3 Eucliden Vector

download 3 Eucliden Vector

of 29

description

MATHS,Eucliden Vector Space on Thai version

Transcript of 3 Eucliden Vector

  • Three

    Euclidean Vector Spaces

    3.1 (space)

    ( , )x y ( , , )x y z 3 (3-space) 3

    3 ( Coordinate axes) X XY XZ Y XY YZ Z YZ XZ (Origin) O

    3.1.1

    1 1 1( , , )P x y z

    2 2 2( , , )Q x y z

    2 2 2

    2 1 2 1 2 1( ) ( ) ( )PQ x x y y z z

    n n

  • Page 76 | Euclidean Vector Spaces

    2 3

    3.1.2 , ,x y z ( , , )x y z 3 ( , , )x y z O ( , , )x y z

    3.1.3

    1 1 1 1( , , )P x y z 2 2 2 2( , , )P x y z

    1 2P P

    2 1 2 1 2 1

    ( , , )x x y y z z

    3.1.4 3

    1 2 3( , , )u u u u

    1 2 3( , , )v v v v 3

    u v 1 1 2 2 3 3, ,u v u v u v

    1 1 2 2 3 3( , , )u v u v u v u v k

    1 2 3( , , )ku ku ku ku

    (Standard operations) 3

    3 0 (0,0,0)

    1 2 3( , , )u u u u u

    1 2 3( , , )u u u u

    3 3.1.5 u , v w 3 ,k m

    1. u v 3 2. u v v u 3. ( ) ( )u v w u v w 4. 0 3 0 0u u u 5. u u 3 ( ) ( ) 0u u u u 6. ku 3 7. ( ) ( ) ( )km u k mu m ku 8. ( )k u v ku kv 9. ( )k m u ku mu 10. 1u u

  • | Page 77

    infinite dimension n n -space 2 3-space

    n (Vectors in n-Space) 2-3 3 () n 3.1.6 n n (ordered n-tuple) n

    1 2( , ,..., )

    na a a n

    n (n-space) n

    1 2

    ( , ,..., )n

    a a a n n 3.1.7

    1 2( , ,..., )

    nu u u u

    1 2( , ,..., )

    nv v v v n

    u v 1 1 2 2, ,..., n nu v u v u v

    1 1 2 2( , ,..., )n nu v u v u v u v k

    1 2 3( , ,..., )ku ku ku ku

    (Standard operations) n

    3 0 (0,0,...,0)

    1 2

    ( , ,..., )n

    u u u u u

    1 2( , ,..., )

    nu u u u

    3 n

  • Page 78 | Euclidean Vector Spaces

    n Properties of vector Operations in n-Space 3.1.8 u , v w n ,k m

    1. u v n 2. u v v u 3. ( ) ( )u v w u v w

    4. 0 n 0 0u u u 5. u u n ( ) ( ) 0u u u u

    6. ku n 7. ( ) ( ) ( )km u k mu m ku 8. ( )k u v ku kv 9. ( )k m u ku mu 10. 1u u

    3.1.9 v n k 1. 0 0v 2. 0kv 3. 1v v

    (Linear Combinations) 3.1.10 w

    n w 1 2, ,..., nv v v n

    1 1 2 2...

    n nw k v k v k v

    1 2, ,...,

    nk k k

    1 1 2 3, ,c c c

    1 2 3(1, 1,0) (3,2,1) (0,1,4) ( 1,1,19)c c c

  • | Page 79

    3.1 1. (1,3,3)u , ( 1,0,3)v (1, 2,3)w

    a. 2u v

    b. u w v

    c. 2 3v w 2. 1 x 2 7u v x x w 3. , ,a b c ( 2,9,6) ( 3,2,1) (1,7,5) (0,5,4)a b c 4. , ,a b c (1,2,0) (2,1,1) (0,3,1) (0,0,0)a b c

  • Page 80 | Euclidean Vector Spaces

    3

    1. (Inner Product) 2. ( Outer

    Product) 3. (Cross Product)

    3 () ( Outer Product) ( Dyad Product)

    3.2

    3.2.1

    1 2( , ,..., )

    nu u u u

    1 2( , ,..., )

    nv v v v n

    (Euclidean inner product) u v u v

    1 1 2 2

    1

    ...n

    i i n ni

    u v u v u v u v u v

    2n 3n (dot product)

    - 2u u u - Tu v v u

    (Properties of Euclidean inner product) 3.2.2

    1 2 1 2( , ,..., ), ( , ,..., )

    n nu u u u v v v v

    1 2( , ,..., )

    nw w w w

    n ,k m 1. u v v u 2. ( )u v w u v u w 3. ( ) ( ) ( )k u v ku v u kv 4. ( ) ( ) ( )ku mv km u v 5. 0u u 0u u 0u

    1 2

    ( , ,..., )n

    u u u u , 1 2

    ( , ,..., )n

    v v v v

    1 2

    ( , ,..., )n

    w w w w n ,k m 1. u v v u 2. ( )u v w u v u w

  • | Page 81

    3

    3. ( ) ( ) ( )k u v ku v u kv 4. ( ) ( ) ( )ku mv km u v 5. 0u u 0u u 0u

    3.2.3

    1 2( , ,..., )

    nu u u u n u

    u

    2 2 2 21 2

    ...n

    u u u u u u u

    3.2.4

    1 2( , ,..., )

    nu u u u

    1 2( , ,..., )

    nv v v v n

    ( Euclidean distance) u v d( , )u v

    d( , )u v u v

    2 (2,3, 1,7), (1,0,3, 5)u v d( , )u v

  • Page 82 | Euclidean Vector Spaces n () (norm) ( Euclidean norm)

    Cauchy-Schwarz 3.2.5 Cauchy-Schwarz

    1 2( , ,..., )

    nu u u u

    1 2( , ,..., )

    nv v v v n u v u v

    3.2.6 u v

    n k

    1. 0u

    2. 0u

    0u

    3. ku k u

    1 2

    ( , ,..., )n

    u u u u 1 2

    ( , ,..., )n

    v v v v n k 1. 0u

  • | Page 83

    2. 0u 0u

    3. ku k u 3.2.7 u v

    n k u v u v

  • Page 84 | Euclidean Vector Spaces

    3.2.8 Parallelogram Equation for Vectors

    u v n

    2 2 2 22u v u v u v

    3.2.9 u v

    n 2 21 1

    4 4u v u v u v

    3.2.10 ,u v w

    n k 1. d( , ) 0u v

    2. d( , ) 0u v u v 3. d( , ) d( , )u v v u 4. d( , ) d( , ) d( , )u w u w w v

  • | Page 85

    3.2 1.

    a. ( 4,3)u b. (2,2,2 2)v c. (5,6,0)w

    2. (unit vector)

    a. u n u

    b. u n u 3. (1, 1, 4,2,3)u (2,3,4,5,6)v 4. ,u v w

    n k (1.) d( , ) 0u v (2.) d( , ) 0u v u v (3.) d( , ) d( , )u v v u (4.) d( , ) d( , ) d( , )u w u w w v

  • Page 86 | Euclidean Vector Spaces

    3.3 (Orthogonality) (dot product) 2-3

    cosu v u v

    u v n

    cosu v

    u v

    3.3.1 u v

    n 0u v

    3 ( 2,3, 1,4), (1,2,0, 1)u v 3.3.2 u v

    n 2 2 2

    u v u v

  • | Page 87

    3.4 3 L 3

    0 0 0 0( , , )P x y z

    ( , , )a b cv L ( , , )P x y z L 0P P

    v t

    0PP t v

    0 0 0( , , ) ( , , )x x y y z z ta tb tc

    0 0,x x ta y y tb 0z z tc

    3.4.1 3 , ,a b c

    0 0 0, , ( )x x ta y y tb z z tc t

    0 0 0 0( , , )P x y z ( , , )a b cv

    0 0 0

    , , ( )x x ta y y tb z z tc t 1

    0(2,2, 3)P

    (4,5, 7) v 2 (2,4, 1)A

    (5,0,7)B XY

  • Page 88 | Euclidean Vector Spaces

    ( , , )x y zr ( , , )P x y z 0 0 0 0( , , )x y zr

    0 0 0 0( , , )P x y z 0PP 0r r

    t 0

    r r v t

    0r r v

    0 0 0x x y y z z

    a b c

    3.4.2 n

    0r v 0

    n t t

    0r r v

    0r v

    3

    0( 1,2)P ( 2,3) v

  • | Page 89

    4

    0(1,2, 3)P (4, 5,1) v

    5

    4 11 393 7 26

    2 8 26

    x y z

    x y z

    x z

    6 3

    4

  • Page 90 | Euclidean Vector Spaces

    ( inclination) (normal vector)

    0 0 0 0( , , )P x y z ( , , )a b cn

    (normal vector) ( , , )P x y z

    0P P

    n

    00PP n

    0 0 0( ) ( ) ( ) 0a x x b y y c z z

    point-normal form

    3.4.3 3 , ,a b c

    0ax by cz d ( , , )a b cn (normal vector)

    0ax by cz d , ,x y z 7 (1, 2,5)

    (4,2, 3) n

    3 (normal vector) 3.4.4 ( cross product vector product)

    1 2 3( , , )u u u u

    1 2 3( , , )v v v v u v

    2 3 3 2 3 1 1 3 1 2 2 1( , , )u v u v u v u v u v u v u v

    3.4.5 u v 3 u v u v

  • | Page 91

    8 1 2(1,2, 1), (2,3,1)P P

    3(3, 1,2)P

    ( , , )x y zr ( , , )P x y z 0 0 0 0( , , )x y zr

    0 0 0 0( , , )P x y z 0PP 0r r

    1 2, v 0 v 0

    1 1 2 2t t

    0r r v v

    3.4.6 n

    0r 1 2, v 0 v 0

    n 1 2,v v

    1 2,t t

    1 1 2 2t t

    0r r v v

    0r 1 2,v v

  • Page 92 | Euclidean Vector Spaces

    9 9 5 16 0x y x

    10 2 5x y z

    11

    9 5 1618 2 10 32

    27 3 15 48

    x y z

    x y z

    x y z

  • | Page 93

    12 1z y z

    2 3 1z y z

    13 1z y z

    2 3 1z y z

    3.4.7

    0 0 0 0( , , )P x y z 0ax by cz d D

    0 0 0

    2 2 2

    ax by cz dD

    a b c

    14 (1, 4,3) 2 3 6 1 0x y z

  • Page 94 | Euclidean Vector Spaces

    3.4 1. P u

    a. ( 4,1), (0, 8)P u

    b. ( 9,3,4), ( 1,6,0)P u

    2. (4,0, 5)u

    3.

    3 2 06 4 2 0

    3 2 0

    x y z

    x y z

    x y z

    3 2 26 4 2 4

    3 2 2

    x y z

    x y z

    x y z

  • | Page 95

    2( )f x x ( real valued function of real variable) x

    2 2( , )f x y x y ( real valued function of two real variables)

    4.4 n m

    n

    2( )f x x 2 2( , )f x y x y 2

    2 2 2( , , )f x y z x y z 3 n m f n m f

    (transformation map) n m : n mf 1m m n

    : n nf n (operator n )

    1 2 3, , ,..., mf f f f n

    1 1 1 2

    2 2 1 2

    1 2

    ( , ,..., )

    ( , ,..., )

    ( , ,..., )

    n

    n

    m m n

    w f x x x

    w f x x x

    w f x x x

    1 2( , ,..., )nx x x n 1 2( , ,..., )mw w w

    m m T

    : n mT

    1 2 1 2( , ,..., ) ( , ,..., )n mT x x x w w w

    15

    1 1 2

    2 1 2

    3 1 2

    w x x

    w x x

    w x x

    2 3 2 3:T 1 2 1 2 1 2 1 2( , ) ( , , )T x x x x x x x x (1,2) (3,2, 1)T

  • Page 96 | Euclidean Vector Spaces Some Notational Matters

    A T

    ( )AT Ax x

    T

    ( )T T x x

    AT A

    n m 1 2 1 2( , ,..., ) ( , ,..., )n mT x x x w w w 1 2 3, , ,..., mf f f f

    1 1 1 2

    2 2 1 2

    1 2

    ( , ,..., )

    ( , ,..., )

    ( , ,..., )

    n

    n

    m m n

    w f x x x

    w f x x x

    w f x x x

    : n mT n m

    : n mT

    1 11 1 12 2 1

    2 21 1 22 2 2

    1 1 2 2

    ...

    ...

    ...

    n n

    n n

    m m m mn n

    w a x a x a x

    w a x a x a x

    w a x a x a x

    1 11 12 1 1

    2 21 22 2 2

    1 2

    n

    n

    m m mn nm

    w a a a xw a a a x

    a a a xw

    Aw x

    ijA a T

    16 4 3:T

    1 1 2 3 4

    2 1 2 3 4

    3 1 2 3 4

    2

    3

    4

    w x x x x

    w x x x x

    w x x x x

    11

    22

    33

    4

    2 1 1 13 1 1 14 1 1 1

    xw xw xw x

  • | Page 97

    1 2 (operator) y

    x

    y x

    2 3 (operator) xy

    xz

    yz

    2 3

  • Page 98 | Euclidean Vector Spaces

    3 (projection) 2 (operator) (orthogonal projection) x

    (orthogonal projection) y

    4 (projection) 3 (operator) (orthogonal projection) xy

    (orthogonal projection) xz

    (orthogonal projection) yz

  • | Page 99

    5 2 (operator)

    6 3 (operator) x

    y

    z

  • Page 100 | Euclidean Vector Spaces

    7 2 (operator)

    k 2 (0 1)k

    k 2 ( 1)k

    7 3 (operator)

    k 3 (0 1)k

    k 3 ( 1)k

  • | Page 101

    4.3 1. A T

    3 2:T

    (1,0,0) (7,11), (0,1,0) (6,9)T T (0,0,1) ( 13,17)T

    2. 2 3:T

    11 2

    2

    1 4

    2 5

    3 6

    xT x xx

    3. 1 2, , , n

    mv v v : m nT

    1

    2

    1 1 2 2 m m

    m

    x

    xT x v x v x v

    x

    (

    1 2, , ,

    mv v v )

    4. 2 2:T 45 T

    5. 2 2:T T

    6.

    1 1 22 1 2

    7

    3 20

    y x x

    y x x

    7. A T (linear operator)

    a. 3 0

    0 3A

    b. 1 0

    0 1A

    c. 1 1

    1 1A

    d. 1 0

    0 0A

    e. 0 2

    2 0A

    f. 0.8 0.6

    0.6 0.8A

  • Page 76 | Euclidean Vector Spaces

    8. ( )T x Ax

    a. 0 1

    1 0A

    b. 2 0

    0 2A

    c. 1 0

    0 2A

    d. 0 0

    0 1A

    e. 0.6 0.8

    0.8 0.6A

    1

    1

  • | Page 77

    T:R4 R3 T(a1,a2,a3,a4) =(a1,a1+a3,a3+a4) S4 , S3 R

    4 ,R3 S = {(1,0,0,1),(0,0,0,1),(1,1,0,0),(0,1,1,0)} , S 1 ={(1,1,0),(0,1,0),(1,0,1)} R4 , R3 T S S3 T S S 1 T(2,1, 1,3) 1.1 1.2 T T:R2 R2 T(x,y) =(x+2y,2x3y) T {(1,0),(0,1)} {(2,1),(1,0)} {(1,1),( 2,3)} {(1,1),(0,2)} T:R2 R3 T(x,y) = (x+y , 2xy , x+2y) T 3.1 {(1,1),( 1,2)} {(1,0,0),(1.0.1),(0,1,1)} 3.2 {(1,0),(0,1)} {(1,0,1),(0,1,1)(1,1,0)} 4. A B 4.1 A = {(1,0),(0,1)} ; B = {(1,1),( 1,2)} 4.2 A = {(1, 1),(2,1)} ; B = {(1,2),(3,3)} 4.3 A = {(1,1),( 1,2)} ; B = {(1,0),(0,1)} 4.4 A = {(1,2),( 3,1)} ; B = {(1, 1),(2,1)}