4.3 Ito’s Integral for General Intrgrands

22
4.3 Ito’s Integral for General Intrgrands 徐徐徐

description

4.3 Ito’s Integral for General Intrgrands. 徐健勳. Review. Construction of the Integral. Martingale Ito Isometry Quadratic Variation. 4.3 Ito Integral for General Integrands. - PowerPoint PPT Presentation

Transcript of 4.3 Ito’s Integral for General Intrgrands

Page 1: 4.3 Ito’s Integral for General  Intrgrands

4.3Ito’s Integral for General

Intrgrands徐健勳

Page 2: 4.3 Ito’s Integral for General  Intrgrands

Review• Construction of the Integral

T

0 (t) dW(t)

1

Assume that ( ) is constant in t on each

subinterval ,

Such a process ( ) is a simple processj j

t

t t

t

Tttt n 100

Page 3: 4.3 Ito’s Integral for General  Intrgrands
Page 4: 4.3 Ito’s Integral for General  Intrgrands

tudWutI

0)()()(

1

1

10

In general, if , then

( ) ( ) ( ) ( ) ( ) ( ) ( )

k k

k

j j j k kj

t t t

I t t W t W t t W t W t

Ttt n

• Martingale

• Ito Isometry

• Quadratic Variation

2

2

0.

tEI t E u du

2

0,

tI I t u du

Page 5: 4.3 Ito’s Integral for General  Intrgrands

4.3 Ito Integral for General Integrands• In this section, the Ito Integral

for integrands that allowed to vary

continuously with time and jump• Assume • is adapted to the filtration

• Also assume

T

0 (t) dW(t)

)(t

)(t

0 ),( ttF

T

0

2 )(E dtt

)(t

Page 6: 4.3 Ito’s Integral for General  Intrgrands

• In order to define , we approximate

by simple process.

• it is possible to choose a sequence of simple

processes such that as these processes

converge to the continuously varying .

• By “converge”, we mean that

)(tT

0 (t) dW(t)

)(tn

n

)(t

2

0lim 0

T

nnE t t dt

Page 7: 4.3 Ito’s Integral for General  Intrgrands
Page 8: 4.3 Ito’s Integral for General  Intrgrands

Theorem 4.3.1 Let T be a positive constant and let

be adapted to the filtration F(t) and be an adapted

stochastic process that satisfies Then

has the following properties.

(1)(Continuity) As a function of the upper limit of integration t,

the paths of I(t) are continuous.

(2)(Adaptivity)For each t, I(t) is F(t)-measurable.

,0 ,t t T

2

0.

TE t dt

0 0

lim ,0t t

nnI t u dW u u dW u t T

Page 9: 4.3 Ito’s Integral for General  Intrgrands

(3)(Linearity) If and

then

furthermore, for every constant c,

(4)(Martingale) I(t) is a martingale.

(5)(Ito isometry)

(6)(Quadratic variation)

0

tI t u dW u

0

,t

J t u dW u

0;

tI t J t u u dW u

0

tcI t c u dW u

2

2

0.

tEI t E u du

2

0,

tI I t u du

Page 10: 4.3 Ito’s Integral for General  Intrgrands

• Example 4.3.2 Computing We choose a large

integer n and approximate the integrand by the

simple process

0( ) ( ).

TW t dW t

t W t

0 0 0

2

1 1

n

TW if tn

T T TW if tn n nt

n T n TW if t T

n n

Page 11: 4.3 Ito’s Integral for General  Intrgrands
Page 12: 4.3 Ito’s Integral for General  Intrgrands

• As shown in Figure 4.3.2. Then

• By definition,

• To simplify notation, we denote

0|)()(|lim 2

0

dttWtET

nn

0 0

1

0

lim

1 lim

T T

nn

n

n j

W t dW t t dW t

j TjT jTW W Wn n n

WjjTWn

Page 13: 4.3 Ito’s Integral for General  Intrgrands

21 1 1 1

2 21 1 1

0 0 0 0

1 12 2

11 0 0

1 1 12 2 2

10 0 0

1 1 12 2 2

1 1 2 2

1 1 1 2 2 2

n n n n

j j j j j jj j j j

n n n

k j j jk j j

n n n

n k j j jk j j

W W W W W W

W W W W

W W W W W

1 12 2

10 0

12

10

1 2

1 2

n n

n j j jj j

n

n j j jj

W W W W

W W W W

Page 14: 4.3 Ito’s Integral for General  Intrgrands

• We conclude that

• In the original notation, this is

21 1

21 1

0 0

1 12 2

n n

j J j n j jj j

W W W W W W

1

0

21

2

0

1

11 1 2 2

n

jj

n

j

j TjT jTW W Wn n n

j T jTW T W Wn n

Page 15: 4.3 Ito’s Integral for General  Intrgrands

• As , we get

• Compare with ordinary calculus. If g is a differentiable

function with g(0)=0, then

n

2

0

2

1 1 ,2 21 1 2 2

TW t dW t W T W W T

W T T

T Tt

tTgtgtdgtg

0

2

0

2 )(21)(

21)()( |

Page 16: 4.3 Ito’s Integral for General  Intrgrands

• If we evaluated

then we would not have gotten ,this term.

In other words,

1

0

112lim

n

n j

j T j T jTW W Wn n n

T21

2

0

12

TW t dW t W T

Page 17: 4.3 Ito’s Integral for General  Intrgrands

n

jTWn

TjWn

TjW

n

jn

)1(21

lim1

0

To simplify notation, we denote

and21

21

jWn

TjW

jWnjTW

Page 18: 4.3 Ito’s Integral for General  Intrgrands

1

0

21

0 21

1

0

2

21

1

0

2

21 2

121)(

21 n

jj

n

jjj

n

j j

n

jjj

WWWWWW

1

0

2

21

1

0 211

1

0

21

1

0

2

211 2

121)(

21 n

j j

n

j jj

n

jj

n

j jj WWWWWW

---①

---②

Then, ①-②

1

0

1

0 21

1

0 211

21

1

0

2

21

21 n

jj

n

j j

n

j jjj

n

jj WWWWWW

1

0

1

01

1

0 21

222

21

21

21 n

j

n

jjj

n

j jnjj WWWWWW

We conclude that

1

0

1

0

22

211

2

21

1

01

21 2

1)(21lim)(

21limlim

n

j

n

jnjjnjjn

n

jjjjn

WWWWWWWW

Page 19: 4.3 Ito’s Integral for General  Intrgrands

22)(

1

0

1

0 21

1

0

2

21

Tn

TWWVarWWEn

j

n

jjj

n

jjj

02

442

43

4243

4)()(

2)()(

2

222

21

0

1

02

2

1

02

21

0

2

21

1

0

4

21

1

0

2

2

21

1

0

2

21

nasn

Tn

Tn

Tn

T

nT

nT

nT

nT

nTWWE

nTWWE

nTWWEWWVar

n

j

n

j

n

j

n

jjj

n

jjj

n

jjj

n

jjj

Page 20: 4.3 Ito’s Integral for General  Intrgrands

We conclude that and

1

0

2

21 4

1)(lim21 n

jjjn

TWW

1

0

2

211 4

1)(lim21 n

j jjnTWW

1

0

1

0

22

211

2

21

1

01

21 2

1)(21lim)(

21limlim

n

j

n

jnjjnjjn

n

jjjjn

WWWWWWWW

)(21)(

21

41

41)1(2

1

lim 221

0

TWTWTTnjTW

nTjW

n

TjW

n

jn

, So

2

0

12

TW t dW t W T We have

Page 21: 4.3 Ito’s Integral for General  Intrgrands

• is called the

Stratonovich integral.

• Stratonovich integral is inappropriate for finance.

• In finance, the integrand represents a position in an

asset and the integrator represents the price of that

asset.

2

0

12

TW t dW t W T

Page 22: 4.3 Ito’s Integral for General  Intrgrands

• The upper limit of integrand T is arbitrary, then

• By Theorem4.3.1

• At t = 0, this martingale is 0 and its expectation is 0.

• At t > 0, if the term is not present and EW2(t) = t, it is not

martingale.

2

0

1 1 , 02 2

TW u dW u W T t t

12

t