2D-a01 ® / È(ò I D P v í 70è9 FþFïG Fþ # GyG Ge/æ*(>ÌPI1005 TI6505 TI6203 TI6205 TI6204 í...

12
2008 [1] 2012 [2] 6.5T MgB 2 Bi Y 1.29 MPa Fig.1 J-PARC 30,000 63,000 rpm 30,000 L 7 Fig.2 0.3MPa 1.1MPa 0.75MPa 1.5MPa( ) 43.7g/s 20. K 2K 22.5K Fig.2 [1] [2] Fig.1 Shcematic of developed hydrogen recurculation system. dP FM600 P P dP DP600 V600’ V604’ V600 P P PI6000 PI1002 CV001 TI6101 TI6104 V601 TI6201 TI6202 TI6502 P P V602 dP P FM600 PI6001’ V202 TI6103 V302 V312 V102 V105 V111 V110 P P TI001 PI1003 V106 V103B V103A V303B V303A PI1001 V104 P P PI4000 TI6102 PI1005 TI6505 TI6203 TI6204 TI6205 P P PI3000 Fig.2 Comprehensive test results. 第92回 2015年度秋季低温工学・超電導学会 2D-a01 水素冷却・機能材料

Transcript of 2D-a01 ® / È(ò I D P v í 70è9 FþFïG Fþ # GyG Ge/æ*(>ÌPI1005 TI6505 TI6203 TI6205 TI6204 í...

Page 1: 2D-a01 ® / È(ò I D P v í 70è9 FþFïG Fþ # GyG Ge/æ*(>ÌPI1005 TI6505 TI6203 TI6205 TI6204 í 7 þ P P PI3000 H I D P v!Õ 4) 9 /æ*(H G^GQGcG/GMG G= ® / È(òGkG GeGtGYGQGV

2008[1]

2012

[2] 6.5T MgB2 Bi Y

1.29 MPaFig.1

J-PARC30,000 63,000 rpm

30,000 L

7Fig.2 0.3MPa 1.1MPa

0.75MPa 1.5MPa( )

43.7g/s20. K

2K 22.5K

Fig.2

[1]

[2]

Fig.1 Shcematic of developed hydrogen recurculation system.

dPFM600

P P

dPDP600

V600’

V604’

V600

P P

PI6000

PI1002CV001

TI6101 TI6104

V601

TI6201

TI6202

TI6502

P P V602

dP

P

FM600PI6001’

V202

TI6103

V302

V312

V102

V105

V111

V110P P

TI001

PI1003

V106

V103B

V103A

V303B

V303A

PI1001

V104

P P

PI4000

TI6102

PI1005

TI6505

TI6203TI6204TI6205

P P PI3000

Fig.2 Comprehensive test results.

第92回 2015年度秋季低温工学・超電導学会

2D-a01 水素冷却・機能材料

Page 2: 2D-a01 ® / È(ò I D P v í 70è9 FþFïG Fþ # GyG Ge/æ*(>ÌPI1005 TI6505 TI6203 TI6205 TI6204 í 7 þ P P PI3000 H I D P v!Õ 4) 9 /æ*(H G^GQGcG/GMG G= ® / È(òGkG GeGtGYGQGV

第92回 2015年度秋季低温工学・超電導学会

2D-a02 水素冷却・機能材料

Page 3: 2D-a01 ® / È(ò I D P v í 70è9 FþFïG Fþ # GyG Ge/æ*(>ÌPI1005 TI6505 TI6203 TI6205 TI6204 í 7 þ P P PI3000 H I D P v!Õ 4) 9 /æ*(H G^GQGcG/GMG G= ® / È(òGkG GeGtGYGQGV

OHZEKI Hiro, OKAMURA Tetsuji(Tokyo Tech) E-mail: [email protected]

1 H.Anzai, et al.: Abstracts of CSSJ Conference, Vol.90 (2014) p.128

Fig.2 Experimental apparatus and schematic view of the transparent thermosyphon

Fig.3 Time traces of temperature at the liquid container

Fig.1 Experimental apparatus and schematic view of the cryogenic thermosyphon

Fig.4 State of the liquid container at the heat input of 160W

Cryogenic thermosyphon Transparent thermosyphon

Before temperature rise After temperature rise

Liquid surface

Container became empty.

極低温サーモサイフォン

可視化実験装置

第92回 2015年度秋季低温工学・超電導学会

2D-a03 水素冷却・機能材料

Page 4: 2D-a01 ® / È(ò I D P v í 70è9 FþFïG Fþ # GyG Ge/æ*(>ÌPI1005 TI6505 TI6203 TI6205 TI6204 í 7 þ P P PI3000 H I D P v!Õ 4) 9 /æ*(H G^GQGcG/GMG G= ® / È(òGkG GeGtGYGQGV

Development of a flexible thermal shield with a graphite sheet

H. Tamura, et al., Fusion Eng. Des. 89 (2014) 2336.A.A. Balandin, Nature Materials 10 (2011) 569.

(a) Existing thermal shield design with a stainless steel plate [1]

(b) Advanced thermal shield design with a graphite sheet

Fig. 1 Comparison between the existing and the advanced thermal shield designs.

Fig. 2 Thermal conductivity of a high-quality pyrolytic graphite bulk reported in literature [2].

Fig. 3 Measured thermal conductivity of the 0.025-mm-thick graphite sheet.

第92回 2015年度秋季低温工学・超電導学会

2D-a04 水素冷却・機能材料

Page 5: 2D-a01 ® / È(ò I D P v í 70è9 FþFïG Fþ # GyG Ge/æ*(>ÌPI1005 TI6505 TI6203 TI6205 TI6204 í 7 þ P P PI3000 H I D P v!Õ 4) 9 /æ*(H G^GQGcG/GMG G= ® / È(òGkG GeGtGYGQGV

He -Study on the expansion and shrinkage of single bubble in He under microgravity condition

Suguru (NIFS); KIMURA Nobuhiro (KEK);MURAKAMI Masahide (U. Tsukuba); OKAMURA Takahiro (KEK);

E-mail: [email protected]

He II

TAKADA

(Fig.1)

He II-vapor

XHe II

Fig.2

Fig.3, Fig.4

Fig.3

��

����

���

����

� ���

��

���

第92回 2015年度秋季低温工学・超電導学会

2D-a05 沸騰 /限流器応用

Page 6: 2D-a01 ® / È(ò I D P v í 70è9 FþFïG Fþ # GyG Ge/æ*(>ÌPI1005 TI6505 TI6203 TI6205 TI6204 í 7 þ P P PI3000 H I D P v!Õ 4) 9 /æ*(H G^GQGcG/GMG G= ® / È(òGkG GeGtGYGQGV

120 mm

Table 1 Test Heater dimensions

/0( )tQ Q e 10.0s

10.0s

minq / sath q T

h satTh

satT 80satT

Fig.2 Film boiling heat transfer coefficients for Type 2 heater at P=0.4MPa under saturated condition.

Type 2 z Type 1 1.67De 0.56 h

h

1/3 1/40.53 Re ( / ) 'z z l vNu M z

z zRe 1/2' { ( )/ }l vz z g2 1 1

2( )[1 { (2 Pr ) }][1 0.7 ]2 lM SpR E Sp ScE

2E3 2 2 2 22 2 2(5Pr ) 5Pr 7.5Pr 0l p c l p c l pE S S E S S E S R

eD

1/41 0.55 1 1/30.63 ( )e eD e D l v pNu zD Re M F (2)

1 0.91.0 0.7( )p crF PP

1 1/4 1/40.52 'eD e zNu z D z M

11 21 3 1 Pr Prz z l lM Gr Sp E E Sp R Sp

Fig.3 Film boiling heat transfer coefficients for Type 2 heater at P=0.7 MPa for subT =8 K.

[1] Shiotsu et al..: Abstract of CSSJ conference, Vol.89 (2014) p.192. [2] Shiotsu M and Hama K: Nucl. Eng. & Des. 200 (2000) p.23. [3] Sakurai A et al :1992 in Pool and External Flow Boiling ed by V

K Dhir and A E Bergles, ASME (1992) P.277

0 100 200 300 400

500

1000

5000

10000Type 1 HeaterP =0.4 MPa Saturated Condition

Tsat [ K ]

h

[W/m

2 /K]

Velocity4.1 m/s3.2 m/s1.6 m/s0.77m/s

4.13.2

1.6

0.77

Predicted Curve

0 100 200 300

500

1000

5000

10000Type 2 HeaterP =0.4 MPa Saturated Condition

Tsat [ K ]

h

[W/m

2 /K]

Velocity9.72 m/s4.71 m/s1.98 m/s

9.72

4.71

1.98

Predicted Curve

0 100 200 300 400

500

1000

5000

10000Type 2 HeaterP =0.7 MPa TB=21.0 K

Tsub=8 K

Tsat [ K ]

h

[W/m

2 /K]

Velocity7.23 m/s3.76 m/s2.06 m/s1.65 m/s

7.23

3.762.061.65

Predicted Curve

Fig.1 Film boiling heat transfer coefficients for Type 1 heater at P=0.4MPa under saturated condition.

De . h

第92回 2015年度秋季低温工学・超電導学会

2D-a06 沸騰 /限流器応用

Page 7: 2D-a01 ® / È(ò I D P v í 70è9 FþFïG Fþ # GyG Ge/æ*(>ÌPI1005 TI6505 TI6203 TI6205 TI6204 í 7 þ P P PI3000 H I D P v!Õ 4) 9 /æ*(H G^GQGcG/GMG G= ® / È(òGkG GeGtGYGQGV

100 101 102

104

105

106

Tsat [ K ]

q [

W/m

2 ]

P = 100 kPa = 1 s

Heater No.1Heater No.2 Heater No.3

NucleateBoiling

qcr

3 4 5 6 7 8 9 10

20406080

100120140160180

Heater No.1Heater No.2 Heater No.3

P = 100 kPa = 1 s

T sat

[ K

]

Time [sec]

第92回 2015年度秋季低温工学・超電導学会

2D-a07 沸騰 /限流器応用

Page 8: 2D-a01 ® / È(ò I D P v í 70è9 FþFïG Fþ # GyG Ge/æ*(>ÌPI1005 TI6505 TI6203 TI6205 TI6204 í 7 þ P P PI3000 H I D P v!Õ 4) 9 /æ*(H G^GQGcG/GMG G= ® / È(òGkG GeGtGYGQGV

, , , , ; TSUCHIYA Yuji, SAWADA Yuya, KIMURA Shojiro, AWAJI Satoshi, WATANABE Kazuo (Tohoku Univ.);

E-mail: [email protected]

REBa2Cu3O7- (REBCO RE:Y )

REBCOLTS

LTS

mm

Eu-TFC1.7w% PMMA3.2w%[1]

125 30 365 nm LED0-14 T 10-273 K

Superpower REBCO

1

365 nm LED(LEDEngin LZ1-10UV00-0000) 16bit

sCMOS (Andor Zyla-5.5) 560 nm(Kowa LM35XC2)

REBCO NiCr77 K 0 T 31 A(I/Ic = 81%) 0.5s

(NZP)77 K Ic 38 A

2 Eu-TFC 615 nm0 T

10 K [2]

Eu-TFC

3 Superpower REBCO 0 T, 77 K

NZP 3(a)

NiCr3(b-d) 2 s NZ

3 s 2 NZNZPV

10-15 mm/s

Fig. 1 Schematic drawing of the thermography setup.

Fig. 2 Temperature and magnetic field dependences of the peak

intensity at 615 nm in EuTFC+PMMA fluorescent paint.

Fig. 3 (a) Optical image (b-d) Thermography of NZP at 77 K, 0

T with a bias current of 31 A.

(A)25246032 50736080

1. P. L. Gammel, K. G. Hampel, and P. R.

Kolodner,U.S. Patent 597160 (1999).

第92回 2015年度秋季低温工学・超電導学会

2D-a08 沸騰 /限流器応用

Page 9: 2D-a01 ® / È(ò I D P v í 70è9 FþFïG Fþ # GyG Ge/æ*(>ÌPI1005 TI6505 TI6203 TI6205 TI6204 í 7 þ P P PI3000 H I D P v!Õ 4) 9 /æ*(H G^GQGcG/GMG G= ® / È(òGkG GeGtGYGQGV

Heat sink plate

CPU cooler

Radiator

Cooling fan

1 2 320

40

60

80

PT outletTe

mpe

ratu

re /

o C

Elapsed time / h

PT pressure gauge

PT heat sinkRegenerator inlet

Rotary valve

第92回 2015年度秋季低温工学・超電導学会

2D-p01 低温技術講習会

Page 10: 2D-a01 ® / È(ò I D P v í 70è9 FþFïG Fþ # GyG Ge/æ*(>ÌPI1005 TI6505 TI6203 TI6205 TI6204 í 7 þ P P PI3000 H I D P v!Õ 4) 9 /æ*(H G^GQGcG/GMG G= ® / È(òGkG GeGtGYGQGV

Regenerator BT DI Temp.Material

TypemCv mCv K

Cu Basic 0.0 0.0 173Cu Buffer 4.4 0.0 118Cu Double inlet 5.6 11.1 100

SUS Buffer 5.6 0.0 108SUS Double inlet 6.0 7.7 77

100

200

300

DI = 7.7 mCv −>BT = 5.7 mCv1.75 MPa

DI = 9.4 mCv−>BT = 6.2 mCv 1.75 MPaTe

mpe

ratu

re /

K

Low end High endPT middle point

DI = 7.7 mCv <−BT = 6.0 mCv1.71 MPa

5 6 7 8

88

90

92

BT orifice opening degree / mCv

Rea

ched

tem

pera

ture

/ K

DI = 7.7 mCv

DI = 9.4 mCv

第92回 2015年度秋季低温工学・超電導学会

2D-p02 低温技術講習会

Page 11: 2D-a01 ® / È(ò I D P v í 70è9 FþFïG Fþ # GyG Ge/æ*(>ÌPI1005 TI6505 TI6203 TI6205 TI6204 í 7 þ P P PI3000 H I D P v!Õ 4) 9 /æ*(H G^GQGcG/GMG G= ® / È(òGkG GeGtGYGQGV

第92回 2015年度秋季低温工学・超電導学会

2D-p03 低温技術講習会

Page 12: 2D-a01 ® / È(ò I D P v í 70è9 FþFïG Fþ # GyG Ge/æ*(>ÌPI1005 TI6505 TI6203 TI6205 TI6204 í 7 þ P P PI3000 H I D P v!Õ 4) 9 /æ*(H G^GQGcG/GMG G= ® / È(òGkG GeGtGYGQGV

1. [1] ,[2] ,

,,

,,

,2. Fig. 1 , 50

,,

ra, ,, 1 Fig. 2

, ,Po (= )

Po = 2V I cos ϕ = 2V EX

sin δ (1)

, V : , I: , E: , X :, ϕ: , δ:

3. (α, β) ,π/2 , α Eα , β

Eα = e− j π4 E0, Eβ = e j π4 E0 (2)

, α a , β c , ob . V

α Vα , β Vβ

Vα = e− j π6 V, Vβ = e j π6 V (3)

V E0 ( )δ (1) Po

Po = Vα Iα cos ϕα + Vβ Iβ cos ϕβ = 2 cosπ

12V E0

Xsin δ

(4)

, , 3.4 %,

, V = E ,X = 1.0 pu , Fig. 3

Vα Vβ π/2 π/3 ,Iα � Iβ δ

Iα , Iβ Fig. 4 I , (1),

(Po = 0 pu) , Iα = Iβ = 0.26 pu , Iα, Iβ , α β ,

3.61◦ , Iα = 1.27 pu, Iβ = 0.82 pu, α 27 %

, 61 %

Fig.1 Photo of twophase motor.

I.

V.

E.

jXI.

δθϕ

Fig.2 Phaser diagram of synchronousmotor with lagging power factor.

E.

α

V.

α

jXI.αI

(a) α phase

E.

β

V.

β

jXI.βI

(b) β phase

Fig.3 Phaser diagram of SM driven by 3 phase source.

0 20 40 600

0.5

1

1.5

Load angle δ / degree

I/ p

u

I

Fig.4 Relationship between phase current and load angle undercondition of E = V , X = 1 pu.

, 1, E =

√2V ,

2.06◦ , Iα = 1.29 pu, Iβ = 0.78 pu, α 29 %

, 67 % , X 1, .

4. ,, 1 ,

,, ,

, ,

1. S. Kawakami, et al.: Abstracts of CSSJ Conference, Vol. 92,2D-p01 (2015)

2. K. Nakayama, et al.: Abstracts of CSSJ Conference, Vol. 92,2D-p02 (2015)

第92回 2015年度秋季低温工学・超電導学会

2D-p04 低温技術講習会