返回总目录

49
heoretical Mechanics 返返返返 返返返返返 Theoretical Mechanics 第第第 第第第第 第第第第第 返返返返 返 返

description

第三篇 动 力 学. Theoretical Mechanics. 第十三章 动量矩定理. 主讲教师 黄 璟. 返回总目录. 第十三章 动量矩定理. 目 录. § 13-1  动量矩 § 13-2  动量矩定理 § 13-3  刚体绕定轴的转动微分方程 § 13-4  质点系相对于质心的动量矩定理 § 13-5  刚体平面运动微分方程. 13.1 动量矩. 13.1.1 质点的动量矩. 质点 M 的动量对于 O 点的矩,定义为质点对于 O 点的动量矩,即. A. B. 动量矩是矢量,称为动量矩矢。. - PowerPoint PPT Presentation

Transcript of 返回总目录

Page 1: 返回总目录

Theoretical Mechanics

返回首页返回总目录

Th

eore

tical

Mech

an

ics

第三篇 动 力 学

第十三章 动量矩定理

主讲教师 黄 璟

Page 2: 返回总目录

Theoretical Mechanics

返回首页

第十三章 动量矩定理目 录

     § 13-1 动量矩

     § 13-2 动量矩定理

     § 13-3 刚体绕定轴的转动微分方程

     § 13-4 质点系相对于质心的动量矩定理

     § 13-5 刚体平面运动微分方程

  

Page 3: 返回总目录

Theoretical Mechanics

返回首页

13.1 动量矩13.1.1 质点的动量矩

d

A

B动量矩是矢量,称为动量矩矢。

方向垂直于矢径 r 与动量 mv 所形成的平面,指向按右手法则确定,其大小为

质点 M 的动量对于 O 点的矩,定义为质点对于 O 点的动量矩,即 vrvm mmO )(

OABmvdmrmvmO 2),sin()( vrvm

在国际单位制中,动量矩的单位是 kgm2s-1 。

vmr

)( vm mO

Page 4: 返回总目录

Theoretical Mechanics

返回首页

1 、质点系对固定点的动量矩设质点系由 个质点组成,其中第 个质点的动量为 对任一固定点的动量矩为 ,则质点系对固定点 的动量矩为

n i iim viim vr O

iiiiiOO mm vrvmL )(

即:质点系对任一固定点 O 的动量矩定义为质点系中各质点对固定点动量矩的矢量和。

2 、质点系对固定轴的动量矩以固定点 O 为原点建立直角坐标轴,将上式投影到 轴上,则有

z )()( iizziiOz mmmL vvm

即:质点系对任一固定轴的动量矩定义为质点系中各质点对该固定轴动量矩的代数和。

13.1 动量矩13.1.2 质点系的动量矩

Page 5: 返回总目录

Theoretical Mechanics

返回首页

3 、平动刚体的动量矩

xy

z

C

iM

Cviv

O

设平动刚体的质量为 ,质心 的速度为 。其上任一点 的质量为 ,速度为 ,则 。任选一固定点 ,则有

mCv iM

im iv Ci vv O

CiiiiiO mm vrvrL )(

由于 ,所以Cii mm rr CCO mvrL

即:平动刚体对任一固定点的动量矩等于视刚体为质量集中于质心的质点对该固定点的动量矩。

13.1 动量矩13.1.2 质点系的动量矩

Page 6: 返回总目录

Theoretical Mechanics

返回首页

4 、转动刚体对转轴的动量矩 z

iMir iivm

设刚体绕定轴 转动的角速度为 ,刚体上任一质点 的质量为 ,到转轴的距离为 ,则其速度的大小为 ,于是有

z iM im

ir ii rv

)()( 2iiiiiiizz rmrvmvmmL

令 2iiz rmI

称为刚体对转轴 的转动惯量,于是有zI zzz IL

即:定轴转动刚体对转轴的动量矩等于刚体对转轴的转动惯量与刚体角速度的乘积。

13.1 动量矩13.1.2 质点系的动量矩

Page 7: 返回总目录

Theoretical Mechanics

返回首页

由前知,刚体对轴 的转动惯量定义为:刚体上所有质点的质量与该质点到轴 的垂直距离的平方乘积的算术和。即

zz

2iiz rmI

对于质量连续分布的刚体,上式可写成积分形式dmrI z 2

由定义可知,转动惯量不仅与质量有关,而且与质量的分布有关;在国际单位制中,转动惯量的单位是: 。同一刚体对不同轴的转动惯量是不同的,而它对某定轴的转动惯量却是常数。因此在谈及转动惯量时,必须指明它是对哪一轴的转动惯量。

2mkg

13.1 动量矩13.1.3 转动惯量

Page 8: 返回总目录

Theoretical Mechanics

返回首页

在工程上常用回转半径来计算刚体的转动惯量,其定义为

mI z

z

称为刚体对 轴的回转半径。显然 具有常度的单位。如果已知回转半径 ,则刚体对转轴 的转动惯量为

zz

zzz

2zz mI

回转半径的几何意义是:假想地将刚体的质量集中到一点处,并保持刚体对轴的转动惯量不变,则该点到轴的距离就等于回转半径的长度。由定义知,回转半径仅与刚体的形状有关,而与刚体的材质(即与刚体的质量)无关。即几何形状相同,材质不同的均质刚体,其回转半径相同。

13.1 动量矩13.1.3 转动惯量

Page 9: 返回总目录

Theoretical Mechanics

返回首页

例 题

例 13-1 图中等截面的均质细长杆 AB 长为 l ,质量为m ,试求该杆对于:( 1 )通过质心 O 且与杆垂直的 y

轴的转动惯量;( 2 )与 y 轴相平行的 y 轴的转动惯量。 解:设坐标系 Oxy 的 x 轴沿着杆的轴线。该杆线密度(单位长度的质量) =m/l ,则单元体 dx 的质量 dm = dx ,于是

2

1

2

122

1

2

122

12

1dd mlx

l

mxxxI y

l l

y mlxl

mxxxI

0 0

222

3

1d)(d)(

13.1 动量矩

Page 10: 返回总目录

Theoretical Mechanics

返回首页

例 13-2 图中厚度相等的均质薄圆板的半径为 R ,质量为 m ,求圆板对其直径轴的转动惯量。

解:首先,将圆板分成无数同心的单元圆环,则单元圆环的质量

单元圆环对于中心的转动惯量是

22 2

1

πmRI

R

mO 2

4

1

2

1mRIII Oyx

rrm dπ2d

r2dm

R R

O RrrmrI0 0

432 π2

1dπ2d

例 题13.1 动量矩

Page 11: 返回总目录

Theoretical Mechanics

返回首页Theoretical Mechanics

转动惯量的平行轴定理:刚体对任一轴的转动惯量,等于刚体对于通过质心并与该轴平行的轴的转动惯量,加上刚体的质量与此两轴间距离平方的乘积。即

2' MlII zCz

分别以 O 、 C 两点为原点,建立直角坐标系,则

222iiiiizC yxmrmI

13.1 动量矩13.1.4 平行移轴定理

Page 12: 返回总目录

Theoretical Mechanics

返回首页

22

2

iii

iiz

yxm

rmI

iiiiii mlymlyxm 222 2

注意到 Cxy 的坐标原点与质心 C 重合 0Cy

2MlII zCz 2MlII zCz 通过质心轴的转动惯量最小

ii xx

lyy i

22 lyxmI iiiz

0Myym cii

13.1 动量矩13.1.4 平行移轴定理

Page 13: 返回总目录

Theoretical Mechanics

返回首页

当物体由几个简单几何形状的物体组成时,

计算整体的转动惯量时,可先分别计算每一简

单几何形体对同一轴的转动惯量,然后求和即

可。如果物体有空心部分,可把这部分的质量

视为负值来处理。

13.1 动量矩13.1.4 平行移轴定理

Page 14: 返回总目录

Theoretical Mechanics

返回首页

应用平行轴定理,有 2

1 2

1

MII CO 杆杆

解:摆对于水平轴的转动惯量即细长杆的转动惯量和圆盘的转动惯量

盘杆 OOO III

例 13-3 钟摆简化模型如图。已知均质细杆和均质圆盘的质量分别为M1 和 M2 ,杆长为 l ,圆盘直径为 d

,求摆对于通过悬挂点 O 的水平轴的转动惯量 IO

例 题13.1 动量矩

Page 15: 返回总目录

Theoretical Mechanics

返回首页

21

2

12

1 3

1

412lM

lMlM

lIO 杆

2

2 2

dlMII CO 盘盘

ldldMlMIII OOO

222

21 8

3

3

1盘杆

ldldM

dlM

dMIO

222

2

2

2

2

8

3

222

1盘

例 题13.1 动量矩

Page 16: 返回总目录

Theoretical Mechanics

返回首页

x

x yy

z

z

d

B

O

A

13.2.1 质点动量矩定理

质点动量矩定理

)(FmO

)( vm mO F

r

vm

vrvrvrvm mt

mt

mt

mt O d

d

d

d

d

d

d

d

0d

d vvvr mm

t

FFrvm OO mmt

d

d

Fv mtd

d

vrvm mmO )(

质点对固定点的动量矩对时间的一阶导数等于作用于质点上的力对同一点的力矩。

13.2 动量矩定理

Page 17: 返回总目录

Theoretical Mechanics

返回首页

O l

Mv

gm

NF

x

y例 13-3 图示为一单摆(数学摆),摆锤质量为 ,摆线长为 ,如给摆锤以初位移或初速度(统称初扰动),它就在经过 点的铅垂平面内摆动。求此单摆在微小摆动时的运动规律。

m l

O

解:以摆锤为研究对象,受力如图,建立如图坐标。在任一瞬时,摆锤的速度为 ,摆的偏角为 ,则 v

2)( mlmvlmmz vsin)( mglmz F

式中负号表示力矩的正负号恒与角坐标的正负号相反。它表明力矩总是有使摆锤回到平衡位置的趋势。

例 题 13.2 动量矩定理

Page 18: 返回总目录

Theoretical Mechanics

返回首页

由 ,得)()( Fv zz mmmdtd sin)( 2 mglml

dt

d

即 0sin l

g

这就是单摆的运动微分方程。当 很小时摆作微摆动, ,于是上式变为

sin

0 l

g

此微分方程的解为 )sin( tl

gA

其中 和 为积分常数,取决于初始条件。可见单

摆的微幅摆动为简谐运动。摆动的周期为

A

g

lT 2

显然,周期只与 有关,而与初始条件无关。l

13.2 动量矩定理例 题

Page 19: 返回总目录

Theoretical Mechanics

返回首页

n 个方程的矢量和

质系动量矩定理设质点系内有 n 个质点,作用在第 i 个质点上的力有内力 和外力 , 按质点的动量矩定理,有 i

iF eiF

eiO

iiOiiO m

tFmFmvm

d

d i =1 , 2 ,…, n

n

i

n

i

n

i

eiO

iiOiiO m

t1 1 1d

dFmFmvm

n

i

iiO

1

0Fm

n

i

n

i

eiOiiO m

t 1 1d

dFmvm

n

i

eii

eOOt 1d

dFrML

质点系动量矩定理 : 质点系对于某固定点 O 的动量矩对时间的一阶导数,等于作用于质点系的外力对同一点的主矩。

13.2.2 质点系动量矩定理13.2 动量矩定理

Page 20: 返回总目录

Theoretical Mechanics

返回首页

质系对于 x , y , z 轴的动量矩等于质系中各质点动量对于 x , y , z 轴动量矩的代数和。

动量矩定理的投影形式

质点系对某定轴的动量矩对时间的一阶导数,等于作用于质点系上的外力对该轴之矩的代数和。

eiz

ezz

eiy

eyy

eix

exx

mMLt

mMLt

mMLt

F

F

F

d

dd

dd

d

vL

vL

vL

mmL

mmL

mmL

zzzO

yyyO

xxxO

13.2.2 质点系动量矩定理13.2 动量矩定理

Page 21: 返回总目录

Theoretical Mechanics

返回首页

例 13-4 一绳跨过定滑轮,其一端吊有质量为 的重物 ,另一端有一质量为 的人以速度 相对细绳向上爬。若滑轮半径为 ,质量不计,并且开始时系统静止,求人的速度。

mm Au

r

解:以系统为研究对象,受力如图。 mg mg

O

A

OxF

u

OyF

由于 ,且系统初始静止,所以 。0)( FOm 0OL

uav

vv e

设重物 A 上升的速度为 ,则人的绝对速度 的大小为

vav

vuva 所以 0 mvrrmvL aO

即 0)( mvrrvumLO

13.2 动量矩定理例 题

Page 22: 返回总目录

Theoretical Mechanics

返回首页

由上式解得重物 A 的速度为2

uv

于是人的绝对速度为2

uva

由上可知,人与重物 A 具有相同的的速度,此速度等于人相对绳的速度的一半。如果开始时,人与重物 A 位于同一高度,则不论人以多大的相对速度爬绳,人与重物 A 将始终保持相同的高度。

13.2 动量矩定理例 题

Page 23: 返回总目录

Theoretical Mechanics

返回首页

内力不能改变质系的动量矩,只有作用于质系的外力才能使质系的动量矩发生变化。在特殊情况下外力系对 O 点的主矩为零,则质系对 O 点的动量矩为一常矢量,即

Oe

O LM ,0)( 常矢量

外力系对某轴力矩的代数和为零,则质系对该轴的动量矩为一常数。

0)( )( exM F = 常量xL

vrvm mmO )(

d

动量矩守恒13.2.2 质点系动量矩定理

13.2 动量矩定理

Page 24: 返回总目录

Theoretical Mechanics

返回首页

例 13-5 水平杆 AB 长为 2a ,可绕铅垂轴 z 转动,其两端各用铰链与长为 l 的杆 AC 及 BD 相连,杆端各联结重为 P 的小球C 和 D 。起初两小球用细线相连,使杆 AC 与 BD 均为铅垂,系统绕 z 轴的角速度为 。如某瞬时此细线拉断后,杆 AC 与BD各与铅垂线成 角 , 如图所示。不计各杆重量,求这时系统的角速度。

0

解:系统所受外力有小球的重力及轴承的约束力,这些力对 z 轴之矩都等于零。系统对 z 轴的动量矩守恒。

13.2 动量矩定理例 题

A B

C D

z

0aa

l l

Page 25: 返回总目录

Theoretical Mechanics

返回首页

开始时系统的动量矩为

02

01 22 ag

Paa

g

PLz

细线拉断后的动量矩为

02

2

)sin(

la

a

22 )sin(2 la

g

PLz

21 zz LL 20

2 )sin(22 lag

Pa

g

P

A B

D

z

aa

l l

13.2 动量矩定理例 题

Page 26: 返回总目录

Theoretical Mechanics

返回首页

13.3 刚体绕定轴的转动微分方程

22iiiiiiiz rmrmvmrL

2iiz rmI

刚体对转动轴的动量矩等于刚体对该轴的转动惯量与角速度的乘积。

设刚体在外力作用下绕轴转动,角速度,角加速度。令 z 轴与转轴重合,刚体对 z 轴的动量矩为

zz IL

应用质系对 z 轴的动量矩方程,得:

eizz FmI

t

d

d

zz MI

Page 27: 返回总目录

Theoretical Mechanics

返回首页

)(Fzz MI )(Fzz MI

此式称为刚体绕定轴转动的微分方程

由于约束力对 z 轴的力矩为零,所以方程中只需考虑主动力的矩

zz Mt

I 2

2

d

d

eizz FmI

t

d

d

( 1 )外力矩 Mz越大,刚体转动的角加速度也越大。当 Mz

=0 时,角加速度 = 0 ,刚体作匀速转动或保持静止。 ( 2 )在同样的外力矩作用下,刚体的转动惯量 Iz越大,角

加速度越小。 Iz 反映了刚体保持其匀速转动状态能力的大小,转动惯量是刚体转动时的惯性度量。

13.3 刚体绕定轴的转动微分方程

Page 28: 返回总目录

Theoretical Mechanics

返回首页

例 题

例 13-6 已知刚体的质量为 m ,质心到转轴 O 的距离 OC=a ,刚体绕水平轴 O 作微幅摆动的周期为 T ,求刚体相对于转轴的转动惯量。 解:建立刚体的转动微分方程式,以摆的平

衡位置作为角的起点,逆时针方向为正,

sinmgaIO

作微幅摆动时, ,简化为 sin

微分方程的通解为

t

I

mga

O

sin0

其中 及由运动的初始条件确定,而振动的周期为0

mgaIT Oπ2 22π4

1mgaTIO

0 gI

ma

O

13.3 刚体绕定轴的转动微分方程

Page 29: 返回总目录

Theoretical Mechanics

返回首页

例 13-7 卷扬机的传动轮系如图,设轴 I 和 各自转动部分对其轴的转动惯量分别为 I1 和 I2 ,轴 I 的齿轮 C

上受主动力矩 M 的作用,卷筒提升的重 齿轮 A 、 B 的节园半径为 ,两轮角加速度之比 。卷筒半径为 R ,不计轴承摩擦及绳的质量。求重物的加速度 。

mgW

21 ,rr

122121 :: irr

例 题13.3 刚体绕定轴的转动微分方程

Page 30: 返回总目录

Theoretical Mechanics

返回首页

解:本题二根固定轴必须拆开,分别以两轴及与其固连的齿轮为研究对象。轴 I 除受主动力矩 M 和重力、轴承约束力外,还受有齿轮力 Ft 及 Fn ,现假设 1 与 M 的方向相同如图。为使方程正负号简单,一般约定以的转向为正,于是轴 I 的转动方程为 1τ11 rFMI

再以轴 和重物 W 为研究对象,画出其受力图。按运动学关系画出 2 (1 反向 ) ,以 2 转向为正,应用质点系的动量矩定理,

mgRrFmvRIt

2τ22d

d

例 题13.3 刚体绕定轴的转动微分方程

Page 31: 返回总目录

Theoretical Mechanics

返回首页

1τ11 rFMI mgRrFmRI 2τ22

2

式中有三个未知量 1 、 2 和 Ft ,还需建立补充方程。由运动学

121

2

2

1 ir

r

重物上升的加速度

22

2121

12

mRIiI

RmgRMiRa

22

2121

122

mRIiI

mgRMi

联立解得

例 题13.3 刚体绕定轴的转动微分方程

Page 32: 返回总目录

Theoretical Mechanics

返回首页

例 13-8 均质梁 AB 长 l ,重 W ,由铰链 A 和绳所支持。若突然剪断联结 B 点的软绳,求绳断前后铰链 A 的约束力的改变量。 解:以梁为研究对象,绳未断以前是静力学问题。由静平衡方程可求出绳未断时,铰链 A 的约束力

21W

F Ay

绳断之后,梁 AB 将绕 A 点转动。绳断瞬时, = 0 。

23

1 2 lWl

g

W应用转动方程

l

g

2

3

例 题13.3 刚体绕定轴的转动微分方程

Page 33: 返回总目录

Theoretical Mechanics

返回首页

再应用质心运动定理求约束力。图示瞬时,质心 C 的加速度

4

3

2

1,0

gaa C

nC

WWWF

FWg

g

WFMa

FFMa

Ay

Ayycy

Axxcx

4

1

4

3

4

3,

0,

2

2

2

于是,绳断前后,铰链 A约束力的改变量为

44221WWW

FFF AyAyAy

例 题13.3 刚体绕定轴的转动微分方程

Page 34: 返回总目录

Theoretical Mechanics

返回首页

例 13-9 阿特伍德机的滑轮质量为 M ,且均匀分布,半径为 r 。两重物系于绳的两端,质量分别为 m1 和 m2 。试求重物的加速度。

解:以整体为研究对象,画受力图。设滑轮有逆时针方向的转动,角速度为,则滑轮对轴 O 的动量矩、两重物对轴 O

的动量矩分别为

21 2

1MrIL OO 2

112 rmvrmLO 2223 rmvrmLO

系统对轴 O 的动量矩为上述三项动量矩之和,即

221321 2

1rMmmLLLL OOOO

例 题13.3 刚体绕定轴的转动微分方程

Page 35: 返回总目录

Theoretical Mechanics

返回首页

应用动量矩定理

grmgrmrMmmt 21

221 2

1

d

d

grmmrMmm 212

21 2

1

rMmm

gmm

rMmm

gmm

21

21

21

21

22

2

2

1

重物的加速度 g

Mmm

mmra

21

21

22

2

例 题13.3 刚体绕定轴的转动微分方程

Page 36: 返回总目录

Theoretical Mechanics

返回首页

例 13-8 图中质量 m1 = 5 kg ,半径 r=30cm 的均质圆盘,可绕铅直轴 z 转动,在圆盘中心用铰链 D连接质量 m2 = 4 kg 的均质细杆 AB , AB 杆长为 2r ,可绕 D 转动。当 AB 杆在铅直位置时,圆盘的角速度为 ,试求杆转到水平位置碰到销钉 C 而相对静止时,圆盘的角速度。

minr90

解:以圆盘、杆及轴为研究对象,画出其受力图。由受力分析看出,在 AB

杆由铅直位置转至水平位置的整个过程中,作用在质点系上所有外力对 z 轴之矩为零,即 。因此,质点系对 z 轴的动量矩守恒。

0 Fzm

例 题13.3 刚体绕定轴的转动微分方程

Page 37: 返回总目录

Theoretical Mechanics

返回首页

210 4

1rmIL zz

杆在铅直位置时,只有圆盘对 z 轴的动量矩

杆在水平位置时,设系统的角速度为 1 ,系统包含圆盘及杆对 z 轴的动量矩。

12

212

112

212

113

1

4

12

12

1

4

1ωrmωrmωrmωrmLz

系统动量矩守恒 10 zz LL

12

212

12

1 3

1

4

1

4

1 rmrmrm

将有关数值代入 rad/s56.41 ω

12

1

1

4

1

3

14

1

mm

m

例 题13.3 刚体绕定轴的转动微分方程

Page 38: 返回总目录

Theoretical Mechanics

返回首页

13.4 质点系相对于质心的动量矩定理

质系对于固定点 O 的动量矩与相对于质心 C 的动量矩之间的关系

质系对于固定点 O 的动量矩与相对于质心 C 的动量矩之间的关系

质系对于固定点 O 的矩为

iiiO m vrL

建立以质心 C 为原点的平移坐标系 ,有zyxC iCi rrr

iiiiiCiiiCO mmm vrvrvrrL

Cii Mm vv iiiC m vrL

CCO m LvrL C CCO m LvrL C

Page 39: 返回总目录

Theoretical Mechanics

返回首页

eii

eiC

CCCC

C

tt

MM

tFrFr

Lvrv

r

d

d

d

d

d

d

eiiCCCC M

tFrrLvr )()(

d

d

代入质点系对固定点的动量矩定理得 代入质点系对固定点的动量矩定理得

CCO m LvrL C CCO m LvrL C

C

eiC

eii MFmFr )(

Ce

iCe

ii MFmFr )( ei

eC

t

MFF

v )(

Rd

d ei

eC

t

MFF

v )(

Rd

d

0d

d CCC

C MMt

vvvr 0

d

d CCC

C MMt

vvvr

C

eiC

C

t

LMFm

)(

d

d C

eiC

C

t

LMFm

)(

d

d

质点系相对于随质心平移坐标系的相对动量矩对时间的一阶导数,等于质点系的外力对质心之矩的矢量和。这就是相对于质心的动量矩定理

13.4 质点系相对于质心的动量矩定理

Page 40: 返回总目录

Theoretical Mechanics

返回首页

质系在相对动坐标系的运动中对质心的动量矩与在绝对运动中对质心的动量矩之间的关系

质系在相对动坐标系的运动中对质心的动量矩与在绝对运动中对质心的动量矩之间的关系

iCi vvv 建立以质心 C 为原点的平移坐标系 ,有zyxC

iiiC m vrL

质系在绝对运动中对质心的动量矩,等于质系在相对质心平动系的运动中对质心的动量矩。

0 CCCii mm vrvr 0 CCCii mm vrvr

rCC LL rCC LL iiiC m vrL r iiiC m vrL r

13.4 质点系相对于质心的动量矩定理

Page 41: 返回总目录

Theoretical Mechanics

返回首页

质系相对质心的动量矩定理:在相对随质心平动坐标系的运动中,质系对质心的动量矩对于时间的一阶导数,等于外力系对质心的主矩。

质系相对质心的动量矩定理:在相对随质心平动坐标系的运动中,质系对质心的动量矩对于时间的一阶导数,等于外力系对质心的主矩。

)(

d

d eC

C

tM

L

13.4 质点系相对于质心的动量矩定理

Page 42: 返回总目录

Theoretical Mechanics

返回首页

如将质系的运动分解为跟随质心的平动和相对质心的运动,则可分别用质心运动定理和相对质心动量矩定理来建立这两种运动与外力系的关系。质系相对质心的运动只与外力系对质心的主矩有关,而与内力无关。当外力系相对质心的主矩为零时,质系相对质心的动量矩守恒。

讨 论讨 论

13.4 质点系相对于质心的动量矩定理

Page 43: 返回总目录

Theoretical Mechanics

返回首页

13.5 刚体平面运动微分方程

CC

yC

xC

MI

Fym

Fxm

刚体的平面运动分解为跟随质心的平动和相对质心的转动。

)(

d

d eC

C

tM

L

刚体在相对运动中对质心的

动量矩定理CC M

tI

2

2

d

d

应用质心运动定理和相对质心动量矩定理得刚体平面运动微分方程

Page 44: 返回总目录

Theoretical Mechanics

返回首页

例 题

例 13-9 图中均质轮的圆筒上缠一绳索,并作用一水平方向的力 200 N ,轮和圆筒的总质量为 50kg ,对其质心的回转半径为 70 mm 。已知轮与水平面间的静、动摩擦系数分别为 f = 0.20 和 f = 0.15 ,求轮心 O 的加速度和轮的角加速度。

解:假设轮子作纯滚动,受力图中 F 为静滑动摩擦力, ,轮心的加速度为 a ,角加速度为。

NfFF

Ra 1.0a由于滚动而不滑动,有 ,即 。建立圆轮的平面运动方程,得

FaFMa xCx 20050,

13.5 刚体平面运动微分方程

Page 45: 返回总目录

Theoretical Mechanics

返回首页

FaFMa xCx 20050,

80.950050, N FFMa yCy

06.02001.007.050, 2 FMI CC

补充方程式为 1.0, aRaaCx

解出 N490N F2s10.74rad

N3.146F

轮子不可能只滚不滑。

N984902.0Nmax fFF

超过了水平面能为圆轮提供的最大摩擦力

超过了水平面能为圆轮提供的最大摩擦力

例 题13.5 刚体平面运动微分方程

Page 46: 返回总目录

Theoretical Mechanics

返回首页

考虑轮子又滚又滑的情形:圆轮受力分析如图。在有滑动的情况下,动滑动摩擦力为 ,而质心加速度 a和角加速度是两个独立的未知量,列平面运动方程为

NfF

FaFMa xCx 20050,

80.950050, N FFMa yCy

06.02001.007.050 2 FMI CC

力的补充方程为 NFfF 联立解得

22

NN

s18.95rad,s2.53m

,N6.7349015.0,N490

a

FfFF

例 题13.5 刚体平面运动微分方程

Page 47: 返回总目录

Theoretical Mechanics

返回首页

例 13-10 均质细杆 AB 长 2l ,质量为 m , B端搁在光滑水平地板上, A端靠在光滑墙壁上, A 、 B 均在垂直于墙壁的同一铅直平面内。初瞬时,杆与墙壁的夹角为 0 ,杆由静止开始运动,求杆的角加速度、角速度及墙壁和地面的反力, ( 表示为 的函数 ) 。

解:以杆为研究对象,其受力图如图示,列平面运动方程

AC Fxm mgFym BC

cossin lFlFI ABC

式中有五个未知数 、 、 、 FA 、 FB ,而只有三个方程。由几何关系,列运动方程为

Cx Cy

cos,sin lylx CC

例 题13.5 刚体平面运动微分方程

Page 48: 返回总目录

Theoretical Mechanics

返回首页

将其对求二阶导数,得质心加速度的表达式

sincos 2 llxC

cossin 2 llyC

2

3

1mlIC 由 ,联立解得

sin4

3

l

g

sincossin4

3 2mlmgFA

cossin4

3 22 mlmgmgFB

sin

4

3

d

d

l

g

求杆的角速度

d

d

d

d

d

d

d

d

tt由

例 题13.5 刚体平面运动微分方程

Page 49: 返回总目录

Theoretical Mechanics

返回首页

dsin4

3d

l

g sin

4

3

d

d

l

g

进行积分,并代入初始条件, , ,得 0 0 0

coscos2

30

2 l

g coscos2

30

l

g

0cos2cos3sin4

3 mg

FA

coscos6cos714 0

2 mg

FB

0cos

3

2cosarc

利用 FA=0 的条件,可以求出 A端脱离墙壁时的角度

例 题13.5 刚体平面运动微分方程