12/79

細かくしてみよう細かくしてみよう

電子

原子核

(素粒子!)

陽子

中性子

Page 13: 杉山 弘晃

13/79

細かくしてみよう細かくしてみよう

陽子

中性子

+ アップクォーク(素粒子!)

ダウンクォーク(素粒子!)

Page 14: 杉山 弘晃

14/79

細かくしてみよう細かくしてみよう

アップクォーク ダウンクォーク電子

これだけだとバラバラなので、接着剤が必要!

だいたいこれらから作られる

Page 15: 杉山 弘晃

15/79

光子電気的・磁気的な力を伝える粒子

つまり電磁波 ( 光 ) の粒子化

引力

斥力

(原子を作る)

(“地面”を作る)

“ ちから” ( 相互作用 ) も素粒子“ ちから” ( 相互作用 ) も素粒子

Page 16: 杉山 弘晃

16/79

グルーオン

クォークに働く『強い力』陽子・中性子 ( や原子核 ) を作る接着剤

陽子

斥力

引力

勝つ( 強い! )

“ ちから” ( 相互作用 ) も素粒子“ ちから” ( 相互作用 ) も素粒子

Page 17: 杉山 弘晃

17/79

ウィークボゾン

原子核の反応に関わる“ちから”

粒子の種類を変える

“3つ子”

“ ちから” ( 相互作用 ) も素粒子“ ちから” ( 相互作用 ) も素粒子

+0

中性子

ベータ崩壊

陽子

電子

ニュートリノ ( 素粒子! )( 反電子ニュートリノ )

Page 18: 杉山 弘晃

18/79

ウィークボゾン

原子核の反応に関わる“ちから”

粒子の種類を変える

“3つ子”

“ ちから” ( 相互作用 ) も素粒子“ ちから” ( 相互作用 ) も素粒子

+ 重水素の原子核

核融合 ( 太陽のエネルギー源 )

陽子2個陽電子 ( 電子の反粒子 )

+0

電子ニュートリノ

Page 19: 杉山 弘晃

19/79

重力を伝える粒子

理論が未完成!重力子

“ ちから” ( 相互作用 ) も素粒子“ ちから” ( 相互作用 ) も素粒子

Page 20: 杉山 弘晃

20/79

見つかっている素粒子の一覧表見つかっている素粒子の一覧表

電子

電子ニュートリノ

アップ

ダウングルーオン

光子

ヒッグス粒子

Z W+ Wー

ミュー粒子

ニュートリノミュー

チャーム

ストレンジ

タウ粒子

ニュートリノタウ

トップ

ボトム

http://higgstan.com/

Page 21: 杉山 弘晃

21/79

電子 ミュー粒子 タウ粒子

電子ニュートリノ ニュートリノ

ミューニュートリノタウ

アップ

ダウン

チャーム トップ

ストレンジ ボトム

ヒッグス粒子

Z W+ Wー

見つかっている素粒子の一覧表見つかっている素粒子の一覧表

質量ゼロ

グルーオン

光子

Page 22: 杉山 弘晃

22/79

ミュー粒子 タウ粒子

チャーム トップ

ストレンジ ボトム

ヒッグス粒子

Z W+ Wー

グルーオン

光子

電子ニュートリノ ニュートリノ

ミューニュートリノタウ

見つかっている素粒子の一覧表見つかっている素粒子の一覧表

質量      程度

電子

アップ

ダウン

Page 23: 杉山 弘晃

23/79

タウ粒子

チャーム トップ

ボトム

ヒッグス粒子

Z W+ Wー

グルーオン

光子

電子ニュートリノ ニュートリノ

ミューニュートリノタウ

電子

アップ

ダウン

見つかっている素粒子の一覧表見つかっている素粒子の一覧表

質量     程度

ミュー粒子

ストレンジ

Page 24: 杉山 弘晃

24/79

トップ

ヒッグス粒子

Z W+ Wー

グルーオン

光子

電子ニュートリノ ニュートリノ

ミューニュートリノタウ

電子

アップ

ダウン

ミュー粒子

ストレンジ

見つかっている素粒子の一覧表見つかっている素粒子の一覧表

質量       程度

タウ粒子

チャーム

ボトム

Page 25: 杉山 弘晃

25/79

グルーオン

光子

電子ニュートリノ ニュートリノ

ミューニュートリノタウ

電子

アップ

ダウン

ミュー粒子

ストレンジ

タウ粒子

チャーム

ボトム

見つかっている素粒子の一覧表見つかっている素粒子の一覧表

質量    程度

トップ

ヒッグス粒子

Z W+ Wー

Page 26: 杉山 弘晃

26/79

電子 ミュー粒子 タウ粒子

アップ

ダウン

チャーム トップ

ストレンジ ボトム

ヒッグス粒子

Z W+ Wー

グルーオン

光子

見つかっている素粒子の一覧表見つかっている素粒子の一覧表

質量    以下

電子ニュートリノ ニュートリノ

ミューニュートリノタウ

Page 27: 杉山 弘晃

27/79

素粒子発見の歴史素粒子発見の歴史

1897年:電子の発見

1937年:ミュー粒子の発見

1956年:電子ニュートリノの発見1962年:ミューニュートリノの発見1969年:アップ、ダウン、ストレンジクォークの発見

1974年:チャームクォークの発見1975年:タウ粒子の発見1977年:ボトムクォークの発見1979年:グルーオンの発見1983年:ウィークボゾンの発見

1995年:トップクォークの発見2000年:タウニュートリノの発見

2012年:ヒッグス粒子の発見

Page 28: 杉山 弘晃

28/79

素粒子物理学 ~何の役に立つの?~ 素粒子物理学 ~何の役に立つの?~

芸術家:良い音色を出せるとうれしい物理学者:うまく式で表せるとうれしい

冒険家:そこに山があるから登ってみたい物理学者:そこに謎があるから解明したい

陸上競技者:人はどれだけ速く走れるか挑戦物理学者:人はどこまで宇宙を理解できるか挑戦

物理学者だけ「役に立つの?」と聞かれる…

「純粋科学」と「技術」の混同

Page 29: 杉山 弘晃

29/79

素粒子物理学 ~何の役に立つの?~ 素粒子物理学 ~何の役に立つの?~

フェルミ研究所の加速器建設についてアメリカ上下両院合同委員会での質疑応答

John Pastore 議員「この加速器は国防に役立ちますか?」

Robert.R. Wilson (のちの初代所長)「国を守ることに直接関係しませんが    守る価値のある国にできます」

http://history.fnal.gov/testimony.html

Page 30: 杉山 弘晃

30/79

素粒子物理学 ~役に立つことも?~ 素粒子物理学 ~役に立つことも?~

半導体、フラッシュメモリ

量子力学:非常に微小な世界を扱う

純粋科学が役に立った例

一般相対性理論:精密な重力を扱う

GPS

Page 31: 杉山 弘晃

31/79

世界で最初のウェブサイト (1990)

http://info.cern.ch/hypertext/WWW/TheProject.html

素粒子物理学 ~役に立つことも?~ 素粒子物理学 ~役に立つことも?~

Page 32: 杉山 弘晃

32/79

素粒子物理学 ~役に立つことも?~ 素粒子物理学 ~役に立つことも?~

CERN ( ヒッグス粒子の発見場所 ) にて大規模な国際研究の利便性のためにT.J. Berners-Lee (左 ) が R. Cailliau (右 ) とともに開発。

1993年4月30日にCERN は WWW を無料で公開 !( 特許を取っていたらどうなっていた? )

World Wide Web

Page 33: 杉山 弘晃

33/79

益川塾ってどんなところ?

素粒子

素粒子の質量

宇宙の質量

細かくしてみよう“ ちから” ( 相互作用 ) も素粒子役に立つの?

LHC実験でのヒッグス粒子発見ヒッグス場と素粒子質量

暗黒物質

もくじ

Page 34: 杉山 弘晃

34/79

2012年7月4日:ヒッグス粒子発見2012年7月4日:ヒッグス粒子発見

そして、

Page 35: 杉山 弘晃

35/79

2013年ノーベル物理学賞2013年ノーベル物理学賞

Peter HiggsFrançois Englert

F. Englert and R. Brout,Phys. Rev. Lett. 13, 321 (1964)

P.W. Higgs, Phys. Lett. 12,132 (1964)

Englert さんの共著者であるRobert Brout さんは残念ながら 2011 年に亡くなっていました。存命ならば共同受賞していたはずです。

6月26日投稿 7月27日投稿

Page 36: 杉山 弘晃

36/79

Conseil Européen Recherche Nucléaire( 欧州原子核研究理事会。準備段階の名称 )

現在は日本語だと「欧州原子核研究機構」

CERN の LHC 実験CERN の LHC 実験

Large Hadron Collider( 大型ハドロン衝突型加速器 )

加速した陽子同士を衝突させる

スイスの首都ジュネーブの、フランス国境付近

2008年9月10日の Google

周長 27km のリング、地下約 100m

Google ストリートビュー: https://www.google.com/maps/views/streetview/cern

Page 37: 杉山 弘晃

37/79

CERN の LHC 実験CERN の LHC 実験

ジュラ山脈

フランス

スイス

ジュネーブ空港

LHC (27km)

CERN

Page 38: 杉山 弘晃

38/79

CERN の LHC 実験CERN の LHC 実験

8.5km

Page 39: 杉山 弘晃

39/79

CERN の LHC 実験CERN の LHC 実験

http://www.atlas.ch/multimedia/2-photon-event.html動画の URL

Page 40: 杉山 弘晃

40/79

LHC 実験でのヒッグス粒子発見LHC 実験でのヒッグス粒子発見

http://www.atlas.ch/multimedia/a-higgs-particle-decaying-2-photons.html動画の URL

Page 41: 杉山 弘晃

41/79

LHC 実験でのヒッグス粒子発見LHC 実験でのヒッグス粒子発見

グルーオン衝突

光子

陽子

陽子

すぐ壊れる

光子

光子2つのエネルギー

ヒッグス粒子生成 ヒッグス粒子の質量

( 測定するもの )

Page 42: 杉山 弘晃

42/79

LHC 実験でのヒッグス粒子発見LHC 実験でのヒッグス粒子発見

Page 43: 杉山 弘晃

43/79

LHC 実験でのヒッグス粒子発見LHC 実験でのヒッグス粒子発見

発見

発見

Page 44: 杉山 弘晃

44/79

LHC 実験でのヒッグス粒子発見LHC 実験でのヒッグス粒子発見

https://twiki.cern.ch/twiki/pub/AtlasPublic/HiggsPublicResults//Hgg-FixedScale-Short2.gif

Page 45: 杉山 弘晃

45/79

なぜ重要な発見か?

Page 46: 杉山 弘晃

46/79

素粒子の質量の起源素粒子の質量の起源

きれいな理論を考えると質量を持てない!

モネ作:睡蓮 物理学者作:ゲージ対称な理論

Page 47: 杉山 弘晃

47/79

素粒子の質量の起源素粒子の質量の起源

ヒッグス場を導入してちょっと複雑に

モネ作:睡蓮 物理学者作:標準模型

Page 48: 杉山 弘晃

48/79

素粒子の「標準模型」素粒子の「標準模型」

「標準模型」:物理理論の固有名詞標準の名にふさわしい大成功

ミュー粒子の異常磁気能率

「標準模型」の予言値: 2.0023184

実験での観測値: 2.0023184 ミュー粒子

ヒッグス粒子が長らく発見されていなかった

Page 49: 杉山 弘晃

49/79

素粒子の「標準模型」素粒子の「標準模型」

「標準模型」の素粒子の最後のパーツ

質量に関わるとても重要な粒子

理論的な美しさをやや損なうのでヒッグス粒子のない理論も考えられていた

ヒッグス粒子発見の意義

「標準模型」が磐石に

質量の作り方の確認

「標準模型」でよさそう

Page 50: 杉山 弘晃

50/79

益川塾ってどんなところ?

素粒子

素粒子の質量

宇宙の質量

細かくしてみよう“ ちから” ( 相互作用 ) も素粒子役に立つの?

LHC実験でのヒッグス粒子発見ヒッグス場と素粒子質量

暗黒物質

もくじ

Page 51: 杉山 弘晃

51/79

準備 ~質量~ 準備 ~質量~

重さ:無重力状態ならゼロ

質量:無重力状態でもそのままある

動かしづらさを表す量

動かしづらい 動かしやすい

Page 52: 杉山 弘晃

52/79

準備 ~質量~ 準備 ~質量~

質量なし:光速で飛び続ける

質量あり:光速より遅い

止まったりしない

止まることもできる

光子質量なし: 光速

質量あり:

電子

遅い

Page 53: 杉山 弘晃

53/79

よくある誤解よくある誤解

抵抗があると ( 水中 ) 動きにくいのは理解しやすい( 短時間、限られた紙面での解説には仕方ない )

でも、抵抗なら動きが止まってしまう

何か変 今日はちゃんと説明してみます

Page 54: 杉山 弘晃

54/79

準備 ~場~ 準備 ~場~

場:各場所に値があるもの( 場所の「関数」が実在している感じ)

各場所に方向を持った値がある

電場

各場所に方向を持たない値がある

Page 55: 杉山 弘晃

55/79

準備 ~場~ 準備 ~場~

電荷をゆする=場にエネルギー

場が波打つ

場:各場所に値があるもの( 場所の「関数」が実在している感じ)

粒子の源にもなる

=電磁波 ( 光子 )

Page 56: 杉山 弘晃

56/79

準備 ~真空~ 準備 ~真空~

真空の特徴:粒子は居ない「場」には満たされている

真空 真空 電荷を置かない=値ゼロの場がある

真空

Page 57: 杉山 弘晃

57/79

ヒッグス場とヒッグス粒子ヒッグス場とヒッグス粒子

ヒッグス場:各場所に方向を持たない値が対応ヒッグス粒子の源

ヒッグス粒子:ヒッグス場の波

0010

0000

0000

0000

0000

0010

0000

0000

0000

0000

0010

0000

ヒッグス場

Page 58: 杉山 弘晃

58/79

ヒッグス場と素粒子質量ヒッグス場と素粒子質量

ヒッグス場の値

ヒッグス場の値

真空では値がゼロ

真空でも値がある

ヒッグス場:実は真空での値がゼロでなくても良い

真空の性質を変える!

Page 59: 杉山 弘晃

59/79

ヒッグス場と素粒子質量ヒッグス場と素粒子質量

ヒッグス場の値

ヒッグス場の値

真空では値がゼロ

真空でも値がある

誤:「ヒッグス粒子」が真空に詰まっている

正 (?) :「ヒッグス場」の値が真空に詰まっている

Page 60: 杉山 弘晃

60/79

ヒッグス場と素粒子質量ヒッグス場と素粒子質量

ヒッグス場の値

ヒッグス場の値

真空では値がゼロ

真空でも値がある

ヒッグス場:真空の性質を変える!

素粒子に質量を与える!

徐行光速 ( 質量 !)

Page 61: 杉山 弘晃

61/79

ヒッグス場と素粒子質量ヒッグス場と素粒子質量

ヒッグス場の値

ヒッグス場の値

真空では値がゼロ

真空でも値がある

徐行光速 ( 質量 !)

誤:「ヒッグス粒子」とぶつかる抵抗

正:「ヒッグス場」による真空の性質変化

Page 62: 杉山 弘晃

62/79

ヒッグス場と素粒子質量ヒッグス場と素粒子質量

ヒッグス場の値

質量の違い:「ヒッグス場」への注意力の違い

見ない ( 質量ゼロ )

よく見る ( 重い )あまり見ない ( 軽い )

Page 63: 杉山 弘晃

63/79

ヒッグス場はダイエットの敵?ヒッグス場はダイエットの敵?

モノの質量の原因は

陽子・中性子の質量は材料のクォーク3個分より

モノの質量 ( 陽子・中性子の質量 ) は素粒子質量 ( ヒッグス場 ) とは別の原因による( 約 2% だけがヒッグス場による質量 )

ずっと重い

陽子・中性子の質量

= +0

+0 +0

+0

Page 64: 杉山 弘晃

64/79

ヒッグス粒子の誤解のまとめヒッグス粒子の誤解のまとめ

誤:「ヒッグス粒子」正 (?) :「ヒッグス場」の値

誤:「ヒッグス粒子」とぶつかる抵抗正:「ヒッグス場」が真空の性質を変えるから

真空に詰まっているのは、

素粒子質量の原因は、

モノの質量の源は、誤:「ヒッグス粒子」正: 2% だけが素粒子質量 ( ヒッグス場 ) 起源

98% は別の起源 ( 解明されている )

Page 65: 杉山 弘晃

65/79

益川塾ってどんなところ?

素粒子

素粒子の質量

宇宙の質量

細かくしてみよう“ ちから” ( 相互作用 ) も素粒子役に立つの?

LHC実験でのヒッグス粒子発見ヒッグス場と素粒子質量

暗黒物質

もくじ

Page 66: 杉山 弘晃

66/79

暗黒物質 ~銀河団の運動~ 暗黒物質 ~銀河団の運動~

「繋ぎ止める重力」に必要な質量

見えている質量= 約 400

F. Zwicky, Helvetica Physica Acta 6: 110–127 (1933)

見えない質量がないと銀河団はバラバラに

Page 67: 杉山 弘晃

67/79

暗黒物質 ~銀河の回転~ 暗黒物質 ~銀河の回転~

惑星の運動:遠いほどゆっくり( ケプラーの第2法則:面積速度一定 )

銀河内の星の運動

速さ

中心からの距離

予想

観測

何かある

V. Rubin, W. K. Ford, Jr Astrophysical Journal 159: 379 (1970)

Page 68: 杉山 弘晃

68/79

暗黒物質 ~弾丸銀河団~ 暗黒物質 ~弾丸銀河団~

高温のガスの領域:光るので見える

質量の領域:重力レンズでわかる

ぶつかるので取り残される

なぜかそのまますり抜けている !

弾丸銀河団:大きな銀河団を小さな銀河団が貫いた

Page 69: 杉山 弘晃

69/79

A,B,C は同じ天体

重力レンズ

Page 70: 杉山 弘晃

70/79

暗黒物質 ~宇宙の大規模構造形成~ 暗黒物質 ~宇宙の大規模構造形成~

暗黒物質を考慮しないと計算機シミュレーションが観測と合わない

http://www.sdss.org/

http://4d2u.nao.ac.jp/t/var/download/lss2.html動画の URL

Page 71: 杉山 弘晃

71/79

暗黒物質 ~宇宙の温度ゆらぎ~ 暗黒物質 ~宇宙の温度ゆらぎ~

宇宙の温度:平均3 K ( マイナス 270℃)

平均からのずれが色々な情報を持つ

http://sci.esa.int/planck/43109-mapping-the-cmb-with-planck-hd-version/

動画の URL

Page 72: 杉山 弘晃

72/79

暗黒物質 ~宇宙の温度ゆらぎ~ 暗黒物質 ~宇宙の温度ゆらぎ~

http://sci.esa.int/planck/53108-planck-and-the-cosmic-microwave-background/

宇宙の温度:平均3 K ( マイナス 270℃)

平均からのずれが色々な情報を持つ

Page 73: 杉山 弘晃

73/79

暗黒物質 ~宇宙の温度ゆらぎ~ 暗黒物質 ~宇宙の温度ゆらぎ~

138 億年後 : 現在

晴れ上がり38 万年後 :

Page 74: 杉山 弘晃

74/79

暗黒物質 ~宇宙の温度ゆらぎ~ 暗黒物質 ~宇宙の温度ゆらぎ~

通常の物質: 4.9%

暗黒物質: 26.8%

暗黒エネルギー: 68.3%

5倍 !

現在の宇宙のレシピ

Page 75: 杉山 弘晃

75/79

Page 76: 杉山 弘晃

76/79

暗黒物質の性質暗黒物質の性質

電気を帯びていない

質量を持っている

崩壊しない

光 ( 電磁波 ) を出さないから

銀河を重力でつなぎとめるため

宇宙にたくさん残っているから

「暗黒」というより「透明」

あまり相互作用しない弾丸銀河団の質量のすりぬけ

Page 77: 杉山 弘晃

77/79

暗黒物質の正体暗黒物質の正体

ニュートリノニュートリノニュートリノ

電子 ミュー粒子 タウ粒子

電子 ミュー タウ

アップ

ダウン

チャーム トップ

ストレンジ ボトムグルーオン

光子

ヒッグス粒子

Z W+ Wー

どれも暗黒物質とみなせない !

質量ゼロ

崩壊する

帯電

軽すぎ

Page 78: 杉山 弘晃

78/79

暗黒物質の正体暗黒物質の正体

謎 !ともかく新しい何か

Page 79: 杉山 弘晃

79/79

まとめまとめ

ヒッグス場による真空の性質変化

ヒッグス粒子はヒッグス場を伝わる波

素粒子の「標準模型」は磐石

素粒子に質量を与える原因は

でも宇宙の約5%だけを見ていた

宇宙の質量 ( 物質 ) はほとんどが暗黒物質

暗黒物質 26.8%

通常物質 4.9%

まだまだ謎だらけ