2014 tai ccat 期中審查簡報 v2.3 20140812 簡報版

255
TaiCCAT 總總總總總總 / 總總總 總總總 總總總 總總總 總總總 總總總 總總總總總總總 總總總總總總總 Taiwan integrated research program on Climate Change Adaptation Technology 總總2014 總總總總總

Transcript of 2014 tai ccat 期中審查簡報 v2.3 20140812 簡報版

1. TaiCCAT / Taiwan integrated research program on Climate C h a n g e A d a p t a t i o n T e c h n o l o g y 2 0 1 4 2. 2 IPCC 1 3 4 5 6 2 AR4 AR5 AR4: IPCC (WGII) AR5: IPCC (WGII) 3. A lack in geographic balance in data and literature on observed changes Advances in integrating physical climate science with human and natural systems to assess impacts Difficulty discerning effect of regional climate changes due to adaptation and non- climatic drivers Broadening the consideration of climatic drivers, including extremes and interactive effects Little advance evidenced: societies, governance, technology, economic development Assessing a broader range of impacts of climate change in the context of other well documented stresses Most studies of future climate change were based on a small number of studies using SRES scenarios Improved understanding of the relations between adaptation, mitigation, development and sustainability Lack of knowledge regarding the nature of future changes, particularly at the regional scale Expanded coverage of adaptation Comprehensive treatment of regional aspects, with input from WGs I and III Policymakers require understanding of abrupt climate change and the impacts of such events Framing to support good policy decision, including information on risk Only a small amount of literature on the costs of climate change impacts Literature on adaptation costs and benefits was limited and fragmented Lack of high-quality observations that are essential for full understanding of causes Synergies exist between adaptive capacity and sustainable development, but further research is required AR4 major gaps AR5 major themes IPCC 4. AR4 sequential approach AR5 parallel process ( Moss et al., Nature, 2010) IPCC 5. IPCC AR5 WGII 5 IPCC AR5 WGII 6. 1. 2015 2. 2015 6 3. 2015 4. 2015 7. 7 8. 8 VS 9. 9 1 3 4 5 6 2 10. 10 11. 11 12. 12 6.3.1 6.3.4 8.1 13. 13 14. 14 15. 15 AR5 16. IPCC AR5 WGII 16 8 IPCC AR5 WGII 17. 17 AR5 WGII 18. 07/28 18 CH1 36.46 CH2 81.94 07/02 CH3 90.00 CH4 18.13 CH5 100.00 6.20 7.9 CH6 100.00 CH7 100.00 6.20 7.7 CH8 100.00 7.15 8.4 7.25 CH9 100.00 6.05 7.25 CH10 2.39 CH11 31.77 CH12 80.00 6.0412.5 6.2212.3 07/02 19. 19 1 3 4 5 6 2 20. 20 D, I D, I D, I K K W K I TaiCCAT 21. 33 28 21 22. 22 23. 23 24. 24 TaiCCAT * 1. TaiCCAT 180.64 2. 100.36 3. 180.64 4. 230.82 5. 240.86 6. 80.29 7. 110.39 -2 -1 0 1 2 25. 25 TaiCCAT * 140.50 220.79 200.71 260.93 60.21 240.86 190.68 180.64 240.86 220.79 TaiCCAT * 240.86 180.67 160.57 190.68 230.82 TaiCCAT 220.79 26. 26 IC 109 D1 106 S1 R1 105 D2 1010 S2 R2 106 D3 100 S3 R3 100 D4 109 S4 R4 1011 D5 102 S5 R5 100 D6 105 63 / 120 50 % 27. I 27 400 600 GRB 2013 400 2014 600 28. 28 II 29. 29 S1.pdf S2.pdf S3.pdf S4.pdf S5.pdf S6.pdf D2.pdf R3.pdf 8 S1.pdf S2.pdf S3.pdf S4.pdf S5.pdf S6.pdf R3.pdf 7 S1.pdf S4.pdf S5.pdf D1.pdf R3.pdf 5 S1.pdf S2.pdf S3.pdf S4.pdf S5.pdf S6.pdf 6 S1.pdf S2.pdf 2 D1.pdf D3.pdf Statistical approach to storm event-induced landslides susceptibility D4.pdf D4.pdf D4.pdf D2.pdf 6 30. I 30 31. 31 II 32. 32 005006007 449 33. 33 2014 51 34. 34 1 3 4 5 6 2 35. 35 36. 36 37. 37 D1 S1 16 3 D2 N/A S2 D3 S3 D4 S4 N/A D5 N/A S5 D6 38. 38 D1 D3 D4 D6 39. 39 S5 S1 S3 99th 25th S2 40. 40 41. 41 -2 -1 0 1 2 42. 42 43. 43 R2R5 R3 R4 R1 44. I 44 1.1. 45. II 45 1.2. 46. 46 1 3 4 5 6 2 47. 47 IC TaiCCAT IC.pdf D1 D1.pdf D2 D2.pdf D3 D3.pdf D4 Statistical approach to storm event-induced landslides susceptibility D4.pdf D4.pdf D4.pdf D5 N/A D6 N/A S1 S1.pdf S2 S2.pdf S3 S3.pdf S4 S4.pdf S5 S5.pdf S6 S6.pdf R1 N/A R2 N/A R3 R3.pdf TaiCCAT 14 48. 48 49. 49 3aawareness - ability - action - - 50. 50 1 2 1 2 2 51. 1 2 1 2 1 0 -1 52. 52 1 2 1 2 3 1 2 3 1 2 3 53. 53 1 3 4 5 6 2 54. TaiCCAT 54 2013 2014 55. TaiCCAT 55 56. Bauer et al. 2011 56 57. 57 58. 58 TaiCCAT TaiCCAT 1 21 22 1 1 21 2 2 1 TaiCCAT TaiCCAT 59. 59 1 3 4 5 6 2 60. 60 UNESCO-IHE Prof. Chris Zevenbergen Prof. Slobodan P. Simonovic TaiCCAT 61. Horizon 2020 TaiCCAT Geological Survey of Denmark and GreenlandGEUS Dr. Peter van der Keur TaiCCAT Horizon 2020 Integrated approaches to food security, low-carbon energy, sustainable water management and climate change mitigation 61 62. MAIRS Open Science Conference 2014: Future Earth in Asia 62 63. Deltas in Times of Climate Change II 63 Mainstreaming flood resilience and green infrastructure with investment and renewal programs: best practices and challenges from Tainan, Copenhagen, Singapore, Melbourne and Dordrecht/Rotterdam Dutch Research Programme Knowledge for Climate 64. 64 65. 65 1. 1 2 TaiCCAT TaiCCAT 3 12 3 66. 66 2. 1 60% 2 90% TaiCCAT TaiCCAT 3 12 3 TaiCCAT 14 67. 67 3. 1 TaiCCAT 2 3 68. 68 4. 1 1. 4 10 11 2. TaiCCAT 2 456 3 1. 2. 3. 4. ? 5. 6. 1 1. 2. 2 456 3 1. 2. TaiCCAT 3. 4. TaiCCAT 5. 6. IPCC AR5 69. 2015 TaiCCAT 69 70. 2015 2014 70 71. 2015 71 72. 2015 2014 TaiCCAT 72 73. 2015 TaiCCAT TaiCCAT TaiCCAT R2 73 74. 2015 Horizon 2020 2015 74 75. TaiCCAT / Taiwan integrated research program on Climate C h a n g e A d a p t a t i o n T e c h n o l o g y 2 0 1 4 76. 76 77. Coast City development UHI climate plant geology Inundation erosion landslide coast pollution Dry/flood warm Food fishery disaster Water resource Bio- diversity Environmental system analysis and data bank (value-added) simulation Regional climate (Air-temPrecip Key factor) & Auxiliary data(GIS) Public health Eco- system Food Security Disaster Vulnerability Assessment Water resource Adaptation Governance TCCIP- regional climate model (NCDR) GIS Micro- Climate platform Value- added data Land Ocean validation Feedback Atmosphere Geology Ecology (NSC103-2621-M019-001) 78. 78 (D2+D3)(D3+D4) (D2+D4)(D3+D6) (D1+D5)(D1+D6) (D3+D5)(D1+D2) (D3+D5) () 79. (a) (b) : : () : : : (c) - 2015/1/27 79 ( ) 80. (a) 1. 2015/1/27 80 TCCIP(mm/day) (mm) 3-month SPI (SPI) 81. 2015/1/27 81 (19601970198019902000) ()()() - 1960~2009 82. 2. 2015/1/27 82 - MODIS CERES 2006917() () 83. 2015/1/27 83 NCEP FNL WRF model (A) (B) A-B TRaP I-TRaP NCEP FNL FNL WRF I-TRaP 3. (/) 84. 2010 2015/1/27 84 WRF2010102100() ()()()() (:mm/hr) 85. 1957-2011 1980-2013 ()() (/) 2015/1/27 85 4. 86. - 2015/1/27 86 1960-2009()[jiang et al. 2003]() ()(SPI3)( )NINO3.4 (>0.5 +2: (B)(Max Time to Repair) Name 1993-1998 1999-2004 2005-2010 () () + 16 7 6 5.51 9.67 15.17 10 10 10 0.00 10.00 10.00 12 5 23 9.07 13.33 22.41 8 31 11 12.50 16.67 29.17 9 9 9 0.00 9.00 9.00 12 3 15 6.24 10.00 16.24 11 12 10 1.00 11.00 12.00 8 33 11 13.65 17.33 30.98 7 15 13 4.16 11.67 15.83 7 6 23 9.54 12.00 21.54 *+1:; >+2: (C)(Max. total cumulative deficits) Name 1993-1998 1999-2004 2005-2010 () () + 3.72 2.15 1.07 1.33 2.31 3.65 8.09 4.94 6.42 1.58 6.48 8.06 2.93 0.88 5.93 2.54 3.25 5.79 2.55 8.40 1.51 3.72 4.15 7.87 3.75 5.01 3.45 0.83 4.07 4.90 1.93 1.01 6.79 3.11 3.24 6.35 3.20 6.29 4.34 1.56 4.61 6.18 6.43 12.36 2.14 5.13 6.97 12.11 2.73 3.59 1.99 0.80 2.77 3.57 4.10 3.27 9.21 3.22 5.53 8.74 *+1:; >+2: (D)(Max. deficits for one season) Name 1993-1998 1999-2004 2005-2010 () () + 0.50 0.52 0.48 0.02 0.50 0.52 0.94 0.84 0.91 0.05 0.89 0.95 0.68 0.40 0.51 0.14 0.53 0.67 0.33 0.66 0.33 0.19 0.44 0.63 0.82 0.76 0.56 0.13 0.71 0.85 0.30 0.46 0.62 0.16 0.46 0.62 0.76 0.90 0.79 0.07 0.82 0.89 0.58 0.60 0.53 0.04 0.57 0.61 0.51 0.47 0.53 0.03 0.51 0.54 0.91 0.77 0.79 0.07 0.82 0.90 *+1:; >+2: (E) Name 1993-1998 1999-2004 2005-2010 () () + 0.44 0.50 0.17 0.17 0.20 0.37 0.24 0.31 0.11 0.10 0.12 0.22 0.39 0.54 0.17 0.19 0.18 0.37 0.46 0.44 0.22 0.13 0.24 0.37 0.39 0.57 0.38 0.11 0.34 0.45 0.40 0.59 0.42 0.10 0.37 0.47 0.39 0.47 0.18 0.15 0.19 0.35 0.42 0.43 0.29 0.07 0.30 0.38 0.47 0.36 0.18 0.15 0.19 0.34 0.40 0.50 0.21 0.15 0.22 0.37 *>:; 6.7 0~6.7 0 156. Adaptation Tipping Point (ATP) 156 157. X Pressures: States: Impact: Yes No Response: Response: ATP Impact: States: Pressures: Response: Adaptation Tipping Point (ATP) 158. 158 158 Adjust historical rainfall & temp with all (Ti, Pratio, i) GCMs Pratio Ex: DPD = f (T, Pratio) 159. (Tipping Point) 159 If DPD threshold = 1500%-day, under T=2 RCP 6.0 Pratio=70% 160. 160 T=4 Pratio, i T=3 T=2 T=1 Vulnerability index Threshold NOW Period 1 Period 2 1 2 161. - - - - - PHP+MYSQL - 161 162. 162 / / / / 163. // 1 CSD Model 2 ( ) 163 164. // 3 ( ) 4 164 165. // 5 6 GCMs 165 166. 166 1. 2. 3. 4. 5. 167. 168. : 169. 169 170. 170 / 1. a. b. c.CSD Model a. b. CSD Model 2. a. b. c. d. e. f. g. a.TaiWAP b. TaiWAP c. TaiWAP (Weather generator) d. TaiWAP(GWLF) e. TaiWAP(VENSIM) f. CDF g. DSSAT f. g. g. 3. a. b. c. d. e. f. g. a.TaiWAP b. TaiWAP c. TaiWAP (Weather generator) d. TaiWAP(GWLF) e. TaiWAP(VENSIM) f. CDF g. DSSAT f. g. g. 4. / a. b. a. b.CSD Model a. b. 171. 171 172. 172 (Baseline) (Baseline) 173. 173 PROF. CHRIS ZEVENBER GEN Impressions Paula Harrison Simonovic 2014/4/7 2014/6/25 2014/9/25 Deltas in Times session 20155 174. 174 SWOT SWOT 175. 175 Dr. Zevenbergen Dr.Simonovic IMPRESS ION 176. 176 DIKW K 2,3 K 2,3 K 2,3 K 1,2,3,4 K 1,2,3,4 K,W 1,2,3,4 W K W 177. 1. 177 1: 2: TaiCCAT 3: : SWOT ~ ~ 178. 2. 178 1: 2: 3: 179. 3. 179 1: 3 2: 3: 180. 4. (1/3) 180 1: 1. 2. SD Model 3. 4. 1. 2. SD model 3. 4 5 4. 181. 4. (2/3) 181 2: 182. 4. (3/3) 182 3: 1. 2. (p. 11, 3 ) ? ? 3. 4. ? ? 1.// 2. 3 3. 4 183. TaiCCAT / Taiwan integrated research program on Climate C h a n g e A d a p t a t i o n T e c h n o l o g y 2 0 1 4 184. 1. 2. 3. 4. 5. 6. 185. 185 1. : : : : ? ? ? ? 186. 2. R5 R1R3R4 R2 Source: Haasnoot, Kwakkel, Walker, and Maat (2013). Dynamic Adaptive Policy Pathways: A Method for Crafting Robust Decisions for a Deeply Uncertain World. Global Environmental Change. 186 187. 187 3. Climate Change Adaptation & Sustainable Development Pathway (R4) (R1) (R1) (R3) (R2) / (R5) 188. Q: ? Q? Q : ? Q? Q : ? Q:? Q ? Q ? ? Y Y Y Y Y Y Y N 188 3. 189. STEP STEP 2 (NPHFS) STEP 3 STEP 4 189 3. - H NS P F & 1. 2. 3. 4. 5. 6.