量子化学研究室      坂元愛

14
量量量量量量量 量量量 量量量量量量量 量量量 Millimeter-wave spectroscopy Millimeter-wave spectroscopy of transient of transient molecules including transition molecules including transition metal. metal. 量量量量量量量量量量量量量量量量量量 量量量量量量量量量量量量量量量量量量 (FeCO, CoNO) (FeCO, CoNO)

description

Millimeter-wave spectroscopy of transient molecules including transition metal. 遷移金属を含む短寿命分子のミリ波分光 (FeCO, CoNO). 量子化学研究室      坂元愛. 遷移金属を含む短寿命分子の測定. 環境化学、触媒化学的に注目. Fe. C. O. C. O. Ni. C. O. Co. etc. Co. O. N. Fe. O. C. C. O. t = 50 ~ 150 m sec 検出例: 少. 本研究の目的. 高分解能分光実験 - PowerPoint PPT Presentation

Transcript of 量子化学研究室      坂元愛

  • Millimeter-wave spectroscopy of transientmolecules including transition metal.

    (FeCO, CoNO)

  • CoNOFeCONiOCM-COM-NOFeCOCOetc.CoOCt = 50150 msec

  • -CONiCO, CoCO, FeCO-NO FeCOCoNOTargets :

  • About FeCOM-COFe 3S- or 5S- ? FTG.S. n1band 3S- G.S., n2n32n2 n3 ab initio 2n2

  • Electron ConfigurationFeFeCO(3S-)CO3d4s3s4s1p5s2p*6s13s5p12s1d11s4p3p10s9s8sFeCO(5S-)

  • Experimental SetupphotolysisFe(CO)5FeCOUV(193 nm)t = 50 msAr buffer

  • Observed spectra (n3) J = 34-33n3(3S-)W1f0 = L + S3S- : L = 0, S = 1 L=0, S=1,0,-1W = 0,1e,1f 5151e45 cm-1530 cm-1n3

  • Analysis (n3 state)3S-s29.4kHza3 = 20.2051 MHza2 = -10.5073 MHzBe = 4374.405 MHza1 = 21.852 MHz

  • Discussion (n3 state)a3 = 20.2051(42) MHz ab initio 0.55%

    Be = 4374.405 MHzab initio 0.2%Fe1.725 1.159 3PCCOCCSSiSOFeCO-17.817-14.64511.49697.19333.52

    g (MHz)l (GHz)3S-- g - lCoNOCoC1.680 1.158 1.584 1.182 Ocf.-1152.3681.776460 cm-13P3S-DE

  • Observed spectrum (2n2) J = 35-34P = 02n23S0P = 053D1e,1fPP = W + l(l = 2, 0)1e,1f2e,2f3e,3f

  • CoNOCo-NO

    CoNO -NO + Co(CO)3NO CoNO, CoCOCo CoNO=139 X3AN X1S+O

  • ,n1, n2, n3, 2n260Fermi(n3 2n2)

  • CoNO1S(1S+ or 3A)n1, n2, n3CoNOCoC1.680 1.158 1.584 1.182 Ocf.ab initio (MR-SDCI+Q+Erel)Co-NCoCO20%

  • ConclusionsFeCOn3, 2n2l, g3P6460 cm-1

    CoNO, n1, n2, n3, 2n21Sab initio

    Fe1.725 1.159 Co1.584 1.182

  • 3P excited state6460 cm-13P6460 cm-1(zFe(3d)=417 cm-1)

  • Discussion (2n2 state)Analysis I : B, D, l changeAnalysis II : B, D, g change l, g D (1.28 kHz)2n23S3Dl

  • Molecular constants of FeCO

  • 1ab Intio !!Multi-reference Open 3d-shellQuasi-degeneracy of 3d orbitals () low-lying excited states. Multi-configulation Averaging MOsquasi-degeneracy averaging --- . 5D FeS5averaging. Fe 5D character ( CvC2v) . B1(x) B2 (y) .

  • 8s9s10s11s12s13s3p4p5p1dCASSCF MO (3S-)Reference spaceSingles and Doublesfor each CSF

  • 3S- , 5S- states of FeCO [CI(b)]r(CO) = 1.159 , fixed at exp. value3S-5S-3S-5S-3S-5S-MR-SDCIMR-SDCI + Q MR-SDCI + Q + ErelDE-1.76 kcal/mol0.87 kcal/mol0.68 kcal/molDavidsons correction (+Q) Erel correction

  • Calc. Exp. 3S- Calc. Exp. 3S-re(Fe-C) / 1.7219 1.727(r0)a wexe(11) /cm-1 -8.04re(C-O) / 1.1599 1.159(r0)awexe (22) /cm-1 1.48ae(Fe-C-O)/deg 180.0 180.0 wexe (33) /cm-1 -3.09Be /MHz 4382.5 wexe(12) /cm-1 -4.44B0, /MHz 4373.2b 4363.88342(40)c wexe (13) /cm-1 -3.39DJ / kHz 1.11 1.21799(84)c wexe (23) /cm-1 6.96Ee /Eh -1384.67301914g22 /cm-1 -0.87a1 / cm-1 0.000764 n1(C-O) /cm-1 1951 195010aa2 / cm-1 -0.000405 n2 (Fe-C-O) /cm-1 372 33050aa3 / cm-1 0.000670 n3(Fe-C) /cm-1 551 53010aw1(C-O) /cm-1 1973 Zero-Point E. /cm-1 1635.3w2(Fe-C-O) /cm-1 374 z12/cm-1 -0.97w3(Fe-C) /cm-1 566 z 23/cm-1 -0.25 L-doubling/cm-1 0.000152me /D -3.20 (Expec. Value -2.72)FeCO 3S- MR-SDCI+Q+Erel/[Roos ANO(Fe, C,O)]Perturbational Method with 3-Dimension PES

  • 3S- 5S- 3S- 5S- re(Fe-C) / 1.72191.8435wexe(11) /cm-1 -8.04-12.04re(C-O) / 1.15991.1532 wexe (22) /cm-1 1.48 17.75ae(Fe-C-O)/deg 180.0 180.0wexe (33) /cm-1 -3.09 -2.54Be /MHz 4382.5 4012.6 wexe(12) /cm-1 -4.44 -6.33B0, /MHz 4373.2 4012.1wexe (13) /cm-1 -3.39 -0.41DJ /kHz 1.11 1.11wexe (23) /cm-1 6.96-63.93Ee /Eh -1384.67301914 -1384.6711414g22 /cm-1 -0.87-16.07a1 / cm-1 0.0007640.000694 n1(C-O) /cm-1 1951 1996a2 / cm-1 -0.000405-0000638 n2 (Fe-C-O) /cm-1 372 260a3 / cm-1 0.0006700.000620 n3(Fe-C) /cm-1 551 425w1(C-O) /cm-1 1973 2027 Zero-Point E. /cm-1 1635.31498.2w2(Fe-C-O) /cm-1 374258 z12/cm-1 -0.97 -0.97w3(Fe-C) /cm-1 566495 z 23/cm-1 -0.25 -0.23 L-doubling/cm-1 0.0001520.000159me /D -3.20 -0.29 (Expec. Value -2.72 -0.50)FeCO 3S- and 5S- MR-SDCI+Q+Erel/[Roos ANO(Fe, C,O)]Perturbational Method with 3-Dimension PES

  • Observed spectrum (J = 87)F = J + IJ=8J=7FF59Co I =7/2 11.510.56.59.55.57.58.59.57.58.510.54.55.5CoNO 1SDF=+1DF=0

  • Discussion1.158 (fixed)1.690 FCo-N = 514.7 N/mCoNO1.182 (fixed)1.588 FCo-C = 414.5 N/m(ref.) CoCOM. Hayashi (2004)0.120%

  • Discussion CILow energy 1P ?(ref.) CI OCS : 2d) kHz ClCN : 3d) HCN : 10d) LiF : 37.3d) DI : 140d) CoC : 447e)d) White,R.L., e) M.Brewster and L. Ziurys (2001)120.3 kHz

  • 0500cm-1n2(P)n3(S)2n2(S)2n2(D)CoNOn1(N-O str.) : 1721.0 cm-1n2 (bending) : 302.9 cm-1n3 (Co-N str.) : 620.1 cm-1Fermi interactionGround

  • CoNO ab initio(MR-SDCI+Q+Erel)ab

    This is the molecular constant derived by Millss second order perturbational analysis using the ab inito three-dimensional potential function..

    Our re values is quite different from experimental r0 value, but the predicted B0 value agrees well within the errors in calculations.Error in B0 is only 0.2%, that is normal for the MR-SDCI+Q+Relativistic corrrection level of calculations. The agreement is the proof of the validity of our calculations.

    Centrifugal distortion constants agrees well.The bending motion is floppy as seen here and here (omega2 and nu2,,and the nu3 Fe-N symmetric stretching frequency agrees with the experimentally derived frequency.

    Our calculated value of the spin-orbit coupling constant, -83 cm-1, is quite reasonable when compared with that of X FeF(^6Delta_i).Dipole moment should be 4.6 debye, which is derived as the finite electric field derivative of the MR-SDCI+Q+Relativistic correction energy.

    This is the molecular constant derived by Millss second order perturbational analysis using the ab inito three-dimensional potential function..

    Our re values is quite different from experimental r0 value, but the predicted B0 value agrees well within the errors in calculations.Error in B0 is only 0.2%, that is normal for the MR-SDCI+Q+Relativistic corrrection level of calculations. The agreement is the proof of the validity of our calculations.

    Centrifugal distortion constants agrees well.The bending motion is floppy as seen here and here (omega2 and nu2,,and the nu3 Fe-N symmetric stretching frequency agrees with the experimentally derived frequency.

    Our calculated value of the spin-orbit coupling constant, -83 cm-1, is quite reasonable when compared with that of X FeF(^6Delta_i).Dipole moment should be 4.6 debye, which is derived as the finite electric field derivative of the MR-SDCI+Q+Relativistic correction energy.

    J7874.6G74.7GHzCoNOCo CoNO1CoNON-O1.182Co-N1.588CoCOCo-C1.690.1Co-CCoNOFCoN=514.7N/mCoCOFCoC=414.5N/mCo-N20%

    n2,n3,2n2introFermi